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Abstract

We prove a tight quantum query lower bound Q(nk/ (k"’l)) for the problem of deciding
whether there exist £ numbers among n that sum up to a prescribed number, provided that
the alphabet size is sufficiently large.

This is an extended and simplified version of an earlier preprint of one of the authors [7].

1 Introduction

Two main techniques for proving lower bounds on quantum query complexity are the polynomial
method [6] developed by Beals et al. in 1998, and the adversary method [2] developed by
Ambainis in 2000. Both techniques are incomparable. There are functions with adversary
bound strictly larger than polynomial degree [3], as well as functions with the reverse relation.

One of the examples of the reverse relation is exhibited by the element distinctness function.
The input to the function is a string of length n of symbols in an alphabet of size ¢, i.e.,
x = (x;) € [q]". We use notation [¢] to denote the set {1,...,q}. The element distinctness
function evaluates to 0 if all symbols in the input string are pairwise distinct, and to 1 otherwise.

The quantum query complexity of element distinctness is O(nQ/ 3) with the algorithm given
by Ambainis [5]. The tight lower bounds were given by Aaronson and Shi [I], Kutin [14] and
Ambainis [4] using the polynomial method.

The adversary bound, however, fails for this function. The reason is that the function has
1-certificate complexity 2, and the so-called certificate complexity barrier [I7, [I8] implies that
for any function with 1-certificate complexity bounded by a constant, the adversary method
fails to achieve anything better than Q(y/n).

In 2006 a stronger version of the adversary bound was developed by Hgyer et al. [12]. This
is the negative-weight adversary lower bound defined in Section Bl Later it was proved to be
optimal by Reichardt et al. [16] 15]. Although the negative-weight adversary lower bound is
known to be tight, it has almost never been used to prove lower bounds for explicit functions.
Vast majority of lower bounds by the adversary method used the old positive-weight version
of this method. But since the only competing polynomial method is known to be non-tight, a
better understanding of the negative-weight adversary method would be very beneficial. In the
sequel, we consider the negative-weight adversary bound only, and we will omit the adjective
“negative-weight” .

In this paper we use the adversary method to prove a lower bound for the following variant
of the knapsack packing problem. Let G be a finite Abelian group, and ¢ € G be its arbitrary
element. For a positive integer k, the k-sum problem consists in deciding whether the input
string z1,...,z, € G contains a subset of k£ elements that sums up to t. We assume that £ is
an arbitrary but fixed constant. The main result of the paper is the following

*Faculty of Computing, University of Latvia
fGoogle, Inc.


http://arxiv.org/abs/1206.6528v2

Theorem 1. For a fized k, the quantum query complezity of the k-sum problem is Q(nk/(k“))
provided that |G| > n*.

Clearly, the 1-certificate complexity of the k-sum problem is k, hence, it is also subject to
the certificate complexity barrier.

The result of Theorem [lis tight thanks to the quantum algorithm based on quantum walks
on the Johnson graph [5]. This algorithm was first designed to solve the k-distinctness problem.
This problem asks for detecting whether the input string « € [g]™ contains k elements that are
all equal. Soon enough it was realized that the same algorithm works for any function with 1-
certificate complexity k [11], in particular, for the k-sum problem. The question of the tightness
of this algorithm remained open for a long time. It was known to be tight for ¥ = 2 due to the
lower bound for the element distinctness problem. Now we know that it is not optimal for the
k-distinctness problem if k > 2 [8]. However, Theorem [Il shows that, for every k, quantum walk
on the Johnson graph is optimal for some functions with 1-certificate complexity k. Finally, we
note that the k-sum problem is also interesting because of its applications in quantum Merkle
puzzles [9] [13].

Actually, we get Theorem [I] as a special case of a more general result we are about to
describe. The following is a special case of a well-studied combinatorial object:

Definition 2. Assume T is a subset of [¢]* of size ¢*~'. We say that T is an orthogonal array
of length k iff, for every index i € [k] and for every vector x1,...,%;—1,Zit1,...,Zk € [q], there
exists exactly one z; € [g] such that (zy,...,zx) € T.

For x = (x;) € [q|" and S C [n] let g denote the projection of = on S, i.e., the vector
(sy,...,xs,) Where sq,...,sg are the elements of S in the increasing order.

Assume each subset S of [n] of size k is equipped with an orthogonal array Tg. The k-
orthogonal array problem consists in finding an element of any of the orthogonal arrays in the
input string. More precisely, the input = € [¢]" evaluates to 1 iff there exists S C [n] of size k
such that zg € Tg.

Consider the following two examples:

Ezample 3. Let G be a commutative group with ¢ elements and t € G. T = {z € G* :
Zle x; = t} is an orthogonal array of length k. This choice corresponds to the k-sum problem
of Theorem [I1

Ezample 4. T = {x € [q]® : 1 = 22} is an orthogonal array of length 2. This corresponds to
the element distinctness problem from [7].

Theorem 5. For a fized k and any choice of the orthogonal arrays Tg, the quantum query
complexity of the k-orthogonal array problem is Q(nk/(k“)) provided that ¢ > n*. The constant
behind big-Omega depends on k, but not on n, q, or the choice of Ts.

The orthogonal array condition specifies that even if an algorithm has queried k£ —1 elements
out of any k-tuple, it has the same information whether this k-tuple is a 1-certificate as if it
has queried no elements out of it. Because of this, the search for a k-tuple as a whole entity
is the best the quantum algorithm can do. Our proof of Theorem [l is a formalization of this
intuition.

Let us elaborate on the requirement on the size of the alphabet. It is easy to see that some
requirement is necessary. Indeed, the k-sum problem can be solved in O(y/n) queries if the size
of G is O(1), using the Grover search to find up to k copies of every element of G in the input
string, and trying to construct ¢ out of what is found. In some cases, e.g., when ¢ is the identity
element and k equals the order of the group, the problem becomes trivial if n is large enough.



The requirement on the size of the alphabet for the element distinctness problem is a subtle
issue. The lower bounds by Aaronson and Shi [I] and Kutin [14] require the size of the alphabet
to be at least (n?) that is the same that gives Theorem 5. However, later Ambainis [4] showed
that the lower bound remains the same even if one allows the alphabet of size n. Reducing the
alphabet size in Theorem [l is one of our open problems.

2 Adversary Lower Bound

In the paper we are interested in the quantum query complexity of solving the orthogonal array
problem. For the definitions and main properties of quantum query complexity refer to, e.g.,
Ref. [I0]. For the purposes of our paper, it is enough with the definition of the adversary bound
we give in this section.

Compared to the original formulation of the negative adversary bound [12], our formulation
has two differences. Firstly, in order to simplify notations we call an adversary matrix a matrix
with rows labeled by positive inputs, and the columns by the negative ones. It is a quarter of
the original adversary matrix that completely specifies the latter. Secondly, due to technical
reasons, we allow several rows to be labeled by the same positive input. All this is captured by
the following definition and theorem.

Definition 6. Let f be a function f: D — {0,1} with domain D C [¢]". Let D be a set of pairs
(z,a) with the property that the first element of each pair belongs to D, and D; = {(z,a) €
D: f(z) =1} for i € {0,1}. An adversary matriz for the function f is a non-zero real D; x Dy
matrix I'. And, for i € [n], let A; denote the D, x Dy matrix defined by

Ail(z,0), (v.0)] = {(1) o

otherwise.

Theorem 7 (Adversary bound [12]). In the notation of Definition @, Qo(f) = Q(AdvE(f)),

where
T

AdvT(f) = sup 1
D)= s U0 A ”
with the mazimization over all adversary matrices for f, || - || is the spectral norm, and Q2(f)

s the quantum query complexity of f.

Proof. In the original negative-weight adversary bound paper [12], Eq. (1)) is proven when I’
is a real symmetric D x D matrix with the property I'[z,y] = 0 if f(z) = f(y), and A; are
modified accordingly. We describe a reduction from the adversary matrix in our definition, I,
to the adversary matrix I' in the definition of [12]. Also, let Al be the D x D matrix with
Allz,y] = 1if 2; # i, and 0, otherwise.

At first, define T as
= 0 I
()
Note that |T'|| = |||, and the spectrum of T is symmetric. Also, for all 7, |T o A;|| = ||T o A,

where A; is defined similarly to T _
Let § = (6z,4) be the normalized eigenvalue ||I'|| eigenvector of I'. For all z,y € D, let:

Z 62, and [z, y] Z 82,00, 6T [(z,a), (y,b)] .
a:(z,a)€D a:(z, a)ED
b:(y, b)eD



Then it is easy to see that & = (&) satisfies |8’ = 1 and (§')*I'6' = §*Td = |T'||, hence,
N
And vice versa, if ¢’ is such that ||¢’|| = 1 and (¢')*(I"o A})e’ = [TV 0 Al||, let €4 4 = 0g,0E% /0%
Again, [|e]l = 1 and *(T o Ar)e = ()" (I o A, hence, 17 0 Aj] < [[Fo A = T o A,
This means that IV provides at least as good adversary lower bound as I'. O

3 Proof

In this section we prove Theorem [l using the adversary lower bound, Theorem [l The idea
of our construction is to embed the adversary matrix I' into a slightly larger matrix I with
additional columns. Then I' o A; is a submatrix of I' o A;, hence, [|[T' o A;|] < |T'o Aj]l. (In
this section we use A; to denote all matrices defined like in Definition [6, with the size and the
labels of the rows and columns clear from the context.) It remains to prove that ||| is large,
and that ||| is not much smaller than ||T|. N

The proof is organized as follows. In Section B we define I" in dependence on parameters
Oy, in Section we analyze its norm, in Sections B3 and B4 we calculate ||T o A, in
Section we optimize «,,s, and, finally, in Section we prove that the norm of the true
adversary matrix I' is not much smaller than the norm of I.

3.1 Adversary matrix

Matrix T' consists of (Z) matrices 6517...,5

S ={s1,...,8} C [n]:

. stacked one on another for all possible choices of

G2,k

T — él,2,...,k71,k+1 . 2)

Gn—k+1,n—k+2,...,n

Each C~¥S is a ¢" ! x ¢" matrix with rows indexed by inputs (x1,...,z,) € [¢]" such that x5 € T,
and columns indexed by all possible inputs (y1,...,ys) € [q]™.

We say a column with index y is dllegal if ys € Ts for some S C [n]. After removing all
illegal columns, Gg will represent the part of I' with the rows indexed by the inputs having an
element of the orthogonal array on S. Note that some positive inputs appear more than once
in I'. More specifically, an input x appears as many times as many elements of the orthogonal
arrays it contains.

This construction may seem faulty, because there are elements of [¢]™ that are used as labels
of both rows and columns in f, and hence, it is trivial to construct a matrix I such that the
value in (Il is arbitrarily large. But we design I' in a specifically restrictive way so that it still
is a good adversary matrix after the illegal columns are removed.

Let J, be the ¢ x ¢ all-ones matrix. Assume eg,...,e,—1 is an orthonormal eigenbasis of
Jq with eg = 1/,/q(1,...,1) being the eigenvalue ¢ eigenvector. Consider the vectors of the
following form:

V=ep Rey @ Dey, (3)
where v; € {0,...,¢ — 1}. These are eigenvectors of the Hamming Association Scheme on [g]".
For a vector v from (B), the weight |v| is defined as the number of non-zero entries in (vy,...,v,).

Let E,(Cn), for k = 0,...,n, be the orthogonal projector on the space spanned by the vectors
from () having weight k. These are the projectors on the eigenspaces of the association scheme.



Let us denote E; = EZ-(l) for ¢ = 0,1. These are ¢ X ¢ matrices. All entries of Ej are equal to
1/q, and the entries of Ej are given by

1-1 T =;
El[[xay]]:{_l/q/q, 1’7&3’

Elements of S in G should be treated differently from the rest of the elements. For them,
we define a ¢"~! x ¢F matrix Fg. It has rows labeled by the elements of T's and columns by the
elements of [¢]*, and is defined as follows.

Definition 8. Let

k—1
EX =1-E" =%"EY S e
1=0 U= eu1®"'®euk
lu|<k

be the projector onto the subspace spanned by the vectors of less than maximal weight. Let Fg
be /g times the sub-matrix of E(<k,2 consisting of only the rows from Tg.

Finally, we define [ as in @) with és defined by

n—k
Gs=> anFs@EG™ (4)
m=0

where Fyg acts on the elements in S and F,, acts on the remaining n — k elements. Coefficients
o, will be specified later.

3.2 Norm of I
Lemma 9. Let I be like in (@) with Gs defined like in (). Then

(a) |IT]| = Q(aont/?),
(b) |IT|| = O(max,, amn®/?).

Proof. Fix a subset S and denote T'=Tg and F = Fg. Recall that E(<k,2 is the sum of uu* over

all u = e, ®---®e,, with at least one u; equal to 0, and F is the restriction of E( ) to the
rows in T'.

For u = e,, ®---®e,, and £ such that uy = 0, let u® denote the /q multiple of u restricted
to the elements in 7. The reason for the superscript is that we consider the following process
of obtaining u®: we treat T as [¢)*~! by erasing the /-th element in any string of 7', then u®
coincides on this set with u with the /-th term removed.

In this notation, the contribution from wu* to F equals u(®)u*, where £, is any position in
u containing eg. In general, we do not know how u(®s relate for different £. However, we know
that, for a fixed £, they are all orthogonal; and for any ¢, (e%bk)(z) is the vector 1/4/¢5—1(1

Let us start with proving (a). We estimate ||| from below as w*I'w’, where w and w' are
unit vectors with all elements equal. In other words, ||T|| is at least the sum of all its entries

divided by ( )q2” L. In order to estimate the sum of the entries of f, we rewrite (4]) as

Gg = aoe?(n Zoq (u () @y N u®@uv)* (5)



where the summation is over all © and v such that at least one of them contains an element
different from egp. The sum of all entries in the first term of (@) is g™ /2. The sum of each
column in each of (u{®) @ v)(u ® v)* is zero because at least one of u(’*) or v sums up to zero.

By summing over all (}) choices of S, we get that IT|| > oo () = Q(agn®/?).

In order to prove (b), express Fyg as Z?Zl Fb@ with Fg) =D uel, u®v*. Here {Uy} is an
arbitrary decomposition of all w such that U, contains only u with e in the ¢-th position. Define

Gg) as in () with Fg replaced by Fg), and I'® as in @) with Gg replaced by ég).
Since all u(Ys are orthogonal for a fixed £, we get that

(GOyGY = > ol (uev)(uev),

u€Uyp,v

thus [|(G©)*G®)|| = max,, a2,. By the triangle inequality,

~E)\x ~(
D@9 Ey

S

IFO2 = || Ey T =

< " maxa2
— k m m

Since I' = 2521 f(z)’ another application of the triangle inequality finishes the proof of (b). O

3.3 Action of A;

The adversary matrix is symmetric in all input variables and hence it suffices to only consider
the entry-wise multiplication by A;. Precise calculation of ||[I" o Aq|| is very tedious, but one
can get an asymptotically tight bound using the following trick. Instead of computing I" o Ay

directly, we arbitrarily map =N [, such that T 0 Ay = [ o Ay, and use the inequality
Ty 0 Ay < 2||IT|| that holds thanks to y2(A;) < 2 [I5]. In other words, we change arbitrarily
the entries with z; = y;. We use the mapping

Eo®S By, B SS By, 1250 . (6)

(%)

<1 is mapped by A; as

The projector £

It follows that

Ja=iN ey ® E?(k_l) = Z uu* (7)
U=eyq Q- Qeuy,
up=0,|u|=k—1

where u(!) is defined like in the proof of Lemma [0

3.4 Norm of fl

Lemma 10. Let I be like in (2) with Gr defined like in (4), and map T2 Iy and Gr A

(C~¥T)1 using (@) and (7). Then Hle = O(maxm(nrlax(amm(’l‘C n/2 (m — amg1)n k/2))).

Proof. We have |42 = |TiTy|| = | Zs(ég)’{(ég)lﬂ Decompose the set of all possible k-
tuples of indices into S&; U Sy, where S7 are k-tuples containing 1 and Sy are k-tuples that
don’t contain 1. We upper-bound the contribution of S; to ||T1||? by max,, a2, (m,jffl) and the
contribution of Sy by max,, (v, — am+1)2kz(";1), and apply the triangle inequality.



Let v =€y, ® -+ ® ey, with [v| =m + k — 1, and let S € S;. Then, by (1),

~ | oo, vy =0and |vs| =k -1,
(Gs)v= { 0, otherwise.
Here v = ¢, ® --- @ e, is v with the first term removed and vg = X e Cos-

For different v, these are orthogonal vectors, and hence v is an eigenvector of (és)’{(és)l
of eigenvalue o2, if v; = 0 and |vg| = k — 1, and of eigenvalue 0 otherwise. For every v with
vy = 0 and |v]| = m + k — 1, there are (m,jf;l) sets S € S; such that (Gg)iv # 0. Thus, the
contribution of &7 is as claimed.

Now consider an S € Sy, that means 1 ¢ S.

n—k
Gs = > anFs@ER™

m=0

n—=k

= Y anFs @ (By@ EQ* Y 4 By o EL V)

m=0
n—k
> amFs ® By @ (B0 - EL V)
m=0
n—=k

=(Gs)1 = Z (Qtm — 1) Fs ® By @ EPF=D

m=0

Therefore (és)l is of the same form as C~¥S, but with coefficients (ay, — aum+1) instead of ayy,
and on one dimension less. We get the required estimate from Lemma [Qi(b).
Since k = O(1), we get the claimed bound. O

3.5 Optimization of «,,

To maximize the adversary bound, we maximize ||I'|| while keeping ||T'1|| = O(1). That means,
we choose the coefficients () to maximize apn*/? (Lemma [) so that, for every m, o, <
m=F72 and oy, < gyt +n k2 (Lemma [I0]).

For every r € [n], ag < a, 4+ rn~%/2 < p(1=k)/2 1 pp=k/2 The expression on the right-hand
side achieves its minimum, up to a constant, ag = 2 nF(=kK/CE+D) for ¢ = pk/(k+1)  Thig
corresponds to the following solution:

k(1—k)

m rUIZR)
Oy, — IMax {2 — W,O} n 2(k+1) (8)

With this choice of a,, ||T]| = Q(agn®/2) = Q(nk/(*+1),

3.6 Constructing [' from r

The matrix I gives us the desired ratio of norms of [ and T o A,. Unfortunately, I’ cannot
directly be used as an adversary matrix, because it contains illegal columns y with f(y) = 1,
that is, y that contain an element of the orthogonal array on S C [n] : |S| =k, ie., ys € Ts.
We show that after removing the illegal columns it is still good enough.

Lemma 11. Let I' be the sub-matriz of T with, the illegal columns removed. Then | o Ay <
IT o Ay||, and ||T|| is still Q(aon®/?) when q > n*.



Proof. We estimate ||T'|| from below by w*T'w’ using unit vectors w,w’ with all elements equal.
Recall Equation (5):

Gr = agey "V (e§™) + Y g (™ @ v)(we v)*

where the summation is over all © and v such that at least one of them contains an element
different from eg. The sum of each column in each of (u() @ v)(u ® v)* still is zero because at
least one of u®) or v sums up to zero. Therefore the contribution of the sum is zero regardless
of which columns have been removed.

By summing over all (Z) choices of S, we get

0l = wrat = (oo 6730

where ey, denotes the sub-vector of e restricted to L, and L is the set of legal columns. Since
both ey and w’ are unit vectors with all elements equal, and w’ is supported on L, (eg@")zw’ =
VILI/ ¢

Let us estimate the fraction of legal columns. The probability that a uniformly random input

y € [q]™ contains an orthogonal array at any given k-tuple S is %. By the union bound, the

probability that there exists such S is at most (Z) %. Therefore the probability that a random
column is legal is % >1- (Z) %, which is Q(1) when ¢ > n*. O

Thus, with the choice of (a,,) from (), we have AdvE(f) = Q(aon®/?) = Q(n*/*+1). This
finishes the proof of Theorem [l

4 Open problems

Our technique relies crucially on the n* lower bound on the alphabet size. Can one relax this
bound in some special cases? For example, element distinctness is nontrivial when ¢ > n, but
our lower bound only holds for ¢ > n?.

A tight Q(nQ/ 3) lower bound for element distinctness was originally proved by the polynomial
method [1] by reduction via the collision problem. The k-collision problem is to decide whether
a given function is 1 : 1 or k : 1, provided that it is of one of the two types. One can
use an algorithm for element distinctness to solve the 2-collision problem, and thus the tight
Q(n'/3) lower bound for collision in [I] implies a tight lower bound for element distinctness.
Unfortunately, the reduction doesn’t go in both directions and hence our result doesn’t imply
any nontrivial adversary bound for k-collision. The simpler non-negative adversary bound is
limited to O(1) due to the property testing barrier. Roughly speaking, if every 0-input differs
from every l-input in at least an e-fraction of the input, the non-negative adversary bound is
limited by O(%) How does an explicit negative adversary matrix for an w(1) lower bound look
like?

The recent learning graph-based algorithm for k-distinctness [8] uses O(n!=2""*/(2*~1) quan-
tum queries, which is less than O(n*/(*+1)) but more than the Q(n%*?) lower bound by reduction
from 2-distinctness. k-distinctness is easier than the k-sum problem considered in our paper
because one can obtain nontrivial information about the solution from partial solutions, i.e.,
from (-tuples of equal numbers for £ < k. Can one use our technique to prove an w(n?/?) lower
bound for k-distinctness?

The k-sum problem is very structured in the sense that all k-tuples of the input variables,
and all possible values seen on a (k — 1)-tuple, are equal with respect to the function. The



symmetry of this problem helped us to design a symmetric adversary matrix. The nonnegative
adversary bound gives nontrivial lower bounds for most problems, by simply putting most of
the weight on hard-to-distinguish input pairs, regardless of whether the problem is symmetric
or not. Can one use our technique to improve the best known lower bounds for some non-
symmetric problems, for example, to prove an w(y/n) lower bound for graph collision, w(n) for
triangle finding, or w(n3/?) for verification of matrix products?
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