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ABSTRACT

In this paper, we propose a method for estimation of multiple ground planes
using a stationary monocular camera. To estimate multiple ground planes, we
perform three major steps. First, to estimate the number of ground planes, we
create a histogram of votes with vanishing points and perform mean-shift
clustering on this histogram. Second, to recover the active regions of multiple
ground planes, we perform back-projection with the votes from the first step
to extract trajectories which support each ground plane. We then estimate the
active regions of each ground planes with these supporting trajectories.
Finally, we efficiently normalize the relative depths of multiple ground
planes with the speed of moving objects in the ground planes. In the
experiments, we demonstrate that our method successfully estimates multiple

ground planes and their relative depths.

Keyword : 3D Scene Understanding, Multiple Ground Plane
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1 INTRODUCTION

1.1 Motivation

Recovering 3D structure of a scene from a video sequence is a challenging
problem in computer vision. Knowing the 3D structure of a scene is critical
in various applications, such as surveillance, behavior analysis, and object
detection.

The first step understanding the 3D structure of a scene is to find the ground
planes of an image. Using the ground planes, we can estimate 3D structure of
an object placed on the ground plane. For this reason, various approaches
have been proposed to infer ground planes in a scene and use them to

understand 3D structure of the scene.

Figure 1 : Example of a scene with multiple ground planes. To estimate the
multiple ground planes, we have to know the number of ground planes, relative

depth information, and their active regions as illustrated in (b).
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1.2 Related work

Traditionally, multiple view geometry techniques [6] such as stereo vision
or structure from motion have been used for ground plane estimation. 3D
depth information and scene structures can be estimated for simple scenes
with traditional methods, but not for complex scenes. Especially, the
traditional methods are not enough to be applied to a scene with multiple
ground planes. To solve this multiple ground plane problem, Hadsell et.al. [5]
proposed a fitting method, which divides stereo points cloud into dominant
ground plane and obstacle clouds. Lian et.al. [10] presented adaptive
homography construction method for estimation of multiple ground planes.
However, both methods utilize 3D information from multiple cameras, and
therefore cannot be applied to 2D image from a monocular camera.

Recently, various researches have been conducted. Generally, the methods
either use a single image or a video sequence from a monocular camera. With
single image, the authors in [9, 3, 4] understand 3D scene by extracting
vanishing points from edges and corners in the image. Their method
assumes that the scene have strong edges and corners which can be easily
found by edge detection algorithms. Therefore this assumption is not valid in
outdoor scenes which obscure corner points exist. Saxena et.al. [12] built a
3D model that segments an image into many small planar surfaces to estimate
3D structure in outdoor scene. This method cannot obtain accurate depth

information since it estimates depth from appearance features.



On the other hand, in [1, 7, 8, 11], 3D scene structure is estimated with
video sequence. Breitenstein et.al. [1] proposed 3D scene learning method by
assuming that the depth is inversely proportional to the detection window
size. However, this approach cannot exactly infer the ground plane since the
estimated depth is inaccurate. The authors in [7, 8] used vanishing points
from the pedestrian tracking results to estimate camera matrix and structure
of the scene. These auto-calibration methods are easy to lose robustness when
tracking results are incorrect. Rother et.al. [11] proposed a simple method
that learns horizontal line from human tracking results. The above methods
work well in the case of the single ground plane, however, not in the case of

the multiple ground planes as shown in Figure 1.

1.3 Overview

In this paper, we propose a method to estimate multiple ground planes with
a video sequence from a monocular camera. Previous methods are restricted
to a scene with single ground plane and do not consider the active region of
the ground plane. However, to estimate multiple ground planes, we perform
three major steps.

First, we figure out the number of ground planes in the scene automatically.
To estimate multiple horizons, we create a histogram of votes for horizons
with vanishing points obtained by tracking results. Then, with this histogram,
we estimate multiple horizons using mean-shift clustering. Second, we

recover the active regions corresponding to each ground plane. We conduct



back-projection on the histogram of votes, and extract the trajectories
supporting each ground planes. The active regions of multiple ground planes
are inferred with these trajectories. Finally, we normalize the relative depths
of multiple ground planes. Since we obtain the relative depths separately, we
need to combine the relative depths to understand overall depth information
in the scene. We normalize the depths with the speed of the moving objects
on the ground planes. The effectiveness of our method is validated through

experiments on several video sequences containing multiple ground planes.



2 PROPOSED METHOD
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Figure 2 : The overall scheme

The overall scheme of the proposed method is shown in Figure 2. The
contributions of this paper are denoted by shaded blocks. In our work, we
assume that the height of a moving object in a video is constant and the
camera is installed parallel to the horizon. Our method is based on vanishing
points from moving objects as in [11], but our method is not restricted to a
single ground plane. The method consists of three steps.

The first step is to find the multiple horizons corresponding to the ground
planes. We build a histogram of votes and estimate multiple horizons within
the scene. The relative depth information in the scene can be obtained using
these horizons (detailed in Sec 2.1). The second step is to recover the regions
of each ground plane in the scene. We determine the ground plane regions on
the image plane using back-projection approach. In this step, the trajectories

of moving objects on the ground plane are used to infer the regions for each



ground plane (detailed in Sec 2.2). The final step is to normalize the depth

information from the estimated planes (detailed in Sec 2.3).

2.1 Estimation of Multiple Horizons

As the first step to understand a scene with multiple ground plane, we
estimate the multiple horizons from vanishing points of tracking results.
These horizons let us know the relative depth in their corresponding planes.
To robustly estimate horizons regardless of the number of planes and with the
inaccurate tracking results, we use voting-based method and mean-shift

clustering with extracted vanishing points.

Horizon

Figure 3 : Example of extracting vanishing points from trajectory and
estimated horizon. The red cross maker means vanishing point and the green

line means horizon.
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2.1.1 Vanishing Points Extraction

We use the vanishing point extraction method based on the work of Rother
et. al. [11]. We assume that the height of object is constant regardless of the
object's position, and top center point and bottom center point of bounding
box represents the pedestrian's head position and foot position respectively.
We denote pit,k, p},,k as the head position and foot position in i-th frame of
k-th trajectory, and ty;; as the trajectory of index k from i-th frame to j-th
frame. As shown in Figure 3, for the same person in different frame i and j,

the vanishing point pllj’i’j means the intersection of two straight lines

connecting two head positions pi, and p{k and two foot positions pf

and pi,k respectively. To reduce the influence of noise generated from

inaccurate tracking result due to occlusion or shadows, a sufficiently large
number of vanishing points are needed. To extract sufficient vanishing points
from a moving trajectory, we sample trajectories set ty;; from k-th
trajectory with randomly selected 1 and j (i = j). The sampling parameter

N :
7 set the number of samples to 7“, where Nj is total frames of k-th

trajectory. This constructs the vanishing points set P (p’é’i’j € P), and we

estimate the horizon lines of the scene as described in the next section.

10 :_,"
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Figure 4 : Example of building voting histogram and estimating multiple
horizons. The red cross maker means vanishing point and the blue line means

horizon.

2.1.2 Multiple Horizon Estimation
In this step, we use a voting-based method to infer multiple horizons. With

vanishing points in Sec 2.1.1, we transform vanishing points into voting

space and build histogram v(y) as

11 _ "jﬂ .E ]_._” 2



vy) = ) fu.y),

py€EP

_ (Liflp,()-yl<
f(pyv,y) {0 otherwise

where p,(y) is the y-coordinate position of a vanishing point p,, T is the
voting histogram bin size. This histogram represents how the vanishing
points are distributed along the y-axis. We use this histogram to estimate the
multiple horizons. After building the histogram on the voting space, we
perform mean-shift clustering [2] to find local maxima from the histogram.
Then, each local maxima are regarded as positions of horizons. For the mean-
shift kernel, we use a Gaussian kernel to reduce the influence of noise in the
histogram due to inaccurate vanishing point estimates. The shifted mean

m(y) and kernel function K are given by

Yyeniy) K — Vi
Yyeney K@i =)’

2
K(y;, y) = exp (——“yi il )

m(y) =

c

where N(y) means the neighbors of y and the Gaussian parameter c is
kernel window size. We conduct mean-shift clustering iteratively and find
multiple local maxima of the histogram. An example of estimated positions

of multiple horizons is illustrated in Figure 4.
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2.2 Ground Plane Region Estimation

The estimated horizons in Sec 2.1, however, do not consider the actual
scene structure and only infer coarse ground planes covering the whole scene.
For this reason, the regions of inferred ground planes should be recovered as
described in Figure 5. With sufficiently large number of object trajectories,
we can infer the ground plane regions. For ground plane region estimation,
we first assign trajectories on each horizon with respect to their positions, and
then we recover active region of ground plane by voting method using those

trajectories.

2.2.1 Back Projection

The region we would like to know in the ground plane is the region
where the objects are actually moving on. However, since we use the
trajectory information to recover the ground plane regions and some
trajectories might have noises, we need to discard improper trajectories
which are not accurate for describing the ground plane. The back projection
scheme is proposed to extract the trajectories from vanishing points on the
horizon. In this back-projection process, we define function g as below and
find trajectory set T, which is a set of trajectories related to the n-th horizon.

The function g is

To = {treil9(py" 1) = 1,vpy™ € P},

g(py" 1) = {(1) i

pd () ~1,| <6
otherwise

13 2]



where p“"/(y) is the y-coordinate position of vanishing point p‘lf'i'j and §
is the threshold for determining membership. Examples of set T,, are shown
in Figure 5 (a) and (b). We estimate ground plane regions with these

trajectories as described in the next section.

Figure 5 : Back-projected trajectories are shown in (a) and (b). The active

regions of ground planes with relative depth are shown in (c¢) and (d).

2.2.2 Active Region Recovering

With the obtained trajectory set T,,, we use a simple method for estimating

actual ground planes. We first divide the image plane into image cells of size

T
 S—
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m * m pixels. For the n-th ground plane, the active region voting map M,

1s defined as

My[i,j] = z h (¢,

tETy
hi((£) = {1 if t passes thoughimage cell (i,j)
Y 0 otherwise ’

where M[i,j] means the (i,j)-element of M,. Image cells whose votes are
larger than a predefined threshold (y) are defined as active region. Example
of the recovered active region of ground planes with relative depth is shown
in Figure 5 (c) and (d). In this way, we find areas that represent each multiple

ground plane.

Figure 6 : Example of relative depth normalization. The depth interval d; and
d, are estimated by the trajectory segments til and t]s(Z from the boundary

line 1y, to ground planes S; and S,.
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2.3 Relative Depth Normalization

In Sec 2.1 and 2.2, multiple ground planes have been estimated in a
coarse manner. However, we cannot compare the depth of objects in different
planes since we only know the relative depth of each plane. To understand
the whole 3D scene, it is necessary to normalize the relative depth scales of
estimated ground planes. We need to find the same depth interval in each
plane to normalize the depth scale of ground planes. We first assume that the
average speed of moving objects in the ground planes are equal to each other.
For the plane S; and S;, we find the trajectory set {ty}x=1, x that passes

the boundary l;; of the planes. To find the same depth interval, we calculate

the average depth distance d, in n-th plane using

K
1 ] -
d, = E; dlst(t,f ),

where ti“ means trajectory segments from the boundary to the plane
S, in unit frame duration, and the function dist returns the depth distance
of the trajectory. Using the distances d; and d;j, which mean the same depth
interval in ground plane S; and S;, we can normalize the relative depth of

ground planes. The depth interval and normalized ground planes are
illustrated in Figure 6. For the case of more than two ground planes, this

normalization process is repeated.

16 2]



3 EXPERIMENTAL RESULTS

For the experiments of our proposed method, we have set the following
parameters. The trajectory sampling rate n was set to 30, the voting
histogram bin size T was set to 10, and the mean-shift kernel window size ¢
was set to 10. The back projection range 6 was set to 20, the active region
voting threshold y was set to 5, and the active region image cell size m was
set to 30.

We performed our experiments with three video sequences. Since the
appropriate dataset to evaluate our method does not exist, we took the video
sequences of multiple ground plane scenes with a monocular camera. The
SNU301 is an indoor scene and has two ground planes of a floor surface and
a stairway surface. The YJC is an outdoor scene and has two ground planes
of'a floor surface and an inclined surface. The DDHS is an outdoor scene and
has tree ground planes of a floor surface, a lower slopes, and a high slopes.
The scenes of video sequences YJC and DDHS do not have strong edges or
corners, so the edge detection based methods [9, 3, 4] cannot be applied to
the scenes. Any tracking methods can be applied to our algorithm. The
numbers of tracked objects are 246 (in 8 min) in SNU301, 164 (in 13min) in
YJC, and 905 (in 22 min) in DDHS.

For quantitative evaluation of our method, we computed the accuracy of
ground plane active regions and mean error of estimated relative depth in the

scenes. We denote the estimated active region as R = Ry + Rg, where Ry

17 ]



means correctly estimated region, and Ry means the falsely estimated region
and the ground truth active region as GT. The ground truth region was
annotated by human hand as shown in Figure 9. Then, we calculated the

precision Ap and recall Ag of the ground plane active region as Ap =

area (RT)
area(R)

area (RT)

area(GT) (0/) and AR =

(%). For the ground truth of relative depth,

we denoted 10 points in the actual scene with same depth interval and
calculated the relative depth interval d; as shown in Figure 7. To compute

the error of relative depths, we assumed d,; as criteria interval, and defined

the mean error of relative depth as m(eq) = N— (in this experiments,

N=9).

Figure 7 : The example of depth intervals for evaluation of relative depth error.
The red-cross makers are the ground truth points with same depth interval and
di means estimated depth interval. d; and d, are relative depths in the floor

surface and d3 and d4 lie in the stairway surface.
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The quantitative results are shown on Table 1, and the qualitative results

are shown in Figure 9. To represent estimated ground planes, we drew the

grids toward the horizon with same relative depth interval and tinted the

active regions of multiple ground planes as shown in Figure 9. The results

show that our algorithm exactly estimates the number of ground planes in the

scenes. We evaluated the proposed method in two parts of active region

estimation and relative depth estimation.

GP # Ap AR m(eq)
1 75% 67%

SNU301 0.28
2 78% 80%
1 69% 73%

YJC 0.32
2 61% 67%
1 79% 84%

DDHS 2 93% 48% 0.27
3 50% 70%

Table 1 : Accuracy of the estimated ground plane(GP) active region

(precision : AP, recall : AR) and mean error of the estimated relative depths.
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Figure 8 : Estimated active regions of ground plane #1 of DDHS. The handrails
regions are not estimated as active region because objects rarely pass through
this regions.

As shown in Figure 9, the estimated active regions are well separated in
the scenes. Since we use back-projection approach to estimate the active
regions of multiple ground planes, the regions that objects rarely pass through
are not detected.

The example of this is the region of stairway handrail in Figure 8. As shown
in Table 1, our algorithm performs well in the experiments. SNU301 dataset
has accurate tracking results and less variation of tracking bounding box due
to influence of shadows compared to the other datasets. Therefore the
extracted vanishing points are accurate and the results of estimate active

regions are accurate. But ground plane #2 of YJC and ground plane #3 of

o 4 A dishw
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DDHS have relatively low precision values. These two ground planes are
floor surface and closer to the camera than other ground planes. The variation
of bounding boxes of tracked objects is large in the area close to the camera.
Therefore the vanishing points in this area are inaccurately extracted, so these
regions are not detected. But as shown in Figure 9 (g) and (1), a little farther
parts of these regions are correctly detected as active region, therefore these
estimated active regions still represent the ground planes well. The result of
ground plane #2 of DDHS show that the precision value is high but the recall
value is low. Since the number of trajectories pass through the ground plane
#2 of DDHS is very large compared to the number of trajectories of other
ground planes, the estimated active regions is likely to invade the area of the
other planes.

The proposed method robustly estimates relative depths as shown in Table
1. This means our algorithm can accurately estimate the position of the
multiple horizons and normalize the relative depths of the multiple ground
planes. With our normalized relative depths, we can robustly infer the 3D

depth information of multiple ground planes as shown in Figure 9.
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(c) Estimated GP #2 (d) Ground Truth

(e) Original Image (f) Estimated GP #1
) Estimated GP #2 (h) Ground Truth
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Nl By

(k) Estimated GP #2

(m) Ground Truth

Figure 9 : Experimental results of estimated ground planes(GPs) . The first row
is the result of SNU301 dataset, the second row is the result of YJC dataset, and

the third row is the result of DDHS dataset.
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4 CONCLUSION

We presented a method to estimate multiple ground planes with a video
sequence from a monocular camera. Traditional methods for estimating
ground plane are restricted to a scene with single ground plane. We extended
the ideas of the previous work to multiple ground planes through a method
consisted of three steps. First, to know the number of ground planes in the
scene automatically, we used voting histogram of horizon candidates with
vanishing points obtained by tracking results and estimated multiple horizons
using mean-shift clustering. Second, the active regions corresponding to
multiple ground planes are recovered through the back-projection algorithm
with the trajectories of moving objects. Finally, to normalize the relative
depths of multiple ground planes, To normalize the relative depths, we took
advantage of the idea that the average speeds of moving objects in the ground
planes should be equal to each other. The proposed method was demonstrated
through experiments on three video sequences including multiple ground
plane. The experimental results showed that the proposed method performs

well both quantitatively and qualitatively.
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