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Abstract 
Olivier Danvy and others have shown the syntactic correspon-
dence between reduction semantics (a small-step semantics) and 
abstract machines, as well as the functional correspondence be-
tween reduction-free normalisers (a big-step semantics) and ab-
stract machines. The correspondences are established by program 
transformation (so-called interderivation) techniques. A reduction 
semantics and a reduction-free normaliser are interderivable when 
the abstract machine obtained from them is the same. However, 
the correspondences fail when the underlying reduction strategy is 
hybrid, i.e., relies on another sub-strategy. Hybridisation is an es-
sential structural property of full-reducing and complete strategies. 
Hybridisation is unproblematic in the functional correspondence. 
But in the syntactic correspondence the refocusing and inlining-of-
iterate-function steps become context sensitive, preventing the re-
functionalisation of the abstract machine. We show how to solve the 
problem and showcase the interderivation of normalisers for nor­
mal order, the standard, full-reducing and complete strategy of the 
pure lambda calculus. Our solution makes it possible to interderive, 
rather than contrive, full-reducing abstract machines. As expected, 
the machine we obtain is a variant of Pierre Cre´gut’s full Krivine 
machine KN. 
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1. Introduction 
The interderivation techniques [1 , 2, 5, 9–12], hereafter cited col-
lectively as [IT], prove the correspondence between ‘semantic arte-
facts’ [9] that formally define the operational semantics of higher-
order programming languages. Traditionally, a small-step opera-
tional semantics is given by a single-step reduction relation on 
terms which is a partial function. Reduction is defined as the re-
flexive and transitive closure. Figure 1 (right column) shows an ex-
ample explained at length in Section 3. A syntactic theory or reduc-
tion semantics [11, 13] is a small-step operational semantics with 
an explicit representation of the reduction context. Figure 5 (Sec-
tion 3) shows an example. Reduction is performed by iterating three 
steps: decomposing a term into a reduction context and a reducible 
expression (‘redex’ for short, plural ‘redices’), contracting that re-
dex, and plugging the contractum (the result) back into the con-
text. The iteration either terminates (when the term is irreducible) 
or diverges (loops forever). A reduction semantics must satisfy a 
unique-decomposition property. A reduction-based normaliser is a 
program implementing a reduction semantics. 

A big-step operational semantics is given by a partial function 
that does away with intermediate single steps and delivers, for an 
input term, the final irreducible term of the reduction sequence, 
if such term exists, or diverges otherwise. Figure 1 (left column) 
shows an example. A reduction-free normaliser is a program im-
plementing the big-step partial function.1 

Small-step and big-step operational semantics are based on an 
underlying reduction strategy, informally, a total order in which 
redices are to be contracted. 

Finally, an abstract machine is a state transition machine which, 
unlike a virtual machine, operates directly on terms and therefore 
has no instruction set and no need for a compiler. 

One of the key contributions of [IT] is to show how to ob-
tain an abstract machine from a reduction semantics (the syn-
tactic correspondence) and from a reduction-free normaliser (the 
functional correspondence) by program-transformation steps. The 
functional correspondence consists of CPS-transformation and de-
functionalisation steps, which are reversible. The syntactic cor-
respondence consists of refocusing (which optimises the itera-
tion loop), lightweight fusion [10] and inlining-of-iterate-function 

1 We also prefer ‘normaliser’ to ‘reducer’ or ‘evaluator’ because the first 
suggests that final results are irreducible terms, and ‘evaluator’ appears in 
the context of denotational semantics. 
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steps, which are not reversible in general. The following diagram 
illustrates the connections: 

syntactic functional 

Reduction ==? Abstract -4=r- Reduction-free 
semantics Machine normaliser 

A reduction semantics and a reduction-free normaliser are said 
to be interderivable if they derive the same abstract machine. 
From left to right, a reduction-free normaliser can be derived from 
a reduction semantics. From right to left, a reduction semantics 
can be postulated whose derived abstract machine is also derived 
from the reduction-free normaliser. Interderived semantic artefacts 
are equivalent because the transformation steps are equivalence-
preserving. By equivalent we mean they implement the same re­
duction strategy (contract redices in the same order). Informally, 
‘they all truly define the same elephant’ [12]. 

In [IT] we find the equivalence of various call-by-name and call-
by-value normalisers and their corresponding abstract machines, 
namely, Krivine’s, SECD, CEK, CLS, etc. 

However, the interderivation offull-reducing strategies, and cor­
responding abstract machines such as [6, 7,15], has received scarce 
attention. The importance of full reduction has been acknowl­
edged long ago [6]. Two applications are program optimisation 
by partial evaluation and type checking in proof assistants [15]. 
Full-reducing2 strategies deliver (full-)normal-forms, as opposed 
to weak-normal-forms or weak-head-normal-forms. Paradigmatic 
full-reducing strategies of the pure lambda calculus are applicative 
order and normal order. Applicative order,3 like call-by-name and 
call-by-value strategies, is a uniform strategy, it does not rely on 
another strategy and is defined only in terms of itself (see for ex­
ample [19]). In contrast, normal order is a hybrid strategy, it does 
rely on a subsidiary uniform sub-strategy, namely, call-by-name. 
(We borrow ‘uniform’ and ‘hybrid’ terminology from [19].) 

Hybridisation is unproblematic in the functional correspon­
dence. In [2] we find the derivation of a big-step virtual machine 
from a reduction-free full normaliser for normal order. However, 
the syntactic correspondence between reduction semantics and ab­
stract machines cannot be established for hybrid strategies such as 
normal order using the current interderivation techniques verba­
tim. 

Hybridisation is important because it is a necessary condition 
for a strategy to be full-reducing and complete. A full-reducing 
strategy is complete i f it delivers the full-normal-form of a term 
if it exists or diverges otherwise. Normal order is complete, it relies 
on call-by-name to avoid going prematurely ‘under lambda’ and 
discards unneeded potentially divergent subterms [20]. Another im­
portant complete hybrid strategy is the counterpart of normal order 
in the lambda-value calculus [17] (Section 7). In contrast, applica­
tive order is uniform and is not complete: it reduces potentially 
divergent subterms. 

Contributions: We refine the refocusing and inlining-of-iterate-
function steps of the syntactic correspondence in order to accom­
modate hybrid strategies, and showcase the detailed interderiva­
tion of small-step and big-step semantic artefacts for normal or­
der. The abstract machine we obtain is, as expected, a variant of 
the full Krivine machine KN [7], actually, KN is derivable from 
our machine. Our solution makes it possible to interderive, rather 
than contrive, full-reducing abstract machines. We use the same 

2 Some authors use ‘strong-reducing’, but that may be confused with 
‘strong-normalising’ which means something different [4]. 
3 Applicative order should not be confused with call-by-value! It is a strat­
egy of the pure lambda calculus, not of the pure lambda-value calculus [17]. 
It reduces operands before applications and realises the idea of ‘passing pa­
rameters by value’ but ‘value’ here means ‘full-normal-form’ and not ‘non-
applications’ as in the lambda-value calculus. 

programming language (Standard ML) and follow the same steps 
in the presentation as [9] and [12]. The latter, which appeared in 
PEPM’11, is an excellent tutorial introduction to [IT]. We assume 
the reader is familiar with Standard ML, with those papers, and 
with the lambda calculus. Our code can be downloaded from the 
following URL: 

http://babel.Is.fi.upm.es/ ~ agarcia/papers/PEPH13 
The following paragraphs summarise the technicalities. Like 

[12], we start from a search function and derive from it the context-
based reduction semantics: 

Search =£- Reduction =£-
function semantics 

A search function locates the next redex to be contracted or re­
turns the corresponding irreducible form if no contractable redices 
exist. Starting from a search function is important to discover the 
correspondence between reduction contexts and defunctionalised 
continuations. Two semantic artefacts (hybrid and subsidiary) have 
to be interderived in parallel but a single datatype for defunction­
alised continuations is needed. I f we apply the techniques literally 
then the refocus function in the reduction semantics and the iterate 
function in the ‘pre-abstract machine’ [11] end up depending on the 
current defunctionalised continuation to determine which normali­
sation function (hybrid or subsidiary) must continue. Consequently, 
after inlining the iterate function, the dispatcher for the abstract ma­
chine has to inspect the context stack deeply, i.e., has to look at the 
arguments of value constructors representing defunctionalised con­
tinuations. But since refunctionalisation requires a shallow inspec­
tion of the context stack, the machine obtained cannot be refunc-
tionalised into a CPS program. 

We observe that there is a dependency between the value con­
structors of defunctionalised continuations and which normalising 
function has to continue. This wi l l allow us to rewrite the dispatcher 
to have the shallow inspection property. From the abstract machine 
we finally obtain the correct reduction-free normaliser. 

2. Preliminaries 
The pure untyped lambda calculus (AK/3 calculus) is described in 
[4]. We use the traditional syntax of lambda terms as specified by 
the pseudo-grammar A : := x | (Arc.A) | (A A), where x, y, etc, 
range over the elements of a countably infinite set of variables. 
In words (to refresh terminology), terms consist of variables, of 
abstractions (consisting of a bound variable and a term called the 
abstraction body), and of applications of an operator term to an 
operand term. For example, ((Xx.x)y) is the identity abstraction 
applied to variable y. The abstraction (Xx.x) is the operator in 
the application, and the variable y is the operand. We overload A 
for a grammatical non-terminal and for the set of lambda terms. 
Uppercase, sometimes primed, letters M, N, B, M', etc, range 
over elements of A. We use the standard precedence and association 
conventions: applications associate to the left and abstraction binds 
tighter than application. Hence, we write (Xx.x)y. 

We use grammars in Extended Backus-Naur Form to define sub­
sets of A. Alphanumeric non-terminal names are written in upper­
case sans-serif. For example, NF : := Arc.NF | x {NF}* defines the 
set of full-normal-forms. The regular expression {a}* stands for 
zero or more occurrences of the sentential form a. For example, x, 
x NF, x NF NF, etc., are sentential forms of the second production, 
which respectively associate as x, (x NF), {{x NF) NF), etc. 

The reader must be familiar with the usual notions of bound 
and free variable, syntactic equality of terms modulo renaming of 
bound variables (written =) , substitution ([N/x]B stands for the 
term resulting from the capture-avoiding substitution of N for the 
free occurrences of x in B), the notion of redex (a term of the 
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Figure 1. Big-step (left column) and small-step (right column) operational semantics of normal order. 

form (Xx.B)N) and the single-step reduction relation — ^ and its 
reflexive and transitive closure — ^ . 

A n operational semantics is a part ial funct ion that is a sub-
relation o f —>*p. We are interested in operational semantics wh ich 
realise a reduction strategy by choosing redices in a f ixed order. 
We wri te M —>s N and M JJ-S TV respectively for the small-step 
and big-step semantics o f reduction strategy s. We use relational 
M JJ-S TV and funct ional JJS ( M ) = TV notation interchangeably 
in order to use diagrammatic composit ion when appropriate, e.g., 
(JJ-s; JJ-t)(Af) = JJ-t (JJ-s ( A f ) ) . 

3. Normal order and hybridisation 
Normal order is typical ly defined by the slogan ‘contract the left­
most redex f i rst ’ , understanding ‘ leftmost’ as in [8] or ‘ leftmost-
outermost’ when referring to the redex’s posit ion in the abstract 
syntax tree o f the term. Normal order is complete and is substanti­
ated by the Standardisation Theorem [8] . Figure 1 shows the b ig-
step (left column) and small-step (right column) semantics o f nor­
ma l order. 

Let us begin w i th the big-step (relation JJ-no). Rule N O - V A R 
says normal order on variables is an identity. Rule N O - A B S says 
that normal order recursively ‘goes under lambda’ . Rules N O -
C O N and N O - N E U say in their first premiss that normal order 
relies on call-by-name JJ(,n to reduce operators in applications MN 
(potential redices). I f the result is an abstraction (second premiss o f 
Rule N O - C O N ) then normal order reduces the result o f substituting 
the unreduced operand for the free variable in the abstraction body, 
thus implementing non-strict funct ional semantics for redices. I f 
the result is not an abstraction (second premiss o f Rule N O - N E U ) 
then the or ig inal application MN is a neutral term. (Neutral terms 
are either single variables or non-redex applications.) I n that case 
normal order fully-reduces the operator and the operand. 

Let us look at subsidiary call-by-name JJ(,n. Rule B N - A B S says 
that, unl ike normal order, cal l-by-name does not go under lambda. 
Rule B N - N E U says that, unl ike normal order, i t does not reduce 
operands in neutral terms. Rule B N - C O N says that, l ike normal 
order, i t implements non-strict funct ional semantics for redices. 
Cal l-by-name is a un i form strategy recursively defined only in 
terms of itself. Normal order relies on call-by-name so that the 
leftmost redex (Xx.B)N is contracted next and not a redex w i th in 
B by going prematurely under lambda. 

datatype term = IND of int | LAM of term 
| APP of term * term 

(* bn : term -> term *) 
fun bn (i as IND n) = i 
| bn (l as LAM b) = l 
| bn (APP (m, n)) = 
let val m’ = bn m 
in (case m’ of (LAM b) => bn (subst (b, n, 0)) 

| _ => APP (m’, n)) 
end 

(* no : term -> term *) 
fun no (i as IND n) = i 
| no (LAM b) = LAM (no b) 
| no (APP (m, n)) = 
let val m’ = bn m 
in (case m’ of (LAM b) => no (subst (b, n, 0)) 

| _ => APP (no m’, no n)) 
end 

Figure 2. Canonical substitution-based reduction-free normaliser 
for normal order. 

The reader should not be daunted by the rules. These conform 
to the format o f Hi lbert-style logical theories for defining rela­
tions [4] . I n fact, JJno and JJ(,n are syntax-directed part ial functions 
w i th a natural semantics interpretation [16]. The Boolean condi­
tions in premisses are non-overlapping so the rules can be applied 
deterministically and translate directly to a strict funct ional pro­
gram in wh ich a term matching the left-hand-side of the conclu­
sion is recursively reduced according to the premisses f rom left to 
r ight, w i th conditions corresponding to case analysis. The canon­
ical ‘substitution-based’ ( fo l lowing terminology in [5]) reduction-
free normaliser in Figure 2 has been wri t ten directly f r om the rules, 
save for the de-Bruijn-indices representation [4] of lambda terms. 
Function subst implements capture-avoiding substitution. 

Now to the small-step (relation —>no). There is no rule for 
variables because these are in fu l l -normal- form. Rule (/3) reduces 
redices. Rule (£) provides structural compatibi l i ty w i th abstractions 
(going under lambda). Apart f rom (/3), there are three other rules for 
applications. Rule (p1) reduces the operator when i t is not in weak-
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Figure 3. The readback stage of normal order. 
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Figure 4. Principal reduction machine for normal order. 

head-normal-form (hereafter whnf). Rule (p2) reduces the operator 
when it is not an abstraction, if it were then Rule (/3) would have 
been applicable instead. Finally, Rule (v) reduces the operand when 
the operator is in full-normal-form (hereafter nf). Although a nf is 
also a whnf, Rules (p2) and (v) are non-overlapping because the 
third premiss in (p2) is not the case when M G NF. 

Hybridisation is a structural property. In the big-step semantics, 
a subsidiary set of rules defines a strategy used by normal order. 
In the small-step semantics, a subsidiary sub-relation can be iden­
tified. More concretely, JJ-(,„ is used on operators by JJ-no, and (/3) 
and (pi) define small-step call-by-name, exactly function —>„ in 
Plotkin’s XN calculus [17]. It is immediate to prove that call-by­
name is a left identity of normal order: JJ-(,„; JJ-

no — v'^o . 

Hybridisation is inexorably conspicuous in alternative rendi­
tions, for example: 

• Normal order can be defined in eval-readback style in a similar 
fashion to the definition of iV0 , a strict full-reducing strategy 
for a closed calculus [15]. In our case, the ‘eval’ stage is JJ-(,„, 
and the ‘readback’ stage is JJ-rn shown in Figure 3. Normal or­
der is the composition JJ-(,„; JJ-rn. The eval stage carries out the 
reduction steps corresponding to the first premiss in Rule N O -
C O N (shared with Rule N O - N E U ) and the nested call-by-name 
reduction steps of the third premiss. The distribution of reduc­
tion over whnfs is deferred to the readback stage. Notice that 
JJ-rn has no R N - C O N rule because it operates on terms in whnf, 
and a term in whnf cannot have an outermost redex. 

• Normal order is obtained by instantiating A with A, and A-nf 
with NF in the ‘principal reduction machine’ — ^ of the para­
metric lambda calculus [18], as shown in Figure 4. The para­
metric lambda calculus generalises various lambda calculi by 
adding the premiss N e A to the beta rule. Different calculi 
are obtained by choosing particular sets of terms for A . The 
principal reduction machine is simply a small-step reduction 
strategy that is parametric on A and on a notion of normal form 
A-nf. It uses a flattened representation of multiple applications. 
The hybrid-subsidiary interplay can be observed in the rules of 
Figure 4. Rule (p3) subsumes rules (/3) and (pi) in Figure 1 
which correspond to call-by-name. Rules (pi) and (p2) reduce 
terms in whnf. The left-hand-sides of their conclusions match 
the definition of WHNF (Figure 1). 

Context-based reduction semantics. A context-based reduction 
semantics [11, 13] is the starting point of a syntactic correspon­
dence. Hybridisation is also conspicuous in the context-based re­
duction semantics of normal order, shown in Figure 5, which con­
sists of terms, nfs, reduction contexts, and the /3-rule. Normal or­
der is the iteration of single reductions consisting of (i) decom­
posing a term into a reduction context (derived from non-terminal 
Cno [ ]) and a redex within the hole [ ] , (ii) contracting the redex 
and, (iii) plugging the contractum back into its context, recompos-
ing the next reduct in the reduction sequence [11]. The iteration 
either terminates when the term is a nf or otherwise diverges. Non­
terminal NNF defines neutral terms in full-normal-form. Figure 6 
shows two single reductions for a particular term. The reduction 
contexts obtained are shown on the right. The context Cno [ ] sat­
isfies the unique-decomposition property, that is, a term is either a 
nf or can be decomposed into a unique context and the next redex. 
The proof that Cno [ ] is uniquely-decomposable proceeds by simple 
induction on terms. 

The hybrid-subsidiary interplay can be observed in that Cno [ ] 
includes the call-by-name reduction context C(,„ [ ] . The reduction 
semantics for call-by-name consists of C(,„[ ] and the /3-rule. The 
inclusion is unavoidable: Cno [ ] cannot be defined without C(,„ [ ] 
which has to be used in the operator position when an application is 
a redex. Notice also that Cno [ ] contexts other than C(,„[ ] precisely 
match the shape of a whnf. A hole can only occur at the body 
of an abstraction, Xx.Cno[ ] , or at the operand of an application 
with a neutral term in full-normal-form as operator NNF Cno [ ]. 
This application may be possibly applied to additional unreduced 
arguments, Cne[ ] A. In the latter case, the hole is always at the 
right of a nf and at the left of arbitrary terms, thus enforcing left 
reduction: NNF Cno [ ] A . . . A. 

4. Prelude to a reduction semantics 
Like [12] we start the syntactic correspondence from a search 
function that locates the next redex to be contracted and then derive 
from it the context-based reduction semantics of Figure 5. The 
transformation of the search function into decomposition functions 
wi l l shed light on the correspondence between reduction contexts 
and defunctionalised continuations (Section 4.5). 

Two search functions are required, one for the hybrid that 
searches for a nf or the next redex to be contracted, and another 
for the subsidiary that searches for a whnf or the next redex in the 
call-by-name sub-reduction to be contracted. The two search func­
tions are to be transformed into decomposition functions which, 
additionally to the next redex, give the context where it appears. 
We construct the search functions from the small-step definition of 
normal order in Figure 1, observing that rules (p2), (y) and (£) are 
applicable only when a term is already in whnf, and therefore, they 
are not applied by the subsidiary search function: 

• The hybrid search must invoke the subsidiary search over oper­
ators in applications in order to check whether they are whnfs 
or not, correlating with Rules (pi) and (p2). When a non-
abstraction whnf is found, the hybrid search must be invoked 
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Figure 6. Example of normal order reduction sequence using context-based reduction semantics. 

over that whnf, correlating with Rule (/x2). I f the result of that 
search is a nf then the hybrid search must be invoked over the 
operand, correlating with Rule (y). Finally, the hybrid search 
must always be invoked over the bodies of abstractions, corre­
lating with Rule (£). 

• The subsidiary search, in turn, must invoke itself recursively on 
operators, correlating with Rule (pi). It could be realised as 
a predicate function that tests i f the input term is in whnf, after 
which hybrid search would continue i f it is not. However, hybrid 
search subsumes such predicate function and returns the next 
contratable redex when the term is not in whnf. Our subsidiary 
search realises that subrelation of the hybrid search. 

Notice that free variables are trivially returned as nfs or whnfs, 
respectively, to the hybrid or subsidiary search functions. 

4.1 One datatype embedding nfs in whnfs 

The datatype term has been given in Figure 2. As for nfs and wh­
nfs, we could define a different datatype for each but this compli­
cates the CPS transformation step (there wi l l be different defunc-
tionalised continuation datatypes for subsidiary and hybrid) which 
would require some sort of two-layer CPS. Rather, we embed nfs 
into whnfs, reuse most of the datatypes (irreducible forms, redices, 
defunctionalised continuations, etc) and use a flat CPS. The type 
whnf follows the function and accumulator representation of [15] 
and corresponds to non-terminal WHNF in Figure 1 (right column). 
A whnf is either an abstraction (in de-Bruijn-indices representa­
tion) or a neutral term consisting of a variable (an index) applied to 
zero or more terms. Function embed recovers a term from a whnf, 
and apply_acc appends a term operand to the accumulator repre­
sentation of whnfs. 

datatype whnf = FUN of term I ACC of int * term list 

(* embed : whnf -> term *) 
fun embed (FUN b) = LAM b 

I embed (ACC (n, ts)) = embed_aux (IND n, ts) 

4.2 Search functions 

The datatype redex represents redices. The datatype found consists 
of a whnf (recall it embeds nfs!) or a redex. Function search_whnf 
implements the subsidiary search, and search_nf the hybrid search. 

datatype redex = SUB of term * term 
datatype found = WHNF of whnf | RED of redex 

(* search_whnf : term -> found *) 
fun search_whnf (IND n) = WHNF (ACC (n, [])) 
| search_whnf (LAM b) = WHNF (FUN b) 
| search_whnf (APP (m, n)) = 
(case search_whnf m 
of (WHNF wm) => 

(case wm of (FUN b) => RED (SUB (b, n)) 
| _ => WHNF (apply_acc (wm, n))) 

| (red as RED _) => red) 

(* search_nf : term -> found *) 
fun search_nf (IND n) = WHNF (ACC (n, [])) 
| search_nf (LAM b) = 
(case search_nf b 
of (WHNF wb) => WHNF (FUN (embed wb)) 
| (red as RED _) => red) 

| search_nf (APP (m, n)) = 
(case search_whnf m 
of (WHNF wm) => 

(case wm of (FUN b) => RED (SUB (b, n)) 
|_ => 

(case search_nf (embed wm) 
of (WHNF nm) => 

(case search_nf n 
of (WHNF nn) => 

WHNF (apply_acc (nm, embed nn)) 
| (red as RED _) => red) 

| (red as RED _) => red)) 
| (red as RED _) => red) 

(* search : term -> found *) 
fun search t = search_nf t 

(* embed_aux : term * term list -> term *) 
and embed_aux (t, []) = t 
| embed_aux (m, (t :: ts)) = 
embed_aux (APP (m, t), ts) 

(* apply_acc : whnf * term -> whnf *) 
fun apply_acc (ACC (n, ts), t) 

= ACC (n, ts @ [t]) 

4.3 The search functions in continuation-passing style 

(* search_whnf_cps : term * (found -> ’a) -> ’a *) 
fun search_whnf_cps (IND n, k) = k (WHNF (ACC (n, []))) 
| search_whnf_cps (LAM b, k) = k (WHNF (FUN b)) 
| search_whnf_cps (APP (m, n), k) = 
search_whnf_cps (m, 
fn (WHNF wm) => 

(case wm of (FUN b) => k (RED (SUB (b, n))) 



| _ => k (WHNF (apply_acc (wm, n)))) 
| (red as RED _) => k red) 

(* search_nf_cps : term * (found -> ’a) -> ’a *) 
fun search_nf_cps (IND n, k) = k (WHNF (ACC (n, []))) 
| search_nf_cps (LAM b, k) = 
search_nf_cps (b, 
fn (WHNF wb) => k (WHNF (FUN (embed wb))) 
| (red as RED _) => k red) 

| search_nf_cps (APP (m, n), k) = 
search_whnf_cps (m, 
fn (WHNF wm) => 

(case wm 
of (FUN b) => k (RED (SUB (b, n))) 
|_ => 
search_nf_cps (embed wm, 
fn (WHNF nm) => 

search_nf_cps (n, 
fn (WHNF nn) => 

k (WHNF (apply_acc (nm, embed nn))) 
| (red as RED _) => k red) 

| (red as RED _) => k red)) 
| (red as RED _) => k red) 

(* search1 : term -> found *) 
fun search1 t = search_nf_cps (t, fn f => f) 

4.4 Simplifying the CPS-transformed search functions 

The CPS-transformed search functions are simplified by return­
ing a result only when a redex or a whnf is found. The sim­
plification rests on an isomorphism between the type signatures 
for continuations [3]. Datatype found is the disjoint sum of whnf 
and redex, and type (whnf + redex -> ’a) is isomorphic to type 
(whnf -> ’a) * (redex -> ’a). The (redex -> ’a) continua­
tions are always the identity and can be optimised away. Because 
the end result is always of type found, we can instantiate ’a to 
found, leaving term * (whnf -> found) -> found as the type sig­
nature for the CPS-transformed search functions. 

(* search_whnf_sim : term * (whnf -> found) -> found *) 
fun search_whnf_sim (IND n, k) = k (ACC (n, [])) 
| search_whnf_sim (LAM b, k) = k (FUN b) 
| search_whnf_sim (APP (m, n), k) = 
search_whnf_sim (m, 
fn wm => 

(case wm of (FUN b) => RED (SUB (b, n)) 
| _ => k (apply_acc (wm, n)))) 

(* search_nf_sim : term * (whnf -> found) -> found *) 
fun search_nf_sim (IND n, k) = k (ACC (n, [])) 
| search_nf_sim (LAM b, k) = 
search_nf_sim (b, fn wb => k (FUN (embed wb))) 

| search_nf_sim (APP (m, n), k) = 
search_whnf_sim (m, 
fn wm => 

(case wm 
of (FUN b) => RED (SUB (b, n)) 
| _ => search_nf_sim (embed wm, 

fn nm => 
search_nf_sim (n, 
fn nn => 

k (apply_acc (nm, embed nn)))))) 

(* search2 : term -> found *) 
fun search2 t = search_nf_sim (t, fn v => WHNF v) 

4.5 Defunctionalising continuations 

Continuations are defunctionalised by enumerating the inhabitants 
of the function space and introducing the apply_cont function 
that dispatches on them. The type continuation is an explicit 
representation of the context in which a search takes place. 

datatype continuation = CO 
I CI of term * continuation 
I C2 of continuation 
I C3 of term * continuation 
I C4 of term * continuation 
I C5 of continuation * wnnf 

(* apply_cont : continuation * wnnf -> found *) 
fun apply_cont (CO, w) = WHNF w 

I apply_cont (CI (n, k), wm) = 
(case wm of (FUN b) => RED (SUB (b, n)) 

I _ => apply_cont (k, apply_acc (wm, n))) 
I apply_cont (C2 k, wb) = 
apply_cont (k, FUN (embed wb)) 

I apply_cont (C3 (n, k), wm) = 
(case wm 
of (FUN b) => RED (SUB (b, n)) 

I _ => search_nf_cont (embed wm, C4 (n, k))) 
I apply_cont (C4 (n, k), nm) = 
search_nf_cont (n, C5 (k, nm)) 

I apply_cont (C5 (k, nm), nn) = 
apply_cont (k, apply_acc (nm, embed nn)) 

(* search_whnf_cont : term * continuation -> found *) 
and search_whnf_cont (IND n, k) = 

apply_cont (k, ACC (n, [])) 
I search_whnf_cont (LAM b, k) = 
apply_cont (k, (FUN b)) 

I search_whnf_cont (APP (m, n), k) = 
search_whnf_cont (m, CI (n, k)) 

(* search_nf_cont : term * continuation -> found *) 
and search_nf_cont (IND n, k) = 

apply_cont (k, ACC (n, [])) 
I search_nf_cont (LAM b, k) = search_nf_cont (b, C2 k) 
I search_nf_cont (APP (m, n), k) = 
search_whnf_cont (m, C3 (n, k)) 

(* search3 : term -> found *) 
fun search3 t = search_nf_cont (t, CO) 

Constructor CO stands for the initial continuation. Constructor Cl 
stands for the continuation in search.whnf_sim, while C2, C3, C4 
and C5 stand for the continuations in search.nf_sim. Constructors 
Cl and C3 are analogous, they both correspond to a context with 
the hole inside the operator. However, we cannot subsume them 
into a single constructor because they inform about which search 
function is to continue: the dispatching function apply.cont acts 
differently on them when it encounters neutral terms. It applies 
the parameter continuation k to the whole term in the case of 
Cl but applies search_nf_cont over the operator with a new C4 
continuation in the case of C3. Thus, the datatype continuation 
carries more information than just the position of the hole in the 
term. Observe that looking at the context stack shallowly is not 
enough to know whether we are within the hybrid or the subsidiary, 
because C3 appears in both cases. 

As expected, defunctionalised continuations correspond to re­
duction contexts (Figure 5) with some subtle appreciations: 

• CO stands for the empty context: [ ] . 

• Cl stands for a call-by-name context in the operator, which is 
not derived from a normal order context: C&n [ ] A. 

• C2 stands for a context in the body of a lambda: Xx.Cno []. 

• C3 stands for a call-by-name context in the operator, but this 
time derived from a normal order context: Q n [ ] A. 

• C4 stands for a context in the operator of a neutral term: Cne [ ] A. 

• C5 stands for a context in the operand of a neutral term in nf: 
NNF Cno[]. 



There is no need to distinguish between initial continuations (holes) 
which are derived from a normal order context or not, because there 
is nothing to do after the initial continuation. However, an imple­
mentation with two initial continuations (respectively for hybrid 
and subsidiary) would also be correct. Nevertheless, for the pur­
pose of full reduction, the initial continuation which corresponds 
to call-by-name would be unused. Only a stand-alone normaliser 
for the subsidiary call-by-name would use it. 

4.6 From search to decomposition 

We turn the search into a decomposition. The result is the found 
redex (if any) together with the reduction context where it appears. 

datatype whnf_or_decomposition = WHNF of whnf 
| DEC of redex * continuation 

(* decompose_cont : continuation * whnf 
-> whnf_or_decomposition *) 

fun decompose_cont (C0, w) = WHNF w 
| decompose_cont (C1 (n, k), wm) = 
(case wm 
of (FUN b) => DEC (SUB (b, n), k) 
| _ => decompose_cont (k, apply_acc (wm, n))) 

| decompose_cont (C2 k, wb) = 
decompose_cont (k, FUN (embed wb)) 

| decompose_cont (C3 (n, k), wm) = 
(case wm 
of (FUN b) => DEC (SUB (b, n), k) 

| _ => decompose_nf (embed wm, C4 (n, k))) 
| decompose_cont (C4 (n, k), nm) = 
decompose_nf (n, C5 (k, nm)) 

| decompose_cont (C5 (k, nm), nn) = 
decompose_cont (k, apply_acc (nm, embed nn)) 

(* decompose_whnf : term * continuation 
-> whnf_or_decomposition *) 

and decompose_whnf (IND n, k) = 
decompose_cont (k, ACC (n, [])) 

| decompose_whnf (LAM b, k) = 
decompose_cont (k, FUN b) 

| decompose_whnf (APP (m, n), k) = 
decompose_whnf (m, C1 (n, k)) 

(* decompose_nf : term * continuation 
-> whnf_or_decomposition *) 

and decompose_nf (IND n, k) = 
decompose_cont (k, ACC (n, [])) 

| decompose_nf (LAM b, k) = decompose_nf (b, C2 k) 
| decompose_nf (APP (m, n), k) = 
decompose_whnf (m, C3 (n, k)) 

(* decompose : term -> whnf_or_decomposition *) 
fun decompose t = decompose_nf (t, C0) 

(* recompose : continuation * term -> term *) 
fun recompose (C0, t) = t 
| recompose (C1 (n, k), m) 
| recompose (C2 k, b) 
| recompose (C3 (n, k), m) 
| recompose (C4 (n, k), m) 
| recompose (C5 (k, nm), n) = 
recompose (k, APP (embed nm, n)) 

5. A reduction semantics 
5.1 Reduction-based normalisation 

The reduction-based approach iterates decomposition, contraction 
and recomposition until a nf is found: 

datatype contractum = CONTRACTUM of term 
| ERROR of string 

recompose (k, APP (m, n)) 
recompose (k, LAM b) 
recompose (k, APP (m, n)) 
recompose (k, APP (m, n)) 

(* contract : redex -> contractum *) 
fun contract (SUB (b, n)) = CONTRACTUM (subst (b, n, 0)) 

datatype result_or_wrong = RESULT of whnf 
| WRONG of string 

(* refocus : term * continuation 
-> whnf_or_decomposition *) 

fun refocus con = (decompose (recompose con)) 

(* iterate : whnf_or_decomposition -> result_or_wrong *) 
fun iterate (WHNF w) = RESULT w 
| iterate (DEC (red, k)) = 

(case contract red 
of (CONTRACTUM t) => iterate (refocus (k, t)) 
| (ERROR s) => WRONG s) 

(* normalise : term -> result_or_wrong *) 
fun normalise t = iterate (decompose t) 

The normaliser implements a small-step state transition machine 
in trampolined style [14], where configurations (states) coincide 
with decompositions (whnf_or_decomposition). Discrete transi­
tions steps are implemented by the composition of contract, 
recompose and decompose. The last two constitute extensional re-
focusing [11, 12] (function refocus). The iterate function is the 
trampoline, taking a decomposition, contracting the redex and then 
recursively invoking itself over the refocused contractum until the 
decomposition consists of a whnf (again, recall it embeds nfs). 

5.2 Refocusing intensionally 

We deforest recomposition and decomposition into an intensional 
refocus function [9]. The reduction-free iterate-and-refocus nor-
maliser does away with intermediate reducts: 

(* refocus1 : term * continuation 
-> whnf_or_decomposition *) 

fun refocus1 (t, k) = 
(case k of (C1 (_, _) | C3 (_, _)) => 

decompose_whnf (t, k) 
| _ => 

decompose_nf (t, k)) 

(* iterate1 : whnf_or_decomposition -> result_or_wrong *) 
fun iterate1 (WHNF w) = RESULT w 
| iterate1 (DEC (red, k)) = 

(case contract red of (CONTRACTUM t) => 
iterate1 (refocus1 (t, k)) 

| (ERROR s) => WRONG s) 

(* normalise1 : term -> result_or_wrong *) 
fun normalise1 t = iterate1 (refocus1 (t, C0)) 

In refocus1, we inspect the current continuation k to decide on 
which decomposition function to continue. The only continuations 
on which function decompose_whnf (Section 4.6) is invoked are C1 
and C3. The case expression in refocus1 takes care of that. 

5.3 Pre-abstract machine 

The contraction function contract can be inlined, and conse­
quently the ERROR case disappears because contract does not con­
sider execution errors. A result (if any) can only be a nf, otherwise 
the iteration diverges. 

(* iterate2 : whnf_or_decomposition -> result_or_wrong *) 
fun iterate2 (WHNF w) = RESULT w 
| iterate2 (DEC (SUB (b, n), k)) = 

iterate2 (refocus1 (subst (b, n, 0), k)) 

(* normalise2 : term -> result_or_wrong *) 
fun normalise2 t = iterate2 (refocus1 (t, C0)) 



This is a pre-abstract machine [11], where the transition function 
uses the intensional refocus1 and the trampoline iterate2 sched­
ules the transition function until a result is obtained. 

5.4 Lightweight fusion by fixed-point promotion 

Functions iterate2 and refocus1 are lightweight-fused [10]: 

(* normalise3_cont : continuation * whnf 
-> result_or_wrong *) 

fun normalise3_cont (C0, w) = iterate3 (WHNF w) 
| normalise3_cont (C1 (n, k), wm) = 
(case wm of (FUN b) => iterate3 (DEC (SUB (b, n), k)) 

| _ => 
normalise3_cont (k, apply_acc (wm, n))) 

| normalise3_cont (C2 k, wb) = 
normalise3_cont (k, FUN (embed wb)) 

| normalise3_cont (C3 (n, k), wm) = 
(case wm of (FUN b) => iterate3 (DEC (SUB (b, n), k)) 

| _ => 
normalise3_nf (embed wm, C4 (n, k))) 

| normalise3_cont (C4 (n, k), nm) = 
normalise3_nf (n, C5 (k, nm)) 

| normalise3_cont (C5 (k, nm), nn) = 
normalise3_cont (k, apply_acc (nm, embed nn)) 

(* normalise3_whnf : term * continuation 
-> result_or_wrong *) 

and normalise3_whnf (IND n, k) = 
normalise3_cont (k, ACC (n, [])) 

| normalise3_whnf (LAM b, k) = 
normalise3_cont (k, FUN b) 

| normalise3_whnf (APP (m, n), k) = 
normalise3_whnf (m, C1 (n, k)) 

(* normalise3_nf : term * continuation 
-> result_or_wrong *) 

and normalise3_nf (IND n, k) = 
normalise3_cont (k, ACC (n, [])) 

| normalise3_nf (LAM b, k) = 
normalise3_nf (b, C2 k) 

| normalise3_nf (APP (m, n), k) = 
normalise3_whnf (m, C3 (n, k)) 

(* iterate3 : whnf_or_decomposition -> result_or_wrong *) 
and iterate3 (WHNF w) = RESULT w 
| iterate3 (DEC (SUB (b, n), k)) = 
(case k of (C1 (_, _) | C3 (_, _)) => 

normalise3_whnf (subst (b, n, 0), k) 
| _ => 
normalise3_nf (subst (b, n, 0), k)) 

(* normalise3 : term -> result_or_wrong *) 
fun normalise3 t = normalise3_nf (t, C0) 

The result is an optimised normaliser where adjacent iterate3 and 
refocus1 have been fused. The normaliser is now closer to a big­
step tail-recursive implementation of an abstract machine. 

5.5 Corridor transitions and inlining-of-iterate-function 

Some configurations (states) have only one possible transition. We 
cut-and-paste the transition functions above, renaming their indices 
from 3 to 4: 

normalise4_cont (C0, w) 
= (* inlining normalise4_cont *) 
iterate4 (WHNF w) 
= (* inlining iterate4 *) 
RESULT w 

We must contract this corridor transition, i.e., inline 
normalise4_cont and iterate4. And then, we must inline 
iterate4 inside normalise4_cont. 

(* normalise4_cont : continuation * whnf 
-> result_or_wrong *) 

fun normalise4_cont (C0, w) = RESULT w 
| normalise4_cont (C1 (n, k), wm) = 
(case wm 
of (FUN b) => 

(case k of (C1 (_, _) | C3 (_, _)) => 
normalise4_whnf (subst (b, n, 0), k) 

| _ => 
normalise4_nf (subst (b, n, 0), k)) 

| _ => 
normalise4_cont (k, apply_acc (wm, n))) 

| normalise4_cont (C2 k, wb) = 
normalise4_cont (k, FUN (embed wb)) 

| normalise4_cont (C3 (n, k), wm) = 
(case wm 
of (FUN b) => 

(case k of (C1 (_, _) | C3 (_, _)) => 
normalise4_whnf (subst (b, n, 0), k) 

| _ => 
normalise4_nf (subst (b, n, 0), k)) 

| _ => 
normalise4_nf (embed wm, C4 (n, k))) 

| normalise4_cont (C4 (n, k), nm) = 
normalise4_nf (n, C5 (k, nm)) 

| normalise4_cont (C5 (k, nm), nn) = 
normalise4_cont (k, apply_acc (nm, embed nn)) 

(* normalise4_whnf : term * continuation 
-> result_or_wrong *) 

and normalise4_whnf (IND n, k) = 
normalise4_cont (k, ACC (n, [])) 

| normalise4_whnf (LAM b, k) = 
normalise4_cont (k, FUN b) 

| normalise4_whnf (APP (m, n), k) = 
normalise4_whnf (m, C1 (n, k)) 

(* normalise4_nf : term * continuation 
-> result_or_wrong *) 

and normalise4_nf (IND n, k) = 
normalise4_cont (k, ACC (n, [])) 

| normalise4_nf (LAM b, k) = 
normalise4_nf (b, C2 k) 

| normalise4_nf (APP (m, n), k) = 
normalise4_whnf (m, C3 (n, k)) 

Now the iterate function is unused. Observe that the case-
expression introduced in the refocusing step (Section 5.2) is in-
lined twice in normalise4_cont. Consequently, the artefact ob­
tained does not have the shallow inspection property because 
normalise4_cont pattern-matches on k at the inlining point. 

5.6 Recovering the shallow inspection property 

To pick the right normalising functions at the inlining points we 
have to find out which function is invoked with that k as the current 
continuation. Note that C1 and C3 are only pushed onto the stack by 
normalise4_whnf and normalise4_nf respectively. In both cases, 
k is the current continuation (last line of each function). No other 
functions can produce defunctionalised continuations C1 and C3, 
and therefore the case expression can be safely removed and the 
appropriate normalising functions invoked: normalise4_whnf in 
the second clause of normalise4_cont, and normalise4_nf in the 
fourth clause. 

(* normalise5_cont : continuation * whnf 
-> result_or_wrong *) 

fun normalise5_cont (C0, w) = RESULT w 
| normalise5_cont (C1 (n, k), wm) = 
(case wm 
of (FUN b) => normalise5_whnf (subst (b, n, 0), k) 
| _ => normalise5_cont (k, apply_acc (wm, n))) 
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Figure 7. Normal order abstract machine. 

| normalise5_cont (C2 k, wb) = 
normalise5_cont (k, FUN (embed wb)) 

| normalise5_cont (C3 (n, k), wm) = 
(case wm 
of (FUN b) => normalise5_nf (subst (b, n, 0), k) 
| _ => normalise5_nf (embed wm, C4 (n, k))) 

| normalise5_cont (C4 (n, k), nm) = 
normalise5_nf (n, C5 (k, nm)) 

| normalise5_cont (C5 (k, nm), nn)= 
normalise5_cont (k, apply_acc (nm, embed nn)) 

(* normalise5_whnf : term * continuation 
-> result_or_wrong *) 

and normalise5_whnf (IND n, k) = 
normalise5_cont (k, ACC (n, [])) 

| normalise5_whnf (LAM b, k) = 
normalise5_cont (k, FUN b) 

| normalise5_whnf (APP (m, n), k) = 
normalise5_whnf (m, C1 (n, k)) 

(* normalise5_nf : term * continuation 
-> result_or_wrong *) 

and normalise5_nf (IND n, k) = 
normalise5_cont (k, ACC (n, [])) 

| normalise5_nf (LAM b, k) = normalise5_nf (b, C2 k) 
| normalise5_nf (APP (m, n), k) = 
normalise5_whnf (m, C3 (n, k)) 

(* normalise5 : term -> result_or_wrong *) 
fun normalise5 t = normalise5_nf (t, C0) 

The shallow inspection property is recovered. The resulting nor-
maliser is a big-step tail-recursive implementation of the abstract 
machine in Figure 7. We use a nameful representation for the ma­
chine, storing the formal parameter of an unapplied abstraction in­
side continuation C2. We use the control characters n, w and c to in­
dicate whether the configuration is nf (hybrid), whnf (subsidiary) 
or cont (dispatcher) respectively. 

Our machine is a variant of the full-reducing Krivine machine 
KN [7]. KN is restricted to closed terms, is environment-based 
(following terminology in [5]), and proceeds with full reduction 
as soon as an accumulator is reached. Our machine admits open 
terms, is substitution-based, and reconstructs intermediate whnfs. 

KN can be derived from our normal order machine! As follows: 
from the reduction-free normaliser (the one in Figure 2 to which we 
shall arrive at in Section 6) restricted to closed terms, apply closure 
conversion [5], adopt de Bruijn indices for term variables and de 
Bruijn levels for formal parameters in environments, like [7], and 
subsume substitution, evaluation and normalisation under one nor-
maliser with explicit control. A detailed discussion of the derivation 

requires considerable space. We plan to include the derivation in an 
extended version of this paper. We refer the interested to the URL 
given in the introduction where the code with explanatory com­
ments can be found. 

6. From abstract machine to reduction-free 
normaliser 

6.1 Refunctionalisation 

The abstract machine in Section 5.5 is an instance of a de-
functionalised CPS program, with a configuration for dispatch­
ing on the continuations (normalise4_cont) and two configura­
tions for the hybrid and the subsidiary strategy (normalise4_nf and 
normalise4_whnf). By refunctionalising it we obtain a reduction-
free normaliser in CPS. 

(* normalise6_whnf : term * (whnf -> ’a) -> ’a *) 
fun normalise6_whnf (IND n, k) = k (ACC (n, [])) 
| normalise6_whnf (LAM b, k) = k (FUN b) 
| normalise6_whnf (APP (m, n), k) = 
normalise6_whnf (m, 
fn wm => (case wm 

of (FUN b) => 
normalise6_whnf (subst (b, n, 0), k) 

| _ => k (apply_acc (wm, n)))) 

(* normalise6_nf : term * (whnf -> ’a) -> ’a *) 
and normalise6_nf (IND n, k) = k (ACC (n, [])) 
| normalise6_nf (LAM b, k) = 
normalise6_nf (b, fn wb => k (FUN (embed wb))) 

| normalise6_nf (APP (m, n), k) = 
normalise6_whnf (m, 
fn wm => 

(case wm 
of (FUN b) => normalise6_nf (subst (b, n, 0), k) 
| _ => 
normalise6_nf (m, 
fn nm => 

normalise6_nf (n, 
fn nn 

=> k (apply_acc(nm, embed nn)))))) 

(* normalise6 : term -> result_or_wrong *) 
fun normalise6 t = normalise6_nf (t, fn s => RESULT s) 

6.2 Back to direct style by inverse CPS transformation 

(* normalise7_whnf : term -> result_or_wrong *) 
fun normalise7_whnf (IND n) = ACC (n, []) 
| normalise7_whnf (LAM b) = FUN b 
| normalise7_whnf (APP (m, n)) = 
let val wm = normalise7_whnf m 
in (case wm 

of (FUN b) => normalise7_whnf (subst (b, n, 0)) 
| _ => apply_acc (wm, n)) 

end 

(* normalise7_nf : term -> result_or_wrong *) 
fun normalise7_nf (IND n) = ACC (n, []) 
| normalise7_nf (LAM b) = 
let val wb = normalise7_nf b 
in FUN (embed wb) 
end 

| normalise7_nf (APP (m, n)) = 
let val wm = normalise7_whnf m 
in (case wm 

of (FUN b) => normalise7_nf (subst (b, n, 0)) 
| _ => 
let val nm = normalise7_nf (embed wm) 

val nn = normalise7_nf (n) 



in apply_acc (nm, embed nn) 
end) 

end 

(* normalise7_term : term -> result_or_wrong *) 
fun normalise7 t = RESULT (normalise7_nf t) 

Save for the ancillary result_or_wrong datatype and the init 
function normalise6, this is the canonical reduction-free nor-
maliser in Figure 2, with normalise6_whnf corresponding to bn 
and normalise6_nf corresponding to no. This establishes the cor­
respondence. 

7. Related and future work 
We have already commented at length on [IT] throughout the paper 
and particularly in the contributions. As discussed in Section 5.5, 
we have derived from our normal order machine (Figure 7) the 
full-reducing Krivine machine KN [7]. A detailed discussion of 
the derivation requires considerable space. We plan to include the 
derivation in an extended version of this paper. But the code with 
explanatory comments can be downloaded from the URL given in 
the introduction. 

In [15], a full-reducing hybrid strategy N( ) is specified in eval-
readback style. The subsidiary strategy V () is implemented by 
an optimised, pre-compiled abstract machine. This machine has 
been contrived, not derived. This paper opens up the possibility 
of deriving machines for N() . A question to answer is whether 
optimisations can be incorporated by program transformation. 

We have applied the techniques in this paper to the interderiva-
tion of small-step and big-step artefacts for full-reducing strategies 
of the lambda-value calculus, in particular the counterpart of nor­
mal order in that calculus. We hope to publish this results else­
where. 

8. Conclusions 
The interderivation techniques [IT] can be refined to accommodate 
hybrid strategies, of which the full-reducing (and their machines) 
are the most interesting. The insight is to use a single datatype 
for hybrid and subsidiary artefacts, and to notice the dependency 
between the value constructors of defunctionalised continuations 
and which normalising function has to continue. By definition, a 
hybrid strategy ‘contains’ a subsidiary strategy. Small-step-wise, 
the subsidiary is a subrelation. Big-step-wise, the subsidiary is a 
left identity. Therefore, it is in general possible to use a single 
datatype for hybrid and subsidiary artefacts, and to embed the 
hybrid’s irreducible forms in the subsidiary’s. 
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