
A Syntactic and Functional Correspondence between
Reduction Semantics and Reduction-Free Full Normalisers

Alvaro García-Pérez
IMDEA Software Institute, and

Universidad Politécnica de Madrid
agarcia@babel.ls.fi.upm.es

Pablo Nogueira
Universidad Politécnica de Madrid

pablo.nogueira@upm.es

Abstract
Olivier Danvy and others have shown the syntactic correspon-
dence between reduction semantics (a small-step semantics) and
abstract machines, as well as the functional correspondence be-
tween reduction-free normalisers (a big-step semantics) and ab-
stract machines. The correspondences are established by program
transformation (so-called interderivation) techniques. A reduction
semantics and a reduction-free normaliser are interderivable when
the abstract machine obtained from them is the same. However,
the correspondences fail when the underlying reduction strategy is
hybrid, i.e., relies on another sub-strategy. Hybridisation is an es-
sential structural property of full-reducing and complete strategies.
Hybridisation is unproblematic in the functional correspondence.
But in the syntactic correspondence the refocusing and inlining-of-
iterate-function steps become context sensitive, preventing the re-
functionalisation of the abstract machine. We show how to solve the
problem and showcase the interderivation of normalisers for nor­
mal order, the standard, full-reducing and complete strategy of the
pure lambda calculus. Our solution makes it possible to interderive,
rather than contrive, full-reducing abstract machines. As expected,
the machine we obtain is a variant of Pierre Cre´gut’s full Krivine
machine KN.

This research has been partially funded by the Spanish ‘Ministerio de
Econom ı́a y Competitividad’ through project DESAFIOS10 TIN2009-
14599, and by Comunidad de Madrid through programme PROMETIDOS
P2009/TIC-1465. The first author is supported by Comunidad de Madrid
grant CPI/0622/2008 and by IMDEA Software Institute.

1. Introduction
The interderivation techniques [1 , 2, 5, 9–12], hereafter cited col-
lectively as [IT], prove the correspondence between ‘semantic arte-
facts’ [9] that formally define the operational semantics of higher-
order programming languages. Traditionally, a small-step opera-
tional semantics is given by a single-step reduction relation on
terms which is a partial function. Reduction is defined as the re-
flexive and transitive closure. Figure 1 (right column) shows an ex-
ample explained at length in Section 3. A syntactic theory or reduc-
tion semantics [11, 13] is a small-step operational semantics with
an explicit representation of the reduction context. Figure 5 (Sec-
tion 3) shows an example. Reduction is performed by iterating three
steps: decomposing a term into a reduction context and a reducible
expression (‘redex’ for short, plural ‘redices’), contracting that re-
dex, and plugging the contractum (the result) back into the con-
text. The iteration either terminates (when the term is irreducible)
or diverges (loops forever). A reduction semantics must satisfy a
unique-decomposition property. A reduction-based normaliser is a
program implementing a reduction semantics.

A big-step operational semantics is given by a partial function
that does away with intermediate single steps and delivers, for an
input term, the final irreducible term of the reduction sequence,
if such term exists, or diverges otherwise. Figure 1 (left column)
shows an example. A reduction-free normaliser is a program im-
plementing the big-step partial function.1

Small-step and big-step operational semantics are based on an
underlying reduction strategy, informally, a total order in which
redices are to be contracted.

Finally, an abstract machine is a state transition machine which,
unlike a virtual machine, operates directly on terms and therefore
has no instruction set and no need for a compiler.

One of the key contributions of [IT] is to show how to ob-
tain an abstract machine from a reduction semantics (the syn-
tactic correspondence) and from a reduction-free normaliser (the
functional correspondence) by program-transformation steps. The
functional correspondence consists of CPS-transformation and de-
functionalisation steps, which are reversible. The syntactic cor-
respondence consists of refocusing (which optimises the itera-
tion loop), lightweight fusion [10] and inlining-of-iterate-function

1 We also prefer ‘normaliser’ to ‘reducer’ or ‘evaluator’ because the first
suggests that final results are irreducible terms, and ‘evaluator’ appears in
the context of denotational semantics.

mailto:agarcia@babel.ls.fi.upm.es
mailto:pablo.nogueira@upm.es

steps, which are not reversible in general. The following diagram
illustrates the connections:

syntactic functional

Reduction ==? Abstract -4=r- Reduction-free
semantics Machine normaliser

A reduction semantics and a reduction-free normaliser are said
to be interderivable if they derive the same abstract machine.
From left to right, a reduction-free normaliser can be derived from
a reduction semantics. From right to left, a reduction semantics
can be postulated whose derived abstract machine is also derived
from the reduction-free normaliser. Interderived semantic artefacts
are equivalent because the transformation steps are equivalence-
preserving. By equivalent we mean they implement the same re­
duction strategy (contract redices in the same order). Informally,
‘they all truly define the same elephant’ [12].

In [IT] we find the equivalence of various call-by-name and call-
by-value normalisers and their corresponding abstract machines,
namely, Krivine’s, SECD, CEK, CLS, etc.

However, the interderivation offull-reducing strategies, and cor­
responding abstract machines such as [6, 7,15], has received scarce
attention. The importance of full reduction has been acknowl­
edged long ago [6]. Two applications are program optimisation
by partial evaluation and type checking in proof assistants [15].
Full-reducing2 strategies deliver (full-)normal-forms, as opposed
to weak-normal-forms or weak-head-normal-forms. Paradigmatic
full-reducing strategies of the pure lambda calculus are applicative
order and normal order. Applicative order,3 like call-by-name and
call-by-value strategies, is a uniform strategy, it does not rely on
another strategy and is defined only in terms of itself (see for ex­
ample [19]). In contrast, normal order is a hybrid strategy, it does
rely on a subsidiary uniform sub-strategy, namely, call-by-name.
(We borrow ‘uniform’ and ‘hybrid’ terminology from [19].)

Hybridisation is unproblematic in the functional correspon­
dence. In [2] we find the derivation of a big-step virtual machine
from a reduction-free full normaliser for normal order. However,
the syntactic correspondence between reduction semantics and ab­
stract machines cannot be established for hybrid strategies such as
normal order using the current interderivation techniques verba­
tim.

Hybridisation is important because it is a necessary condition
for a strategy to be full-reducing and complete. A full-reducing
strategy is complete i f it delivers the full-normal-form of a term
if it exists or diverges otherwise. Normal order is complete, it relies
on call-by-name to avoid going prematurely ‘under lambda’ and
discards unneeded potentially divergent subterms [20]. Another im­
portant complete hybrid strategy is the counterpart of normal order
in the lambda-value calculus [17] (Section 7). In contrast, applica­
tive order is uniform and is not complete: it reduces potentially
divergent subterms.

Contributions: We refine the refocusing and inlining-of-iterate-
function steps of the syntactic correspondence in order to accom­
modate hybrid strategies, and showcase the detailed interderiva­
tion of small-step and big-step semantic artefacts for normal or­
der. The abstract machine we obtain is, as expected, a variant of
the full Krivine machine KN [7], actually, KN is derivable from
our machine. Our solution makes it possible to interderive, rather
than contrive, full-reducing abstract machines. We use the same

2 Some authors use ‘strong-reducing’, but that may be confused with
‘strong-normalising’ which means something different [4].
3 Applicative order should not be confused with call-by-value! It is a strat­
egy of the pure lambda calculus, not of the pure lambda-value calculus [17].
It reduces operands before applications and realises the idea of ‘passing pa­
rameters by value’ but ‘value’ here means ‘full-normal-form’ and not ‘non-
applications’ as in the lambda-value calculus.

programming language (Standard ML) and follow the same steps
in the presentation as [9] and [12]. The latter, which appeared in
PEPM’11, is an excellent tutorial introduction to [IT]. We assume
the reader is familiar with Standard ML, with those papers, and
with the lambda calculus. Our code can be downloaded from the
following URL:

http://babel.Is.fi.upm.es/ ~ agarcia/papers/PEPH13
The following paragraphs summarise the technicalities. Like

[12], we start from a search function and derive from it the context-
based reduction semantics:

Search =£- Reduction =£-
function semantics

A search function locates the next redex to be contracted or re­
turns the corresponding irreducible form if no contractable redices
exist. Starting from a search function is important to discover the
correspondence between reduction contexts and defunctionalised
continuations. Two semantic artefacts (hybrid and subsidiary) have
to be interderived in parallel but a single datatype for defunction­
alised continuations is needed. I f we apply the techniques literally
then the refocus function in the reduction semantics and the iterate
function in the ‘pre-abstract machine’ [11] end up depending on the
current defunctionalised continuation to determine which normali­
sation function (hybrid or subsidiary) must continue. Consequently,
after inlining the iterate function, the dispatcher for the abstract ma­
chine has to inspect the context stack deeply, i.e., has to look at the
arguments of value constructors representing defunctionalised con­
tinuations. But since refunctionalisation requires a shallow inspec­
tion of the context stack, the machine obtained cannot be refunc-
tionalised into a CPS program.

We observe that there is a dependency between the value con­
structors of defunctionalised continuations and which normalising
function has to continue. This wi l l allow us to rewrite the dispatcher
to have the shallow inspection property. From the abstract machine
we finally obtain the correct reduction-free normaliser.

2. Preliminaries
The pure untyped lambda calculus (AK/3 calculus) is described in
[4]. We use the traditional syntax of lambda terms as specified by
the pseudo-grammar A : := x | (Arc.A) | (A A), where x, y, etc,
range over the elements of a countably infinite set of variables.
In words (to refresh terminology), terms consist of variables, of
abstractions (consisting of a bound variable and a term called the
abstraction body), and of applications of an operator term to an
operand term. For example, ((Xx.x)y) is the identity abstraction
applied to variable y. The abstraction (Xx.x) is the operator in
the application, and the variable y is the operand. We overload A
for a grammatical non-terminal and for the set of lambda terms.
Uppercase, sometimes primed, letters M, N, B, M', etc, range
over elements of A. We use the standard precedence and association
conventions: applications associate to the left and abstraction binds
tighter than application. Hence, we write (Xx.x)y.

We use grammars in Extended Backus-Naur Form to define sub­
sets of A. Alphanumeric non-terminal names are written in upper­
case sans-serif. For example, NF : := Arc.NF | x {NF}* defines the
set of full-normal-forms. The regular expression {a}* stands for
zero or more occurrences of the sentential form a. For example, x,
x NF, x NF NF, etc., are sentential forms of the second production,
which respectively associate as x, (x NF), {{x NF) NF), etc.

The reader must be familiar with the usual notions of bound
and free variable, syntactic equality of terms modulo renaming of
bound variables (written =) , substitution ([N/x]B stands for the
term resulting from the capture-avoiding substitution of N for the
free occurrences of x in B), the notion of redex (a term of the

http://babel.ls.fi.upm.es/~agarcia/papers/PEPM13

(B N - V A R)
X JJ-in x Xx.B JJ-(,„ Xx.B

M i l j ! ji j ! \ rj\r/] n n '
tyhn M M = XX.B [I\/X\t> iybn B

M A T || n '
JV ij-bn t>

JJ-in M M ^ AX.O

M N JJ-(,„ M ' TV

(B N - A B S)

(B N - C O N)

(Xx.B)N —¥no [N/x]B

M ^ J T n /r ,
0 WHNI- M —¥no M

(fi)

(pi)

(B N - N E U)

(N O - V A R)
S II '

iyno B
II 7

x iyno x Xx.B iyno Xx.B
M M r! ji r! \ r A r] n 11 /

JJ-in M M = Xx.B [I\/xB iyno B

(N O - A B S)

M N —¥no M N

G WHNI- M ^ Xx.B M —\no M
M A T i ^ / »r

iV - * „ „ M iv

M ^ M P 71 ^ L \ A T A r '

G Nr M ^ Xx.B iV -*„„ iV

(p2)

M A T || rV
JV JJ-no ±3

M M W ji W i. \ r! | | W / A T M A 7"

JJ-in M M ^ Xx.B M iyno M iV JJ-no iV
M A T H W A 7"'

JV JJ-no M iV

(N O - C O N)

M A 7" A 7"'

iV —>no M iv

-*„„ B

Xx.B —¥no Xx.B

(v)

(?)

(N O - N E U)

I - \ "1 *

W H N I - : : = A x . Λ | x { Λ }

NF : : = Arc.NF | x { N F } *

Figure 1. Big-step (left column) and small-step (right column) operational semantics of normal order.

form (Xx.B)N) and the single-step reduction relation — ^ and its
reflexive and transitive closure — ^ .

A n operational semantics is a part ial funct ion that is a sub-
relation o f —>*p. We are interested in operational semantics wh ich
realise a reduction strategy by choosing redices in a f ixed order.
We wri te M —>s N and M JJ-S TV respectively for the small-step
and big-step semantics o f reduction strategy s. We use relational
M JJ-S TV and funct ional JJS (M) = TV notation interchangeably
in order to use diagrammatic composit ion when appropriate, e.g.,
(JJ-s; JJ-t)(Af) = JJ-t (JJ-s (A f)) .

3. Normal order and hybridisation
Normal order is typical ly defined by the slogan ‘contract the left­
most redex f i rst ’ , understanding ‘ leftmost’ as in [8] or ‘ leftmost-
outermost’ when referring to the redex’s posit ion in the abstract
syntax tree o f the term. Normal order is complete and is substanti­
ated by the Standardisation Theorem [8] . Figure 1 shows the b ig-
step (left column) and small-step (right column) semantics o f nor­
ma l order.

Let us begin w i th the big-step (relation JJ-no). Rule N O - V A R
says normal order on variables is an identity. Rule N O - A B S says
that normal order recursively ‘goes under lambda’ . Rules N O -
C O N and N O - N E U say in their first premiss that normal order
relies on call-by-name JJ(,n to reduce operators in applications MN
(potential redices). I f the result is an abstraction (second premiss o f
Rule N O - C O N) then normal order reduces the result o f substituting
the unreduced operand for the free variable in the abstraction body,
thus implementing non-strict funct ional semantics for redices. I f
the result is not an abstraction (second premiss o f Rule N O - N E U)
then the or ig inal application MN is a neutral term. (Neutral terms
are either single variables or non-redex applications.) I n that case
normal order fully-reduces the operator and the operand.

Let us look at subsidiary call-by-name JJ(,n. Rule B N - A B S says
that, unl ike normal order, cal l-by-name does not go under lambda.
Rule B N - N E U says that, unl ike normal order, i t does not reduce
operands in neutral terms. Rule B N - C O N says that, l ike normal
order, i t implements non-strict funct ional semantics for redices.
Cal l-by-name is a un i form strategy recursively defined only in
terms of itself. Normal order relies on call-by-name so that the
leftmost redex (Xx.B)N is contracted next and not a redex w i th in
B by going prematurely under lambda.

datatype term = IND of int | LAM of term
| APP of term * term

(* bn : term -> term *)
fun bn (i as IND n) = i
| bn (l as LAM b) = l
| bn (APP (m, n)) =
let val m’ = bn m
in (case m’ of (LAM b) => bn (subst (b, n, 0))

| _ => APP (m’, n))
end

(* no : term -> term *)
fun no (i as IND n) = i
| no (LAM b) = LAM (no b)
| no (APP (m, n)) =
let val m’ = bn m
in (case m’ of (LAM b) => no (subst (b, n, 0))

| _ => APP (no m’, no n))
end

Figure 2. Canonical substitution-based reduction-free normaliser
for normal order.

The reader should not be daunted by the rules. These conform
to the format o f Hi lbert-style logical theories for defining rela­
tions [4] . I n fact, JJno and JJ(,n are syntax-directed part ial functions
w i th a natural semantics interpretation [16]. The Boolean condi­
tions in premisses are non-overlapping so the rules can be applied
deterministically and translate directly to a strict funct ional pro­
gram in wh ich a term matching the left-hand-side of the conclu­
sion is recursively reduced according to the premisses f rom left to
r ight, w i th conditions corresponding to case analysis. The canon­
ical ‘substitution-based’ (fo l lowing terminology in [5]) reduction-
free normaliser in Figure 2 has been wri t ten directly f r om the rules,
save for the de-Bruijn-indices representation [4] of lambda terms.
Function subst implements capture-avoiding substitution.

Now to the small-step (relation —>no). There is no rule for
variables because these are in fu l l -normal- form. Rule (/3) reduces
redices. Rule (£) provides structural compatibi l i ty w i th abstractions
(going under lambda). Apart f rom (/3), there are three other rules for
applications. Rule (p1) reduces the operator when i t is not in weak-

(RN-VAR)
JJ-in t> B JJ-m B

II \ D M \ D
ti^ SV'T*TI X A X . IZ) Ay^n, AX• £J

M l I T* A T M A T ' A r ' n A 7"

JJ-rn M iV JJ.(,n iV iV l).rn iV
M A T II Jl W »f / /

Figure 3. The readback stage of normal order.

(RN-ABS)

(RN-NEU)

Terms:
Normal forms:

Contexts:

/3-rule:

A : := x | Xx.A | A A
NF : := Arc.NF | NNF

NNF : := x | NNF NF
Cno[] - = C(,„[] | Aai.Cno[] I Cne[]
Cfm[] - = [] | Cbn[] A
Cne[] ::= NNF Cno[] \ Cne[] A
(Xx.B)N —¥p [N/x]B

Figure 5. Reduction semantics for normal order.

~~*"A "

\x.a —vh \x.a
(p1)

i = min{j < m\Mj ^ NF} Mi —)-A Mt

xMl... Mm -+ xMi...M- ... Mm
(p2)

(p3)
(Xx.B)N Mi... Mm — Â [N/x]B Mi... Mm

Figure 4. Principal reduction machine for normal order.

head-normal-form (hereafter whnf). Rule (p2) reduces the operator
when it is not an abstraction, if it were then Rule (/3) would have
been applicable instead. Finally, Rule (v) reduces the operand when
the operator is in full-normal-form (hereafter nf). Although a nf is
also a whnf, Rules (p2) and (v) are non-overlapping because the
third premiss in (p2) is not the case when M G NF.

Hybridisation is a structural property. In the big-step semantics,
a subsidiary set of rules defines a strategy used by normal order.
In the small-step semantics, a subsidiary sub-relation can be iden­
tified. More concretely, JJ-(,„ is used on operators by JJ-no, and (/3)
and (pi) define small-step call-by-name, exactly function —>„ in
Plotkin’s XN calculus [17]. It is immediate to prove that call-by­
name is a left identity of normal order: JJ-(,„; JJ-

no — v'^o .

Hybridisation is inexorably conspicuous in alternative rendi­
tions, for example:

• Normal order can be defined in eval-readback style in a similar
fashion to the definition of iV0 , a strict full-reducing strategy
for a closed calculus [15]. In our case, the ‘eval’ stage is JJ-(,„,
and the ‘readback’ stage is JJ-rn shown in Figure 3. Normal or­
der is the composition JJ-(,„; JJ-rn. The eval stage carries out the
reduction steps corresponding to the first premiss in Rule N O -
C O N (shared with Rule N O - N E U) and the nested call-by-name
reduction steps of the third premiss. The distribution of reduc­
tion over whnfs is deferred to the readback stage. Notice that
JJ-rn has no R N - C O N rule because it operates on terms in whnf,
and a term in whnf cannot have an outermost redex.

• Normal order is obtained by instantiating A with A, and A-nf
with NF in the ‘principal reduction machine’ — ^ of the para­
metric lambda calculus [18], as shown in Figure 4. The para­
metric lambda calculus generalises various lambda calculi by
adding the premiss N e A to the beta rule. Different calculi
are obtained by choosing particular sets of terms for A . The
principal reduction machine is simply a small-step reduction
strategy that is parametric on A and on a notion of normal form
A-nf. It uses a flattened representation of multiple applications.
The hybrid-subsidiary interplay can be observed in the rules of
Figure 4. Rule (p3) subsumes rules (/3) and (pi) in Figure 1
which correspond to call-by-name. Rules (pi) and (p2) reduce
terms in whnf. The left-hand-sides of their conclusions match
the definition of WHNF (Figure 1).

Context-based reduction semantics. A context-based reduction
semantics [11, 13] is the starting point of a syntactic correspon­
dence. Hybridisation is also conspicuous in the context-based re­
duction semantics of normal order, shown in Figure 5, which con­
sists of terms, nfs, reduction contexts, and the /3-rule. Normal or­
der is the iteration of single reductions consisting of (i) decom­
posing a term into a reduction context (derived from non-terminal
Cno []) and a redex within the hole [] , (ii) contracting the redex
and, (iii) plugging the contractum back into its context, recompos-
ing the next reduct in the reduction sequence [11]. The iteration
either terminates when the term is a nf or otherwise diverges. Non­
terminal NNF defines neutral terms in full-normal-form. Figure 6
shows two single reductions for a particular term. The reduction
contexts obtained are shown on the right. The context Cno [] sat­
isfies the unique-decomposition property, that is, a term is either a
nf or can be decomposed into a unique context and the next redex.
The proof that Cno [] is uniquely-decomposable proceeds by simple
induction on terms.

The hybrid-subsidiary interplay can be observed in that Cno []
includes the call-by-name reduction context C(,„ [] . The reduction
semantics for call-by-name consists of C(,„[] and the /3-rule. The
inclusion is unavoidable: Cno [] cannot be defined without C(,„ []
which has to be used in the operator position when an application is
a redex. Notice also that Cno [] contexts other than C(,„[] precisely
match the shape of a whnf. A hole can only occur at the body
of an abstraction, Xx.Cno[] , or at the operand of an application
with a neutral term in full-normal-form as operator NNF Cno [].
This application may be possibly applied to additional unreduced
arguments, Cne[] A. In the latter case, the hole is always at the
right of a nf and at the left of arbitrary terms, thus enforcing left
reduction: NNF Cno [] A . . . A.

4. Prelude to a reduction semantics
Like [12] we start the syntactic correspondence from a search
function that locates the next redex to be contracted and then derive
from it the context-based reduction semantics of Figure 5. The
transformation of the search function into decomposition functions
wi l l shed light on the correspondence between reduction contexts
and defunctionalised continuations (Section 4.5).

Two search functions are required, one for the hybrid that
searches for a nf or the next redex to be contracted, and another
for the subsidiary that searches for a whnf or the next redex in the
call-by-name sub-reduction to be contracted. The two search func­
tions are to be transformed into decomposition functions which,
additionally to the next redex, give the context where it appears.
We construct the search functions from the small-step definition of
normal order in Figure 1, observing that rules (p2), (y) and (£) are
applicable only when a term is already in whnf, and therefore, they
are not applied by the subsidiary search function:

• The hybrid search must invoke the subsidiary search over oper­
ators in applications in order to check whether they are whnfs
or not, correlating with Rules (pi) and (p2). When a non-
abstraction whnf is found, the hybrid search must be invoked

(I{x(\x.I I)))I (where 1 = Xx.x)
~ ^ \ ^ decompose

Ci[I{x(\x.I I))]

I ft
Ci[x(\x.I I)]

^ ^ recompose

{x(\x.I I))I
~ \ ^ decompose

C2 [/ i]

C2 [-?!
^ ^ recompose

(x(\x.I))I

Context Derivation

Ci[] = [] I C-no [] =r"
C(,„[] =>•
Cbn[] A =>•
[] A =r- [] I

C2[] = (x(\x.[]))I Cno[] =4> C n e [] =r-
Cne [] A =r-
(NNF Cn o[])A =>•
(a; Cn o[])A =̂>
(a;(Aa;.Cno[]))A =>•
(a;(Aa;.Cjm[]))A =>•
{x(\x.[]))A =̂>
(a;(Aa;.[]))J

Figure 6. Example of normal order reduction sequence using context-based reduction semantics.

over that whnf, correlating with Rule (/x2). I f the result of that
search is a nf then the hybrid search must be invoked over the
operand, correlating with Rule (y). Finally, the hybrid search
must always be invoked over the bodies of abstractions, corre­
lating with Rule (£).

• The subsidiary search, in turn, must invoke itself recursively on
operators, correlating with Rule (pi). It could be realised as
a predicate function that tests i f the input term is in whnf, after
which hybrid search would continue i f it is not. However, hybrid
search subsumes such predicate function and returns the next
contratable redex when the term is not in whnf. Our subsidiary
search realises that subrelation of the hybrid search.

Notice that free variables are trivially returned as nfs or whnfs,
respectively, to the hybrid or subsidiary search functions.

4.1 One datatype embedding nfs in whnfs

The datatype term has been given in Figure 2. As for nfs and wh­
nfs, we could define a different datatype for each but this compli­
cates the CPS transformation step (there wi l l be different defunc-
tionalised continuation datatypes for subsidiary and hybrid) which
would require some sort of two-layer CPS. Rather, we embed nfs
into whnfs, reuse most of the datatypes (irreducible forms, redices,
defunctionalised continuations, etc) and use a flat CPS. The type
whnf follows the function and accumulator representation of [15]
and corresponds to non-terminal WHNF in Figure 1 (right column).
A whnf is either an abstraction (in de-Bruijn-indices representa­
tion) or a neutral term consisting of a variable (an index) applied to
zero or more terms. Function embed recovers a term from a whnf,
and apply_acc appends a term operand to the accumulator repre­
sentation of whnfs.

datatype whnf = FUN of term I ACC of int * term list

(* embed : whnf -> term *)
fun embed (FUN b) = LAM b

I embed (ACC (n, ts)) = embed_aux (IND n, ts)

4.2 Search functions

The datatype redex represents redices. The datatype found consists
of a whnf (recall it embeds nfs!) or a redex. Function search_whnf
implements the subsidiary search, and search_nf the hybrid search.

datatype redex = SUB of term * term
datatype found = WHNF of whnf | RED of redex

(* search_whnf : term -> found *)
fun search_whnf (IND n) = WHNF (ACC (n, []))
| search_whnf (LAM b) = WHNF (FUN b)
| search_whnf (APP (m, n)) =
(case search_whnf m
of (WHNF wm) =>

(case wm of (FUN b) => RED (SUB (b, n))
| _ => WHNF (apply_acc (wm, n)))

| (red as RED _) => red)

(* search_nf : term -> found *)
fun search_nf (IND n) = WHNF (ACC (n, []))
| search_nf (LAM b) =
(case search_nf b
of (WHNF wb) => WHNF (FUN (embed wb))
| (red as RED _) => red)

| search_nf (APP (m, n)) =
(case search_whnf m
of (WHNF wm) =>

(case wm of (FUN b) => RED (SUB (b, n))
|_ =>

(case search_nf (embed wm)
of (WHNF nm) =>

(case search_nf n
of (WHNF nn) =>

WHNF (apply_acc (nm, embed nn))
| (red as RED _) => red)

| (red as RED _) => red))
| (red as RED _) => red)

(* search : term -> found *)
fun search t = search_nf t

(* embed_aux : term * term list -> term *)
and embed_aux (t, []) = t
| embed_aux (m, (t :: ts)) =
embed_aux (APP (m, t), ts)

(* apply_acc : whnf * term -> whnf *)
fun apply_acc (ACC (n, ts), t)

= ACC (n, ts @ [t])

4.3 The search functions in continuation-passing style

(* search_whnf_cps : term * (found -> ’a) -> ’a *)
fun search_whnf_cps (IND n, k) = k (WHNF (ACC (n, [])))
| search_whnf_cps (LAM b, k) = k (WHNF (FUN b))
| search_whnf_cps (APP (m, n), k) =
search_whnf_cps (m,
fn (WHNF wm) =>

(case wm of (FUN b) => k (RED (SUB (b, n)))

| _ => k (WHNF (apply_acc (wm, n))))
| (red as RED _) => k red)

(* search_nf_cps : term * (found -> ’a) -> ’a *)
fun search_nf_cps (IND n, k) = k (WHNF (ACC (n, [])))
| search_nf_cps (LAM b, k) =
search_nf_cps (b,
fn (WHNF wb) => k (WHNF (FUN (embed wb)))
| (red as RED _) => k red)

| search_nf_cps (APP (m, n), k) =
search_whnf_cps (m,
fn (WHNF wm) =>

(case wm
of (FUN b) => k (RED (SUB (b, n)))
|_ =>
search_nf_cps (embed wm,
fn (WHNF nm) =>

search_nf_cps (n,
fn (WHNF nn) =>

k (WHNF (apply_acc (nm, embed nn)))
| (red as RED _) => k red)

| (red as RED _) => k red))
| (red as RED _) => k red)

(* search1 : term -> found *)
fun search1 t = search_nf_cps (t, fn f => f)

4.4 Simplifying the CPS-transformed search functions

The CPS-transformed search functions are simplified by return­
ing a result only when a redex or a whnf is found. The sim­
plification rests on an isomorphism between the type signatures
for continuations [3]. Datatype found is the disjoint sum of whnf
and redex, and type (whnf + redex -> ’a) is isomorphic to type
(whnf -> ’a) * (redex -> ’a). The (redex -> ’a) continua­
tions are always the identity and can be optimised away. Because
the end result is always of type found, we can instantiate ’a to
found, leaving term * (whnf -> found) -> found as the type sig­
nature for the CPS-transformed search functions.

(* search_whnf_sim : term * (whnf -> found) -> found *)
fun search_whnf_sim (IND n, k) = k (ACC (n, []))
| search_whnf_sim (LAM b, k) = k (FUN b)
| search_whnf_sim (APP (m, n), k) =
search_whnf_sim (m,
fn wm =>

(case wm of (FUN b) => RED (SUB (b, n))
| _ => k (apply_acc (wm, n))))

(* search_nf_sim : term * (whnf -> found) -> found *)
fun search_nf_sim (IND n, k) = k (ACC (n, []))
| search_nf_sim (LAM b, k) =
search_nf_sim (b, fn wb => k (FUN (embed wb)))

| search_nf_sim (APP (m, n), k) =
search_whnf_sim (m,
fn wm =>

(case wm
of (FUN b) => RED (SUB (b, n))
| _ => search_nf_sim (embed wm,

fn nm =>
search_nf_sim (n,
fn nn =>

k (apply_acc (nm, embed nn))))))

(* search2 : term -> found *)
fun search2 t = search_nf_sim (t, fn v => WHNF v)

4.5 Defunctionalising continuations

Continuations are defunctionalised by enumerating the inhabitants
of the function space and introducing the apply_cont function
that dispatches on them. The type continuation is an explicit
representation of the context in which a search takes place.

datatype continuation = CO
I CI of term * continuation
I C2 of continuation
I C3 of term * continuation
I C4 of term * continuation
I C5 of continuation * wnnf

(* apply_cont : continuation * wnnf -> found *)
fun apply_cont (CO, w) = WHNF w

I apply_cont (CI (n, k), wm) =
(case wm of (FUN b) => RED (SUB (b, n))

I _ => apply_cont (k, apply_acc (wm, n)))
I apply_cont (C2 k, wb) =
apply_cont (k, FUN (embed wb))

I apply_cont (C3 (n, k), wm) =
(case wm
of (FUN b) => RED (SUB (b, n))

I _ => search_nf_cont (embed wm, C4 (n, k)))
I apply_cont (C4 (n, k), nm) =
search_nf_cont (n, C5 (k, nm))

I apply_cont (C5 (k, nm), nn) =
apply_cont (k, apply_acc (nm, embed nn))

(* search_whnf_cont : term * continuation -> found *)
and search_whnf_cont (IND n, k) =

apply_cont (k, ACC (n, []))
I search_whnf_cont (LAM b, k) =
apply_cont (k, (FUN b))

I search_whnf_cont (APP (m, n), k) =
search_whnf_cont (m, CI (n, k))

(* search_nf_cont : term * continuation -> found *)
and search_nf_cont (IND n, k) =

apply_cont (k, ACC (n, []))
I search_nf_cont (LAM b, k) = search_nf_cont (b, C2 k)
I search_nf_cont (APP (m, n), k) =
search_whnf_cont (m, C3 (n, k))

(* search3 : term -> found *)
fun search3 t = search_nf_cont (t, CO)

Constructor CO stands for the initial continuation. Constructor Cl
stands for the continuation in search.whnf_sim, while C2, C3, C4
and C5 stand for the continuations in search.nf_sim. Constructors
Cl and C3 are analogous, they both correspond to a context with
the hole inside the operator. However, we cannot subsume them
into a single constructor because they inform about which search
function is to continue: the dispatching function apply.cont acts
differently on them when it encounters neutral terms. It applies
the parameter continuation k to the whole term in the case of
Cl but applies search_nf_cont over the operator with a new C4
continuation in the case of C3. Thus, the datatype continuation
carries more information than just the position of the hole in the
term. Observe that looking at the context stack shallowly is not
enough to know whether we are within the hybrid or the subsidiary,
because C3 appears in both cases.

As expected, defunctionalised continuations correspond to re­
duction contexts (Figure 5) with some subtle appreciations:

• CO stands for the empty context: [] .

• Cl stands for a call-by-name context in the operator, which is
not derived from a normal order context: C&n [] A.

• C2 stands for a context in the body of a lambda: Xx.Cno [].

• C3 stands for a call-by-name context in the operator, but this
time derived from a normal order context: Q n [] A.

• C4 stands for a context in the operator of a neutral term: Cne [] A.

• C5 stands for a context in the operand of a neutral term in nf:
NNF Cno[].

There is no need to distinguish between initial continuations (holes)
which are derived from a normal order context or not, because there
is nothing to do after the initial continuation. However, an imple­
mentation with two initial continuations (respectively for hybrid
and subsidiary) would also be correct. Nevertheless, for the pur­
pose of full reduction, the initial continuation which corresponds
to call-by-name would be unused. Only a stand-alone normaliser
for the subsidiary call-by-name would use it.

4.6 From search to decomposition

We turn the search into a decomposition. The result is the found
redex (if any) together with the reduction context where it appears.

datatype whnf_or_decomposition = WHNF of whnf
| DEC of redex * continuation

(* decompose_cont : continuation * whnf
-> whnf_or_decomposition *)

fun decompose_cont (C0, w) = WHNF w
| decompose_cont (C1 (n, k), wm) =
(case wm
of (FUN b) => DEC (SUB (b, n), k)
| _ => decompose_cont (k, apply_acc (wm, n)))

| decompose_cont (C2 k, wb) =
decompose_cont (k, FUN (embed wb))

| decompose_cont (C3 (n, k), wm) =
(case wm
of (FUN b) => DEC (SUB (b, n), k)

| _ => decompose_nf (embed wm, C4 (n, k)))
| decompose_cont (C4 (n, k), nm) =
decompose_nf (n, C5 (k, nm))

| decompose_cont (C5 (k, nm), nn) =
decompose_cont (k, apply_acc (nm, embed nn))

(* decompose_whnf : term * continuation
-> whnf_or_decomposition *)

and decompose_whnf (IND n, k) =
decompose_cont (k, ACC (n, []))

| decompose_whnf (LAM b, k) =
decompose_cont (k, FUN b)

| decompose_whnf (APP (m, n), k) =
decompose_whnf (m, C1 (n, k))

(* decompose_nf : term * continuation
-> whnf_or_decomposition *)

and decompose_nf (IND n, k) =
decompose_cont (k, ACC (n, []))

| decompose_nf (LAM b, k) = decompose_nf (b, C2 k)
| decompose_nf (APP (m, n), k) =
decompose_whnf (m, C3 (n, k))

(* decompose : term -> whnf_or_decomposition *)
fun decompose t = decompose_nf (t, C0)

(* recompose : continuation * term -> term *)
fun recompose (C0, t) = t
| recompose (C1 (n, k), m)
| recompose (C2 k, b)
| recompose (C3 (n, k), m)
| recompose (C4 (n, k), m)
| recompose (C5 (k, nm), n) =
recompose (k, APP (embed nm, n))

5. A reduction semantics
5.1 Reduction-based normalisation

The reduction-based approach iterates decomposition, contraction
and recomposition until a nf is found:

datatype contractum = CONTRACTUM of term
| ERROR of string

recompose (k, APP (m, n))
recompose (k, LAM b)
recompose (k, APP (m, n))
recompose (k, APP (m, n))

(* contract : redex -> contractum *)
fun contract (SUB (b, n)) = CONTRACTUM (subst (b, n, 0))

datatype result_or_wrong = RESULT of whnf
| WRONG of string

(* refocus : term * continuation
-> whnf_or_decomposition *)

fun refocus con = (decompose (recompose con))

(* iterate : whnf_or_decomposition -> result_or_wrong *)
fun iterate (WHNF w) = RESULT w
| iterate (DEC (red, k)) =

(case contract red
of (CONTRACTUM t) => iterate (refocus (k, t))
| (ERROR s) => WRONG s)

(* normalise : term -> result_or_wrong *)
fun normalise t = iterate (decompose t)

The normaliser implements a small-step state transition machine
in trampolined style [14], where configurations (states) coincide
with decompositions (whnf_or_decomposition). Discrete transi­
tions steps are implemented by the composition of contract,
recompose and decompose. The last two constitute extensional re-
focusing [11, 12] (function refocus). The iterate function is the
trampoline, taking a decomposition, contracting the redex and then
recursively invoking itself over the refocused contractum until the
decomposition consists of a whnf (again, recall it embeds nfs).

5.2 Refocusing intensionally

We deforest recomposition and decomposition into an intensional
refocus function [9]. The reduction-free iterate-and-refocus nor-
maliser does away with intermediate reducts:

(* refocus1 : term * continuation
-> whnf_or_decomposition *)

fun refocus1 (t, k) =
(case k of (C1 (_, _) | C3 (_, _)) =>

decompose_whnf (t, k)
| _ =>

decompose_nf (t, k))

(* iterate1 : whnf_or_decomposition -> result_or_wrong *)
fun iterate1 (WHNF w) = RESULT w
| iterate1 (DEC (red, k)) =

(case contract red of (CONTRACTUM t) =>
iterate1 (refocus1 (t, k))

| (ERROR s) => WRONG s)

(* normalise1 : term -> result_or_wrong *)
fun normalise1 t = iterate1 (refocus1 (t, C0))

In refocus1, we inspect the current continuation k to decide on
which decomposition function to continue. The only continuations
on which function decompose_whnf (Section 4.6) is invoked are C1
and C3. The case expression in refocus1 takes care of that.

5.3 Pre-abstract machine

The contraction function contract can be inlined, and conse­
quently the ERROR case disappears because contract does not con­
sider execution errors. A result (if any) can only be a nf, otherwise
the iteration diverges.

(* iterate2 : whnf_or_decomposition -> result_or_wrong *)
fun iterate2 (WHNF w) = RESULT w
| iterate2 (DEC (SUB (b, n), k)) =

iterate2 (refocus1 (subst (b, n, 0), k))

(* normalise2 : term -> result_or_wrong *)
fun normalise2 t = iterate2 (refocus1 (t, C0))

This is a pre-abstract machine [11], where the transition function
uses the intensional refocus1 and the trampoline iterate2 sched­
ules the transition function until a result is obtained.

5.4 Lightweight fusion by fixed-point promotion

Functions iterate2 and refocus1 are lightweight-fused [10]:

(* normalise3_cont : continuation * whnf
-> result_or_wrong *)

fun normalise3_cont (C0, w) = iterate3 (WHNF w)
| normalise3_cont (C1 (n, k), wm) =
(case wm of (FUN b) => iterate3 (DEC (SUB (b, n), k))

| _ =>
normalise3_cont (k, apply_acc (wm, n)))

| normalise3_cont (C2 k, wb) =
normalise3_cont (k, FUN (embed wb))

| normalise3_cont (C3 (n, k), wm) =
(case wm of (FUN b) => iterate3 (DEC (SUB (b, n), k))

| _ =>
normalise3_nf (embed wm, C4 (n, k)))

| normalise3_cont (C4 (n, k), nm) =
normalise3_nf (n, C5 (k, nm))

| normalise3_cont (C5 (k, nm), nn) =
normalise3_cont (k, apply_acc (nm, embed nn))

(* normalise3_whnf : term * continuation
-> result_or_wrong *)

and normalise3_whnf (IND n, k) =
normalise3_cont (k, ACC (n, []))

| normalise3_whnf (LAM b, k) =
normalise3_cont (k, FUN b)

| normalise3_whnf (APP (m, n), k) =
normalise3_whnf (m, C1 (n, k))

(* normalise3_nf : term * continuation
-> result_or_wrong *)

and normalise3_nf (IND n, k) =
normalise3_cont (k, ACC (n, []))

| normalise3_nf (LAM b, k) =
normalise3_nf (b, C2 k)

| normalise3_nf (APP (m, n), k) =
normalise3_whnf (m, C3 (n, k))

(* iterate3 : whnf_or_decomposition -> result_or_wrong *)
and iterate3 (WHNF w) = RESULT w
| iterate3 (DEC (SUB (b, n), k)) =
(case k of (C1 (_, _) | C3 (_, _)) =>

normalise3_whnf (subst (b, n, 0), k)
| _ =>
normalise3_nf (subst (b, n, 0), k))

(* normalise3 : term -> result_or_wrong *)
fun normalise3 t = normalise3_nf (t, C0)

The result is an optimised normaliser where adjacent iterate3 and
refocus1 have been fused. The normaliser is now closer to a big­
step tail-recursive implementation of an abstract machine.

5.5 Corridor transitions and inlining-of-iterate-function

Some configurations (states) have only one possible transition. We
cut-and-paste the transition functions above, renaming their indices
from 3 to 4:

normalise4_cont (C0, w)
= (* inlining normalise4_cont *)
iterate4 (WHNF w)
= (* inlining iterate4 *)
RESULT w

We must contract this corridor transition, i.e., inline
normalise4_cont and iterate4. And then, we must inline
iterate4 inside normalise4_cont.

(* normalise4_cont : continuation * whnf
-> result_or_wrong *)

fun normalise4_cont (C0, w) = RESULT w
| normalise4_cont (C1 (n, k), wm) =
(case wm
of (FUN b) =>

(case k of (C1 (_, _) | C3 (_, _)) =>
normalise4_whnf (subst (b, n, 0), k)

| _ =>
normalise4_nf (subst (b, n, 0), k))

| _ =>
normalise4_cont (k, apply_acc (wm, n)))

| normalise4_cont (C2 k, wb) =
normalise4_cont (k, FUN (embed wb))

| normalise4_cont (C3 (n, k), wm) =
(case wm
of (FUN b) =>

(case k of (C1 (_, _) | C3 (_, _)) =>
normalise4_whnf (subst (b, n, 0), k)

| _ =>
normalise4_nf (subst (b, n, 0), k))

| _ =>
normalise4_nf (embed wm, C4 (n, k)))

| normalise4_cont (C4 (n, k), nm) =
normalise4_nf (n, C5 (k, nm))

| normalise4_cont (C5 (k, nm), nn) =
normalise4_cont (k, apply_acc (nm, embed nn))

(* normalise4_whnf : term * continuation
-> result_or_wrong *)

and normalise4_whnf (IND n, k) =
normalise4_cont (k, ACC (n, []))

| normalise4_whnf (LAM b, k) =
normalise4_cont (k, FUN b)

| normalise4_whnf (APP (m, n), k) =
normalise4_whnf (m, C1 (n, k))

(* normalise4_nf : term * continuation
-> result_or_wrong *)

and normalise4_nf (IND n, k) =
normalise4_cont (k, ACC (n, []))

| normalise4_nf (LAM b, k) =
normalise4_nf (b, C2 k)

| normalise4_nf (APP (m, n), k) =
normalise4_whnf (m, C3 (n, k))

Now the iterate function is unused. Observe that the case-
expression introduced in the refocusing step (Section 5.2) is in-
lined twice in normalise4_cont. Consequently, the artefact ob­
tained does not have the shallow inspection property because
normalise4_cont pattern-matches on k at the inlining point.

5.6 Recovering the shallow inspection property

To pick the right normalising functions at the inlining points we
have to find out which function is invoked with that k as the current
continuation. Note that C1 and C3 are only pushed onto the stack by
normalise4_whnf and normalise4_nf respectively. In both cases,
k is the current continuation (last line of each function). No other
functions can produce defunctionalised continuations C1 and C3,
and therefore the case expression can be safely removed and the
appropriate normalising functions invoked: normalise4_whnf in
the second clause of normalise4_cont, and normalise4_nf in the
fourth clause.

(* normalise5_cont : continuation * whnf
-> result_or_wrong *)

fun normalise5_cont (C0, w) = RESULT w
| normalise5_cont (C1 (n, k), wm) =
(case wm
of (FUN b) => normalise5_whnf (subst (b, n, 0), k)
| _ => normalise5_cont (k, apply_acc (wm, n)))

T
(x,n,S)

(Xx.B,n,S)
(Af TV, n, S)

(x,w,S)
(Xx.B,w,S)
(Af TV, w, S)

(Aai.73, c, Ci(TV) :: S)
(Af, c, Ci(iV) :: S)

(73, c, C2(x) :: S)
(Xx.B,c,Cs(N) :: S)

(Af, c, Cs(N) :: S)
(Af, c, C4(TV) :: S)
(TV, c, CB{M) :: S)

(T, c, Co)

'iriit

~^nf

-+nf
-+nf
' whrif

'whnf

' whrif

' cord

' cord

' cord

' cord

' cord

' cord

' cord

' cord

(T, n, Co)
(x, c, S)
(73, n, C2(x) :: S)
(Af, w, Cs(N) :: S)
(x, c, S)
(Ax.73, c, S)
(Af, w, Ci(7V) :: S)
([N/x]B,w,S)
(Af TV, c, S)
(Ax.73, c, S)
([TV/a;]73, n, S)
(Af, n, C4(TV) :: S)
(TV,n, CB(Af) :: S)
(Af TV, c, S)
T

Figure 7. Normal order abstract machine.

| normalise5_cont (C2 k, wb) =
normalise5_cont (k, FUN (embed wb))

| normalise5_cont (C3 (n, k), wm) =
(case wm
of (FUN b) => normalise5_nf (subst (b, n, 0), k)
| _ => normalise5_nf (embed wm, C4 (n, k)))

| normalise5_cont (C4 (n, k), nm) =
normalise5_nf (n, C5 (k, nm))

| normalise5_cont (C5 (k, nm), nn)=
normalise5_cont (k, apply_acc (nm, embed nn))

(* normalise5_whnf : term * continuation
-> result_or_wrong *)

and normalise5_whnf (IND n, k) =
normalise5_cont (k, ACC (n, []))

| normalise5_whnf (LAM b, k) =
normalise5_cont (k, FUN b)

| normalise5_whnf (APP (m, n), k) =
normalise5_whnf (m, C1 (n, k))

(* normalise5_nf : term * continuation
-> result_or_wrong *)

and normalise5_nf (IND n, k) =
normalise5_cont (k, ACC (n, []))

| normalise5_nf (LAM b, k) = normalise5_nf (b, C2 k)
| normalise5_nf (APP (m, n), k) =
normalise5_whnf (m, C3 (n, k))

(* normalise5 : term -> result_or_wrong *)
fun normalise5 t = normalise5_nf (t, C0)

The shallow inspection property is recovered. The resulting nor-
maliser is a big-step tail-recursive implementation of the abstract
machine in Figure 7. We use a nameful representation for the ma­
chine, storing the formal parameter of an unapplied abstraction in­
side continuation C2. We use the control characters n, w and c to in­
dicate whether the configuration is nf (hybrid), whnf (subsidiary)
or cont (dispatcher) respectively.

Our machine is a variant of the full-reducing Krivine machine
KN [7]. KN is restricted to closed terms, is environment-based
(following terminology in [5]), and proceeds with full reduction
as soon as an accumulator is reached. Our machine admits open
terms, is substitution-based, and reconstructs intermediate whnfs.

KN can be derived from our normal order machine! As follows:
from the reduction-free normaliser (the one in Figure 2 to which we
shall arrive at in Section 6) restricted to closed terms, apply closure
conversion [5], adopt de Bruijn indices for term variables and de
Bruijn levels for formal parameters in environments, like [7], and
subsume substitution, evaluation and normalisation under one nor-
maliser with explicit control. A detailed discussion of the derivation

requires considerable space. We plan to include the derivation in an
extended version of this paper. We refer the interested to the URL
given in the introduction where the code with explanatory com­
ments can be found.

6. From abstract machine to reduction-free
normaliser

6.1 Refunctionalisation

The abstract machine in Section 5.5 is an instance of a de-
functionalised CPS program, with a configuration for dispatch­
ing on the continuations (normalise4_cont) and two configura­
tions for the hybrid and the subsidiary strategy (normalise4_nf and
normalise4_whnf). By refunctionalising it we obtain a reduction-
free normaliser in CPS.

(* normalise6_whnf : term * (whnf -> ’a) -> ’a *)
fun normalise6_whnf (IND n, k) = k (ACC (n, []))
| normalise6_whnf (LAM b, k) = k (FUN b)
| normalise6_whnf (APP (m, n), k) =
normalise6_whnf (m,
fn wm => (case wm

of (FUN b) =>
normalise6_whnf (subst (b, n, 0), k)

| _ => k (apply_acc (wm, n))))

(* normalise6_nf : term * (whnf -> ’a) -> ’a *)
and normalise6_nf (IND n, k) = k (ACC (n, []))
| normalise6_nf (LAM b, k) =
normalise6_nf (b, fn wb => k (FUN (embed wb)))

| normalise6_nf (APP (m, n), k) =
normalise6_whnf (m,
fn wm =>

(case wm
of (FUN b) => normalise6_nf (subst (b, n, 0), k)
| _ =>
normalise6_nf (m,
fn nm =>

normalise6_nf (n,
fn nn

=> k (apply_acc(nm, embed nn))))))

(* normalise6 : term -> result_or_wrong *)
fun normalise6 t = normalise6_nf (t, fn s => RESULT s)

6.2 Back to direct style by inverse CPS transformation

(* normalise7_whnf : term -> result_or_wrong *)
fun normalise7_whnf (IND n) = ACC (n, [])
| normalise7_whnf (LAM b) = FUN b
| normalise7_whnf (APP (m, n)) =
let val wm = normalise7_whnf m
in (case wm

of (FUN b) => normalise7_whnf (subst (b, n, 0))
| _ => apply_acc (wm, n))

end

(* normalise7_nf : term -> result_or_wrong *)
fun normalise7_nf (IND n) = ACC (n, [])
| normalise7_nf (LAM b) =
let val wb = normalise7_nf b
in FUN (embed wb)
end

| normalise7_nf (APP (m, n)) =
let val wm = normalise7_whnf m
in (case wm

of (FUN b) => normalise7_nf (subst (b, n, 0))
| _ =>
let val nm = normalise7_nf (embed wm)

val nn = normalise7_nf (n)

in apply_acc (nm, embed nn)
end)

end

(* normalise7_term : term -> result_or_wrong *)
fun normalise7 t = RESULT (normalise7_nf t)

Save for the ancillary result_or_wrong datatype and the init
function normalise6, this is the canonical reduction-free nor-
maliser in Figure 2, with normalise6_whnf corresponding to bn
and normalise6_nf corresponding to no. This establishes the cor­
respondence.

7. Related and future work
We have already commented at length on [IT] throughout the paper
and particularly in the contributions. As discussed in Section 5.5,
we have derived from our normal order machine (Figure 7) the
full-reducing Krivine machine KN [7]. A detailed discussion of
the derivation requires considerable space. We plan to include the
derivation in an extended version of this paper. But the code with
explanatory comments can be downloaded from the URL given in
the introduction.

In [15], a full-reducing hybrid strategy N() is specified in eval-
readback style. The subsidiary strategy V () is implemented by
an optimised, pre-compiled abstract machine. This machine has
been contrived, not derived. This paper opens up the possibility
of deriving machines for N() . A question to answer is whether
optimisations can be incorporated by program transformation.

We have applied the techniques in this paper to the interderiva-
tion of small-step and big-step artefacts for full-reducing strategies
of the lambda-value calculus, in particular the counterpart of nor­
mal order in that calculus. We hope to publish this results else­
where.

8. Conclusions
The interderivation techniques [IT] can be refined to accommodate
hybrid strategies, of which the full-reducing (and their machines)
are the most interesting. The insight is to use a single datatype
for hybrid and subsidiary artefacts, and to notice the dependency
between the value constructors of defunctionalised continuations
and which normalising function has to continue. By definition, a
hybrid strategy ‘contains’ a subsidiary strategy. Small-step-wise,
the subsidiary is a subrelation. Big-step-wise, the subsidiary is a
left identity. Therefore, it is in general possible to use a single
datatype for hybrid and subsidiary artefacts, and to embed the
hybrid’s irreducible forms in the subsidiary’s.

Acknowledgments
We are grateful to Oliver Danvy for his hospitality and advice,
and to Aarhus University for hosting the first author for a three-
month stay during which he attended Olivier’s excellent and inspir­
ing dTFP course on interderivation techniques. We are also grate­
ful to Jan Midtgaard and to the anonymous reviewers for valuable
feedback on the contents of this paper. The expert reviewer in par­
ticular made some important points that we hope to have addressed
properly.

References
[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional

correspondence between evaluators and abstract machines. In Pro­
ceedings of International Conference on Principles and Practice of
Declarative Programming, pages 8–19, 2003.

[2] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. From inter­
preter to compiler and virtual machine: a functional derivation. Tech­
nical Report RS-03-14, BRICS, Department of Computer Science,
Aarhus University, Denmark, Mar. 2003.

[3] M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with
computational effects. Theoretical Computer Science, 342(1):149–
172, sep 2005.

[4] H. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North
Holland, 1984.

[5] M. Biernacka and O. Danvy. A concrete framework for environment
machines. ACM Trans. Comput. Log, 9(1):6:1–6:29, Dec. 2007.

[6] P. Cre´gut. An abstract machine for lambda-terms normalization. In
Proceedings of LISP and Functional Programming, pages 333–340,
1990.

[7] P. Cre´gut. Strongly reducing variants of the Krivine abstract machine.
Higher-Order and Symbolic Computation, 20(3):209–230, Sept. 2007.

[8] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, 1958.

[9] O. Danvy. From reduction-based to reduction-free normalization.
Electr. Notes. Theor. Comput. Sci, 124(2):79–100, 2005.

[10] O. Danvy and K. Millikin. On the equivalence between small-step and
big-step abstract machines: a simple application of lightweight fusion.
Inf. Process. Lett, 106(3):100–109, 2008.

[11] O. Danvy and L. R. Nielsen. Refocusing in reduction semantics. Tech­
nical Report RS-04-26, BRICS, Department of Computer Science,
Aarhus University, Denmark, Nov. 2004.

[12] O. Danvy, J. Johannsen, and I. Zerny. A walk in the semantic park. In
Proceedings of Workshop on Partial Evaluation and Program Manip­
ulation, pages 1–12, 2011.

[13] M. Felleisen. The Calculi of Lambda-v-CS Conversion: A Syntactic
Theory of Control and State in Imperative Higher-Order Programming
Languages. PhD thesis, Department of Computer Science, Indiana
University, 1987.

[14] S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined style. In Pro­
ceedings of International Conference on Functional Programming,
pages 18–27, 1999.

[15] B. Gre´goire and X. Leroy. A compiled implementation of strong
reduction. In Proceedings of International Conference on Functional
Programming, pages 235–246, 2002.

[16] G. Kahn. Natural semantics. In Proceedings of Symposium on Theo­
retical Aspects of Computer Science, volume 247 of Lecture Notes in
Computer Science, pages 22–39. Springer-Verlag, 1987.

[17] G. Plotkin. Call-by-name, call-by-value and the lambda calculus.
Theoretical Computer Science, 1:125–159, 1975.

[18] S. Ronchi Della Rocca and L. Paolini. The Parametric Lambda
Calculus. Springer Verlag, Feb. 2004.

[19] P. Sestoft. Demonstrating lambda calculus reduction. In The Essence
of Computation, Complexity, Analysis, Transformation. Essays Dedi­
cated to Neil D. Jones, volume 2566 of Lecture Notes in Computer
Science, pages 420–435. Springer, 2002.

[20] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2003.

