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ABSTRACT
We construct a publicly verifiable protocol for proving com-
putational work based on collision-resistant hash functions
and a new plausible complexity assumption regarding the
existence of “inherently sequential”hash functions. Our pro-
tocol is based on a novel construction of time-lock puzzles.

Given a sampled “puzzle” P
$
←Dn, where n is the security

parameter and Dn is the distribution of the puzzles, a cor-
responding “solution” can be generated using N evaluations
of the sequential hash function, where N > n is another pa-
rameter, while any feasible adversarial strategy for generat-
ing valid solutions must take at least as much time as Ω(N)
sequential evaluations of the hash function after receiving P.
Thus, valid solutions constitute a “proof” that Ω(N) parallel
time elapsed since P was received. Solutions can be publicly
and efficiently verified in time poly(n) · polylog(N). Appli-
cations of these “time-lock puzzles” include noninteractive
timestamping of documents (when the distribution over the
possible documents corresponds to the puzzle distribution
Dn) and universally verifiable CPU benchmarks.
Our construction is secure in the standard model under

complexity assumptions (collision-resistant hash functions
and inherently sequential hash functions), and makes black-
box use of the underlying primitives. Consequently, the
corresponding construction in the random oracle model is
secure unconditionally. Moreover, as it is a public-coin pro-
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tocol, it can be made non-interactive in the random oracle
model using the Fiat-Shamir Heuristic.

Our construction makes a novel use of “depth-robust” di-
rected acyclic graphs—ones whose depth remains large even
after removing a constant fraction of vertices—which were
previously studied for the purpose of complexity lower bounds.
The construction bypasses a recent negative result of Mah-
moody, Moran, and Vadhan (CRYPTO ‘11) for time-lock
puzzles in the random oracle model, which showed that it
is impossible to have time-lock puzzles like ours in the ran-
dom oracle model if the puzzle generator also computes a
solution together with the puzzle.

Categories and Subject Descriptors
F.1.2 [COMPUTATION BY ABSTRACT DEVICES]:
Modes of Computation—Parallelism,Relativized computation;
K.6.5 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection—
Unauthorized access

General Terms
Theory, Security

Keywords
Time-Lock Puzzles, Proofs of Work, Timestamping, Depth
Robust Graphs

1. INTRODUCTION
A timestamping scheme is a mechanism for proving that

a document was created before a certain time in the past.
Timestamping schemes have variety of applications, includ-
ing the resolution of intellectual property disputes (e.g., an
inventor may timestamp her invention to prevent future
patent challenges) and providing evidence of predictive pow-
ers (e.g., a stock analyst could prove that she correctly pre-
dicted stock price changes before they occurred).

We say a timestamping scheme is noninteractive if gen-
erating a timestamp does not require communication with
a third party. This is a desirable property, both because it
makes timestamping easily scalable (multiple parties gener-
ating timestamps do not interfere with each other), and it
allows parties to hide the fact that they are generating a
timestamp; this might be crucial in some scenarios (e.g., an
inventor may not wish to reveal the fact that she has a new
invention).



A natural cryptographic approach to timestamping is via
proofs of work—use computational effort invested as a mea-
sure of time elapsed. For example, if a party wants to be
able to issue future proofs that she knows a document D at
time t0, then starting at time t0, she starts to evaluate a
“moderately hard” function g on document D. If we know
that g takes time ≈ N to evaluate, then the value g(D) can
be considered a “proof” that D was known N time units in
the past.
Note that here we need both an upper bound and a lower

bound on the complexity of computing g—an adversary should
not be able to evaluate g on D much more quickly than an
honest party following the specified algorithm for g. In ad-
dition, we would like verifying y = g(D) (given D and y) to
be done much more efficiently than evaluating g on D from
scratch.
These (initial) goals can be achieved by taking g = f−1

for a very strong one-way permutation f : {0, 1}n → {0, 1}n,
where we take the security parameter to be n = logN .
Given a document D ∈ {0, 1}n, the proof of work f−1(D)
can be computed by brute force in time approximately 2n =
N . Such a proof can be verified very quickly (e.g., in time
poly(n) = poly(logN)). Moreover, it is a plausible assump-
tion that any efficient1 algorithm for inverting f will require
time Ω(2n) = Ω(N), at least on a uniformly random docu-

ment D
$
← {0, 1}n. (If D is not uniformly distributed, then

we can heuristically apply this construction to a hash of D,
or even apply a publicly known deterministic randomness
extractor tailored to the distribution Dn from which D is
sampled.)
One deficiency of the aforementioned construction is that,

while it certifies that N units of computational effort were
invested after receiving D, this need not correspond to clock
time, because an adversary could parallelize its computa-
tional efforts (e.g., by using a bot-net to try many preimages
at once). Thus, we would like to have proofs of work that are
inherently sequential, i.e., even a massively parallel effort to
evaluate g(D) would still take time close to N . (Of course,
“time” is still relative to single-core CPU speed, which may
differ between the honest party and the adversary, but this
gap should be easier to gauge and control than what can be
achieved by massive parallelism.)
Based on ideas from [CLSY93, RSW96], Jerschow and

Mauve [JM10] proposed the following timestamping func-
tion which is conjectured to be secure against parallel attack:

g(D) = 22
D

(mod N), for an RSA integer N whose factors
are kept secret. A verifier who already knows the secret fac-
torization of N can check the computation efficiently using

the“shortcut”22
D

≡ 2(2
D mod ϕ(N)) (mod N); if |N | ≈ |D|,

this shortcut gives an exponential speed-up. The security of
this scheme is based on the conjecture that modular expo-
nentiation is an inherently sequential task without knowing
the factorization of N .

Time-Lock Puzzles. The idea of using modular expo-
nentiation as a proof of sequential work was first proposed
by Cai, Lipton, Sedgewick and Yao [CLSY93], in the con-
text of CPU benchmarks, and by Rivest, Shamir and Wag-
ner [RSW96] in the context of time-lock puzzles. In a time-

1Here the adversary is assumed to be uniform, because a
non-uniform attacker can in fact invert a one-way permu-
tation in time 2cn for some constant c < 1 [Hel80, FN99,
DTT10].

lock puzzle protocol, solving a puzzle should take approxi-
mately N time (even for a massively parallel solver), while
generating the puzzle and verifying the solution should take
considerably less. Thus, one can think of a time-lock puzzle
as an interactive proof of sequential work and view a solu-
tion to the puzzle as a proof that at least roughly N time
units have elapsed since the prover received the puzzle.

When used as a timestamping scheme, however, modular
exponentiation has a serious drawback: the verifier must
know and keep secret the factorization of the modulus. In
practice, this means that the timestamper must decide in
advance which verifiers to target. Moreover, if a verifier’s
secret key ever leaks, all timestamps using the corresponding
public key can no longer be trusted.

To construct publicly verifiable timestamping schemes from
time-lock puzzles, we employ public-coin time-lock puzzles
and interpret the document D as the coin tosses generating
the puzzle P.

Generic Proofs of Work via Efficient Arguments.
Suppose we are given an inherently sequential function fam-
ily: {fP : {0, 1}n 7→ {0, 1}n}P∈{0,1}poly(n) , meaning that the

t-fold composition f t
P(0

n) takes parallel time Ω(t) for a uni-

formly random P
$
←{0, 1}poly(n). A natural attempt to con-

struct a proof of work is to use simple iteration of f : the
prover chooses a function fP from the family (determined by
the puzzle P) and begins with an initial fixed value x0 = 0n.
In iteration i, the prover computes xi = fP(xi−1) = f i

P(x0).
Assuming that every adversary that outputs f t

P(x) must
run in time Ω(t), sending xt to the verifier constitutes a
proof of Ω(t) work. We can make the verification time poly-
logarithmic in t by using an efficient (public-coin) argument
system to prove that xt was computed correctly. Efficient
argument systems can be constructed based on collision-
resistant hash functions [Kil92, Mic00, BG08] and can be
made noninteractive in the ROM.

This approach appears conceptually simple, but hides com-
plexity in the construction of the argument system: existing
schemes all make use of complex Probabilistically Checkable
Proofs (PCPs), and this appears to be an inherent property
of efficient argument systems [RV10]. In contrast, the con-
stants hidden in the asymptotic notation of our construc-
tions are very small (see Theorem 3.7 for the parameters).
A second drawback of the generic scheme is that it is non-
black-box (a proof that xt was “computed correctly” neces-
sarily uses the code of the algorithm computing f). As well
as being of theoretical interest, a black-box construction has
practical advantages: the implementation can be made in a
modular way, changing the underlying sequential function
can be done easily and it may even be replaced with a hard-
ware module (or a corresponding physical assumption).

1.1 Our Results
In this paper, following Mahmoody et. al [MMV11], we

study proofs of work (in the spirit of Dwork, Goldberg, Naor,
andWee [DN92,DGN03,DNW05]) and noninteractive times-
tamping.

Time-Lock Puzzles and Noninteractive Timestamp-
ing. Our main result is the first black-box construction
of a time-lock puzzle (secure against parallel attack) with
a public-coin puzzle generator. As described above, this
implies a publicly verifiable, noninteractive timestamping
scheme. Our construction relies on the existence of collision-



resistant hash functions and a new assumption that sequen-
tial hash functions exist; these are functions where it is infea-
sible to find any“hash chain”of length N in time≪ N , even
if the adversary enjoys massive parallel computing power
(see Definition 3.2 for a formalization). Note that both as-
sumptions hold in the random oracle model.
The following theorem states our main result informally;

see Theorem 3.7 for a formal statement.

Theorem 1.1 (Main Result—Informal). Given any
family of collision-resistant hash functions CH and any fam-
ily of sequential hash functions SH we construct a time-lock
puzzle scheme that is secure for a puzzle distribution D as-
suming that CH and SH are both secure when their index s
is sampled from the same distribution D.

The verification time for our time-lock puzzle (and the cor-
responding timestamping scheme) can be poly-logarithmic
in the time it takes to solve the puzzle, and the soundness
time-gap (the ratio between the running time of the honest
solver and that of a successful adversarial solver) is bounded
by a constant. That is, our honest solver evaluates the hash
function N times, and any adversary whose solution is ac-
cepted by an honest verifier must have used time propor-
tional to c · N sequential evaluations of the hash function
for a constant c. Our construction is fully black box (in the
terminology of [RTV04]). After the puzzle is generated non-
interactively, the verification process for both the time-lock
puzzle and corresponding timestamping scheme are interac-
tive protocols (a noninteractive timestamping scheme may
still have an interactive verification stage). However, since
our construction is fully black box, it is unconditionally se-
cure in the random oracle model, and in this model we can
make the verification noninteractive using the Fiat-Shamir
Heuristic.

Universally Verifiable Benchmarks. Cai et al. [CLSY93]
suggested using proofs of work for running “uncheatable”
benchmarks. Their idea is that a vendor can prove a super-
computer’s performance by having it run a proof of work
that is timed by the verifier. The soundness of the proof-of-
work protocol would guarantee that vendors couldn’t cheat
by optimizing their code or modifying it in some other way.
Cai et al. proposed using exponentiation modulo an RSA
integer as the candidate function. This has the drawback,
however, of being verifier-specific (since only the verifier
who generated the modulus and knows the secret factor-
ization can trust the results). Using our time-lock puzzle
construction, combined with a public randomness beacon,
this benchmark can be made “universally verifiable”: the
randomness beacon would be used as the puzzle generator
(assuming that the beacon’s output in the next time period
cannot be predicted by the vendor), and the vendor would
publish the solution. Since there is no secret information,
anyone can verify the results of the benchmark.

Combinatorial Tools. Our construction involves a novel
use of depth-robust graphs: these are directed acyclic graphs
on N vertices with low degree (e.g. polylogN) whose depth
remains Ω(N) even after removing any constant fraction of
vertices. To prove that it has done a lot of computational
work, our prover constructs a labeling of the vertices of a
depth-robust graph G where each vertex v should be la-
beled with uv = HP(uv1 , . . . , uvd), where v1, . . . , vd are all
vertices that have edges pointing to v, P is the puzzle, and

H is a family of sequential hash-functions. (This is well-
defined and can be computed with O(N) hash evaluations
due to the acyclicity of G.) It then sends the verifier a
short commitment to this labeling through a Merkle tree
(see Section C) computed using a collision-resistant hash
function. During the verification, the prover is then asked
to reveal the labels of a few randomly chosen vertices v
along with their in-neighbors, and the verifier checks that
uv = HP(uv1 , . . . , uvd) holds for each such vertex v. Intu-
itively, if the prover can pass this check for a large fraction of
vertices v, due to depth-robustness of G, the labeling con-
structed by the prover must have a hash chain of length
Ω(N), and the prover must have used time proportional to
Ω(N) sequential evaluations of the hash function.

Depth-robust graphs were investigated in the 70’s and
80’s, motivated by efforts to prove lower-bounds on circuit
complexity and Turing machine time [EGS75,Val77,PR80,
Sch82, Sch83]. We use a construction of Erdős, Graham
and Szemerédi [EGS75], which involves a recursive use of
constant-degree expander graphs. For different settings of
parameters, depth-robust graphs are related to matrix rigid-
ity and the “grate” property of graphs, defined by Valiant
[Val77]. As far as we know, our work is the first “positive”
use of depth-robust graphs.

In the random oracle model (ROM), we assume that all
parties have oracle access to a public random function O :
{0, 1}∗ → {0, 1}n (where n is the security parameter). The
ROM provides us with a clean and convenient way of lower-
bounding both the total work invested by a party (namely
the number of oracle queries) and the parallel time invested
(the number of rounds of adaptivity in oracle queries). For
this measure of computation time, it can be easily shown
that a random oracle is sequential (a proof appears in Sec-
tion A). Since our constructions make only black-box use
of the hash functions, they are unconditionally secure in the
ROM.

Although random oracles do not exist in the real world, a
common heuristic for instantiating protocols in the random-
oracle model is to replace the oracle with a cryptographic
hash function (e.g., SHA-256) [BR93,FS86a]. While no con-
crete hash-function can satisfy all the properties of an ideal
random oracle (in fact, there are examples of schemes that
are provably insecure for any instantiation of the oracle by a
concrete hash function [CGH04,GT03]), it seams reasonable
to conjecture that these functions are highly sequential.

1.2 Related Work

Timestamping. While physical timestamps have been in
use for many years (e.g., having a notary public physically
stamp a document) their introduction to the digital realm,
by Haber and Stornetta [HS91], was more recent. Haber
and Stornetta’s main idea relies on a Timestamping Ser-
vice (TSS): a trusted third party that is responsible for
generating and managing the timestamps. Further work in
this direction has improved communication and computa-
tional complexity, and allowed the use of an untrusted TSS
(for examples, see [ABSW01,BHS92,BdM91,BdM93,BL98,
BLLV98,BLS00]). The state-of-the-art schemes using third-
party Timestamping Services are efficient, can give very pre-
cise timestamps and even hide the contents of a document
that is stamped, but necessarily reveal the fact that a party
is stamping some document.

The first construction of a noninteractive timestamping



scheme was given by Moran, Shaltiel and Ta-Shma [MSTS09],
in the Bounded Storage Model (BSM). In the BSM, parties
have limited storage space, and there exists a source that
periodically broadcasts huge random strings to all parties.
(The strings are large enough that no party can store more
than a constant fraction of a string in every time period.) To
generate a timestamp on a document at time t, the stamper
uses the document to select a subset of the random string
at time t and stores that subset. At every time period, ver-
ifiers store a small random subset of the random string. To
prove that a timestamp is valid, the stamper proves that
her stored subset is consistent with the values stored by the
verifier.

Proofs of Work. Dwork and Naor [DN92] originally sug-
gested using proofs of work as a“pricing mechanism”to fight
SPAM and other denial-of-service (DoS) attacks. (They pro-
posed that a sender of an email message would provide a
proof of work related to the message, making mass emailing
more expensive.) For fighting SPAM, requiring the proof of
work to be sequential is pointless: an attacker who is trying
to generate multiple messages can generate the proofs for
each message in parallel. On the other hand, they do care
about preventing amortization attacks: computing the proof
for n messages in a batch should require approximately n
times the work as computing the proof for a single message.
Dwork, Naor and Wee [DNW05] later considered a proof of
work that is memory-bound rather than CPU-bound; this
is preferable as the variance between CPU speeds is much
larger than the variance between memory access times.

Hash Graphs. The work of [DNW05] also makes use of
“hash graphs”. Dwork et al. use their hash graph G to have
the adversary (who provides the proof of work) to generate a
random-looking table T (which is larger than the cache size
and will be used as a pointer-jumping table in the proof-
of-work protocol) by computing the hash labels of G using
a random oracle and taking the label of the output nodes
as T . The crucial property of the hash graph G is that the
adversary should not be able to compute T by accessing the
main memory only “a few” times and is forced to encounter
many cache misses. The hash graph G of [DNW05] is con-
structed by concatenating two subgraph DAGs: G1 and G2

(where inputs of G2 are the outputs of G1) as follows. The
DAG G1 is a super-concentrator (from [PTC77]) which is
a sparse graph with high connectivity: for any set S of s
input nodes and any set T of s outputs nodes there are s
vertex disjoint paths from S to T . The graph G2 is a shallow
DAG (of logarithmic depth) which is robust in the following
sense: by removing any “small fraction” of the nodes of G2

(together with their incident edges), still a “large fraction”
of the inputs remain connected to a “large fraction” of the
outputs. Thus, at a high level, [DNW05] also uses some
robust DAGs as we do in this work but with a different no-
tion of robustness; their graphs are shallow and are robust
against losing connectivity of input and outputs, while our
graphs have large depth and preserve (most of) this depth
even after removing some fraction of the nodes.

Non-Parallelizable Proofs of Work. Although the in-
herent sequentiality property is not very useful against SPAM,
inherently sequential proofs of work can be useful as a coun-
termeasure against DoS attacks in other cases. With this use
in mind, several proof-of-work constructions (called “client
puzzles” in this context) have been suggested. These include

an improvement in the efficiency of Rivest et al.’s modular-
exponentiation-based construction [RSW96] (by Karame and
Capkun [KC10]), but also constructions based on different
“structural” assumptions with conjectured security against
parallel attacks: Tritilanunt et al. [TBFN07] constructed
proofs of work based on the hardness of solving subset-sum
problems and assuming that the LLL algorithm [LLL82] for
finding the shortest vectors in lattices is optimal and inher-
ently sequential. Jerschow and Mauve [JM11] constructed
proofs of work under the assumption that computing square
roots modulo a prime is an inherently sequential task. Both
constructions are public coin, but they achieve only a poly-
nomial time-gap between puzzle generation and solution.

To the best of our knowledge, the only construction based
on general unstructured assumptions is the recent construc-
tion of Mahmoody, Moran and Vadhan [MMV11] in the ran-
dom oracle model. However, that construction only achieves
a linear time-gap between puzzle generation and solution
and, similar to the modular-exponentiation-based construc-
tions, is not public coin.

Bypassing a Lower-Bound. Mahmoody, Moran and Vad-
han considered time-lock puzzles in the random oracle model
[MMV11] and proved that for a large class of time-lock puz-
zles, a large gap between generation/verification time and
time to solve the puzzle is not possible. This class of time-
lock puzzles include those in which the verifier does not
query the oracle, which includes as a special case puzzles
in which the generator produces a solution (sent to the ver-
ifier) together with the puzzle itself. For any such puzzle,
they show that if it requires t oracle queries to generate
the puzzle, the puzzle can be solved in t adaptive rounds of
queries (with only a polynomial overhead in the total num-
ber of queries compared to the honest solver). We bypass
the lower-bound of [MMV11] by constructing a verifier that
does indeed query the oracle, and in fact our construction
gives a time-lock puzzle with a super-polynomial gap be-
tween solution and verification times.

2. TIME-LOCK PUZZLES AND TIMESTAMP-
ING, FORMAL DEFINITIONS

In this section we formalize the notion of time-lock puzzles
and its relation to proofs of work.

Definition 2.1. A time-lock puzzle is a game between
three parties (Gen, Sol,Ver) who receive the common input
1n for security parameter n and N = poly(n) > n as the
“complexity of the puzzle” and act as follows.

1. The puzzle generator Gen generates a “puzzle” P.

2. The puzzle solver Sol receives the puzzle P and outputs
some “solution” S in time N · poly(n) (where poly(n)
here is independent of N).

3. The verifier Ver receives the puzzle P and a solution
S and either accepts or rejects. (This step could be
noninteractive or through interaction with Sol—see the
discussion below).

We require the following properties. The exact definition of
the running time function Time(·) and its parallel variant
ParTime(·) depend on the underlying computational model.

• Completeness. In an honest execution Ver accepts
with probability 1− negl(n).



• (Parallel) η-Soundness. The (parallel) η-soundness

property asserts that every non-uniform adversary Ŝol

that runs in parallel time that is slightly smaller than

the time of the honest solver (ParTime(Ŝol) < η ·
Time(Sol)) will fail to convince Ver with more than
negligible probability (i.e., the probability that the out-

put of Ŝol is accepted by Ver is negligible). We al-

low the total work Time(Ŝol) to be much larger than
Time(Sol) (as long as it is at most polynomial in the
security parameter).

Time Gap. For our applications, we are interested in time-
lock puzzles where there is a time-gap between solving a
puzzle (honestly or maliciously) and time it takes to verify
a solution.

On Parallel Soundness. Intuitively, this guarantees that

a successful Ŝol, after receiving the puzzle, must have in-
vested almost as much computational effort in terms of parallel-
time complexity, as the honest solver Sol does in terms of its
running time (η measures the “slowdown factor” of the hon-
est solver compared to the parallel-time of the adversary—
when η = 1 the adversary cannot solve any faster than
the honest solver even with massive parallelism, while when
η = 1/2 the adversary can run in half the time of the honest
solver).
Note that we allow the adversary to perform arbitrary

polynomial-time preprocessing before receiving the puzzle.
For simplicity, we omit this from the definition above. How-
ever, our proof of security holds for a non-uniform adver-
sary; in particular, this means we allow the adversary to re-
ceive arbitrary “advice” (that does not depend on the input,
P); any preprocessing done before receiving P can simply
be treated as advice.

Interactive Verification. As we mentioned in Defini-
tion 2.1, the verification of the puzzle solution may be in-
teractive (i.e., consist of an interactive protocol between the
verifier and a “prover” who has access to the secret state of
the puzzle solver Sol). The time-lock puzzles we construct
in this paper have interactive verifiers. However, since their
verification protocols are all public-coin, they can be made
noninteractive in the random-oracle model by applying the
Fiat-Shamir transformation.

Public vs. Secret Verification. Since the puzzle genera-
tor and the verifier in Definition 2.1 do not share any secret
information, this definition guarantees that puzzles are“pub-
licly verifiable”: the verification protocol can be executed by
any interested party. This property is especially useful for
noninteractive time-lock puzzles: the solution and proof are
both strings and can be easily published. The public veri-
fiability means that anyone who receives the proof can ver-
ify it, without needing to trust any third parties. One can
also consider an alternative definition of time-lock puzzles
in which the puzzle generator and verifier do share secret
information. This is the case, for example, in the repeated-
squaring based puzzle of Rivest et al. [RSW96] (the secret
information is the factorization of the modulus). The alter-
native definition is strictly weaker, and limits verification to
parties that know the secret.

Timestamping Documents. Now we discuss how our re-
sults in the context of time-lock puzzles can be used for non-

interactively timestamping documents. The type of times-
tamps we deal with are relative timestamps: that is, if Alice
produces a d-timestamp of a document D at time T then
she is claiming that she “knew” the document at time T −d.
While relative timestamps can be used to construct absolute
timestamps (e.g., by continuously computing d-timestamps
for larger and larger d), they may also have direct applica-
tions. For example, suppose Alice believes she has solved
a hard research problem, but is hesitant to publish before
completely verifying her result. She can compute a one-week
relative timestamp of her solution and store it; if, at some
later time, Bob claims to have solved the problem, Alice has
one week in which she can prove that she had a solution first.
Our definition of security for timestamping is based on the
following intuition: if Bob receives a previously unknown
document D′ at time T0, then at time T0 + d he should not
be able to produce a d′-timestamp of D′ for any d′ such that
d′ ≫ d.

Definition 2.2. A noninteractive timestamping scheme
is a protocol between a stamper, Stamp and a verifier, Ver.
The protocol has two phases: In the stamping phase, the
stamper receives an input document D and a duration d and
computes the timestamp S = Stamp(D, d). In the verifica-
tion phase, the stamper communicates with the verifier. The
stamper sends (D, d,S) to the verifier and proves that S is
a valid d-timestamp of D (this may be done using an inter-
active protocol). We also demand the following properties
(where n is the security parameter).

• Completeness. We require a timestamping scheme
to satisfy two completeness properties:

– When parties execute the game honestly Ver ac-
cepts with probability 1− negl(n).

– The honest stamper can compute Stamp(D, d) in
d time.

• η-Soundness The soundness of the scheme is param-
eterized by η ≤ 1 (measuring how much the adversary
can cheat on the claimed timestamp duration) and by
D, the distribution of documents to be stamped. Con-
sider the following game between an adversary Adv
and Ver:

1. Adv receives a document D
$

←D.

2. Adv generates (S, d) and sends (D, d,S) to the
verifier Ver.

3. Ver and Adv engage in the verification phase, af-
ter which Ver either accepts or rejects.

We say the timestamp scheme is η-sound with respect
to document distribution D if for every non-uniform
adversary Adv of size poly(n) and whose parallel time
(including the verification phase) is ParTime(Adv) <
η·d, the probability that Adv wins in the security game
(by causing the verifier to accept) is negligible. (Note
that, as in Definition 2.1, we allow the the adversary
to perform arbitrary preprocessing before receiving the
document to timestamp.)

Timestamping Using Time-Lock Puzzles. Given an η-
sound time-lock puzzle (Gen, Sol,Ver), we can envision (Sol,Ver)
as defining a timestamping scheme that is η-sound against



documents in the distribution generated by Gen. That is,
when Bob receives a document D at time T and wants
to timestamp it for duration d, he treats D as the puz-
zle and “solves” it for parameter N such that Time(S) =
N ·poly(n) = d to obtain the timestamp S. The η-soundness
of the time-lock puzzle guarantees that no adversary running
in parallel time less than η ·ParTime(Sol) can convince the
verifier to accept a valid timestamp.
The distribution D models the uncertainty about the doc-

uments to be timestamped. Any document D such that

Pr[D
$
← D] ≥ 1/ poly(n) (where n is the security param-

eter) can be thought of as a “typical” document that the
adversary can “guess” in advance. Therefore, it is reason-

able to restrict ourselves to distributions that satisfy Pr[D
$
←

D] ≤ 1/ poly(n) for every D and every polynomial poly(n);
namely, the distributionD has super-logarithmic min-entropy.
It is plausible to assume we have a family of hash functions
CH and SH that are simultaneously secure for all index dis-
tributions with super-logarithmic min-entropy (they exist in
the random oracle model). Our timestamping scheme will
then inherit this property.

Security in the Presence of Auxiliary Information.
Note that in Theorem 1.1, the distribution D of the docu-
ments is the same as the index distribution of the used hash
functions. The distribution D could capture the uncertainty
of the adversary about the document D conditioned on the
auxiliary information of the adversary about the document.
Thus, if we want to guarantee the security of our scheme un-
der any auxiliary information (e.g., knowing only half of the
document), as long as there is ω(log n) bits of uncertainty
about the final version of the document, we can construct
secure timestamping schemes under the assumption that the
used hash functions are also secure under any index distri-
bution with super-logarithmic min-entropy.

Timestamping for Unknown Duration. A desirable
feature of a timestamping scheme is to allow the stamper
to perform its job without knowing the time period d in
advance. A simple trick (that decreases η by a small con-
stant factor) is as follows: The stamper iteratively generates
timestamps for d = 1, 2, . . . , 2i, . . . and always keeps the last
generated timestamp as the current timestamp. It is easy to
see that this scheme achieves η′ ≥ η/4. Our time-lock puz-
zle (using the specific construction of depth-robust graphs
from Section B) construction satisfies an even stronger prop-
erty, making it particularly suited for timestamping docu-
ments without knowing the duration in advance. In our con-
struction, for d2 > d1, the computation Sold1(P ) is a prefix
of the computation Sold2(P ); thus, it is possible to run the
stamper continuously, generating timestamps of increasing
duration and without paying the constant factor in η.

3. CONSTRUCTING TIME-LOCK PUZZLES
In this section we prove our main result which is a new

construction of publicly verifiable time-lock puzzle based on
sequential hash functions and collision-resistant hash func-
tions.

3.1 Outline and High-Level Ideas
The high-level idea is to force the solver to compute a la-

beling of a DAG G as a “hash-graph” in which each node
is labeled with the hash of its in-neighbors’ labels. The

soundness of of our construction will rely on a computa-
tional assumption about the hashes—namely that they are
inherently sequential (see Definition 3.2 below for a formal-
ization). The sequentiality of the hash functions ensures
that any adversary that can output the label of an endpoint
of a correct path in the graph must spend time at least pro-
portional to the length of the path (i.e., there are no “short-
cuts”). To check a proposed solution to the puzzle, the ver-
ifier will test random nodes in the graph and check if they
were computed correctly. We use an underlying DAG that
has a special combinatorial property called depth-robustness:
in any large subset of the nodes of the hash-graph there is
a “long” path (see Definition 3.6). To achieve η-soundness
with η arbitrarily close to one we employ a modified version
of the depth-robust DAGs constructed by Erdős, Graham,
and Szemerédi [EGS75] (see Section B).

If too many nodes in the graph are badly labeled (i.e.,
their labels are not the hash of their in-neighbors’ labels)
the verifier will reject the solution with high probability.
Thus, if the verifier accepts we can use the combinatorial
property of the graph to conclude that there must be a long
path consisting of nodes that were “correctly” computed,
and from the sequential property of the hash it will follow
that the solver must have spent a “long” time performing
the computation.

Finally, to reduce the communication and verification time,
instead of sending the labeling of the entire graph, the solver
will commit to the graph labeling and send only the commit-
ment to the verifier. When the verifier challenges the solver
on a specific node in the graph, the solver will send the la-
bel of that node and the labels of its in-neighbors, and will
prove that these are consistent with the commitment. An
efficient commitment scheme with all of the required prop-
erties is the Merkle tree, which can be constructed based on
any collision-resistant hash function.

3.2 Formal Definitions
In this subsection we provide the formal definitions re-

quired for stating and proving our theorems. First, we for-
mally define the notion of a sequential function. We first
describe the security game.

Construction 3.1. We define a sequential function fam-
ily by means of a game between an adversary and a chal-
lenger. Let n denote the security parameter. For every n
and m = m(n) ≥ n, let H = {hs : {0, 1}

m 7→ {0, 1}n} be a
family of functions mapping m bits to n bits. The game is
defined with respect to a distribution Dn defined over the
indices of H. Both parties receive as inputs n, m and a
“sequence-length” parameter N .

1. The challenger samples s
$

←Dn as the index of the hash
function and sends s to the adversary.

2. The adversary sends back some string y.

3. Then (after y is received by challenger) the adversary
sends back a sequence y0, . . . , yN = y.

The adversary wins if for all i ∈ [N ] it holds that hs(yi−1)
is a contiguous substring of yi.

Definition 3.2 (Sequential Functions). Let τ(n) be

0 < τ(n) < poly(n), H =
{
hs : {0, 1}

m(n) 7→ {0, 1}n
}

be a



family of (non-expanding) functions, and D = {Dn}n∈N
be

a family of distributions over the indexes s ∈ {0, 1}poly(n)

of H. The family H is called τ -sequential against D iff for
every N = poly(n) and every adversary Adv of the fol-
lowing form, the probability that Adv wins in the game of
Construction 3.1 over common inputs n is negl(n): the ad-
versary Adv is a circuit of total size poly(n,N), but the
depth of this circuit till sending over y (Step 2) is at most
τ ·N .

The sequentiality parameter τ determines the level of con-
fidence one has in the sequential nature of H and is always
at most t(n), where t(n) is the time it takes to call H(·) on
an input to get an n-bit output. On an extreme point, for
a particular function H, one might believe that getting a
sequence of length N really needs N sequential evaluations
of the function resulting in τ(n) = t(n).
Our construction also employs a family of collision-resistant

hash functions. We use the following generalized definition
that holds with respect to particular distributions over the
index:

Definition 3.3 (Collision-Resistant Hashing). Let
H =

{
hs : {0, 1}

2n 7→ {0, 1}n
}
be a family of shrinking func-

tions and let Dn be a distribution over the indexes of H for
security parameter n. We call H collision resistant against
D iff for every non-uniform adversary Adv of size poly(n),

if we choose s
$

←Dn and let (x1, x2) = Adv(s), then it holds
that Pr[hs(x1) = hs(x2) ∧ x1 6= x2] ≤ negl(n).

Definition 3.4 (Directed Acyclic Graphs). A di-
rected acyclic graph (or DAG for short) G = (VG, EG)
is a directed graph whose vertices VG can be renamed as
VG = {1, . . . , N}—called the topological order—such that
for every directed edge (i, j) ∈ EG it holds that i < j. We
assume that our DAGs are always given in topological or-
der. For any vertex j ∈ [N ] we call IN(j) = {i | (i, j) ∈ EG}
the in-neighbors of the node j and call din(j) = |IN(j)| the
in-degree of the vertex j. We say G is of in-degree d if
din(j) ≤ d for all j ∈ VG. We call a family {GN} of DAGs
where GN has N vertices and in-degree dN explicit if for
any given i ∈ [N ] and j ∈ [dN ] one can compute in time
polylog(N) the index of the j-th in-neighbor of the node i.

Remark 3.5. For simplicity we always assume that there
is an extra redundant node 0 (not counted in the number of
vertices) such that for every j ∈ [N ] there are d − din(j)
multiple edges from the node 0 to the node j to make the
in-degrees of every j ∈ [N ] exactly equal to d.

Definition 3.6 (Depth Robustness). For α ∈ [0, 1]
and β ∈ [0, α], we call a DAG G = (VG, EG) an (α, β)-
depth-robust graph iff every induced subgraph H of G whose
number of vertices is at least |VH | ≥ α · |VG| includes a path
with at least β · |VG| many vertices.

3.3 The Main Theorem
In this section we describe and prove our main result about

the existence of time-lock puzzles based on collision-resistant
and sequential hash functions. As discussed above, this im-
plies the existence of timestamping protocols (a formal proof
appears in Section 2).

Used Hash Functions. Let CH =
{
ch : {0, 1}2n 7→ {0, 1}n

}

be a family of collision resistant hash functions against in-
dex distribution D and let SH = {sh : {0, 1}m 7→ {0, 1}n}

for m = ω(n · log3 n) be a τ -sequential function against the
same index distribution D. Let tch(n) denote the time re-
quired for an honest user to evaluate ch(x) for ch ∈ CH
when ch(x) ∈ {0, 1}n, and similarly, let tsh(n) be the time
required for an honest user to evaluate an input for func-
tion sh ∈ SH with output in {0, 1}n. When clear from the
context, we drop the index n and use names tsh, tch, etc.

Theorem 3.7 (Main Result). Let n be the security
parameter, N = poly(n), and k = ω(log n). Suppose CH and
SH as described above are sequential and collision-resistant
hash functions with respect to index distribution D and let
β < 1 be any constant. Then there exists a time-lock puzzle
as follows:

• Generation. The puzzle generator Gen simply out-

puts a sample P
$

←D.

• Solving. The honest solver Sol runs in time (tch +
tsh + polylog(N)) ·N to generate the puzzle solution.

• Verification. To answer the verifier’s challenges, the
solver is only required to lookup the answers from a
table generated during solving the puzzle (no need for
additional computation), and this it only takes linear
time over the answer size which is k · (m + n). The
interactive verifier Ver only asks k public-coin chal-
lenges, and to verify the received answer it runs in time
at most k · (tsh +O(tch) · log

3 N + polylog(N)).

• Completeness. When the honest solver Sol interacts
with the verifier Ver, Ver accepts with probability 1.

• Soundness. No malicious solver Ŝol computed by a
circuit of size poly(n,N) is able to make Ver accept

with probability more than negl(n) if Ŝol’s circuit has
depth τ ·N · β till sending the puzzle solution.

Remark 3.8 (Balancing Hashing Times). It is easy
to see that the soundness of Theorem 3.7 as stated implies
η-parallel-soundness for η ≥ τβ/(tch + tsh)Thus we obtain
η = τβ/(tch + tsh).Thus, on this extreme the advantage of
the adversary relative to the honest solver, depends on the
ratio between τ , the lower bound on the (average) time it
takes the adversary to compute the sequential hash function
sh, and tsh+tch, the total time an honest party needs to eval-
uate sh once and ch once (where ch is the collision-resistant
hash function). Since the adversary can always use the hon-
est algorithm to compute sh, therefore it holds that τ ≤ tsh.
Thus, if tch ≈ tsh (as would be the case, for example, if we
used SHA-256 for both purposes), the adversary potentially
could get a factor ≈ 2 advantage—even if the function is
perfectly sequential (τ = tsh). A possible way to deal with
this problem is by using the iterated function shk as the se-
quential function (where shi(x) = sh(shi−1(x))). Since any
length-N hash-chain of shk contains a length-(k · N) hash-
chain for sh, it follows that τ(shk) ≥ k · τ(sh). At the same
time, tshk = k · tsh. By increasing k, we can make the ra-
tio τ/(tsh + tch) arbitrarily close to τ/tsh (which is the best
we can hope for). However, we pay for this increase by also
increasing the computation time for the honest verifier; thus
as k gets larger, the time-gap for the puzzle (the difference
between the work done by the honest solver and the honest
verifier) becomes smaller.



We describe our construction using an interactive verifier
in a hybrid model with access to an ideal commitment func-
tionality Com that remains hiding against selective opening
(the commitment scheme allows a short commitment to a set
of blocks (u1, . . . , un), and later allows the prover to selec-
tively open block uj for every j ∈ [N ]). We then replace the
ideal commitment with a commitment scheme using Merkle
tree based on the collision-resistant hash function CH. If a
single evaluation of the hash function takes time tch, then
commitment to N blocks using Com can be done in time
tch ·N and verification in time tch · logN (see Section C for
details). Algorithms 1 and 2 describes the honest solver and
Algorithm 3 describes the corresponding verifier.

Algorithm 1 Honest solver Sol solving puzzle P using se-
quential hash family sh indexed with P and output length
n, and a DAG G of in-degree d and N vertices given in
topological order.

1: Initially assign the hash label u0 = 0n to the extra re-
dundant node (see Remark 3.5).

2: for v ∈ {1, . . . , N} do {Compute the hash-labels corre-
sponding to the nodes of G}

3: Suppose v1 ≤ · · · ≤ vd are the in-neighbors of v, and
let uvi be the hash-label of vi.
Set uv = shP(uv1 , . . . , uvd).

Algorithm 2 Honest solver Sol answering a challenge for
the generated solution c.

1: Receive a set of challenge nodes {v1 ≤ . . . ≤ vk} from
the verifier.

2: for i ∈ {1, . . . , k} do
3: Open the commitments to uvi and uv for all v ∈

IN(vi).

Algorithm 3 Verifier of a solution for the puzzle P using
sequential hash family sh and the DAG G of N vertices in
topological order and in-degree d.

1: Receive the commitment c (supposedly for the hash la-
bels (u1, u2, . . . , uN )) from the solver.

2: Randomly choose k nodes v1, . . . , vk from [N ] = VG and
send them to the solver.

3: for i ∈ {1, . . . , k} do
4: Verify the commitment openings of uvi and uv for all

v ∈ IN(vi).
5: Verify uvi = shP(uv(1,i) , . . . , uv(d,i)) where v(1,i) ≤

· · · ≤ v(d,i) are the in-neighbors of vi.

Construction 3.9 (Time-Lock Puzzle). Given n,N ∈
N an explicit DAG G of N vertices and in-degree d, the time-
lock puzzle Πn,N is as follows.

• The puzzle generator Gen outputs P
$

←Dn.

• The puzzle solver Sol executes Algorithms 1 and 2, and
the puzzle verifier Ver executes Algorithm 3.

3.4 Proving Theorem 3.7
To prove Theorem 3.7, we feed Construction 3.9 with the

following type of depth-robust graphs.

Lemma 3.10 (Explicit Depth-Robust Graphs). For
all constants β < α and all N there is an explicit family
of (α, β)-depth robust graphs with N vertices and in-degree
O(log3 N).

The proof of Lemma 3.10 is based on the ideas from
[EGS75] and is presented in Section B

We now prove Theorem 3.7 by analyzing the properties of
Construction 3.9 when instantiated by depth-robust graphs
specified in Lemma 3.10.

Completeness. Clearly if the puzzle solver and the verifier
follow Algorithms 1, 2, and 3, then the verifier accepts with
probability one.

Running Times. The following lemma can be verified by
inspecting Algorithms 1, 2, and 3, and the Merkle commit-
ment algorithms of Section C. These bounds imply the
bounds of Theorem 3.7 when substituting d = O(log3 N)
which is the degree of the DAG G we will use (according to
Lemma 3.10).

Lemma 3.11. The running time of the parties in Con-
struction 3.9 is as follows.

• Generation. The puzzle generator Gen simply out-
puts a sample string from Dn.

• Honest Solver. The solver, in its first round of ac-
tion simply calls Adv1 and returns its output directly
as the puzzle solution. To generate the hash labels,
the solver Sol first constructs the DAG G in time N ·
polylog(N) and then evaluates the sequential hash sh(·)
N times for the vertices of G (over inputs of length d·n
and outputs of length n). To commit to the hash labels,
the solver evaluates the collision-resistant hash func-
tion ch(·) at most N/2 + N/4 + · · · ≤ N times over
inputs of length 2n and outputs of length n. There-
fore, if calling sh(·) takes time tsh and calling ch(·)
takes time tch, the total running time of Sol will be
(tsh + tch + polylogN) ·N .

• Verifier. To answer each of the k challenges asked
by the verifier, the solver (now playing as a prover)
needs to send 2 · (d + 1) · logN strings of length n
(which are computed already) to the verifier. Also, for
each of these k challenges, the verifier first constructs
the relevant part of G in time polylog(N), and then it
evaluates the sequential hash sh(·) once (in time tsh)
and evaluates ch(·) 2 ·(d+1) · logN times all in parallel
time tch (see Algorithm 7).

Parallel Soundness of Construction 3.9. The following
lemma shows that by using an explicit (α, β)-depth robust
graphs G for constants β < α from Lemma 3.10 in Con-
struction 3.9, we can derive the soundness property stated
in Theorem 3.7.

Lemma 3.12. Suppose the DAG G used in Construction 3.9
is (α, β)-depth-robust for some constants 0 < β < α < 1.
Then any malicious solver who is a circuit of size poly(n,N)
and depth at most τ ·N · β till returning the puzzle solution
is able to make the verifier accept with at most negl(n) prob-
ability.



We first finish the proof of Theorem 3.7 using Lemma 3.12
and then will prove Lemma 3.12.

Concluding Theorem 3.7. Since we have k = ω(log n)
Theorem 3.7 follows as a corollary from Lemmas 3.10, 3.11,
and 3.12, because (1) it holds that d = O(log3 N) and (2)
for k = ω(log n) and α = 1−Ω(1) it holds that αk = negl(n).
We first outline the proof of Lemma 3.12 and then will

present the formal proof.

Outline of Proof of Lemma 3.12. Roughly speaking, for
the committed labeling u1, . . . , uN by the adversary Adv,
we call a node i ∈ [N ] a good node if its hash label is indeed
equal to the hash of the labels of its in-neighbors. If the
number of good nodes is at most α · N , then the probabil-
ity that the adversary can convince the verifier is at most
αk + negl(n). On the other hand, if the number of good
nodes are more than α · N then there should be path con-
sisting of at least β ·N many good nodes. The latter path,
however, corresponds to a“chain”of queries, and the sequen-
tial property of sh(·) ensures that to generate such a chain
the adversary must run in time proportional to the length
of the chain.
More formally, the proof is by a reduction showing how

to use an adversary that breaks η-soundness (i.e., can con-
vince a verifier to accept a solution while working in “small”
parallel time) to break the sequential soundness of sh (i.e.,
produce a “long” hash chain in “small” parallel time) as fol-
lows. Given an adversary Adv who breaks soundness of the
time-lock puzzle scheme, we run Adv until it outputs the
commitment c. We then execute O(N) verification sessions
using O(N) copies of Adv. In each of these verification
sessions we emulate a verifier that queries different vertices
of the DAG, with the hope that after this stage we gather
the labeling of “many” vertices of the DAG. The main chal-
lenges of the proof of soundness lie in the analysis of this
reduction. Since Adv succeeds in convincing the verifier to
accept with non-negligible probability, at most a constant
fraction of the extracted labels can be “bad” (i.e., don’t cor-
respond to a hash of their in-neighbors’ labels). Thus, by
the depth-robustness property of the graph G, there must
be a long path of good vertices in G. This path is exactly
the hash-chain we are looking for.

3.5 Formal Proof of Lemma 3.12
In the following we start by assuming (for sake of contra-

diction) that there is an adversary Adv1 who breaks the
parallel-soundness of Construction 3.9 with probability at
least ε1 ≥ 1/ poly(n) (when using a (α, β)−depth-robust
graph of degree O(log3 N)), has circuit size poly(n,N) and
depth τ ·N ·β till sending the puzzle solution. Then we will
show how to turn this adversary into another adversary that
either breaks the sequential property of sh(·) or the binding
property of the commitment (which by Lemma C.1 implies
breaking the collision resistance of ch).

Lemma 3.13 (Extracting a Chain). Suppose Adv1

is an adversary who convinces the verifier of Algorithm 3
with probability at least ε1 = ε′1 + αk. Then there is an
algorithm Adv2 (described in Algorithm 4) who executes ℓ =
2nN/ε′1 copies of Adv1, and then evaluates sh(·) O(ℓ · k)
times (and makes an additional O(ℓ · k · d) executions of the
commitment scheme’s verification algorithm) and Pr[E] ≥
ε′1/3 where E is the event that: Adv2 breaks the binding of

Com(·) or its view has a chain of length βN in sh(·). Note
that assuming ε′1 > 1/ poly(n), the running time of Adv2 is
only poly(n,N) times that of Adv1.

Using Lemma 3.13 to Conclude Lemma 3.12. After
obtaining the adversary Adv2 we can break the assump-
tion that sh(·) is τ -sequential (which is a contradiction) as
follows. The adversary Adv2 will simply forward the puz-
zle solution c of Adv1 (i.e., the Merkle-commitment string)
as the label of the last node of the chain. Then, later on,
suppose Adv2 has access to a set of hash labels u1, . . . , uN

such that there is a chain of length at least β ·N planted in
them. Then, by Lemma 3.13, Adv2 is able to find a path
−→
PT of length at least β ·N in G whose labels are all accepted
during the verification phase. This means that the revealed

labels along the paths that connect the nodes of
−→
PT to the

root of the Merkle-tree are all extracted successfully. Adv2

will simply return the labels of
−→
PT followed by the labels of

the nodes connecting the last node of
−→
PT to the root (which

is c). Therefore, Adv is able to win in the security game of
Construction 3.1 with non-negligible probability by finding
a chain of depth β · N in depth < τ · β · N till sending c.
This violates the assumption that sh(·) is τ -sequential.

Algorithm 4 Either find a collision or extract a β ·N -chain,
by using oracle access to an adversary Adv1 who convinces
the interactive verifier with probability ε1 = ε′1 + αk.

1: Run Adv1 over a random puzzle P
$
← {0, 1}n and ran-

dom coins rand2 and receive some commitment c ∈
{0, 1}n. At this moment save the state of the adver-
sary Adv1 since we are going to execute Adv1 in many
“different branches” in parallel by feeding many differ-
ent challenge messages to Adv1 and asking it to open
those commitments. We cannot afford to use standard
“rewinding” since we want to keep the depth of the cir-
cuit of Adv2 close to that of Adv1.

2: Let δ = ε′1/(2N) and ℓ = n/δ.
3: For all j ∈ [ℓ] choose a random subset Sj ⊂ [N ] of size
|Sj | = k.

4: for all j ∈ [ℓ] do
5: Ask Adv1 to open the nodes in the challenge set Sj

with respect to the commitment c.
6: After receiving all the decommitments for (d + 1) · k · ℓ

many nodes in [N ] (possibly with repetitions), run the
commitment scheme’s verification algorithm for all of
the decommitments.

7: If two different openings for the same label are both
accepted by the verifier, return a collision in ch according
to Lemma C.1.

8: Let H be an empty graph with the same vertex set as
that of G. For every challenge node v (from the set of
all k challenges) that passes the Merkle verification, let
v1, . . . , vd be the in-neighbors of vi in G. Add the edges
(v1, v), . . . , (vd, v) to a graph H (which is a subgraph of
G).

9: Search for a the longest path
−→
PT in the graph H and

return the labels of the nodes of
−→
PT continued with the

log(N) labels of the nodes of the Merkle-tree connecting

the last node of
−→
PT to the root.

Proof of Lemma 3.13. The running time of Adv2 is at



most O(Nn/ε′1) = poly(N,n) times more that that of Adv2

(without considering the final verification). So we only need
to prove the existence of the long chain in sh(·) in the view
of Adv2, assuming that Adv2 did not break the binding
property of Com(·).
Since Adv1 succeeds in convincing the verifier with prob-

ability at least ε1, by an averaging argument, with proba-
bility at least ε′1/2 over the choices of the puzzle P and the
randomness of Adv1 (i.e., rand2), Adv1 will have at least a
chance of αk + ε′1/2 (over the randomness of the challenge
message) to convince the verifier. In the following we assume
that the sampled P and rand2 in Step 1 of Algorithm 4 have
this property. We will show that in this case, Adv2 suc-
ceeds in finding a (long enough) chain with probability at
least 9/10, leading to a total probability of success at least
(ε′1/2) · (9/10) > ε′1/3.
Suppose W is the event that Adv1 succeeds answering a

random challenge set S of k nodes. Call a node i ∈ [N ] a
heavy node if Pr[i ∈ S and W ] ≥ δ = ε′1/(2N) for a random
challenge set S of size k. Call a node i ∈ [N ] light if it is
not heavy. Let HV be the set of heavy nodes and LT be
the set of light nodes. We claim that the number of heavy
nodes is at least α · N . Otherwise Adv1 is able to answer
a random challenge S ⊂ [N ] of k nodes correctly only with
probability:

Pr
S
[W ] ≤ Pr

S
[Wand S ⊂ HV] + Pr

S
[Wand S ∩ LT 6= ∅]

< αk +
∑

i∈LT

Pr[Wand i ∈ S] ≤ αk +N · δ

which is at most αk+ε′1/2 as opposed to our assumption. On
the other hand, since Adv2 chooses ℓ random challenge sets
Sj of size k, for every heavy node i ∈ [N ], the probability
that for some j ∈ [ℓ] Adv1 can successfully decommit to
all of the nodes in Sj while it includes i ∈ Sj is at least
1 − (1 − δ)ℓ > 1 − e−n > 1 − 2−n. Therefore, by a union

bound, with probability at least 1−2−n ·N > 1−2−Ω(n) for
every heavy node v, the adversary will decommit successfully
(at some point) into some hash label for v and also some
hash labels for the in-neighbors of v. When the latter holds
we call v a good node, and call the (successfully opened)
hash labels of v and its in-neighbors some extracted hash
labels (note that potentially we might extract different hash
labels for v in different branches of executing Adv1 over
some challenge set S).
Note that we can safely assume that for all i ∈ [N ] all the

extracted hash labels for the node i ∈ [N ] (either extracted
as the label of a sampled node in a challenge set, or as the
label of an in-neighbor of a sampled node) are identical. The
reason is that otherwise we would have broken the binding
property of Com(·).

Therefore with probability at least 1 − 2−Ω(n), we get at
least α ·N good nodes (with some extracted hash label for
them and also for their in-neighbors) and also it holds that
all the extracted hash labels are consistent (i.e., equal for the
same node). By the (α, β)-depth-robustness of G, the set of

good nodes will have an induced path
−→
PT of size at least

β ·N . For every node v ∈
−→
PT, let wv be equal to the string

(uv1 , . . . , uvd) where v1 ≤ · · · ≤ vd are the in-neighbors of

v. Since
−→
PT includes only good nodes that have passed the

verification of the verifier, it holds that shP(wv) = uv where

uv is the extracted hash label of v. Hence, the sequence
(wv)v∈−→

PT
makes a chain of size β · N . Thus, conditioned

on the quality of the sampled (P, rand2) as discussed above,

with probability (1 − 2−Ω(n)) > 9/10 the adversary Adv2

gets a chain of size at least β ·N + logN > β ·N (including

the nodes connecting
−→
PT to the root of the Merkle tree).

4. OPEN QUESTIONS

Using Time-Lock Puzzles to Achieve Fairness. One
motivation for studying time-lock puzzles, and timed as-
sumptions in general, is that they can be used to solve prob-
lems that are provably impossible in the standard model.
For example, Boneh and Naor showed that timed commit-
ments (ones that can be opened without the key in cer-
tain amount of time, but not faster) can be used to per-
form fair coin flipping [BN00], which was previously shown
by Cleve to be impossible in the standard model [Cle86].
Boneh and Naor construct timed commitments based on the
same assumption used by Rivest et al. [RSW96] to construct
time-lock puzzles (the inherent sequentiality of exponentia-
tion). Briefly, their coin-flipping protocol is as follows: Alice
chooses a random bit ba and sends Com(ba) to Bob, where
Com is a timed commitment. Bob chooses a random bit
bb and sends bb to Alice. Alice verifies that bb arrived fast
enough (so Bob could not have forced open her commit-
ment), and then opens the commitment. The result of the
coin-flip is ba ⊕ bb. The “timed” part of the commitment is
used if Alice aborts before opening her commitment. In that
case, Bob can spend a moderate amount of time to force-
open the commitment and recover ba without Alice’s help.
For this protocol to work, the time it takes to force open
a commitment must be more than the maximum network
latency. On the other hand, for efficiency, the time it takes
to honestly open a commitment should be short as possible.

Mahmoody et al. [MMV11] showed that, in the random
oracle model, timed commitments with a large time-gap (be-
tween the forced opening and an honest opening) cannot be
constructed, hence we cannot use black-box constructions
to implement them in the standard model. A natural ap-
proach would be to replace the timed commitment in the
coin-flipping protocol with our proof of work: Alice sends a
puzzle P to Bob, Bob sends a random bit-vector b2, then
Alice sends a bit-vector b1 and proves it is the solution to
the puzzle P . The result is taken to be b1 · b2. This would
be less efficient than using timed commitments, since Al-
ice has to solve the puzzle even in an honest execution, but
she can do the work offline, leaving the online phase of the
protocol efficient. Unfortunately, this protocol is insecure:
the soundness of our proof of work ensures that Alice spends
time proportional to the honest solver, but still she may con-
vince Bob to accept an incorrect solution b1. An interesting
open question is whether fair secure computation (and in
particular fair coin flipping) is possible based on black-box
sequentiality assumptions.

Necessity of Depth-Robust Graphs. The efficiency and
security of our construction is tightly tied to the parameters
of depth-robust graph constructions: graphs with lower de-
gree give more efficient solutions, while graphs with higher
robustness (the lower bound on the length of the longest
path remaining after some of the vertices are removed) give
us puzzles with smaller adversarial advantage. An interest-



ing open question is whether the converse also holds: do
time-lock puzzles with better parameters also imply the ex-
istence of depth-robust graphs with better parameters?

Space Complexity of the Solver. In our construction of
time stamping and time-lock puzzles for time N , the solver
keeps the hash labels of a graph of N vertices. Is there
any other solution that uses o(N) storage? Or is there any
inherent reason that Ω(N) storage is necessary?

APPENDIX

A. TIME-LOCK PUZZLES IN THE RANDOM
ORACLE MODEL

Our construction for Theorem 3.7 makes black-box use of
sequential hash functions and collision-resistant hash func-
tions. Both primitives can be easily constructed with uncon-
ditional security in the random oracle model (when time-
complexity is measured by the number of oracle queries
rather than computational effort) for every index distribu-
tion with super-logarithmic min-entropy. As a consequence,
in this model we get unconditionally secure time-lock puzzles
and time stamping schemes for any puzzle and/or document
distribution with super-logarithmic min-entropy. Moreover,
we can obtain time stamping protocols for any document
distribution of super-logarithmic min-entropy.
More formally, in the random oracle model we modelTime(·)

as the number of oracle queries andParTime(·) as the num-
ber of rounds of oracle queries. However, in the random
oracle model (ROM), we can get stronger results: our con-
struction is noninteractive and unconditionally secure. We
prove the following theorem.

Theorem A.1 (Main Result in the Random Oracle Model).
Theorem 3.7 holds relative to any random oracle mapping
{0, 1}∗ to {0, 1}n unconditionally for any distribution D of
the messages with min-entropy ω(log n). Moreover the ver-
ification of the scheme is noninteractive (i.e., no challenge
is sent from the verifier to the puzzle solver).

We prove Theorem A.1 by proving the following lemma,
and using Fiat-Shamir transformation [FS86b] in the ran-
dom oracle model.

Lemma A.2. Suppose D = Dn is a distribution with min-
entropy at least ω(log n). Then relative to a random oracle
from {0, 1}∗ to {0, 1}n, there are efficient hash functions
CH,SH such that CH is collision resistant according to Def-
inition 3.3 and SH is sequential according to Definition 3.2.

A.1 Unconditional Interactive Construction in
the ROM

In this subsection we prove Lemma A.2.

Implementing Hash Functions sh(·) and ch(·). For
puzzle distributions of super-logarithmic mi-entropy, we pad
the puzzle to become of size |P| ≥ n, and we use a random
oracle of the same security parameter O : {0, 1}∗ 7→ {0, 1}n

as follows. The sequential hash function indexed by the
puzzle P, denoted shP(·) is defined as follows: shP(x) =
O(P, 0, x). To get the collision resistant hash function, we
use chP(x) = O(P, 1, x) to map 2n bit strings to n bits.
Note that since our adversaries in this work always ask

poly(n) < 2o(n) queries to O, at the time P
$
←D is sampled,

(except with negl(n) probability) no query with prefix P is
asked toO and therefore we can safely assume that both ora-
cles sh(·) and ch(·) are completely random even conditioned
on the poly(n) preprocessing queries asked by the adversary.
Therefore, to prove Lemma A.2 we just need to prove that
random oracles can be directly used to get sequential and
collision-resistant hash functions.

First we recall the well-known fact that a random oracle
is collision-resistant.

Lemma A.3 (Random Oracle is Collision-Resistant).
Suppose ch(·) is a random oracle from {0, 1}∗ to {0, 1}n.

Then any adversary who asks at most 2o(n) queries to ch(·)
is able to find a collision x 6= x′, ch(x) = ch(x′) with proba-

bility at most 2−Ω(n).

Second we prove that the sh(·) is indeed a sequential func-
tion.

Definition A.4. A chain of length r relative to the or-
acle sh(·) is a sequence of strings w0, w1 . . . , wr such that
sh(wi−1) is a (contiguous) substring of wi for all i ∈ [r].

Lemma A.5 (Random Oracle is Sequential). Suppose
sh(·) mapping {0, 1}∗ to {0, 1}n. Then, no adversary with
oracle access to sh(·) can break the η-sequential of sh(·) ac-

cording to Definition 3.2 for any η < 1 and any N = 2o(n).

Proof. We prove the following claim.

Claim A.6. Then and suppose A is an oracle algorithm
who asks 2o(n) queries of length at most 2o(n) to sh(·) in r−1
adaptive rounds. The probability that A’s queries include a
chain of length r is at most 2−Ω(n).

We first show how to conclude Lemma A.5 using Claim
A.6. Suppose Adv is an adversary with oracle access to
sh(·) who can break the sequential property of sh(·) accord-
ing to Definition 3.2. By Claim A.6, the view of Adv after
sending y as the last node the chain (in Construction 3.1)
does not have any chain of length at least N . If Adv out-
puts any chain of length at least N ending at y, implies that
Adv asks a total of 2o(n) queries and inverts sh(·) over some
y′ in the view of Adv such that sh(y′) is not called by Adv
(at the time y′ was already in the view of Adv). It is easy
to see that, such inversion can succeed only with probability
2o(n) when sh(·) is a random oracle.

Now, we prove Claim A.6. W.l.o.g. Suppose A has asked
the queries x1, . . . , xℓ so far and is about to ask a new round
of queries y1 . . . , yq. We claim that with probability 1 −
2−Ω(n) the new queries y1, . . . , yq can only be the last nodes
in any new chain in the view of A. Since the total number of
queries of A is 2o(n) we only need to prove the latter claim for
one of the new queries, yi ∈ {y1, . . . , yq} and the claim fol-
lows by a union bound. LetX = {x1, . . . , xℓ, y1, . . . , yi−1, yi+1, . . . , yq}
be all the queries of A asked (or about to be asked) so
far other than yi. The total number of (contiguous) sub-
strings of length n among all the elements of X is at most
2o(n) · 2o(n) ≤ 2o(n) (because all those queries are of length

2o(n) any substring is determined by choosing two points in
the string). Since the answer to sh(yi) is a random string of
length n, this answer will be different from all the contigu-
ous substrings of the elements of X with probability at least
1− 2−n2o(n) = 1− 2−Ω(n).



Therefore, with probability at least 1− 2−Ω(n) the length
of the longest chain in the view of A can increase in each
rounds of adaptive queries of A only by one (except with

probability 2−Ω(n)). Thus (by induction) the probability
that A can output a chain of length r in r − 1 rounds of
queries is at most 2o(n) · 2−Ω(n) = 2−Ω(n).

Lemmas A.5 and A.3 together Lemma A.2, which in turn
proves our Theorem A.1 for the case of interactive verifica-
tion.

A.2 Noninteractive Verification Using the Fiat-
Shamir Transformation

In the random oracle model, by using the Fiat-Shamir
transformation of Lemma A.7 we can remove the challenge
message of the verifier in Construction 3.9 to make the veri-
fication completely noninteractive and obtain Theorem A.1.
Similarly to the previous subsection, here also we assume

w.l.o.g. that the oracle O is completely random at the time

the puzzle P
$
←D is chosen and given to the adversary. This

is because we can pad all queries toO with (P, 3) and apply a
similar argument to that of the sequential and collision hash
functions SH, CH above based on the ω(log n) min-entropy
of D.
The following transformation is due to Fiat and Shamir [FS86a]

and shows how to remove interaction from public-coin pro-
tocols in the random oracle model. For completeness, here
we prove a special case in which there is only four messages
exchanged, while we are interested in (almost) preserving
the adaptivity of the adversary.

Lemma A.7 (Fiat-Shamir Transformation). Suppose
(P, V ) is two party protocol using a random oracle O of out-
put length n as follows.

• The protocol has only 4 messages: v1, p1, v2, p2 where
v1 and v2 are public-coin messages of V and V does not
use any private randomness to make her final decision.

• We have |v1| = n and |v2| ≤ ℓ · n.

• The verifier rejects its interaction with probability 1−ε

against any prover P̂ who:

1. P̂ asks a total of q queries to the random oracle
O.

2. P̂ has at most r rounds of adaptivity in its queries.

Suppose (P ′, V ′) is a two-message protocol defined based on
(P, V ) as follows: The second message v2 of V is removed
from the protocol and instead the oracle answers to the fol-
lowing queries are used O(v1, p1, 1),O(v1, p1, 2), . . . ,
O(v1, p1, ℓ). (Note that the number of obtained random bits
this way will be exactly n·ℓ = |v2|.) This randomness is used
by the parties and the two messages of the prover (p1, p2) are

sent together. Then it holds that any adversary P̂ ′ who in-
teracts with V ′ and asks q′ = q/ℓ number of queries to O
and has at most r′ = r − 1 rounds of adaptivity is able to
convince V ′ with probability at most ε′ = ε · q.

Proof. For sake of contradiction suppose P̂ ′ is an adver-
sary who interacts with V ′, asks at most q′ = q/ℓ queries to
O, has at most r′ = r−1 rounds of adaptivity, and is able to
convince V ′ with probability ε′ > ε · q. We show how to get

an adversary P̂ who interacts with V , asks at most q′ · ℓ = q

oracle queries, has at most r rounds of adaptivity and is able
to make V accept with probability at least ε′/q = ε, which
is a contradiction.

First we modify P̂ ′ as follows.

• P̂ ′ never asks any query twice.

• P̂ ′ always asks the queriesO(v1, p1, 1),O(v1, p1, 2), . . . ,
O(v1, p1, ℓ) before sending (p1, p2) in one round of adap-
tivity, if not asked already.

• If P̂ ′ makes any query of the form O(v′1, p
′
1, j) for

any p′1 and j ∈ [ℓ], it also asks all the other queries
{O(v′1, p

′
1, i) | i ∈ [ℓ], i 6= j} in the same round of adap-

tivity. (Note that O(v′1, p
′
1, j) might be asked when v1

is not known or p1 is not decided yet).

The above changes might increase the total queries of P̂ ′

by a factor of ℓ and might add one round of adaptive queries

to P̂ ′. The adversary P̂ works as follows:

1. When P̂ ′ asks for v1, receive v1 from V and forward it

to P̂ ′.

2. Choose i
$
← [q] at random.

3. Emulate the execution of P̂ ′ by preserving the adap-
tivity of the queries as follows.

(a) When P̂ ′ asks its i-th query O(y), if y is not of the
form (v1, p

′
1, j) for some (p′1, j ∈ [ℓ]) then abort.

Otherwise do the following:

i. Send p′1 back to V as the first message of the
prover and receive v2.

ii. Use v2 to answer the query O(y) as well as all
of {O(v′1, p

′
1, i) | i ∈ [ℓ], i 6= j} that are going

to be asked in the same round of adaptivity.

(b) When the emulation of P̂ ′ is finished, suppose
(p1, p2) is the generated message. If p1 is different
from p′1 (which was part of y) abort, otherwise
send p2 to V .

We claim that with probability 1/q over the random choice

of i
$
←[q] the game above is a perfect emulation of the game in

which P̂ ′ interacts with V ′. The reason is that with prob-

ability 1/q the emulating adversary P̂ guesses the actual

query O(v1, p1, 1) of P̂ ′ correctly, in which case since v2 is
completely random, we get a perfect emulation of the game

of interaction between P̂ ′ and V ′ in the random oracle model
(where a particular oracle query is answered using fresh ran-
domness). Thus the emulation above leads to the accept of
V with probability at least ε′ · 1/q = ε, while the number of

rounds of oracle queries asked by P̂ is at most r.

B. EXPLICIT CONSTRUCTIONS OF DEPTH
ROBUST GRAPHS

In this section we prove Lemma 3.10 by showing how
to obtain explicit (α, β)-depth robust graphs for constants
α, β < 1 that can be arbitrarily close to 1. Erdős, Gra-
ham and Szemerédi [EGS75] constructed (α, β)-depth ro-
bust graphs for some constants 0 < β < α < 1 based on a
recursive use of constant-degree expanders. This construc-
tion can be made explicit using any explicit family of such
expanders.



Theorem B.1 ( [EGS75]). There exists an explicit fam-
ily {GN} of DAGs with N vertices and in-degree d = O(logN)
that is (α, β)-depth-robust for some constants 0 < β < α <
1.

Using the proof of [EGS75] one can obtain, e.g., α =
99/100, β = 1/100, but by minor modifications to the con-
struction of [EGS75] one can obtain constants (α, β) that
are arbitrarily close to 1 at the cost of larger degrees log2 N .
For sake of completeness, in Section B we describe this con-
struction. Our construction follows that of [EGS75] closely,
with the difference that we use denser expanding graphs in
the recursive construction.

Definition B.2 (Expanding Graphs). A bipartite graph
G = (V1, V2, E), |V1| = |V2| = M is A-expanding if for ev-
ery S1 ⊆ V1 and S2 ⊆ V2 such that |S1| = |S2| = ⌈M/A⌉
there is an edge from S1 to S2.

We use explicit constructions of A-expanding graphs of
[RVW00,RVW01].

Construction B.3. For simplicity suppose the number
of vertices of our graph G is a power of two N = 2t, and let
γ = ε/logN = ε/t for arbitrarily small constant ε. We use
the following recursive construction to get G = Gt. Let G1 be
a two-vertex graph with an edge between them. Informally,
Gi+1 consists of two identical copies of Gi connected with
the edges of a bipartite (1/γ)-expanding graph. Formally,
Gi+1 = ((Li+1, Ri+1), Ei+1), where Li+1 =

{
1, . . . , 2i

}
,

Ri+1 =
{
2i + 1, . . . , 2i+1

}
and the edges are

Ei+1 := Ei ∪
{
(u+ 2i, v + 2i) | (u, v) ∈ Ei

}
∪ E′

i+1 ,

where G′ = ((L,R), E′
i+1) is an explicit (1/γ)-expanding

graph for L =
{
1, 2, . . . , 2i

}
and R =

{
2i + 1, . . . , 2i+1

}
.

Degrees and Explicitness. The explicit expanding graphs
we used in Construction B.3 to connect the two copies of

Gi are all of in-degree Õ(logN) < log2 N for large enough
N . Since the depth of the recursion is ⌈logN⌉, the total

in-degree of the final graph is at most Õ(log2 N) < log3 N
for large enough N . The explicitness of our constructed
graph follows from the explicitness of the expanding graphs
used. In particular, given any node v ∈ [N ] = [2t] let
v − 1 = (bt, . . . , b1) where bi is the i-th bit of the binary
representation of v − 1. To know the list of in-neighbors
of v in G = Gt we will consider every i ∈ [t] such that
bi = 1. The fact that bi = 1 means that in the construction
of Gi, the node v has been in the set Ri and we should
find the list of the vertices Li that are connected to it.
The list of in-neighbors of v in Gi (which are due to the
edges of the expanding graphs planted in Gi) can be com-
puted in time polylogN (due to explicitness of Gi). Sup-
pose the latter list is {v1, . . . , vℓ} where the binary repre-
sentation of the numbers vj − 1 (for all j ∈ [ℓ]) have i − 1
bits. To get the index of vj as a node in G we can take
uj = 1 + (bt, . . . , bi+1, 0, (vj − 1)). To find out all the in-
neighbors of v in G we just have to go over all i ∈ ⌈logN⌉
and extract the in-neighbors as above.

Depth-Robustness. We now prove the depth-robustness
of the DAG of Construction B.3.

Lemma B.4. For every i and α ∈ (0, 1), the graph Gi is
(α, α − iγ)-depth-robust, and since γ = ε/logN , the final
graph G = GlogN is (α, α − ε)-depth-robust for every α ∈
(0, 1).

Proof. The proof is by induction over i. For i = 1,
Gi consists of two vertices, and is trivially (α, α) depth-
robust for all α ∈ (0, 1). Assuming the hypothesis holds for
i, consider the graph Gi+1 = ((Li+1, Ri+1), Ei+1).

Fix an arbitrary α ∈ (0, 1). Suppose we select a subset S
of the nodes of Gi+1 of size at least α · 2i+1 and call them
“good” nodes. Let δ2i be the number of good nodes SL ⊆ S
in Li+1. Since the total number of good nodes is α2i+1,
there must be at least (2α − δ)2i good nodes SR ⊆ S in
Ri+1. Below, by the length |P | of a path P we denote the
number of vertices in it.

By the induction hypothesis, there exists a path PL ⊆ SL

of good nodes such that |PL| ≥ (δ− iγ)2i. In the same way,
there exists a path PR ⊆ SR such that |PR| ≥ (2α−δ−iγ)2i.

We must show that there exists a path P ⊆ SL ∪ SR = S
such that |P | ≥ (α−(i+1)γ)2i+1. If δ ≤ 2γ, then we can sim-
ply set P = PR, since in this case |PR| ≥ (2α− (i+2)γ)2i ≥
(α−(i+1)γ)2i+1. On the other hand if δ ≥ 2α−2γ, then in
the same way we can set P = PL. Otherwise, consider the

set P̂R ⊆ PR consisting of the first ⌈γ2i⌉ nodes on PR and

the set P̂L ⊆ PL consisting of the last ⌈γ2i⌉ nodes on PL.
Since Gi+1 contains a (1/γ)-expanding graph between the

nodes of Li+1 and Ri+1, and given that |P̂L| = |P̂R| = ⌈γ2
i⌉,

there exists an edge (vL, vR) ∈ Ei+1 going from P̂L to P̂R.
We define our new path P by connecting (most of) the paths
PL and PR together with the edge (vL, vR) as follows: P is
defined to be the nodes in PL up to the node vL, concate-
nated with the nodes of PR starting from the node vR. This
way the number of vertices in P is at least

|P | ≥ |PR| − (⌈γ2i⌉ − 1) + |PL| − (⌈γ2i⌉ − 1)

> (δ − iγ + 2α− δ − iγ)2i − 2γ2i = (α− (i+ 1)γ)2i+1 .

C. COMMITMENTS BY MERKLE TREES
Algorithm 5 shows how a Merkle tree is computed as a

commitment to a set of strings with the possibility of open-
ing the commitment to each string separately. Algorithm 6
describes how the opening is performed. To verify the de-
commitment of Algorithm 6 the receiver simply verifies the
corresponding hash evaluations according to Algorithm 7.
For simplicity, in this section we assume that the N strings
being committed to are indexed by {0, 1, . . . , N − 1} (rather
than [N ]), but when we use the Merkle commitment we
might choose to index the strings with [N ].

The following lemma asserts that if the family of hash
functions CH from which ch(·) is sampled is collision re-
sistant, then the commitment scheme based on the Merkle
tree is binding. It can be shown that the commitment us-
ing Merkle trees has some strong hiding properties as well,
but here we are only concerned with the binding property
of such efficient commitments.

Lemma C.1. Suppose Adv is an adversary who sends a
a Merkle-commitment string c ∈ {0, 1}n, then send some
i ∈ [N ], and finally Merkle-decommit successfully into two
different values ui 6= u′

i (as the i-th string). Then there is



Algorithm 5 (Merkle Commitment) For a hash function
ch : {0, 1}2n 7→ {0, 1}n andN strings u0, . . . , uN−1 from ui ∈
{0, 1}n the Merkle tree is computed as follows.

1: Let t = ⌈logN⌉, and define ui = 0n for N ≤ i < 2t.
2: for i ∈

{
0, . . . , 2t − 1

}
do

3: set cti = ui.
4: for j ∈ {t, t− 1, . . . 1} do {compute (j− 1)-th “layer” of

the Merkle tree}
5: for i ∈

{
0, 1, . . . , 2j−1 − 1

}
do

6: Let cj−1
i = ch(cj2i, c

j
2i+1)

7: Output c = c00 as the commitment string.

Algorithm 6 (Merkle Opening) For a hash function
ch : {0, 1}2n 7→ {0, 1}n and as the Merkle commitment
c ∈ {0, 1}n for N = 2t strings of length n, the opening
algorithm is as follows.

1: Receive some index i ∈
{
0, . . . , 2t − 1

}
as the index of

the string to be opened.
2: Output ui as the decommitment value.
3: To help the verifier verify the decommitment ui, let i =

(bt, . . . , b1) be the binary representation of i (i.e., i =∑
j∈[t] bj2

j−1) and do the following.

4: for j ∈ {t, . . . , 1} do
5: Output the two strings cj0 = cj(bt,...bt−j+2,0)

and cj1 =

cj(bt,...bt−j+2,1)
(from the j-th layer).

(Note that one of ct(bt,...,b2,0) and ct(bt,...,b2,1) is simply
equal the decommitted value ui.)

Algorithm 7 (Merkle Verification) For a hash function
ch : {0, 1}2n 7→ {0, 1}n and a received c ∈ {0, 1}n as the
Merkle commitment of N = 2t strings of length n, the veri-
fying algorithm is as follows.

1: Send the index i ∈
{
0, . . . , 2t − 1

}
(i.e., the index of

the string desired to be decommitted) to the opener of
Algorithm 6 and let i = (bt, . . . , b1) be the binary repre-
sentation of i.

2: Receive ui as the decommitment value, and also receive
the strings cj0 and cj1 for all j ∈ [t].

3: Verify that ui = ctb1 .

4: Define bt+1 = 0 and c00 = c (where c is the commitment
string received before).

5: For all j ∈ {t, . . . , 1} (can be done in parallel) verify that
ch(cj0, c

j
1) = cj−1

bt−j+2
.

an adversary Adv′ who executes Adv as a black-box, asks
O(logN) more queries to ch(·), and finds a collision: x 6=
x′, ch(x) = ch(x′).

Proof. Let t = ⌈logN⌉. Suppose Adv is able to decom-
mitment successfully into two different strings ui 6= u′

i as
the i-th string with respect to the same commitment string
c. For j ∈ [t] let cj0 and cj1 be the pair of strings provided
by Adv as the two needed strings from the j-th layer of the

Merkle tree when decommitting to ui, and similarly let c′
j

0

and c′
j

1 be the corresponding strings for u′
i. Define c00 := c

and c′
0
0 := c. Since ctb1 = ui 6= u′

i = c′
t

b1 , if we take j to be

the smallest element in [t] that cjbt−j+1
6= c′

j

bt−j+1
, it holds

that ch(x) = cj−1
bt−j+2

= ch(x′) for x = (cj0, c
j
1) 6= (c′

j

0, c′
j

1) =

x′. Adv′ is able to find such colliding pair by computing
the relevant 2t hash labels ch(·).
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alternation ii. a graph theoretic approach to
determinism versus nondeterminism, Acta Inf.
14 (1980), 391–403.

[PTC77] Wolfgang J. Paul, Robert Endre Tarjan, and
James R. Celoni, Space bounds for a game on
graphs, Mathematical Systems Theory 10
(1977), 239–251.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A.
Wagner, Time-lock puzzles and timed-release
crypto, Tech. Report MIT/LCS/TR-684, MIT,
February 1996.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P.
Vadhan, Notions of reducibility between
cryptographic primitives., Theory of
Cryptography, First Theory of Cryptography
Conference, TCC 2004, Lecture Notes in
Computer Science, vol. 2951, Springer, 2004,
pp. 1–20.

[RV10] Guy N. Rothblum and Salil P. Vadhan, Are
PCPs inherent in efficient arguments?,
Computational Complexity 19 (2010), no. 2,
265–304.

[RVW00] Reingold, Vadhan, and Wigderson, Entropy
waves, the zig-zag graph product, and new
constant-degree expanders and extractors,



FOCS: IEEE Symposium on Foundations of
Computer Science (FOCS), 2000.

[RVW01] , Entropy waves, the zig-zag graph
product, and new constant-degree expanders
and extractors, ECCCTR: Electronic
Colloquium on Computational Complexity,
technical reports, 2001.

[Sch82] Georg Schnitger, A family of graphs with
expensive depth reduction, Theor. Comput. Sci.
18 (1982), 89–93.

[Sch83] , On depth-reduction and grates, FOCS,
IEEE, 1983, pp. 323–328.

[TBFN07] Suratose Tritilanunt, Colin Boyd, Ernest Foo,
and Juan Manuel González Nieto, Toward
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