Robustness of Spatial Relation Evaluation in
Data Exchange

Alberto Belussi, Sara Migliorini
Dipartimento di Informatica
University of Verona
Strada Le Grazie, 15
37134 Verona (ltaly)

alberto.belussi@univr.it

ABSTRACT

Topological relationships between geometric objects are
important in several spatial applications, like spatial query
evaluation, spatial integrity constraints checking, and spatial
reasoning. Although the conceptual aspects of topological
relationships between geometric objects embedded in the
Euclidean space have been extensively studied, the problems
arising when topological relationships are evaluated on real data
have been much less explored. In particular, robustness problems
arise in the evaluation of topological relationships between
geometric objects implemented as vectors in a discrete space. A
lack of robustness is characterized by the fact that different
systems can produce different evaluations of topological
relationships on the same data, and it is caused by the fact that
coordinates are represented as finite numbers. The goal of this
paper is to formally analyze some rules for increasing the
robustness, of a topological relationship evaluation and to give
some examples w.r.t. a specific topological relationship.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management ~ Database
applications — Spatial databases and GIS ’

General Terms
Algorithms, Theory, Verification.

Keywords

Spatial data, topological relations, robustness of computation.

1. INTRODUCTION

Topological relationships are a fundamental formal tool for
describing the spatial properties of data in geographical
applications: this occurs for example in schema definitions, where
spatial integrity constraints have to be defined, but also in query
specification, where spatial filters have to be applied, and in
updates where relations are used to specify data quality [7,8].

Although many abstract models for defining the semantics of
topological relationships between geometric objects embedded in
an Euclidean space have been extensively studied [2,3], the
problems arising when they are evaluated on real data have been
much less explored. In particular, topological relations have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, 10 republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGSPATIAL GIS '12, Nov. 6-9, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM ISBN 978-1-4503-1691-0/12/11...$15.00.

446

Mauro Negri, Giuseppe Pelagattj
Dipartimento di Elettronica e Informaziong
Politecnico of Milan
Via Ponzio, 34/5
20133 Milan (ltaly)

giuseppe.pelagatti@polimi.it

defined by using the 9-intersection matrix approach [2] or other
approaches (5], while for their evaluation algorithmg of
computational geometry have been implemented in real BYStems
working on real data implemented as vectors in a discrete space,

A consequence of this fact is that the evaluation of topologieal
relations can be non robust, i.e. produce different results on e
same data in different contexts. The existence of robustpess
problems in the execution of computational geometry algorithins
using finite numbers, instead of the real numbers theoretically
required, is well known [4]. In the context of this paper (he
problems due to the finite number representations used in the
implementation of the algorithms is made even worse by the dai
perturbations due to their exchange between different systems.
Such exchanges can introduce perturbations in geometric
representation due to the conversions between different formats
and precisions, The robustness problem in the evaluation of
topological relations depends also from the dimension of the
embedding space. For example, consider two curves which have a
macroscopic intersection in 2D: in 2D it is assumed that every
system evaluates the topological relation to be Crosses, but in 3D
small differences in the z-value could cause some system fo

evaluate the relation to Disjoint while others would evaluate it
Crosses. Therefore, in many cases a distinct analysis of the

robustness of topological relations in 2D and 3D is necessaty.

Several robustness rules have been proposed in order to get rid of
these problems, and they are to some extent applied by systems.
The most important one is based on the determination of common
geometric primitives between different objects. These comman
geometric primitives are either stored once and referred to py U}e
objects (topological structures [6]) or are repeated identically in
all objects which share them. This robustness rule can solve many
of the mentioned robustness problems, but not all of them. A
complementary robustness rule, which has been suggested for
instance in [6], consists in assuring that a minimum digtance 15
kept between all geometric primitives which are not identical.

The goal of this paper is to analyze which robustness rules are
sufficient and necessary in order to make robust the evaluation of
some topological relations; this analysis is done with respest 1
some topological relations applied to some the geometric types &

the Simple Feature Model (SFM) published by OGC [,
moreover, it is done in 2D and in 3D.

2. REFERENCE MODEL

This paper considers the geometric model recently deﬂneq by the
OGC as version 1.2 of the Simple Feature Access archnecnl:
(SFA) [1]. This model contains classes for describing geOm‘“gon
in the Euclidean spaces R? and R. The most significant evolt
with respect to the previous version is represented by the 3
PolyhedralSurface for representing 3D surfaces as sets of poly8°

et e s T A T, T e T *'ﬂ""‘""""-'-‘-A

R A T T T g e A A S N e TP NS LT

A T SRR =

T A A

TETTE R AR T

patches with some constraints [1]. The types considered in this
paper are: Point, LineString, Polygon, and PolyhedralSurface
together with all their subtypes. Anyway, the obtained results can
be easily extended to MultiGeometries types.

Topological relations of the Simple Feature Access architecture
are not mutually exclusive; hence, for simplifying the study of
robustness property a slightly different set of mutually exclusive
relations is adopted, called REL,,,,. The extension of this study to
other sets of relations is possible provided that the relations can be
expressed as a set of matrices of the 9-intersection model [2]. The
set REL,, is made up of the relations: Disjoint (DJ), Touches
(TC), In (IN), Contains (CT), Equals (EQ), Overlaps (OV) and
Crosses (CR) as defined in [3].

REL, is defined by using the concepts of internal part, boundary
and external part of a geometric object. Given a geometric object
a of the abstract type Geometry and the operations: a.PS()
returning the point set represented by a, a.bnd() returning the
geometric object representing the boundary of a, and a.dim()
returning the dimension of a, the following point sets are defined.
The internal part of a, denoted as I(a), is the point set a.PS() -
a.bnd().PS(), the boundary of a, denoted as B(a), is the point set
a.bndQ'PS, and the_external part of a, denoted as E(a), is the
point set a.space() - a.PS().

In a discrete vector model each geometry is described as a set of
vertices embedded in a discrete space. A vertex is represented as a
tuple of coordinates, namely by two or three real numbers
encoded using a discrete approach, like the floating point model.
In the sequel, these numbers are denoted as finite numbers. The
‘discrete representation of a geometry g is denoted as DR(g).

Definition 2. [Vertex] A vertex ver is a tuple of finite numbers
representing a 2D or 3D coordinate: ver = (x,y), or ver =(x,5.2).

The discrete representation of a Point corresponds to & single
vertex, while LineString, Polygon and PolyhedralSurface are
described as sets of vertices among which a linear interpolation
method is applied between consecutive vertices.

The definition of the discrete representation of a LineString,
Polygon, and PolyhedralSurface can be simplified by using the
concepts of segment, ring, and patch defined below.

Definition 3. [Segment, boundary ring and patch] Let (ver,,
ver;) a pair of vertices, a segment is the linear interpolation
between them. Let (very,...,ver,) be a list of vertices, its linear
interpolation is a ring if and only if ver;=ver,, namely it is a
cycle. A patch is a planar polygon whose boundary is defined by a
planar ring, i.e (very, ...,ver,).

The following operations are used in the remainder of this paper:

real a.dist(b): it returns the distance between a and b.
boolean a.eq(by: it tests for equality two geometries of the
same type represented in a discrete form. In particular, two
vertices are equal if they are bitwise identical..

vertex seg.s()(e()): it returns the start(end) point of seg.
set(vertex) seg.bnd(): it returns the set of end points of the
segment s. (seg.bnd() = { seg.s(), seg.e() })

o segments;\ ... U s, it joins two overlapping (or touching)
segments that lie on the same straight line, if the segments
are disjoint or not collinear, it returns the empty geometry.

o patch p; \ ... U p,: it joins two overlapping (or touching)
patches that lie on the same plane, if the patches are disjoint
or not coplanar, it returns the empty geometry.

o boolean a.int(b): it tests the intersection between the interior
of two geometries: /(a)~\I(b)#Q. When a and b are segments,

447

it requires that the intersection is a point (dim(l(a) N
I(b))=0); if the intersection has dimension 1, it returns false.

o boolean a.cnt(b): it is a test of containment between two
geometries interiors: I(b)c I(a).

o set(segment) DR(psur).bnd(): it returns the set of segments
representing the boundary of psur.

o set(segment) DR(psur).intSeg(): it returns the set of segments
belonging to a patch of psur that are not in DR(psur).bnd().

3. System and Implementation Assumptions
Let us consider two systems, denoted here as S (source) and D
(destination), which exchange spatial data and evaluate
topological relations on the exchanged data. During the transfer a
transformation may occur on each vertex, let vers be a vertex in §
and verp the same vertex in D, the transformation from vers to
verp is captured by a mapping F(), such that verp = F(vers).

The behavior of current systems displays a set of problems with
respect to robustness. In the sequel they are listed and for each
one some minimal assumptions on the systems behavior are stated
which are necessary preconditions for building robustness rules.

Problem 1. [Perturbation in data exchange] The data transfer
between two systems S and D may cause a perturbation.

In order to deal with this problem, the following minimal
assumption has to be stated.

Assumption 1. [Locality of perturbation in data exchange] The
perturbation introduced in a vertex representation by the mapping
F() has an upper bound, called PUB (Perturbation Upper Bound).
In other words, given a vertex ver, the distance between ver and
F(ver) is always less than PUB: '
Vverevertex (ver.dist(F(ver)) < PUB)
If a sequence of n data transfers is considered instead of a single
one, then it is also assumed that the combined effect of all
perturbations cannot diverge:
Vverevertex (ver.dist(Fy(...(Fi(ver)))) <PUB) -

Problem 2. [Uncertainty in the evaluation of relative positions]
Another aspect that introduces ambiguity in topological relation
evaluation is due to the necessity of implementing a system of
linear equations in order to evaluate some elementary geometric
operations. These clementary geometric operations are the basis
of all vector predicates that are needed in topological relations
evaluations. They are ambiguous due to the finite precision of
discrete geometric representation and algorithm implementation.

In particular, the elementary operations which test the following
spatial relationships can cause ambiguous resuits:

Problem 2.1 [Vertex-Vertex equality/disjunction] In some
cases different systems return different results if the two vertexes
are close to each other.

Problem 2.2 [Vertex-Segment relative position] If the distance
between a vertex ver and a segment seg is very small, then
different systems can return different results. The relative position
between an (oriented) segment seg and a closed vertex ver in a
2D/3D space can be: (i) seg contains ver; (ii) ver is on the left of
seg; (iii) ver is on the right of seg. Left and right refers to the
unique plane that contains both seg and ver. For example, seg can
contain ver and F(ver) might be on the left of F(seg) or ver can be
on the right of seg and F(ver) on the left of F(seg).

Problem 2.3 [Segment-Segment intersection/disjunction in 3D]
In some cases different systems return different resuits if the two
segments are close to each other.

Segment-segment intersection in 2D is not an independent
elementary problem, since it can be reduced to problem 2.2.

Problem 2.4 [Vertex-Patch relative position] If the distance
between a vertex ver and a patch pat is very small, then different
systems can return different results. The relative position between
a vertex ver and an (oriented) patch par in the 3D space can be: (i)
pat contains the vertex; (ii) ver is above pat ; (jii) ver is below pat

In order to introduce robustness in topological relations
evaluation, the following assumptions are introduced.

Assumption 2. [Equality preservation in data exchange] The
mapping F() representing the exchange of geometry between a
source system S and a destination system D is a function, namely:
Y ver,,ver, € vertex (ver;.eq(ver;) = F(ver).eq(F(vers)))

Assumption 3. [Minimum distance for preserving relative
positions] Given two geometries transferred from system S to
system D, the evaluation of their relative position in the two
systems is consistent if their distance is greater than a lower
bound, called threshold distance TD. In particular:

Assumption 3.1 [Vertex-Vertex minimum distance]
Vverevertex(Vver, e vertexes, (ver.dist(ver)) > TD =
(~ver.eq(ver)) = —~F(ver).eq(F(ver))))

Assumption 3.2 [Vertex-Segment minimum distance]
Vverevertex (Vsegesegment (ver.dist(seg) > TD =
((ver is on the left of seg) A (F(ver)is on the left of F(seg)) v
(ver is on the right of seg) A (F(ver) is on the right of F(seg)))))

Assumption 3.3 [Segment-Segment 3D minimum distance]
Vsegesegment3D (Vseg,esegment3D (seg.dist(seg)) > TD =
(—seg.int{seg)) = ~F(seg).int(F(segy)))
Assumption 3.4 [Vertex-Patch minimum distance]
Vverevertex (Vpatepatches (ver.dist(pat) > TD =
((ver is above par) A (F(ver) is above F(pat)) v
(ver is below par) A (F(ver) is below F(par)))))

Notice that with the precision levels of current systems, TD is
significantly smaller than the average error in the coordinate
representation with respect to real positions of points: TD <<
Absolute-Positional-Error. Normally, if no specific robustness
rules are applied, in real datasets it is not correct to assume that
TD is the minimum distance among the represented vertexes,
segments and patches. In the sequel robustness rules are defined
based on the above assumptions.

4. Robustness of Vector Predicates

The implementation of topological relations on the presented
discrete vector model makes use of a set of vector predicates,
which include in their implementation the elementary operations
described in Sec. 3. For the reasons highlighted above, some of
these predicates can return different results in different systems,
and are called here critical vector predicates. The following
definition introduces the main six critical vector predicates which
are necessary in the implementation of topological relations (the
proof of this claim cannot be shown here due to space restriction).

Definition 7 [Basic predicates] The following six basic vector
predicates are used in topological relations implementation:

Pl. ver,.eq(ver,): equal predicate applied to a pair of vertexes.
P2. seg.cnt(ver): cnt predicate applied to a segment and a vertex.
P3. seg.int(seg,): int predicate applied to a pair of segments.
P4. pat.cnt(ver): cnt predicate applied to a patch and a vertex.
PS. pat.int(seg): int predicate applied to a patch and a segment.
P6. pat,.int(pat,): int predicate applied to a pair of patches.

448

4.1 Robustness Rules for Critical Predicates
This subsection introduces a set of rules that, applied on the
source system S, make the identified critical vector predicates
(Def. 7) non ambiguous. These rules are classified into two
categories: identity rules and minimum distance rules. The
following identity rules are used to ensure the robustness of
topological relation evaluation and are based on Asmp. 2.

Rule 1. [IR1: Vertex-Segment] For each vertex ver that has to lie
in a segment seg = (ver),very), & DEW Vertex ver, bitwise identical
to ver has to be introduced in the seg representation splitting it
into two new segments seg, = (very,ver,) and seg; = (very,very).
Therefore, after the rule IR1 has been applied, the following
condition is true: Vver € S (Vseg € S(—seg.cnt(ver))))

Rule 2. [IR2: Segment-Segment] All intersections between two
segments seg, and seg; must be represented by splitting them in
four through the insertion of a new common vertex, which has to
be represented only once or has to be represented by means of
several identical instances, namely instances that have bitwise
identical coordinates. Therefore, after the rule IR2 has been
applied, the following condition is true: Vseg,eS (Vseg,e$S
(—segy.eq(seg) = —seg).ink(seg>)))

Rule 3. {IR3: Vertex-Patch] All vertex-patch intersections must
be represented by a vertex ver contained in the patch definition.
Therefore, the patch representation has to be split in two and the
vertex ver has to be inserted as a new start/end point of a new
segment composing one of the patch boundaries. Therefore, after
the rule IR3 has been applied, the following condition is true:
VvereS (VpateS (—pat.cnt(ver)))

These rules are not sufficient alone to guarantee robustness for all
critical predicates. In particular, in order to solve the situation
highlighted in Problems 2.1, 2.2, 2.3 and 2.4 and given Asmp. 1
and 3, the following other rules are introduced.

Rule 4. [DRO: Vertex-Vertex] For all pairs of vertices ver;ver;
of S, the distance between them is either zero or is greater than a
Minimum Granted Distance (MGD); MDG is chosen in order
satisfy Asmp. 3 in all involved systems (for example, it could be
the maximum TD): Vver,eS (Vver,eS (ver.dist(ver;) = 0 v
ver,.dist(ver;) > MGD))

Rule 5. [DR1: Vertex-Segment] For all vertices ver and for all
segments seg of S, the distance between them is either zero or is
greater than MGD: VvereS (VsegeS (segdist(ver) = 0 v
seg.dist(ver) > MGD)).) =

Rule 6. [DR2: Segment-Segment] For all pairs of distinct
segments seg,, seg, of S, the distance between them is either zero
or is greater than MGD: Vseg €S (Vseg:€S (seg).dist(seg?) =0 v
seg,.dist(seg;) > MGD))

Rule 7. [DR3: Vertex-Patch] For all vertices ver (representing
isolated points or segment end points) and for all patches pat of S,
the distance between them is either zero or is greater than MGD:

VvereS (VpateS (patdist(ver) =0 v pat.dis(ver) > MGD))

Notice that in 2D spaces DR2 is implied by DRI and that the
minimum granted distance between patches and segments is
implied by DR2 and DR3.

Theorem 1. Given Asmp. 1-3 the necessary and sufficient rules to
be applied on S in order to guarantee the robustness of the critical
vector predicates evaluation on D are shown in Tab. 1.

Notice that for the mentioned assumptions, when IR1, IR2 and
IR3 are applied on S the predicates seg.cnt(ver), seg.int(segz),
and pat.cnt(ver) respectively are always false.

Table 1. Robustness conditions for critical vector predicates.

Predicate in 2D in 3D
ver;.eq(vers) DRO DRO

seg.cnt(ver) IR1+DR1 IR1+DR1

seg,.int(seg) IR1+DR1 IR 1+IR2+DR2
pat.cnt(ver) IR1+DR1 IR1+IR3+DR3
pat.int(seg) IR1+DR1 IR1+IR2+IR3+DR2+DR3
pat,.int(paty)

A derived critical predicate is a predicate which can be expressed
in terms of other predicates, at least one of which is critical. A
derived critical predicate becomes robust if and only if its
constituent predicates become robust. Among all the possible
derived predicates, the ones used in Sec. 5 are considered here.

Definition 8 [Derived predicates] The following derived vector

predicates are used in topological relations implementation:

DPI. seg).eq(segy) = (seg).s().eg(seg2.s0) A segy.e().eq(sega.e()))
v (seg;.s()-eq(segz.€()) A seg,.e().eq(seg;.50)).

DP2. seg,.in(segy) = (seg;.s0.eq(seg».s() A segy.cnt(segy.e())) v
(seg,.50).eq(seg,-e() A seg,.cnt(seg;.e()) v (seg,.e().eq(segz.s())
A segr.cni(seg.s())) v (seg,.e().eq(seg,.e()) A sega.cnt(seg,.s()))
v (seg,.cnt(seg;.s0) A §eg2.cnt(seg,.e0))

DP3. Seg).ov(seg,) = (seg|.cni(seg,.s()) A (sega.cni(seg,.e()) v
sega.cnt(seg.s()))) v (seg,.cni(seg,.e()) A (seg.cni(seg.e()) v
segy.cnt(seg;.s())))

DP4. pat.cnt(seg) = pat.int(seg) A Vveseg.bnd()(pat.cnt(v)

v As;epat.bnd()(s;.cnt(v) v {v} N s.bnd()=D))

A (Vsyepat.bnd()(—seg.int(sy) A ~seg.oW(sp) v

_3syy...,SimESegments(seg.eq(sz, V... Sam) A

g Vje[l,ml(pat.cnt®*(s,;) v 3syepat.bnd()(s,.eq(s) Vv 5,4in(sp))))

where pat.cnt*(seg) = pat.int(seg) A Vveseg.bnd()

pat.cnt(v) v 3s;epat.bnd()(s;.cnt(v) v {v} N 5,.bnd()=D))
A Vsiepat.bnd()(—seg.int(s;) A —seg.ov(sy))

Lemma 1 [Robustness of Derived Critical Vector Predicates]

Under the hypothesis of Th. 1, the derived vector predicates of

Def. 8 become robust with the application of the rules in Tab. 2.

Table 2. Rules for derived critical predicates robustness.

Derived |2D space |in 3D space Basic

Predicate Predicates

DP1 DRO DRO ver;.eq(very)

DP2 IR1+DR1 |IR1+DR1 seg.cnt(ver)

DP3 IR1+DR1 |IRI1+IR2+IR3+ | pat.int(seg)pat.cnt(ver)
DR2+DR3 seg.cnt(ver),seg.int(seg) |

5. Robustness of Topological Relations
Considering the reference set of topological relations RELy,
presented in Sec. 2, this section shows how the corresponding
evaluation can be implemented using the predicates of the vector
model presented in the Sec. 2. Moreover, according to Th. 1 and
Lm. 1 regarding the robustness of the vector predicates, the
robustness rules of topological relations evaluation is derived.

A complete treatment of all topological relations cannot be
performed here for space restriction. Therefore, this section
concentrates only on the in relation between a line and a
polyhedral surface.

Proposition 2 [In L/S]. Given a LineString | and a
PolyhedralSurface s and their discrete representation denoted as
In = DR()) and ps = DR(s), respectively, the relation Lin(s) =
(1L.PS() N s.PS() = LPS()) A (I(I) n I(5) # D) can be implemented
as follows:

449

3segen(Ipaty,....pat,eps((paty\v.. \Jpat,,).cnt(seg)) v
3s1...,SnEps.intSeg()(seg.in(sy. ..\ Usy) V seg.eq(sy...\Usp))) A
Vsegein(3pat,,...pat,eps((pat,v...upat,).cnt(seg)) v
3s5)...,SwEPs.bnd()(seg.in(syL...Usy) v seg.eq(s,J...Usy)) v
3sy...,SpEps.intSeg()(seg.in(syU... Usy) v seg.eq(s\\v...Us,))))

Theorem 2 [Robustness of In L/S]. The evaluation of the
topological relation in between a line and a polyhedral surface
presented in Prop. 2 is robust if the rules IR1+DR1 are applied in
a 2D space, or the rules IR1+IR2+IR3+DR2+DR3 are applied in a
3D space.

6. Conclusion and Future Work

The approach to robustness that has been proposed in this paper is
based on a general analysis method that can be applied also for
proving the robustness of other topological relations and in
different contexts. In particular, the interesting contexts are those
whioh reduce the amount of vertices that have to be created in
order to represent a given situation, The first relaxation that can be
performed regards the identity rules which can be substituted by
maximal distance rules (the distance between two points that have
to be snapped is smaller than a certain value D,,,). The second
relaxation regards the planarity of patches, which is a strong
requirement. In practice, the only admissible planar patches are
triangular, vertical or horizontal patches, or a few other very
particular cases. Thus, an almost planar patch can be introduced,
that is a patch such that the distance D of all its vertices from a
given plane is very small, for instance less than the internal
resolution. This will eliminate the need of triangulating all non
horizontal or vertical patches.

7. REFERENCES

[11 OGC. OpenGIS Implementation Standard for Geographic
Information — Simple Feature Access — Part 1: Common
Architecture, version 1.2.1, 2011.

[2] M. J. Egenhofer and R. Franzosa. Point-set Topological
Spatial Relations. Int. Journal of GIS, 5(2):161-174, 1991.

[3] E.Clementini, P. Di Felice, and P. van Oosterom. A Small
Set of Formal Topological Relationships Suitable for End-
User Interaction. In Proceedings of 3rd Int. Symp. on
Advances in Spatial Databases, pages. 277-295, 1993.

[4] J. Hobby. Practical segment intersection with finite precision
output. Comp. Geometry Th. and App., 13:199-214, 1999.

[5]1 Randell, D. A, Cui, Z. and Cohn, A. G. A spatial logic based
on regions and connection. In: Proc. 3rd Int. Conf. on
Knowledge Representation and Reasoning, Morgan
Kaufmann, San Mateo, pages 165-176, 1992.

{6] Thompson, R. and van Oosterom, P. Interchange of Spatial
Data-Inhibiting Factors, Agile 2006, Hungary. 2006.

[71 Rodriguez, M.A., Brisaboa, N., Meza, J., and Luaces, M.R.
Measuring consistency with respect to topological
dependency constraints. In Proceedings of the 18th ACM
SIGSPATIAL Inter. Conf. on Advances in Geographic
Information Systems (GIS '10), pages 182-191, 2010.

(8] Pelagatti, G., Negri, M., Belussi, A., and Migliorini, S. From
the conceptual design of spatial constraints to their
implementation in real systems. In Proceedings of the 17th
ACM SIGSPATIAL Inter. Conf. on Advances in Geographic
Information Systems (GIS '09), pages 448-451, 2009.

