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ABSTRACT
Spherical harmonic cross-correlation is a robust registration
algorithm that brings two point-clouds of the same scene into
coarse rotational alignment. The found rotation however
may not give the desired alignment, as misalignments can
occur if there is not enough overlap between point-clouds,
or if they contain a form of symmetry. We propose a verifi-
cation method whose purpose is to determine if registration
has failed for a priori unknown registration. The rotational
transformation between multiple clouds must satisfy inter-
nal consistency, namely multiple rotational transformations
are transitive. The rotation verification is performed using
triplets of images, which are cross-referenced with each other
to classify rotations individually. Testing is performed on a
dataset of a priori known registrations. It is found that when
the number of images or the percentage of correct rotations
is increased, the number of correct rotation classifications
improves. Even when tested with only four images and a
correct rotation percentage of 17%, the rotation verification
is still considered a viable method for classifying rotations.
Spherical harmonic cross-correlation is benefited by rotation
verification as it provides an additional approach for check-
ing whether found rotations are correct.

Categories and Subject Descriptors
I.4.3 [Image Processing and Computer Vision]: Regis-
tration

Keywords
3D Imaging, Registration, Point Cloud, Spherical Harmon-
ics, Rotation Verification

1. INTRODUCTION
Range imaging systems [2] typically image an object or

scene from a single pose, therefore, only part of the scene
is acquired. More of the scene is revealed by shifting the
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system and acquiring subsequent images. As these images
are three-dimensional (3D) in nature, they are expressed as
point-clouds. Registration is the process of aligning these
images in the same coordinate space, building a full 3D
representation. However, if there is no method of track-
ing how the imaging system or object has moved, then the
transformation between image captures is a priori unknown.
In this situation, the overlap between point-clouds is used
as the basis for performing registration. A variety of algo-
rithms exist that use overlap to perform registration, such
as iterative closest point (ICP), random sample consensus
or principal component analysis [10]. Spherical harmonic
cross-correlation (SHCC) [5] is an algorithm that achieves
coarse rotational alignment and is robust to noise. The as-
certained rotation, however, is not guaranteed to give the
desired alignment, as misalignments can occur if the overlap
is insufficient, or the data contains symmetry.

Two methods that can determine whether the SHCC align-
ment is correct is to threshold either the resulting error be-
tween the two sampled surfaces [6], or the maximum im-
pulse value from the Fourier phase correlation when per-
forming translational alignment. Their disadvantage is that
they must be performed separately from SHCC, whereas our
focus is to verify the calculated rotations using the rotations
themselves.

The transitive property of rotations, namely that two rota-
tions in sequence are the same as one complete rotation, can
be used to check the consistency of the SHCC registrations.
Thus if we have three images of an object, the three possible
image pairings each produce a rotation; each rotation must
be expressible as a combination of the other two, otherwise
it may be concluded that one or more of the rotations are
incorrect. We propose applying verification via transitivity
to multiple groupings of images from the same set to deter-
mine the incorrect rotational registrations without a priori
knowledge of the transformations between poses.

There appears to be a dearth of literature that applies
transitivity to point-cloud registration. For registering two-
dimensional medical images, only the transformations that
maps one image to another and vice versa are considered [3],
as this ensures that these transformations are consistent.
This approach is expanded on by Geng et al. [4], who it-
eratively find the registration of three manifolds using the
closest point projection to find correspondences, and are
improved by minimising the error in the transitive inverse.
Transformational transitivity has been utilised for a multi-
view extension to the iterative closest point algorithm [9],
identifying transformations that link non-adjacent images,



helping minimise the alignment error of motion averaging.
The work presented investigates whether the rotations found

from the SHCC can be verified as correct or incorrect by
testing for transitivity. This is performed using triplets of
images and analyses how the size of the image set and the
ability of the SHCC impacts the classification accuracy of
the verification.

2. REGISTRATION PRELIMINARIES
The acquired point-clouds are given in Cartesian coor-

dinates, in which the coordinate space is attached to the
imaging system, such that the z-axis is perpendicular to the
imaging sensor and points into the scene. SHCC attempts
to identify a rotation between two overlapping point-clouds
so that one point-cloud can be rotated into the coordinate
space of the other (or into world coordinates). This rota-
tion can be interchangeably referred to as the rotation that
aligns the two point-clouds, or as the rotation separating the
two poses of the imaging system. The rotational alignment
is then complemented by the translational alignment, fully
registering the two point-clouds.

2.1 Spherical Harmonic Cross-Correlation
The SHCC uses the surface normals of two overlapping

point-clouds to find an alignment rotation; these normals
are ascertainable when the relationship between points is
known, making SHCC applicable to alternative surface rep-
resentations, such as meshes. The normals are converted into
a set of spherical harmonic functions using associated Leg-
endre polynomials, allowing the correlation to be performed
in the frequency domain. Let P

m
l be the associated Legen-

dre polynomial of degree l with l ∈ 0, . . . , L, and of order m
with m ∈ −l, . . . , l, where L is the maximum spherical har-
monic degree. The spherical harmonics of a normal N[θ,φ],
are given by

Y
m
l (N) =


√

(2l+1)(l−m)!
4π(l+m)!

P
m
l (cosNθ)e

imNφ m ≥ 0,

(−1)
m
Y
|m|
l (N) m < 0,

(1)

where x is the complex conjugate of x. If the set of nN
normals from the first acquisition is labelled f , the spherical
harmonic representation of f is found as

f̂
m
l =

nN−1∑
j=0

Y
m
l (Nj), (2)

with the analogous operation applied to the normals g of the
second point-cloud to give ĝ. The Fourier transform of the
three-dimensional rotation correlation matrix, ĈR, between
f̂ and ĝ is given by

ĈR(m,n, k) =
L∑

l=max(|m|,|n|,|k|)

f̂
n
l ĝ

m
l d

l
mkd

l
kn, (3)

for m,n, k ∈ −L, . . . , L, where the function d [8] is

d
l
mn = 2

−l
min (l+n,l−m)∑
t=max (0,n−m)

(−1)
t

√
(l + n)!(l − n)!(l +m)!(l −m)!

(l + n− t)!(l −m− t)!(t+m− n)!t!
. (4)

The final step is to apply the inverse Fourier transform to
ĈR to obtain the correlation matrix, CR, with the greatest
impulse response of CR indicating the rotation that max-
imises the overlap between the two sets of normals. Taking
a, b and c as the indices of the greatest value in CR, the
Euler angles α, β and γ are found by

α = mod (sa+ π/2, 2π) , (5)

β = mod (sb+ π, 2π) , (6)

γ = mod (sc+ π/2, 2π) , (7)

where s = 2π/(2L + 1), the size of each rotational division.
Applying these angles to a ZY Z rotation matrix will gen-
erally bring the two point-clouds into the correct rotational
alignment.

2.2 Translational Alignment
Once the two overlapping point-clouds are in rotational

alignment, their translational alignment can be calculated
using a three-dimensional Fourier phase correlation. As the
rotation verification is performed without needing to know
the translational alignment, it is not described with detail
in this paper. Larkins et al. [8] provides an outline of the
mathematics that give translational alignment.

3. ROTATION VERIFICATION
The rotations that separate the poses of an imaging system

can be established as correct if they are consistent with each
other. A set of nA images produce

nR =
nA (nA − 1)

2
(8)

rotations that link these images together, where nA is a non-
negative integer.

If each image has a unique index value in the range of
0, . . . , nA − 1, then each rotation can be indexed using the
two images that it links, allowing each rotation to be stored
and accessed with ease. If two images are indexed a and
b, and the total number of images is n, then the rotational
index Ri is given as

Ri (a, b, n) = a

(
2n− a− 3

2

)
+ b− 1,

0 ≤ a < b < n.

(9)

The verification used here focuses on triplets of rotations,
as three rotations are the minimum needed to establish ro-
tational consistency. The number nT of triplets produced
from nA images is given by

nT =
nA (nA − 1) (nA − 2)

6
. (10)

Each triplet can be individually indexed via the three images
from which it is comprised; this index is found as

Ti =
j
3

+ 3j
2
(1− nA) + j(3n

2
A − 6nA + 2)

6

+Ri(k − j − 1, l − j − 1, nA − j − 1),

0 ≤ j < k < l < nA,

(11)

where j, k, and l are the indices of the three images. A
triplets index facilitates the storing and retrieval of its clas-
sification, but depending on the implementation design, may
not be necessary.
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Figure 1: Three poses, A, B and C, of an imaging system are
related to each other by the three rotations RAB , RBC and
RAC . If the rotations found from registration are correct,
then RAC is equivalent to RAB followed by RBC , as they
both rotate the imaging system from A to C.

3.1 Triplet Verification
Each triplet is classified individually using its three rota-

tions to be aligned if its rotations are consistent with each
other, otherwise it is misaligned. Three point-clouds, A, B
and C, and the three rotations, RAB , RAC and RBC , that
register point-cloud A to B, and so on, then the three rota-
tions can be said to be consistent if

RAC = RBCRAB . (12)

This relationship is illustrated in Figure 1. However, there
are two limitations that may result in an inconsistent triplet
by the above definition, even if the rotational alignment is
correct. The first is that if the rotations are represented
as rotation matrices, then the rotations can be expressed in
two ways, as a clockwise or counter-clockwise rotation about
an arbitrary axis; combined with their noncommutative na-
ture, the point-clouds must be labelled in a specific order for
RBCRAB to equal RAC , but as this order is unknown, there
is no guarantee that inconsistency is proof of misalignment.
The second is that rotations found via SHCC come from a
discrete set, resulting in quantisation error, thus RAC and
RBCRAB may not precisely agree.

To arrive at a better definition of consistency, let

RS = R
T
ACRBCRAB . (13)

and

θ = cos
−1

(
tr (RS)− 1

2

)
. (14)

If

|θ| ≤ ε (15)

for some small margin-of-error ε, then the triplet comprising
rotations RAB , RAC and RBC is consistent. If the triplet
is inconsistent then at least one of the three rotations is in-
correct; the converse is not necessarily true, as two or more
incorrect rotations may coincidently satisfy transitivity. A
consistent triplet is classified as aligned and an inconsistent
triplet is classified as misaligned. If the rotations of a triplet

align correctly, then the allowable error ε has an inverse re-
lationship with the maximum spherical harmonic degree L,
that is, as L increases, ε can be decreased, limiting false
positives.

3.2 Classifying Individual Rotations
Triplet verification classifies triplets as aligned or mis-

aligned. It remains to classify the individual rotations com-
prising a triplet. The classification of an individual rotation
can be inferred from the nA−2 triplets that it contributes to.
If all nA−2 triplets are classified as aligned, then it is highly
likely the rotation has been correctly deduced, however, if
the triplets are all misaligned, there is no guarantee that
the rotation is incorrect as the misaligned triplets may be a
result of other incorrect rotations. But as the rotation con-
tributes only to misaligned triplets, it cannot be determined
correct, thus is treated as incorrect. For all other situations
a threshold is specified with the rotation being deemed cor-
rect if the number of aligned triplets it contributes to meets
the threshold. Three thresholds of differing strictness are
investigated herein, namely,

τa = 1, (16)

τb =

⌈
nA − 1

2

⌉
, (17)

τc = nA − 2. (18)

3.3 Verification Worst Case
Triplet verification fails when every triplet contains one or

more incorrect rotations. If a rotation is incorrect, then all
nA−2 triplets that it contributes to are misaligned. The min-
imum number of incorrect rotations that render all triplets
misaligned is

q =
⌊
(nA − 1)

2
/4
⌋
. (19)

The total number of q rotation combinations is given by the
binomial coefficient, (

nR
q

)
. (20)

Fortunately, complete misalignment only occurs for a subset
of these combinations, of size(

2h− 1

h

)
, (21)

where h = b(nA + 1)/2c. An example of the incorrect rota-
tion combinations for nA = 6 are shown in Figure 2, in which
the ten possible arrangements of the six incorrect rotations
cause all triplets to be misaligned.

4. METHODOLOGY
Triplet verification is tested by a dataset that has been

formed from 120 separate poses about the Dragon model
1
,

shown in Figure 3. Using uniform deviates u, v ∈ [0, 1), each
pose, A, given in spherical coordinates, is randomly placed
about the model by

Aθ,φ = (2πu, cos
−1

(2v − 1)), (22)

1
This model comes from the Stanford 3D scanning reposi-

tory (http://graphics.stanford.edu/data/3Dscanrep/).



Figure 2: In the case of six images, fifteen rotations are
formed. The shown combinations are three of the ten the
worst case scenarios that occur when six rotation (solid lines)
are incorrect. For six images, six incorrect rotations are
the minimum required to cause complete triplet verification
failure.

Figure 3: The Dragon model from the Stanford 3D scanning
repository that is used for testing. The model is shown in its
initial state before being broken into individual point-clouds.

with its optical axis directed towards the model. This view-
ing orientation is then further varied by randomly rotating
it about the optical axis. Using Blender

2
, the surface of the

model visible to each imaging pose produces a point-cloud,
as well as generating a normal for each point.

The SHCC is applied to every image pair, creating 7 140
rotations. As the acquiring pose of all images is known a
prior, each rotation is deemed correct if the image is rotated
to within 10

◦
of its known pose, providing the ground truth

classification; 10
◦

is chosen as ICP, a fine registration al-
gorithm, can register angular differences up to this size [7].
A maximum spherical harmonic degree of L = 20 is used,
therefore, a margin-of-error of ε = 10

◦
is chosen to accom-

modate the combined quantisation error from two rotations.
There are 1 182 correctly determined rotations and 5 958 in-
correct rotations. The low number of correct rotations is
due to many pairs of images having low overlap, as shown
in Figure 4. Triplet verification is then used to classify each
rotation that connects a set of images together. Triplet ver-
ification classification is then compared to the ground truth
to establish the number of each possible outcome, which are
given in Table 1. The true-positive fraction (TPF) and false-
positive fraction (FPF) are calculated as

TPF = TP/(TP + FN), (23)

FPF = FP/(FP + TN), (24)

where TP is the number of true positives, TN the number

2
Blender is an open-source 3D graphics editor

(http://www.blender.org/). Version 2.62.0 r44136 is
used here.
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Figure 4: The percentage of point-cloud pairs that have a
certain overlap percentage.

Verification Ground Truth Classification
Classification Aligned Misaligned

Aligned True Positive False Positive
Misaligned False Negative True Negative

Table 1: The four possible outcomes when verification clas-
sification is compared with the ground truth classification.

of true negatives, FP the number of false positives and FN
the number of false negatives. Three factors that impact
the verification classification are investigated in this paper;
the number of images registered, the percentage of correct
rotations, and the classifying threshold τ . The number of
possible image combinations is

(
120
nA

)
, making it computa-

tionally infeasible to test every combination, therefore im-
ages are randomly selected and tested 1 000 times. Because
rotations are based on the randomly selected images, testing
with a specified percentage of correct rotations is difficult as
this percentage is based on the selected images. The correct
rotation percentage (CRP) is calculated for each test as

CRP =
TP + FN

nR
. (25)

CRP can be increased by randomly selecting an initial pose,
which forms a test set containing only the poses within a
given angle of the initial pose. To ensure a high variability
in the possible combinations, the initial pose is randomly
selected 20 times, and if the test set contains fewer than 15
images, it is discarded and a new initial pose is selected. As
the testing is performed over a total of 20 000 tests, the mean
and standard deviation of CRP are given.

Matthew’s correlation coefficient (MCC) [1],

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

(26)
is used to provide a single measure of each testing scenario.
It returns a measure between the verification and ground
truth, where a value of +1 is perfect, 0 is no better than
random and −1 is total disagreement. The four counts used
by MCC are taken from all 20 000 tests, to produce a single
value. It is not possible to produce an uncertainty for the
MCC as individual tests may produce a division by zero;
this occurs when all the verification or ground truth classi-
fications are the same.

Testing is performed using nA = 4, . . . , 10, with the MCC



value calculated for each threshold. The three angles used
to adjust the CRP are given in Table 2. Using all 120 images
is also tested as it produces a single fixed result.

Angle (deg) Approx. CRP
30
◦

70%
70
◦

34%
No Restriction 17%

Table 2: The angles used to adjust the correct rotation per-
centage (CRP).

5. RESULTS
The main area of investigation is the accuracy of triplet

verification. Efficiency is discussed in Section 6.

5.1 Accuracy
The accuracy of the verification classification is based on a

variety of factors. To gauge how this accuracy changes, three
factors are varied; the number of images, the percentage of
correct rotations, and the classifying threshold. Table 3 lists
the MCC values for each tested scenario. The factor that
has the greatest influence on the verification classification
is the CRP value. As the CRP value increases so does the
accuracy of the verification classification. The classification
ability of the three tested thresholds is closely linked to the
number of used images. When using four images the thresh-
olds perform almost identically, but as the number of images
increases, only the MCC value of τb increases, with the MCC
values of τa and τc typically decreasing. Of the three tested
thresholds, τb provides the best classification. When all 120
images are used, the CRP cannot be increased, making the
30
◦

and 70
◦

inapplicable. The MCC value for τc is invalid
when all images are used as TP + FP = 0.

The results for 6 and 10 images are shown with greater
detail using receiver operating characteristic curves in Fig-
ure 5, where the classification threshold is varied between
0 and nA − 1. These two graphs confirm the MCC values
by showing that as the CRP increases, the area under the
curve also has a significant increase. They also reveal how
the thresholds behave, where as the number of images in-
creases, τa and τc are pushed to the ends of the curves, with

No. Matthew’s Correlation Coefficient
of 30

◦
70
◦

All Images
Images τa τb τc τa τb τc τa τb τc

4 .44 .40 .40 .26 .22 .22 .16 .16 .16
5 .43 .49 .34 .29 .31 .21 .16 .19 .16
6 .39 .50 .32 .30 .30 .18 .16 .20 .14
7 .31 .50 .29 .31 .37 .16 .15 .23 .12
8 .30 .57 .28 .29 .33 .13 .15 .23 .11
9 .29 .60 .24 .26 .38 .12 .15 .25 .09
10 .23 .62 .25 .28 .37 .11 .14 .25 .08
120 N/A N/A .02 .33 –

Table 3: The Matthew’s correlation coefficient for all tested
scenarios (rounded to 2 decimal places), where each scenario
is determined by the number of images, the angle used to
adjust the correct rotation percentage (30

◦
, 70

◦
and no re-

striction) and the classifying threshold (τa, τb or τc).

τb trending towards the centre of the curve, especially for
large CRP.

6. DISCUSSION
Increasing the CRP is shown to also increase the classifica-

tion ability of rotation verification, however, the method em-
ployed to vary the CRP in the performed tests is not directly
applicable in practice. Improving the CRP of the SHCC is
possible by either modifying the acquisition process to in-
crease overlap, which is not always suitable, or by enhancing
the cross-correlation algorithm to find a more ideal rotation.
Enhancing the cross-correlation is not investigated as it is
outside the scope of this paper.

Verifying that rotations conform is not limited to triplets
of rotations, as the idea outlined in Section 3.1 for estab-
lishing consistency can be extended to four or more rota-
tions. Depending on how the data have been acquired, us-
ing triplets for verification may not be appropriate, as there
may not be a set of three images which overlap. Triplet
verification was chosen as more triplets are formed from a
set of images than any other group size, providing a greater
level of insight into how each rotation should be classified as
more cross-referencing can occur. Increasing the number of
images will further bolster the amount of cross-referencing.

The choice of classification threshold has a significant im-
pact on verification accuracy, especially when the image count
increases. The threshold τa is excessively lenient, producing
a high false-positive fraction; if triplet rotations were both
consistent and correct, τa would work well, but as triplets
can contain incorrect rotations whilst appearing consistent,
it does not. Threshold τc is the most strict, producing a high
false-negative fraction, and is only correct when all triplets
that a rotation contributes to are consistent. Threshold τb
avoids these two pitfalls as it only requires half of the triplets
to be consistent; as the CRP and number of images increases,
τb trends towards the optimal threshold location, as shown
in Figure 5b. However, if the CRP is low, there is a greater
number of incorrect rotations, decreasing the likelihood of
triplet consistency. Incidentally, using four images causes
both τb and τc to give the same threshold value, but differ
when five or more images are used.

This paper focuses on the performance of triplet verifi-
cation with respect to SHCC, therefore, the efficiency of
SHCC is not investigated. The performance of triplet verifi-
cation in contrast is essentially a non-issue due to the mini-
mal amount of processing required. Classifying each triplet
requires two 3-by-3 matrix multiplications, equation (13),
followed by extracting the angular difference of the resulting
matrix, equation (14). The expensive part of the verification
is the nA(nA − 1)(nA − 2)/3 matrix multiplications.

Applying triplet verification to a set of images does not
provide a quintessential classification for a priori unknown
rotations. Considering this, it is a beneficial addition to
SHCC as the majority of its classifications are accurate. If
triplet verification is used in conjunction with the translation
correlation value, which indicates the quality of the align-
ment, the likelihood of selecting the correct rotations for
aligning a set of images together is further improved.

7. CONCLUSION
Registering point-clouds using spherical harmonic cross-

correlation does not guarantee correct rotational alignment.
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Figure 5: Receiver operating curves showing how well rotation verification performs when the percentage of correct rotations
increases. As the testing is performed on randomly chosen images, the percentage of correct rotations will fluctuate, therefore
the standard deviation of this fluctuation has been provided.

Incorrect rotations occur when point-clouds have little over-
lap, which may cause the best found alignment from the
correlation matrix to be erroneous. Using triplets of im-
ages, rotation verification is shown to be a viable method
for classifying rotations, as it determines whether rotations
are consistent with each other.

Classifying rotations using extreme thresholds is inade-
quate, as they are too strict or too lenient. A compromise
threshold that requires a majority of correct triplets shows
a trend towards optimal rotation classification, especially as
the percentage of correct rotations and the number of regis-
tered images increases. Rotation verification is a beneficial
addition to spherical harmonic cross-correlation, where even
if the correct rotation percentage is low, individual rotations
are still likely to be classified correctly.
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