Document downloaded from:

http://hdl.handle.net/10251/55606
This paper must be cited as:

Alpuente Frasnedo, M.; Felit Gabaldén, MA.; Villanueva Garcia, A. (2013). Automatic
inference of specifications using matching logic. En Proceeding PEPM '13 Proceedings of
the ACM SIGPLAN 2013 workshop on Partial evaluation and program manipulation.
Association for Computing Machinery (ACM). 127-136. doi:10.1145/2426890.2426914.

The final publication is available at

http://dx.doi.org/10.1145/2426890.2426914

Copyright  Association for Computing Machinery (ACM)

Additional Information



Automatic Inference of Specifications
using Matching Logic *

Maria Alpuente Marco A. Feliaf Alicia Villanueva
January 28, 2014

Abstract

Formal specifications can be used for various software engineering ac-
tivities ranging from finding errors to documenting software and auto-
matic test-case generation. Automatically discovering specifications for
heap-manipulating programs is a challenging task. In this paper, we pro-
pose a technique for automatically inferring formal specifications from
C code which is based on the symbolic execution and automated rea-
soning tandem “MaTcHING Locic /K framework”. We implemented our
technique for a fragment of C, called KERNELC, in the automated tool
KiNDSPEC, which generates axioms that describe the precise input/out-
put behavior of C routines that handle pointer-based structures, i.e., re-
sult values and state change. These specifications can be written either
in MATCHING Logic itself, which is useful for further automated analy-
sis within the K formal environment, or in sugared axiomatic form, which
favors better human inspection. Since we rely on rewriting logic K seman-
tics specification of programming languages, our approach can be easily
extended to any language for which a formal semantics in K is given.

1 Introduction

Formal specifications can document code unambiguously and are important for
rigorous software development. Algorithm verification and program testing can
often diagnose discrepancies between implementation and specification auto-
matically. Unfortunately, formal specifications are notoriously hard to write
and debug, and many programs lack appropriate documentation or it may be
too low-level to understand. Specification inference can help to mitigate these
problems and is also useful for legacy program understanding and malware de-
obfuscation, where the challenge is to understand what the malicious code is
doing [?]. This paper describes a rule-based technique that automatically infers

*This work has been partially supported by the EU (Feper) and the Spanish
MEC/MICINN, ref. TIN 2010-21062-C02-0, and by Generalitat Valenciana, ref. PROME-
TEO2011/052.

TThis author was partially supported by the Spanish MEC FPU grant AP2008-00608



high-level, formal specifications for C-like, heap-manipulating code by using the
notation of MATCHING Locic (ML), which is a novel program verification foun-
dation that is built upon operational semantics [?]. The considered KERNELC
language [?] is a non-trivial fragment of C that includes functions, structures,
pointers and I/O primitives. Besides the code itself, in ML, as in operational
semantics, program states contain an encoding for the environment, the heap,
stacks, etc., which are represented as algebraic datatypes, called (concrete) con-
figurations. Axiomatic specifications of program states are represented as con-
figuration patterns that are a particular class of first-order formulas with equal-
ity. Patterns are encoded as (boolean) terms with variables and constraints over
them. A pattern specifies those configurations that match its algebraic structure
and satisfy its constraints. For example, the pattern

((~ top +> ?top = )eny (= list(?top)(L) = )heap)cfg A L # empty

specifies the set of configurations where the program variable top points to the
non-empty list L. Hence, separation (meaning that the heap can be split into two
disjoint parts where the separate formulas hold [?]), is achieved at the structural
(i.e., term) level. Marked variables like ?top are bound (i.e., existentially quan-
tified) over the pattern, while L is free. By allowing specifications to directly
refer to the structure of the program configurations, ML facilitates access and
reasoning about rich sub-patterns of the program states, such as disjoint lists,
trees and graphs, or any shared mutable data structures that are dynamically
allocated in the heap.

Symbolic execution (SE) is a well-known program analysis technique that
allows the program to be executed using symbolic input values instead of ac-
tual (concrete) data so that it executes the program by manipulating program
expressions involving the symbolic values [?, ?]. Intuitively, symbolic execu-
tion means that each data structure field and program variable initially hold a
symbolic value. Then, each program statement execution can update the con-
figuration cells (such as env, heap and cfg in the example above) by mapping
fields and variables to (symbolic) values represented as relational expressions.
Recently, SE has found renewed interest due in part to the advances in new
algorithmic developments and decision procedures. The symbolic execution of
KERNELC programs is supported in ML by using the MATCHC verifier, which
has several applications including the verification of functional correctness and
static detection of runtime errors [?]. MATCHC is implemented using the K
language definitional framework [?], which compiles into the high-performance
programming language MAUDE [?].

In this paper, we develop a technique for discovering formal specifications for
heap-manipulating programs by using the symbolic infrastructure of MATCHC,
which is driven by ML formulas. We needed to extend MATCHC in order to
support the analysis for the inference of specifications. The key idea behind our
method is as follows. We have developed a procedure on top of MATCHC that
is executed symbolically in K. The execution of the symbolic procedure delivers
an environment for the post-state that gives the value of each variable and field



in terms of the values of program variables and fields of the abstract pre-state.
Following the common symbolic approach to finitize program execution [?], a
loop is handled by unrolling it to a fixed depth, i.e., the loop is executed a fixed
number of times. We also limit the heap’s size so that the space of possible
heaps is also finitized.

The proposed inference technique relies on the classification scheme devel-
oped in [?] for data abstractions in general, where a function (method) may be
either a constructor, modifier or observer. A constructor returns a new object
of the class from scratch (i.e., without taking the object as an input parameter).
A modifier alters an existing class instance (i.e., it changes the state of one or
more of the data attributes in the instance). An observer inspects the object
and returns a value characterizing one or more of its state attributes. We do
not assume the traditional premise of the original classification in [?] that states
that observer functions do not cause side effects on the state. This is because
we want to apply our technique to any program, maybe written by third-party
software producers that may not follow the observer purity discipline.

Our symbolic analysis of KERNELC programs allows us to explain the execu-
tion of a modifier function m by using other (observer) routines in the program.
Starting from an initial symbolic state s, we first evaluate symbolically m on
Sp obtaining as a result a set of pairs (sY, s{ ) of refined initial and final symbolic
states, respectively. In order to compute suitable explanations for the routine
m, we symbolically evaluate the observer methods on each state s? and slf SO
that when the observer returns the same value at the end of each of its branches,
then we can say that the observer is a (partial) observational abstraction or ex-
planation of the constraints in the state. For each pair of refined initial and
final states, a pre/post statement is synthesized where the precondition is ex-
pressed in terms of the observers that ezplain the initial state s?, whereas the
postcondition contains the observers that explain the final state st . Then, the
synthesized pre/post axioms that abstract from any implementation details are
further simplified (to be given more compact representation), and are eventually
presented in a more friendly sugared form.

We have applied our methodology on KERNELC implementations of col-
lection libraries for manipulating linked lists in C such as those provided in
the GDSL generic data structure library [?]. To evaluate our method, we per-
formed two experiments using the prototype tool implementation KINDSPEC.
In one experiment, we applied it to a small component for which complete spec-
ifications were already available: a standard implementation of sets in C by
using linked lists. In the second experiment, we applied the tool to other kinds
of heap-allocated mutable structures. These components are more typical of
object-oriented style code written in C. We wrote specifications for the source
code in the style of the specifications our tool infers; this allowed us to assess the
accuracy of our generated specifications, which properly target the properties
that constrain the structure of the data in the heap. Actually, we found that
only in a few cases there was a significant loss of information.

In summary, the main contributions of this paper are as follows:



e A new approach to extract lightweight specifications from heap-manipulating
code that consists of a symbolic analysis that explores and summarizes the
behavior of a modifier program routine by using other available routines
in the program, called observers.

e Correctness conditions for our specification discovery technique;

e A practical demonstration that the technique is capable of extracting ac-
curate specifications from nontrivial procedures and functions;

e An implementation of the framework that targets KERNELC programs
and uses K as an intermediate language to translate KERNELC to MIL
constraints. Specification inference takes advantage of the unsat core gen-
erated by the SAT solver CVC3 [?] that is coupled to MIL.

This paper improves existing approaches in the literature in several ways.
On one hand, our technique is the first approach that can automatically ensure
delivery of correct specifications, which is done by using the same MATCHC ver-
ifier that we use for the specification discovering. On the other hand, since our
approach relies on the K semantics specification of KERNELC, the methodology
developed in this work can be easily extended to cope with any language for
which a K semantics is given, like Java 1.4, Scheme and Verilog [?]. There is
an executable formal semantics for C that describes the semantics of the whole
C99 standard, and it will be possible to use it in our framework as soon it is
coupled into the MATCHC verifier.

Plan of the Paper In the next section, we review the concepts of the K
framework that are crucial for this work. Section 3 introduces the case that
has been used to evaluate the adequacy, performance, and effectiveness of the
proposed inference method and which serves as a running example throughout
this paper. It also allows us to outline the major research problems addressed.
Section 4 describes how we extended the symbolic machinery in order to support
our inference approach. Section 5 introduces two algorithms that mechanize the
inference technique and provides some experimental results. Finally, Section 6
discusses the related work and concludes.

2 Preliminaries

In this section, we recall the fundamental concepts of the K framework and
MATCHING LoOGIC.

2.1 The K framework

K is an executable semantic framework in which programming languages, cal-
culi, as well as type systems and formal analysis tools can be defined making use
of configurations, computations, and rules. The most complete formal program



semantics in the literature for Scheme, Java 1.4, Verilog, and C are currently
available in K. K semantics are compiled into Maude [?] for execution, debug-
ging, and model checking.

Program configurations are represented in K as potentially nested structures
of labeled cells that represent the state of the program. K cells are containers
that can act as lists, maps, (multi)sets of computations, or as a multiset of other
cells. Computations carry “computational meaning” as special nested list struc-
tures that sequentialize computational tasks, such as fragments of a program.
Rules in K state how configurations (terms) can evolve during computation.

The part of the K configuration structure for the KERNELC semantics that
is relevant for this work is shown below.

< <K>k<Map>env<LiSt>stack <Map>heap >cfg
Containers (or cells) in a configuration represent pieces of the program state,
including a computation stack or continuation (named k), environments (env,
heap), and a call stack (stack), among others.

Rules are graphically represented in two levels and state how configurations
change. Changes in the current configuration (which is shown in the upper
level) are explicitly represented by underlying the part of the configuration that
changes. The new value that substitutes the one that changes is written below
the underlined part.

As an example, we show the KERNELC rule for assigning a value V of type T'
to the variable X. This rule uses two cells, k and env. The env cell is a mapping
of variables to their values, whereas the k cell represents a stack of computations
waiting to be run, with the left-most (i.e., top) element of the stack being the
next computation to be undertaken.

< X = tV(T, V) >k< - X = e >env

tv(T,V) 1%

The rule states that, if the next pending computation (which may be a part of
the evaluation of a bigger expression) consists of an assignment X = tv(7T,V),
then we look for X in the environment (X — ) and we update the associated
mapping with the new value V. The typed value tv(T,V) is kept at the top
of the stack (it might be used in the evaluation of the bigger expression). The
rest of the cell’s content in the rule does not undergo any modification (this is
represented by the - card).

This example rule reveals a feature of K: «rules only need to mention the
minimum part of the configuration that is relevant for their operation». That
is, only the cells read or changed by the rule have to be specified, and, within
a cell, it is possible to omit parts of it by simply writing “- ”. For example, the
rule above emphasizes the interest in: the instruction X = tv(T, V') only at the
beginning of the k cell, and the mapping from variable X to any value “ 7 at
any position in the env cell.



2.2 Matching Logic

MATCHING LOGIC is a logic for the verification of programs. We use the ML
formalization given in [?, ?]. Formulas in ML are called patterns and they
represent sets of concrete program configurations. Patterns can be formalized
as first-order logic (FOL) formulas whose atomic propositions include the con-
structs for representing program configurations. Intuitively, patterns introduce
logical variables into program configurations and also introduce formulas that
constrain those logical variables. Pattern variables are typed.

Starting from the operational semantics of KERNELC specified in K that we
mentioned above, a handy axiomatic semantics that is based on MIL patterns
has been systematically defined for verification purposes within the ML frame-
work [?]. The ML patterns of the KERNELC axiomatic semantics consist of K
configuration cells that are additionally constrained with FOL formulas. We
use the sugared notation of [?, ?] that embeds the FOL formula within a special
cell called ¢ and substitutes explicit existential logical quantifiers with a special
mark ? at the beginning of the existentially quantified variable’s name. For ex-
ample, the set of KERNELC configurations where the specific program variable
x holds a value that is greater than 5 can be represented with the following MIL
pattern, where free variable E matches any other information in the env cell,
and C matches the rest of the cells in the configuration:

(x> 2 (x> 5), C ) (1)

Program variables! in MIL formulas such as x are written in teletype font and
logical variables such as x are written in sans font. Metavariables in ML are
written in capital letters.

The MIL axiomatic semantics uses inference rules to derive sequents P { P2,
called correctness pairs, which relate patterns before and after the execution of
a program fragment. The meaning of a sequent Py (|| Py is that the execution of
a concrete configuration matching P, yields a configuration matching Py. The
basic axiom for final symbolic configurations that indicate the end of a successful
(axiomatic semantics) derivation is as follows:

(D) et HT) cre

with I" being a final pattern, i.e., a pattern whose k cell is empty or consists of
just a value. As an example of ML inference rule, let us describe the rule that
corresponds to the assignment of a program variable.

<<K>kc>cfgw—<<|>k<p>envcl>cfg
(X =K)kCere L Ow (X = 1) env ) crg

In the rule above, K matches a computation expression, | an integer value, X a
program variable, p a map, and C and C’ a bag of configuration cells (including

INote that program variables are constants in ML formulas.



the ¢ cell). The rule hypothesis can be read as: «starting from any configu-
ration with K as the only remaining computation in the k cell, assume that a
configuration that matches ((I)i(p)enC’)cry is obtained, with I being the result
of evaluating the expression K». Then, the conclusion can be read as: «starting
from a configuration that consists of C plus the assignment of expression K to
the variable identified by X as the only remaining computation, its execution
yields a configuration consisting of C’; an empty k cell (i.e., no pending compu-
tations remain), and an updated environment p[X — I] in which | is assigned to
the variable X ».

The following example illustrates the application of the assignment inference
rule.

Example 1 Let us consider the following (axiomatic semantics) symbolic con-
figuration, which is an instance of the MIL pattern of equation (1) and contains
the assignment instruction x=3 in the k cell:

< <X = 3;>k<X — 7x, E>env<7x > 5>(,CN >cfg
This symbolic configuration is also a pattern that matches the left-hand pattern

of the correctness pair in the consequent of the inference rule. Moreover, the
antecedent of the rule holds since

(3)kCerg J{(B)r(x = %, B)eny C') cr

with C = (x> M™%,E)eny €' and C' = (x> 5),C". This is because, according
to MAUDE (and K) type systems, 3 is both an integer value and a program
expression, thus it respectively matches the | and the K wvariables in the rule
hypothesis. Therefore, the derivation computed by the application of the rule is

((x=3)C) P Oulx = 3, E)ensC)

Note that MIL does not need logical “separation” because it achieves it at
the structural level. That is, any pair of subterms in a pattern configuration
that are not related by the containment order are considered to be distinct and
disjoint; and, if a pattern matches two terms in a multiset, the two terms have
to be distinct. For example, in pattern (1), the binding x — ?x is matched with
the current configuration separately from the rest of the environment E, and,
thus, no overlapping of bindings can occur.

3 Specification Discovery

A logic specification is a logical relation between inputs and outputs of a pro-
gram. Specification discovery is the task of inferring high-level specifications
that closely describe the program behavior. Obviously, these specifications can
only be correct with respect to user intent if the original program is correct itself.



But even if it is not correct, the ascertained specification can still be very help-
ful in several important scenarios such as improving program understanding,
synthesizing test units, and helping the programmer to debug the code.

Given a program P, the specification discovery problem for P is typically
described as the problem of inferring a likely specification for every function m
in P that uses I/O primitives and/or modifies the state of encapsulated, dynamic
data structures defined in the program. Following the standard terminology, any
such function m is called a modifier. The intended specification for m is to be
cleanly expressed by using any combination of the non-modifier functions of
P, i.e., functions, called observers, that inspect the program state and return
values expressing some information about the encapsulated data. However,
because the C language does not enforce data encapsulation, we cannot assume
purity of any function: every function in the program can potentially change
the execution state, including the heap component of the state. In other words,
any function can potentially be a modifier. As a consequence, we simply define
an observer as any function whose return type is different from void, hence,
potentially expressing an observed property regarding the value of the function
arguments or the contents in the heap.

The following example introduces the case that we use as a running example
throughout this paper.

Example 2 The program in Figure 1 implements an abstract datatype for rep-
resenting sets. A set is internally represented in KERNELC as a data structure
(struct set) that contains a pointer (struct lnode *) to a list of elements
(field elems ), the number of elements in the set (field size) and the mazimum
number of elements that may contain (field capacity).

The new function allocates memory for storing a struct set data structure
with initial size 0, the capacity given by the input value for the capacity pa-
rameter, and the NULL value for the pointer that references the list of elements
in the set. Upon completion, it returns the address of the allocated structure.

A call add(s,x) to the add function proceeds as follows: it first checks that
the pointer s to the set is different from NULL; next, it checks that the size of s
18 lower than its capacity; and then, it checks that x is not an element of s yet.
Provided all these conditions hold, it allocates a new list node (struct lnode)
*new_node whose first element is x and that is followed by the list of elements
representing the original set; finally, it increases the size of the set by 1. If
the insertion operation add succeeds, the call returns 1 once the new element
has been added to the list; otherwise, it returns 0 (standing for unsuccessful
insertion).

isfull returns 1 if the size of the set argument s is greater than or equal to
its capacity; otherwise, it returns 0. isnull returns 1 if the address of the set ar-
gument is NULL; it returns O otherwise. Finally, the execution of contains(s,x)
returns 1 if the argument element x belongs to s and returns O otherwise.

Technically, the inferred specification for a given function consists of a set
of implication formulas of the form t; = t5 where ¢; and ¢, are conjunctions of
equations of the form [ = r. Each left-hand side [ can be either



#include <stdlib.h>

struct lnode {
int value;
struct lnode *next;

};

struct set {

int capacity;

int size;

struct 1lnode *elems;

};

struct set* new(int capacity)
{

struct set *new_set;

new_set =
(struct set*) malloc(sizeof (
struct set));

if (new_set == NULL)
return NULL; /# no memory left
*/
new_set ->capacity = capacity;
new_set->size = 0;
new_set->elems = NULL;

return new_set;

}

int add(struct set *s,int x)
{
struct 1lnode *new_node;
struct 1lnode *end_node;
struct lnode *n;

if (s == NULL)
return 0; /#* NULL set */

if (s->size >= s->capacity)
return O; /# mno space left */

n = end_node = s->elems;
while (n != NULL) {
if (n->value == x)
return 0; /# element already
added */
end_node = nj;
n = n->next;

}

/* Initialize new node */

new_node =
(struct 1lnode*) malloc(sizeof (
struct lnode));
if (new_node == NULL)
return 0; /#* no memory left */
new_node ->value = Xx;
new_node ->next = s->elems;

/* Link new node */
s->elems = new_node;

/% Update set info */
s->size += 1;

return 1; /* element added */

}

int isfull(struct set x*s)
{
if (s == NULL)
return 0; /# NULL set provided
*/
if (s->size >= s->capacity)
return 1; /% 4s full #*/
return 0; /* is mnot full */

}

int isnull(struct set *s)
{

if (s == NULL)

return 1;
return O;

}

int contains(struct set *s,int x
)
{

struct lnode *n;

if (s == NULL)
return 0; /#* NULL set */

n = s->elems;
while (n != NULL) {
if (n->value == x)
return 1; /# element found */
n = n->next;

}

return 0;

*/

/* element NOT found

Figure 1: KERNELC implementation of a set with linked lists.



isnull(s) =1 = ret = 0Aisnull(s’) =1
isfull(s) =1 = ret = 0A
contains(s,x) = contains(s’,x)
contains(s,x) = 1 = ret = 0Acontains(s’,x)= 1
isnull(s) = 0 A = ret = 1A
isfull(s) = OA isnull(s’) = 0 A
contains(s,x) = 0 contains(s?’,x) = 1

Figure 2: Inferred specification for the add function.

e a call to an observer function and then r represents the return value of
that call;

e the label ret, and then r represents the value returned by the modifier
function being observed.

Informally, the statements at the left-hand and right-hand sides of the sym-
bol = are respectively satisfied before and after the execution of the function
call. We adopt the standard primed notation for representing variable values
before and after execution. For instance, given a variable s that stands for the
value of the parameter s before the function is executed, the primed version s’
stands for the value after the execution.

Example 3 Consider again the program of Example 2. The specification for
the (modifier) function add(s,x) (that inserts an element x in the set s) is
shown in Figure 2.

The specification consists of four implications stating the conditions that are
satisfied before and after the execution of the considered function. For instance,
the first formula can be read as follows: if the result of running isnull(s)
is equal to 1 before executing add(s,x), then the value returned by the call
add(s,x) is 0, and, after its execution, the outcome of isnull(s’) is also 1.

Even though the observers isnull and isfull behave as boolean functions
(predicates) in this example, we prefer not to write them in sugared relational
form (i.e., isfull(s) instead of isfull(s)=1 ) since a specific datatype for
Boolean numbers does not exist in C. Hence, even when we can detect that the
observer function only returns two scalar values, say 0 and 1 as in the example,
we cannot give it the semantics of a logical predicate.

Note that any implication formula in the inferred specification may contain
multiple facts (in the pre- or post-condition) that refer to function calls that are
assumed to be run independently under the same initial conditions. This avoids
making assumptions about the function purity or side-effects.

Our technique for inferring specifications relies on the symbolic execution
engine of the MATCHING LogGIC verifier MATCHC. MAaTCHC works in a for-
ward manner by symbolically executing an MIL pattern that is provided as the
program precondition, and non-deterministically obtaining a set of final pat-
terns that are then used to discharge the postcondition. This is an instance of a

10



general strategy to calculate the strongest postcondition of a predicate transfor-
mation semantics as explained in [?]. However, MATCHC is incomplete for the
purpose of general symbolic execution in the sense that its symbolic machinery
does not support incremental assumptions regarding the initial structure of the
program memory; it can only assume the structure that is implicitly imposed
by the initial pattern. For the inference purposes of this paper, we cannot as-
sume any ex-ante condition for the initial program state; on the contrary, we
need to incrementally collect all the assumptions that allow each symbolic ex-
ecution path to be successfully executed. In the following section, we explain
how we extended MATCHC to support collecting assumptions on-the-fly within
the symbolic configurations as needed.

4 Extending the MIL Symbolic Machine

Symbolic execution typically proceeds like standard execution except that, when
a function or routine is called, symbolic values are assigned to its actual pa-
rameters and computed values become symbolic expressions that record the
operations applied to them. When symbolic execution reaches a conditional
control flow statement, every possible execution path from this statement must
be explored. In order to keep track of the explored execution paths, symbolic
execution also records the assumed (symbolic) conditions on the program inputs
that determine each execution path in the so-called path constraints (one per
possible branch), which are empty at the beginning of the execution. A path
constraint consists of the set of constraints that the arguments of a given func-
tion must satisfy in order for a concrete execution of the function to follow the
considered path. Without loss of generality, we assume that the symbolically
executed functions access no global variables; they could be easily modeled by
passing them as additional function arguments.

Example 4 Consider again the add function of Example 2. Assume that the
nput values for the actual parameters s and x are the symbolic values s and x,
respectively. Then, when the symbolic execution reaches the first if statement
in the code, it explores the two paths arising from considering both, the satisfac-
tion and non satisfaction of the guard in the conditional statement. The path
constraint of the first branch is updated with the constraint s = NULL, whereas
s # NULL is added to the path constraint of the second branch.

To summarize, symbolic execution can be represented as a tree-like structure
where each branch corresponds to a possible execution path and has an asso-
ciated path constraint. When the path constraint is satisfiable, the successful
path ends in a final (symbolic) configuration that typically stores a (symbolic)
computed result.

For the symbolic execution of C programs, we must pay attention to pointer
dereference and initialization. In C, a structured datatype (struct) is an ag-
gregate type that describes a nonempty set of sequentially allocated member

11



objects?, called fields, each of which has a name and a type. When a struct
value is created, C uses the address of its first field to refer to the whole struc-
ture. In order to access a specific field £ of the given structure type, C computes
f’s address by adding an offset (the sum of the sizes of each preceding field in
the definition) to the address of the whole structure. In our symbolic setting,
all the pointer arithmetic is done by means of symbolic address expressions that
may appear in (the domain of) heap cells of MATCHC patterns.

Example 5 (Ezample 4 continued) Consider the second if statement of the
add function given in Example 2. The evaluation of the guard of the conditional
statement requires accessing both p->size and p->capacity. Since capacity is
the first field in the struct set definition, its location coincides with the (base)
address p. However, in order to access p->size, its address must be computed
by adding an offset® of 1 to the (base) address p (i.e., if we assume that the
symbolic address held by the variable p is p, then the computed address for the
field size is p+1.)

Another critical point is the undefinedness problem that occurs in C pro-
grams when accessing uninitialized memory addresses. The KERNELC semantics
that we use preserves the concrete well-definedness behavior of pointer-based
program functions of C while still detecting the undefinedness cases in a way
similar to the C operational semantics of [?]. However, in the discovery setting
of our approach, we have no a priori information regarding the memory (in par-
ticular, information about the (un)initialized memory addresses). Therefore,
when symbolic execution accesses (potentially uninitialized) memory positions,
two cases must be considered: the case in which the memory is actually initial-
ized, and the case in which it is not. In the second case, the symbolic execution
gets stuck, thus identifying undefined behavior as in [?]. For the case in which
the memory positions are actually initialized and execution should proceed, a
strategy to reconstruct the original object in memory is needed. We adapt to
our setting the lazy initialization of fields of [?]: when a symbolic address (or
address expression) is accessed for the first time, SE initializes the memory ob-
ject that is located at that address with a new symbolic value. This means that
the mapping in the heap cell is updated by assigning a new free variable to the
symbolic address of the accessed field so that from that point on, accesses to
that field can only succeed. In contrast, in the case of failure, an undefined
computation is pushed onto the k cell, which stops the execution.

Example 6 (Example 5 continued) Before executing the second if statement,
assume that the heap cell is empty, which means that nothing is known about
the structure of the heap cell. After symbolically executing the guard of the if
statement (which refers to the capacity field and size field of the structured
type in s), the heap cell has the form:

<s —> s.capacity,s + 1 — s.size>heap

2An object in C is a region of data storage in the execution environment.
3We assume that the memory is indexed by words and that a value of type int has the
size of a word.

12



( load(T', I) = )i (Heap Jheap{ = )iheap
tv (7T, NewFreeVar) I — NewFreeVar I — NewFreeVar

Figure 3: Rule for the symbolic execution for accessing a value in the memory.

In other words, new symbolic bindings regarding the actual parameters are added,
which represent the assumptions we made over the corresponding data struc-
tures.

In the following, we augment MATCHC symbolic configurations (MATCHC
patterns) with new cells and naturally extend its symbolic execution machinery
to work with the augmented patterns.

4.1 The MaAaTCcHC Extension

The heap cell of MATCHC patterns cannot be used to keep track of the as-
sumptions made by the lazy initialization described above since the subsequent
assignment statements that may occur during the symbolic execution typically
overwrite the heap cell values. Therefore, we have extended MATCHC patterns
by introducing two additional cells: the iheap and ik cells. The iheap cell mono-
tonically stores all the (structural) assumptions that are dynamically made for
the initial heap. In this way, when symbolic execution finishes, the iheap cell,
together with the ¢ cell, does contain the path constraint for the symbolic pa-
rameters that point to the dynamic data structures that were accessed along the
branch. The ik cell stores the contents of the k cell when the symbolic execution
starts. In our case, this cell always contains a symbolic (initial) function call.

The following example illustrates how the iheap cell is used. It also illustrates
how the KERNELC rules have been conservatively augmented to manipulate
extended configurations, thanks to the modularity and underlying type structure
of the K framework.

Example 7 The rule in Figure 3 states that, whenever the symbolic interpreter
accesses an uninitialized piece of memory (condition I ¢ keys(Heap)?*), a new
symbolic variable NewFreeVar is introduced for that position in the heap cell, and
also in the iheap cell, thus making that assumption persistent independently of
the effect of subsequent assignments on the heap.

As already mentioned, the exhaustive symbolic execution of all paths cannot
always be achieved in practice because an unbounded number of paths can arise
in the presence of loops or recursion. We follow the standard approach to
avoid the exponential blowup inherent in path enumeration by exploring loops
and recursion up to a specified number of unfoldings. This ensures that SE

4In C, the function keys(M) returns the domain of the mapping M. Thus, function call
keys(Heap) represents the set of initialized memory positions in the heap.

13

if I ¢ keys(Heap)



ends for all explored paths, thus representing a subset of the program behavior
[?]. Obviously, not all the potential execution paths are feasible. We use the
automatic theorem prover CVC3 [?] to check the satisfiability of path constraints,
to simplify path conditions and to eliminate unfeasible symbolic computations
whenever the corresponding path constraint is unsatisfiable.

In order to facilitate the specification inference, in the following section we
define two types of patterns, called observation patterns (the call-pattern and
the return-pattern), that we extract from the symbolic final configurations at
the end of the symbolic execution paths.

4.2 The Pattern Extraction

We define a call-pattern as a pattern whose k cell consists of just a function call
with (possibly symbolic) arguments. A return-pattern is a pattern that only
has either a return instruction with the corresponding value or an undefined
computation at the top of its k cell. The call-patterns and return-patterns (called
observation patterns) respectively represent the observable state of a program
before and after a specific function call is executed.

We note that all the information needed to extract the observation patterns
is accumulated in the final MATCHC symbolic configurations. In order to reuse
the MATCHC verification machinery, we formalize the two extracted patterns in
terms of traditional ML patterns in the following way:

e The call-pattern is defined by filling the heap cell with the content of the
iheap cell, and the k cell with the content of the ik cell, and then discarding
the iheap and ik cells.

e The return-pattern is obtained by simply deleting the iheap and ik cells.

In the following, we call initial extended pattern or initial symbolic configuration
to the pattern that starts the symbolic execution of a function.

Example 8 To symbolically execute the int add(struct set *s,int x) func-
tion by using the extended MATCHC werifier, we start from the initial symbolic
configuration’

P = (~ (add(s,x))«(add(s, x) ik neap (Jineap () ) et

and from this extended pattern, at the end we obtain a set of final extended
patterns P1 . . . D, where each p; has the form

Di =
(+(return Value; ) (add(s, x))ik (Heap; ) heap (IHeap; )ineap (Pi) ¢ =) cfe

The call patterns and return patterns are extracted from py...Dp:

5We only write those cells that we need to consider for the inference.

14



call _pattern(p;) = (- (add(s,x))«(IHeap; )heap (Pi) o ) cre 5
return_ pattern(p;) =
(- (returnValue;) (Heap;)neap (®i) s ) cfe-

Formally, the extracted observation patterns are also ML patterns and sat-
isfy call _pattern(p;)||return_pattern(p;). This is because, by construction,
call _pattern(p;) records all the assumptions needed to ensure that return _pattern(p;)
holds at the end of the symbolic execution branch following the MIL proof sys-
tem implemented in MATCHC. This allows us to ascertain the conditions for
the completeness of our inference technique:

If the disjunction of the extracted call patterns is logically equivalent to the
ML pattern that is obtained by removing the iheap and ik cells from the initial
symbolic configuration (the extended pattern p), then the set {call _pattern(p;)||return _pattern(p;)},
i € {1...n} of correctness pairs fully describes the input/output behavior of
the considered program function.

In the following section, we formulate an algorithm that symbolically exe-
cutes the program and automatically extracts and combines the call and return
patterns in order to infer the pursued logical specifications.

5 Inference process

Let us introduce the basic notions that we use in our formalization. Given an
input program, let F be the set of functions in the program. We distinguish the
set of observers O and the set of modifiers M. A function can be considered
to be an observer if it explicitly returns a value, whereas any method can be
considered to be a modifier. Thus, the set O N M is non empty.

We denote with the symbol - the universal MIL pattern that represents every
possible program state, i.e., it imposes no constraint to the state. Given a
function f € F, we represent the call to f with a list of arguments args as
f(args). Then, f(args)[p] is the extended pattern built by first adding both
the ik and iheap cells to the pattern p, next inserting the call f(args) into the
ik and k cells, and then copying to the iheap cell the contents of the heap cell
of p. The intuition is that f(args)[p] propagates the information in p to the
execution of f(args). f(args)[-] stands for the extended pattern that represents
the execution of f with arguments args under a state without constraints, i.e.,
with empty information brought in by the universal pattern. Given an initial
extended pattern p, we denote as SE(P) the set of final extended patterns {p; }i~o
resulting from the symbolic execution of p in our MATCHC system, i.e., the
leaves of the symbolic execution tree for p. Each p; has associated a correctness
pair call _pattern(p;)|}return _pattern(p;). Given a return pattern g, ql.c; is the
projection of ¢ to its return value or undefined computation, which are in the
k cell.

Our specification inference methodology is formalized in Algorithm 1. First,
the modifier method of interest is symbolically executed with fresh symbolic

15



Algorithm 1 Computing specifications.
Require: m € M of arity n;

1. S =SE(m(at,...,an)[])
2. aziomSet := (J;
3. for all p; € S do
4. eqspre = explains(call _pattern(p;), a1, .- -, an]);
5. e@Spost = explains(return_pattern(p;), (a1, - - -, an]);
6. eqret := ret = return_pattern(D;)|ret;
7. aziomSet := aziomSet U {eqspre = (€¢Spost U €Gret) };
8. end for
9. spec := simplify(aziomSet)
10. return spec
variables ay,...,a, as arguments. As a result, the set of final extended pat-

terns S is computed. Then, by extracting and processing the call and return
patterns of each p; € S, a set of axioms is obtained that defines the behavior
of the program. This is done by means of the function explains(p,as) given
in Algorithm 2. The computed axioms are implications of the form [; = r;.
The function simplify implements a post-processing which consists on (1) dis-
join the preconditions /; that have the same postcondition r; and simplify the
resulting precondition, and (2) conjoin the postconditions r; that share the same
precondition and simplify the resulting postcondition.
Let us show an example of the application of the algorithm.

Example 9 Assume that we want to infer a specification for the add modifier
function of Example 2. Following the algorithm, we first compute SE(add(s, x)[]),
with s and x (free) symbolic variables. Since there are not initial assumptions
for the initial symbolic configuration, the execution covers all possible initial
concrete configurations. The symbolic execution computes five final extended
patterns®. The following extended pattern e represents the path that ends in the
body of the second if statement:

(« ret — 0,5 > 5,% = X ) eny
(s > s.capacity,s + 1 —> s.size)peap

s — s.capacity,
s+ 1+ s.size iheap

s # 0N
s.capacity < s.size / |

The execution of this path returns the value O; the fields s->size and s->capacity
are accessed after checking that s is not NULL (i.e., 0). In the extended pattern
e, the return value O is represented by the binding ret — 0 in the env cell. The
failed check of s == NULL adds the constraint s # 0 to the ¢ cell. Given our as-
sumption that any access to a field through a non-NULL pointer does succeed, the

cfg

SFor simplicity, we set the number of loop unrollings to one.

16



symbolic fields s.capacity and s.size are generated in the iheap cell. The successful
check of s->size >= s->capacity adds an analogous constraint to the ¢ cell.
Note that, since during the execution of this path the heap is not modified, the
heap and iheap cells are identical, i.e., the initial and the final heaps are the
same.

Next, for each final extended pattern the algorithm explains its call- and
return-patterns by using the function explains(p,as), which delivers suitable
sets of equations. For the extended pattern e, the equations isnull(s) = 0 and
isfull(s) = 1 are generated for both the call- and return-patterns. Addition-
ally, the equation ret = 0 is generated with the return value of e. Finally, by
combining these equations we generate the following axiom:

isnull(s) = 0 A isfull(s) =1 =

ret = 0 A isnull(s) = 0 A isfull(s) =1
which is the computed explanation for e.

Let us now describe Algorithm 2 that defines the function explains(p,as).
Given an MIL pattern p and a list of symbolic variables as, this function com-
putes a set of equations as the description of p. These equations are composed
of calls to observer functions and built-in functions that are bound to the (sym-
bolic) values that are returned by the calls. In the algorithm, args C as states
that the list of elements args is a permutation of some (or all) elements in as.

Algorithm 2 Computing explanations: explains(p, as)

Require: p : the pattern to be explained
Require: as : a list of symbolic variables
1. C: the universe of observer calls;
2. eqSet = (J;
3. for all o(args) € C and args C as do
4. S = SE(o(args)[p])
5. if B pr,pz € S s.t. return_pattern(py)|re: # return_pattern(pz)| et
then
eqSet := eqSet U (t = return__pattern(pr)|ret)
end if
end for
return eqSet

© ®» N

Roughly speaking, given a pattern p, explains(p, as) first generates the uni-
verse of observer function calls C, which consists of all the function calls o(args)
that satisfy that:

e 0 belongs to O or to the set of (predefined) built-in functions,

e arys in the call o(args) is a suitable selection of variables from the symbolic
variable list as that is received as argument, respecting the type and arity
of o.

17



Then, for each call o(args) € C, it checks whether all the final symbolic configu-
rations (leaves) resulting from the execution of o(args) on a state that satisfies
the constraints in p have the same return value. For the calls that satisfy this
condition, an equation is generated (line 6 in Algorithm 2). The intuition of this
step is that, if we symbolically execute the observer at a given initial state and
for all its execution branches we get the same value, then the observer together
with the return value (partially) characterize the considered state. The last step
of the algorithm returns the set of all the generated equations.

Example 10 (Example 9 continued) Let us show how we compute the ex-
planation for the return-pattern of Example 9 given the symbolic variables con-
sidered in the example.

Given the observer functions isfull, isnull and contains, and the sym-
bolic variables s and x, the universe of observer calls is isfull(s), isnull(s)
and contains(s,x). Let us show in detail the case for the observer isnull(s).

When we symbolically execute isnull(s) over the considered return-pattern,
we only obtain the extended pattern:

(et =0 ~)eny
(s > s.capacity,s + 1 > s.size)peap
(s +> s.capacity, s + 1 > s.size)iheap

(s # 0 A s.capacity < s.size) e

Since there are no observer paths returning different values because there is
only one path (the one for computed extended pattern) and its associated return
value is 0, the equation isnull(s) = 0 can be used as a (partial) explanation
for the pattern under consideration. Then, this equation is added to the set of
equations eqSet that will be returned by Algorithm 2.

Due to bounded loop unrolling, we cannot ensure completeness of the in-
ferred specifications as we do not cover all possible execution paths. Also due
to generalization, we cannot ensure that all inferred axioms are sound. Nev-
ertheless, when we consider loops that are characterized by an invariant that
matches into a given set of invariant templates, then we could guarantee both
the soundness and completeness of our technique.

5.1 Refining the inference process

There are some cases in which explanations cannot be achieved due to the lack
of sufficiently precise observers. In order to mitigate this problem, we present a
refinement process that allows more accurate specifications to be computed and
that can be applied automatically. The idea is to split the pattern that could
not be explained (because there were different computed results in the leaves
of the symbolic execution of observers) into multiple refined patterns that the
observer functions are then able to explain.

Algorithm 3 describes how to refine a pattern p by using the observer call
c. First, we compute SE(c[p]), which obtains a set .S of final extended patterns.

18



Note that the call-pattern of each of these final patterns p; € S contains addi-
tional constraints that are imposed by the symbolic execution of the observer
call. In other words, the set consisting of the new extracted call patterns forms
a refinement of p.

Running the observer ¢ under the new refined patterns delivers a single
return value for each run, which brings the corresponding explanation using c.
An interesting open question is to be able to determine when we have enough
observers, that is, to determine which observers are missing.

Algorithm 3 Computing refined explanations for an observer:
refined _explains(p, ¢)

Require: p : the pattern to be explained
Require: c : the observer call that will explain p by refinement
. expl =
5 = Su(clp))
. for all p; € S do
expl := expl U {p — explains(call _pattern(p;))};
end for
. return expl

o Ul A W N e

A prototype implementation of the inference methodology described in this
paper has been developed, called KINDSPEC. We evaluated the accuracy of the
inferred specifications for our running example by comparing the automatically
inferred specification with the original specification written by hand, and we find
out that only in a few cases there was a significant loss of information. Table 1
summarizes the obtained results for a set of selected benchmark programs. For
each program example, the first three columns show the number of modifiers,
observers and lines of code of the corresponding program, respectively. Column
# corresponds to the number of explored paths as determined by the imposed
termination criteria. The last two columns indicate the number of generated
axioms and the number of inferred axioms that are sound, respectively. This
last measurement is also related to the imposed termination criteria: the greater
the depth of unrolling, the highest number of correct axioms is obtained. With
respect to the time cost of the inference, it ranges from 1s. to 10s. which is
comparable to the performance of similar tools, e.g. [?], and quite promising.

Of course, our synthesis system KINDSPEC inherits the current limitations
of the underlying MATCHC verifier. To effectively synthesize highly accurate
specifications for larger programs that involve more complicated reasoning, more
efficient verifiers are needed that are actually forthcoming.

6 Conclusions and related Work

We have proposed an algorithm for automatically synthesizing formal specifi-
cations for heap-manipulating programs that are written in KERNELC. Formal

19



Table 1: Experimental results

Module Modifiers Obs. | LOC # | Axioms | Sound
Set List add 4 70 | 87 4 4
remove ) 90 | 54 2 2
Double- append 9 180 | 43 4 3
Linked Lists remove 9 180 | 66 2 2
Double-ended | push_head 4 100 | 106 3 3
Queues push_tail 4 100 | 142 3 3
pop_head 4 100 16 2 2
pop_tail 4 100 | 24 2 2
Stack push 3 25| 14 2 2
pop 2 25 15 2 2

specifications improve software understanding and are useful for automated pro-
gram testing and verification.

Specification extraction is itself not new. The automatic generation of likely
specifications (either in the form of contracts, interfaces, summaries, assump-
tions, invariants, properties, component abstractions, process models, rules,
graphs, automatas, etc.) from program code has received increasing attention.
Specifications can be property oriented (i.e., described by pre-/post conditions
or functional code); stateful (i.e., described by some form of state machines); or
intensional (i.e., described by axioms). Here we only try to cover those lines of
research that have influenced our work most.

Unlike our symbolic specification inference method, Daikon [?] and DIDUCE
[?] detect program invariants by extensive test runs. Also, Henkel and Diwan
[?] built a tool that dynamically discovers specifications for interfaces of Java
classes by first generating, using the class signature, many test cases that consist
of terms representing sequences of method invocations, and then generalizing
the results of these tests to algebraic specifications. QUICKSPEC [?] is another
inference tool that is based on testing and can be used to generate laws that a
Haskell program satisfies. Whereas Daikon discovers invariants that hold at ex-
isting program points, QUICKSPEC discovers equations between arbitrary terms
constructed using an API, similarly to [?]. Also, they use a similar overall ap-
proach that is based on testing: they generate terms and evaluate them, then
dynamically identify terms that are equal, and finally generate equations, filter-
ing away redundant ones. ABSSPEC [?] is a semantic-based inference method
that relies on abstract interpretation and generates laws for Curry programs in
the style of QUICKSPEC. A different abstract interpretation approach to infer
approximate specifications is [?]. A combination of symbolic execution with
dynamic testing is used in Dysy [?]. Ghezzi et al. [?] infer specifications of
container-like classes as finite state automatas combined with graph transfor-
mation rules. All these proposals observe that conditional equations would be

20



useful, but neither tool generates them nor include associative or commutative
operators, which are naturally supported in our approach thanks to the handling
of MAUDE’s (hence K’s) equational attributes [?]. By supporting the modular
combination of associative, commutative, idempotent and unity equational at-
tributes for function symbols (which makes these combinations transparent to
the developer), the K framework naturally conveys enough expressive power
to reason about typed data structures such as lists (list concatenation is asso-
clative with unity element nil), multisets (insertion is associative-commutative
with unity (), or sets (insertion is associative-commutative-idempotent with
unity @). By using equational attributes to declare such properties, we can
avoid non-termination problems and achieve much more efficient evaluation of
terms containing such operators. We take advantage of these capabilities at
three levels:

e for the definition of the extended language semantics, where the heap
structures and pointer handling are represented as appropriate data struc-
tures and their associated operations,

e for the mechanization of the inference process: we efficiently handle (even-
tually huge) sets of axioms, paths and constraints

e most importantly, for computing the sugared version of the specification,
where, by simply imposing an order relation on terms, we get a first sim-
plification of axioms almost for free, and we infer specifications where the
function symbols can be given equational attributes as well.

An alternative approach to software specification discovery is based on in-
ductive matching learning: rather than using test cases to validate a tentative
specification, they are used to induce the specification. Much of the work on
specification mining is targeted at inferring API protocols dynamically. For in-
stance, Whaley et al. [?] describe a system to extract component interfaces as
finite state machines from execution traces. The work in [?] offers a thorough
revision of data mining approaches for inferring different kinds of specifications,
typically from traces or observed program runs (e.g., models, summaries, regular
invocation patterns or state machines). An algorithm for interface generation
of software components using learning techniques is presented in [?] and imple-
mented in the JavaPathfinder model-checking framework.

Our approach differs from most of the above because we do not infer ab-
stract properties by observations of (concrete) program runs. Our axiomatic
representation of functions and of their effects is inspired by [?]. However, our
approach does not rely on a model checker for symbolic execution, as opposed
to Tillmann’s approach. Also, we do not generate the output as parameterized
unit tests or Spec# specifications; we have simpler and more accurate formu-
las that avoid reasoning with the global heap but rather separate the different
pieces of the heap that are reachable from the function argument addresses.
Moreover, we can refine the observers by means of Algorithm 3 so that we are
able to get more accurate specifications, although more experiments have yet to
be done to compare all these inference methods in larger code.

21



As a further advantage w.r.t. [?], in our framework, correctness of the inferred
axioms can be checked automatically by using the very same MATCHC verifier.
Also, our methodology can be easily applied to any language which is given a
semantics in the K framework.

22



