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ABSTRACT 

 

In this paper, we propose a method for estimation of multiple ground planes 

using a stationary monocular camera. To estimate multiple ground planes, we 

perform three major steps. First, to estimate the number of ground planes, we 

create a histogram of votes with vanishing points and perform mean-shift 

clustering on this histogram. Second, to recover the active regions of multiple 

ground planes, we perform back-projection with the votes from the first step 

to extract trajectories which support each ground plane. We then estimate the 

active regions of each ground planes with these supporting trajectories. 

Finally, we efficiently normalize the relative depths of multiple ground 

planes with the speed of moving objects in the ground planes. In the 

experiments, we demonstrate that our method successfully estimates multiple 

ground planes and their relative depths. 
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1 INTRODUCTION 

1.1 Motivation 

 Recovering 3D structure of a scene from a video sequence is a challenging 

problem in computer vision. Knowing the 3D structure of a scene is critical 

in various applications, such as surveillance, behavior analysis, and object 

detection. 

The first step understanding the 3D structure of a scene is to find the ground 

planes of an image. Using the ground planes, we can estimate 3D structure of 

an object placed on the ground plane. For this reason, various approaches 

have been proposed to infer ground planes in a scene and use them to 

understand 3D structure of the scene. 

 

Figure 1 : Example of a scene with multiple ground planes. To estimate the 

multiple ground planes, we have to know the number of ground planes, relative 

depth information, and their active regions as illustrated in (b). 
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1.2 Related work 

Traditionally, multiple view geometry techniques [6] such as stereo vision 

or structure from motion have been used for ground plane estimation. 3D 

depth information and scene structures can be estimated for simple scenes 

with traditional methods, but not for complex scenes. Especially, the 

traditional methods are not enough to be applied to a scene with multiple 

ground planes. To solve this multiple ground plane problem, Hadsell et.al. [5] 

proposed a fitting method, which divides stereo points cloud into dominant 

ground plane and obstacle clouds. Lian et.al. [10] presented adaptive 

homography construction method for estimation of multiple ground planes. 

However, both methods utilize 3D information from multiple cameras, and 

therefore cannot be applied to 2D image from a monocular camera. 

Recently, various researches have been conducted. Generally, the methods 

either use a single image or a video sequence from a monocular camera. With 

single image, the authors in [9, 3, 4] understand 3D scene by extracting 

vanishing points from edges and corners in the image.  Their method 

assumes that the scene have strong edges and corners which can be easily 

found by edge detection algorithms. Therefore this assumption is not valid in 

outdoor scenes which obscure corner points exist. Saxena et.al. [12] built a 

3D model that segments an image into many small planar surfaces to estimate 

3D structure in outdoor scene. This method cannot obtain accurate depth 

information since it estimates depth from appearance features. 
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On the other hand, in [1, 7, 8, 11], 3D scene structure is estimated with 

video sequence. Breitenstein et.al. [1] proposed 3D scene learning method by 

assuming that the depth is inversely proportional to the detection window 

size. However, this approach cannot exactly infer the ground plane since the 

estimated depth is inaccurate. The authors in [7, 8] used vanishing points 

from the pedestrian tracking results to estimate camera matrix and structure 

of the scene. These auto-calibration methods are easy to lose robustness when 

tracking results are incorrect. Rother et.al. [11] proposed a simple method 

that learns horizontal line from human tracking results. The above methods 

work well in the case of the single ground plane, however, not in the case of 

the multiple ground planes as shown in Figure 1. 

 

1.3 Overview 

In this paper, we propose a method to estimate multiple ground planes with 

a video sequence from a monocular camera. Previous methods are restricted 

to a scene with single ground plane and do not consider the active region of 

the ground plane. However, to estimate multiple ground planes, we perform 

three major steps.  

First, we figure out the number of ground planes in the scene automatically. 

To estimate multiple horizons, we create a histogram of votes for horizons 

with vanishing points obtained by tracking results. Then, with this histogram, 

we estimate multiple horizons using mean-shift clustering. Second, we 

recover the active regions corresponding to each ground plane. We conduct 
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back-projection on the histogram of votes, and extract the trajectories 

supporting each ground planes. The active regions of multiple ground planes 

are inferred with these trajectories. Finally, we normalize the relative depths 

of multiple ground planes. Since we obtain the relative depths separately, we 

need to combine the relative depths to understand overall depth information 

in the scene. We normalize the depths with the speed of the moving objects 

on the ground planes. The effectiveness of our method is validated through 

experiments on several video sequences containing multiple ground planes. 

 



 

 ８

2 PROPOSED METHOD 

 

Figure 2 : The overall scheme 

 

The overall scheme of the proposed method is shown in Figure 2. The 

contributions of this paper are denoted by shaded blocks. In our work, we 

assume that the height of a moving object in a video is constant and the 

camera is installed parallel to the horizon. Our method is based on vanishing 

points from moving objects as in [11], but our method is not restricted to a 

single ground plane. The method consists of three steps.  

The first step is to find the multiple horizons corresponding to the ground 

planes. We build a histogram of votes and estimate multiple horizons within 

the scene.  The relative depth information in the scene can be obtained using 

these horizons (detailed in Sec 2.1). The second step is to recover the regions 

of each ground plane in the scene. We determine the ground plane regions on 

the image plane using back-projection approach. In this step, the trajectories 

of moving objects on the ground plane are used to infer the regions for each 
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ground plane (detailed in Sec 2.2). The final step is to normalize the depth 

information from the estimated planes (detailed in Sec 2.3). 

 

2.1 Estimation of Multiple Horizons 

As the first step to understand a scene with multiple ground plane, we 

estimate the multiple horizons from vanishing points of tracking results. 

These horizons let us know the relative depth in their corresponding planes.  

To robustly estimate horizons regardless of the number of planes and with the 

inaccurate tracking results, we use voting-based method and mean-shift 

clustering with extracted vanishing points. 

 

 

Figure 3 : Example of extracting vanishing points from trajectory and 

estimated horizon. The red cross maker means vanishing point and the green 

line means horizon. 
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2.1.1  Vanishing Points Extraction 

We use the vanishing point extraction method based on the work of Rother 

et. al. [11].  We assume that the height of object is constant regardless of the 

object's position, and top center point and bottom center point of bounding 

box represents the pedestrian's head position and foot position respectively. 

We denote p , 
 , p , 

  as the head position and foot position in i-th frame of 

k-th trajectory, and t , : 	 as the trajectory of index k from i-th frame to j-th 

frame. As shown in Figure 3, for the same person in different frame i and j, 

the vanishing point p 
 , , 

 means the intersection of two straight lines 

connecting two head positions p , 
  and p , 

 
 and two foot positions p , 

  

and p , 
 

 respectively. To reduce the influence of noise generated from 

inaccurate tracking result due to occlusion or shadows, a sufficiently large 

number of vanishing points are needed. To extract sufficient vanishing points 

from a moving trajectory, we sample trajectories set t , :  from k-th 

trajectory with randomly selected i and j (i ≠ j). The sampling parameter 

η set the number of samples to 
  

 
, where N  is total frames of k-th 

trajectory. This constructs the vanishing points set P (p 
 , , 

 ∈ P), and we 

estimate the horizon lines of the scene as described in the next section. 
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Figure 4 : Example of building voting histogram and estimating multiple 

horizons. The red cross maker means vanishing point and the blue line means 

horizon. 

 

2.1.2  Multiple Horizon Estimation 

In this step, we use a voting-based method to infer multiple horizons. With 

vanishing points in Sec 2.1.1, we transform vanishing points into voting 

space and build histogram v(y) as  
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v(y) =   (  

  ∈ 

,  ), 

 (p , y) = 	  
1	
0

	
  	|  ( ) −  | < 	 

  ℎ      
, 

where p (y) is the y-coordinate position of a vanishing point p , τ is the 

voting histogram bin size. This histogram represents how the vanishing 

points are distributed along the y-axis. We use this histogram to estimate the 

multiple horizons.  After building the histogram on the voting space, we 

perform mean-shift clustering [2] to find local maxima from the histogram. 

Then, each local maxima are regarded as positions of horizons. For the mean-

shift kernel, we use a Gaussian kernel to reduce the influence of noise in the 

histogram due to inaccurate vanishing point estimates. The shifted mean 

m(y) and kernel function K are given by  

m(y) = 	
∑  (  −  )    ∈ ( )

∑  (  −  )  ∈ ( )
, 

K(y ,  ) = exp  −
 |  −  | 

 

 
 , 

where N(y) means the neighbors of y and the Gaussian parameter c is 

kernel window size. We conduct mean-shift clustering iteratively and find 

multiple local maxima of the histogram. An example of estimated positions 

of multiple horizons is illustrated in Figure 4. 
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2.2 Ground Plane Region Estimation 

The estimated horizons in Sec 2.1, however, do not consider the actual 

scene structure and only infer coarse ground planes covering the whole scene. 

For this reason, the regions of inferred ground planes should be recovered as 

described in Figure 5. With sufficiently large number of object trajectories, 

we can infer the ground plane regions. For ground plane region estimation, 

we first assign trajectories on each horizon with respect to their positions, and 

then we recover active region of ground plane by voting method using those 

trajectories. 

 

2.2.1  Back Projection 

    The region we would like to know in the ground plane is the region 

where the objects are actually moving on. However, since we use the 

trajectory information to recover the ground plane regions and some 

trajectories might have noises, we need to discard improper trajectories 

which are not accurate for describing the ground plane. The back projection 

scheme is proposed to extract the trajectories from vanishing points on the 

horizon. In this back-projection process, we define function g as below and 

find trajectory set T  which is a set of trajectories related to the n-th horizon. 

The function g is  

T =    , :      
 , , 

,    = 1, ∀p 
 , , 

∈ P}, 

g p 
 , , 

,    = 	  
1
0
		
  	    

( , , )( ) −    <  

  ℎ      
, 
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where p 
 , , ( ) is the y-coordinate position of vanishing point p 

 , , 
	 and δ 

is the threshold for determining membership. Examples of set T  are shown 

in Figure 5 (a) and (b). We estimate ground plane regions with these 

trajectories as described in the next section. 

 

 

 

Figure 5 : Back-projected trajectories are shown in (a) and (b). The active 

regions of ground planes with relative depth are shown in (c) and (d). 

 

2.2.2  Active Region Recovering 

With the obtained trajectory set T , we use a simple method for estimating 

actual ground planes. We first divide the image plane into image cells of size 
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m ∗ 	m pixels. For the n-th ground plane, the active region voting map M  

is defined as  

M [ ,  ] = 	  ℎ , ( ),

 ∈  

 

h , ( ) = 	  
1
0
		
  	 	      	 ℎ   ℎ	     	    	( ,  )

  ℎ      
, 

where M [i, j] means the (i, j)-element of M . Image cells whose votes are 

larger than a predefined threshold (γ) are defined as active region. Example 

of the recovered active region of ground planes with relative depth is shown 

in Figure 5 (c) and (d). In this way, we find areas that represent each multiple 

ground plane. 

 

Figure 6 : Example of relative depth normalization. The depth interval    and 

   are estimated by the trajectory segments   
   and   

   from the boundary 

line     to ground planes    and   . 
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2.3 Relative Depth Normalization 

In Sec 2.1 and 2.2, multiple ground planes have been estimated in a 

coarse manner. However, we cannot compare the depth of objects in different 

planes since we only know the relative depth of each plane. To understand 

the whole 3D scene, it is necessary to normalize the relative depth scales of 

estimated ground planes. We need to find the same depth interval in each 

plane to normalize the depth scale of ground planes. We first assume that the 

average speed of moving objects in the ground planes are equal to each other. 

For the plane S  and S , we find the trajectory set {t }   ,..., 	 that passes 

the boundary l   of the planes. To find the same depth interval, we calculate 

the average depth distance d  in n-th plane using  

d =
1

 
        

   ,

 

   

 

where t 
   means trajectory segments from the boundary to the plane 

S  in unit frame duration, and the function      returns the depth distance 

of the trajectory. Using the distances d  and d , which mean the same depth 

interval in ground plane S  and S , we can normalize the relative depth of 

ground planes. The depth interval and normalized ground planes are 

illustrated in Figure 6. For the case of more than two ground planes, this 

normalization process is repeated. 
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3 EXPERIMENTAL RESULTS 

 

 For the experiments of our proposed method, we have set the following 

parameters. The trajectory sampling rate η  was set to 30, the voting 

histogram bin size τ was set to 10, and the mean-shift kernel window size c 

was set to 10. The back projection range δ	was set to 20, the active region 

voting threshold γ was set to 5, and the active region image cell size m was 

set to 30. 

We performed our experiments with three video sequences. Since the 

appropriate dataset to evaluate our method does not exist, we took the video 

sequences of multiple ground plane scenes with a monocular camera. The 

SNU301 is an indoor scene and has two ground planes of a floor surface and 

a stairway surface.  The YJC is an outdoor scene and has two ground planes 

of a floor surface and an inclined surface. The DDHS is an outdoor scene and 

has tree ground planes of a floor surface, a lower slopes, and a high slopes. 

The scenes of video sequences YJC and DDHS do not have strong edges or 

corners, so the edge detection based methods [9, 3, 4] cannot be applied to 

the scenes. Any tracking methods can be applied to our algorithm. The 

numbers of tracked objects are 246 (in 8 min) in SNU301, 164 (in 13min) in 

YJC, and 905 (in 22 min) in DDHS. 

For quantitative evaluation of our method, we computed the accuracy of 

ground plane active regions and mean error of estimated relative depth in the 

scenes. We denote the estimated active region as R	 = 	R 	+ 	R , where R  
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means correctly estimated region, and R  means the falsely estimated region 

and the ground truth active region as   . The ground truth region was 

annotated by human hand as shown in Figure 9. Then, we calculated the 

precision A  and recall A  of the ground plane active region as A 	=

	
    (  )

    (  )
(%)	and A 	=

    (  )

    ( )
(%). For the ground truth of relative depth, 

we denoted 10 points in the actual scene with same depth interval and 

calculated the relative depth interval d  as shown in Figure 7. To compute 

the error of relative depths, we assumed d  as criteria interval, and defined 

the mean error of relative depth as m(e ) 	=
 

   
	 (in this experiments, 

N=9). 

 

Figure 7 : The example of depth intervals for evaluation of relative depth error. 

The red-cross makers are the ground truth points with same depth interval and 

di means estimated depth interval.    and    are relative depths in the floor 

surface and    and    lie in the stairway surface. 
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The quantitative results are shown on Table 1, and the qualitative results 

are shown in Figure 9. To represent estimated ground planes, we drew the 

grids toward the horizon with same relative depth interval and tinted the 

active regions of multiple ground planes as shown in Figure 9. The results 

show that our algorithm exactly estimates the number of ground planes in the 

scenes. We evaluated the proposed method in two parts of active region 

estimation and relative depth estimation.  

 GP # A  A  m(e ) 

SNU301 
1 75% 67% 

0.28 
2 78% 80% 

YJC 
1 69% 73% 

0.32 
2 61% 67% 

DDHS 

1 79% 84% 

0.27 2 93% 48% 

3 50% 70% 

Table 1 : Accuracy of the estimated ground plane(GP) active region 

(precision : AP , recall : AR) and mean error of the estimated relative depths. 
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Figure 8 : Estimated active regions of ground plane #1 of DDHS. The handrails 

regions are not estimated as active region because objects rarely pass through 

this regions. 

As shown in Figure 9, the estimated active regions are well separated in 

the scenes. Since we use back-projection approach to estimate the active 

regions of multiple ground planes, the regions that objects rarely pass through 

are not detected.  

The example of this is the region of stairway handrail in Figure 8. As shown 

in Table 1, our algorithm performs well in the experiments. SNU301 dataset 

has accurate tracking results and less variation of tracking bounding box due 

to influence of shadows compared to the other datasets. Therefore the 

extracted vanishing points are accurate and the results of estimate active 

regions are accurate. But ground plane #2 of YJC and ground plane #3 of 
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DDHS have relatively low precision values. These two ground planes are 

floor surface and closer to the camera than other ground planes. The variation 

of bounding boxes of tracked objects is large in the area close to the camera. 

Therefore the vanishing points in this area are inaccurately extracted, so these 

regions are not detected. But as shown in Figure 9 (g) and (l), a little farther 

parts of these regions are correctly detected as active region, therefore these 

estimated active regions still represent the ground planes well. The result of 

ground plane #2 of DDHS show that the precision value is high but the recall 

value is low. Since the number of trajectories pass through the ground plane 

#2 of DDHS is very large compared to the number of trajectories of other 

ground planes, the estimated active regions is likely to invade the area of the 

other planes. 

The proposed method robustly estimates relative depths as shown in Table 

1. This means our algorithm can accurately estimate the position of the 

multiple horizons and normalize the relative depths of the multiple ground 

planes. With our normalized relative depths, we can robustly infer the 3D 

depth information of multiple ground planes as shown in Figure 9. 
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 ２３

 

Figure 9 : Experimental results of estimated ground planes(GPs) . The first row 

is the result of SNU301 dataset, the second row is the result of YJC dataset, and 

the third row is the result of DDHS dataset. 
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4 CONCLUSION 

 

We presented a method to estimate multiple ground planes with a video 

sequence from a monocular camera. Traditional methods for estimating 

ground plane are restricted to a scene with single ground plane. We extended 

the ideas of the previous work to multiple ground planes through a method 

consisted of three steps. First, to know the number of ground planes in the 

scene automatically, we used voting histogram of horizon candidates with 

vanishing points obtained by tracking results and estimated multiple horizons 

using mean-shift clustering. Second, the active regions corresponding to 

multiple ground planes are recovered through the back-projection algorithm 

with the trajectories of moving objects. Finally, to normalize the relative 

depths of multiple ground planes, To normalize the relative depths, we took 

advantage of the idea that the average speeds of moving objects in the ground 

planes should be equal to each other. The proposed method was demonstrated 

through experiments on three video sequences including multiple ground 

plane. The experimental results showed that the proposed method performs 

well both quantitatively and qualitatively. 
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초록 

 본 학위 논문에서는 고정된 단일 카메라로부터 다중 지평면을 

추정하기 위한 방법을 제안한다. 다중 지평면을 추정하는 방법은 크게 세 

가지 단계로 구성되어 있다. 첫째로, 지평면의 수를 추정하기 위해 

소실점을 이용하여 voting histogram 을 생성하고 이 histogram 에 

mean-shift clustering 방식을 적용한다. 둘째로, 다중 지평면의 실제 

영역을 복원해내기 위하여 back-projection 방식을 voting histogram 에 

적용하여 각각의 지평면을 지지하는 물체의 이동 궤적을 추출해낸다. 

이러한 지지 궤적들을 이용하여 영역 voting 방식으로 실제 영역을 

복원한다. 마지막으로 우리는 다중 지평면의 상대 깊이 정보를 

표준화하기 위한 방법을 제안한다. 실험으로 본 방법이 다중 지평면 

상황에 대하여 성공적으로 실제 지평면 영역들을 분리하고 깊이 정보를 

추정하는 것을 확인하였다. 

 

 

주요어 :  3D 장면 이해, 다중 지평면 추정, 단일 카메라 
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