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1. INTRODUCTION34

Cholesky block factorizations of symmetric positive definite matrices started to ap-35

pear when cache blocking was first introduced [Gallivan et al. 1987; IBM 1986]. We36

consider A where A is stored in Block Packed Format (BPF) [Gustavson 2001, 2003].37

In Andersen et al. [2005] and Gustavson et al. [2007b, Algorithm 865] a variant of BPF38

called BPHF, where H stands for Hybrid, was presented. BPF has two variants called39

lower and upper BPF. Here we mostly study upper BPF, which is a block factoring of40

A into UTU, where U is an upper triangular matrix. Upper BPF is also Square Block41

Packed Format (SBPF) [Gustavson 2001] for packed format and SBPF is the format42

used by multicore implementations. In Section 2 algorithm BPTRF, which uses BPF,43

is given. BTRF is a restructured form of the LAPACK factorization routines PPTRF44

or POTRF. BPTRF uses about the same storage as PPTRF does. However, BPTRF45

performance is better than or equal to POTRF performance as BPF can also take ad-46

vantage of Level-3 BLAS operations [Dongarra et al. 1990; IBM 1986]. Finally, BPTRF47

using BPF is very competitive with multicore implementations of Cholesky factoriza-48

tion, whereas traditional POTRF implementation are not; see Kurzak et al. [2008] for49

POTRF and Agullo et al. [2010; Bouwmeester and Langou 2010] for POTRI. Section 350

details another main difference between the BPTRF and POTRF algorithms. BPTRF51

uses routines POTF3i1. POTF3i are Level-3 Fortran routines that use register block-52

ings [Gustavson 2004; Gustavson et al. 2007a]. The four routines POTRFi use differ-53

ent register blocking sizes. LAPACK POTRF uses POTF2, which is based on Level-254

BLAS operations.55

Section 4 gives performance results showing the Level-3 Fortran routines POTF3i56

can increase the block size nb used by a traditional LAPACK routine such as POTRF57

where performance usually starts to degrade at nb = 64 for POTF2. However, per-58

formance increases past block size 64 to 120 or more for our Level-3 Fortran routines59

POTF3i. These performance gains come from the use of Square Block (SB) format,60

the use of Level-3 register blocking and the elimination of all subroutine calls within61

POTF3i. Section 3.1 gives further reasons why POTF3i can use a larger nb. The in-62

crease in nb improves the overall performance of BPTRF: the main computational63

parts of BPTRF consist of calls to Level-3 BLAS TRSM, SYRK and GEMM. For64

example, all calls to level-3 BLAS GEMM performs better when its k dimension is65

larger and for BPTRF k = nb. It therefore follows that, for all n, overall performance66

of POTRF and BPTRF increases: GEMM performance is the key performance component67

of POTRF and BPTRF. In Gustavson et al. [2011b], an enlarged version of this article,68

performance results for large n verifying these remarks are given; see also Andersen69

et al. [2005] and Whaley [2008] where additional performance evidence of these asser-70

tions are given.71

Lower BPF is not new. It was used by D’Azevedo and Dongarra [1998] as the basis72

for a Cholesky packed distributed storage version of ScaLAPACK. This storage layout73

consists of a collection of block columns where each block column has size nb. Lower74

BPF is not a preferred format over upper BPF, as it does not give rise to contiguous75

SB. Therefore, Section 2.1 indicates how to very efficiently transform each lower block76

column in place to obtain upper BPF.77

1i stands for one of the four letters a,b,c,d as we consider four DPOTF3 routines.
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Fig. 1. Lower Blocked Column Packed and Upper Square Blocked Packed Formats.

Matrix data structures that use matrix tiling of contiguous blocks date back to 1997.78

We do not have space to fully reference this large area of research; readers are referred79

to a survey paper that partially covers this field up to 2004 [Elmroth et al. 2004], and80

to five more recent papers [Agullo et al. 2010; Bouwmeester and Langou 2010; Herrero81

2007; Herrero and Navarro 2006; Kurzak et al. 2008].82

2. INTRODUCTION TO BPF83

Packed storage of a matrix is used to conserve storage when that matrix has spe-84

cial properties. Two examples are symmetric and triangular matrices. By using BPF85

we may partition a symmetric matrix where each submatrix block is held contigu-86

ously in memory [D’Azevedo and Dongarra 1998; Gustavson 2001]. This gives another87

way to pack a symmetric matrix and it avoids the data copies (see [Gustavson et al.88

2007a]), that are inevitable when Level-3 BLAS are applied to matrices held in stan-89

dard Column Major (CM) or Row Major (RM) format as well as in standard packed90

format.91

We define lower and upper BPF via an example in Figure 1 with varying length92

rectangles of width nb = 2 and SB of order nb = 2 superimposed. Figure 1 gives the93

memory addresses of the array that holds the matrix elements of BPF. The rectangles94

making up the array of Figure 1 are in standard Fortran format and hence BPF sup-95

ports calls to level-3 BLAS. The rectangles in Figure 1(a) are not further divided into96

SB as these SB are not contiguous. Figure 1 is a collection of N = �n/nb� rectangular97

matrices concatenated together. Rectangle i has size n− i ·nb by nb for i = 0, . . . , N −1.98

The ith rectangle has its leading dimension, called LDA, equal to i · nb or nb. In99

Figures 1(a), 1(b) the LDA’s are n − i · nb and nb. The rectangles in Figure 1(b) are100

the transposes of the rectangles in Figure 1(a) and vice versa. Figure 1(b) rectangles101

have a major advantage over the rectangles of Figure 1(a): the ith rectangle consists102

of N − i order nb SB. This gives two dimensional contiguous granularity for GEMM103

calls using upper BPF, which lower BPF cannot possess. Using full format requires104

that LDA ≥ n. Clearly, this wastes about half the storage allocated by Fortran or C to A.105

On the other hand, for each SB, LDA = nb. This means minimal storage is wasted for106

large n! nb should be chosen so that a block fits comfortably into a Level-1 or Level-2107

cache. The LAPACK ILAENV routine may be called to set nb.108

We want to Cholesky factor a matrix A laid out in BPF. We use LAPACK’s POTRF109

routines modified to use the BPF of Figures 1(a) and 1(b). The code modifications are110

shown in Figure 2: one needs to call SYRK and GEMM i − 1 times at factor stage i.111

Here is the reason: the layout of the block rectangles do not have uniform strides across112

the block rectangles. Another advantage of using upper BPF is one may at factor stage113

i call GEMM (N − i − 1)(i − 1) times where each call is a parallel SB GEMM update.114

This approach was used by a LAPACK multicore Cholesky implementation [Kurzak115
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Fig. 2. LAPACK POTRF algorithms for BPF of Figure 1. The BLAS calls take the forms
SYRK(uplo,trans,...), POTF2(uplo,...), GEMM(transa,transb,...), and TRSM(side,uplo,trans,...).

et al. 2008]. This implies that a BPF layout supports both traditional and multicore116

LAPACK implementations.117

2.1. In-Place Transformation of Lower BPF to Upper BPF118

We want to transpose a rectangle of size LDA = j · nb by nb where j > 1. Let this119

rectangle j = N−i be rectangle i of lower BPF and suppose it holds matrix B. B is in CM120

format and it consists of nb contiguous columns. Now think of B as being a N − i by nb121

matrix whose elements are column vectors of length nb and inplace “vector transpose”122

B to become BT. BT consists of (N − i) · nb vectors concatenated together. Also, BT
123

can be viewed as consisting of N − i order nb SB matrices concatenated together; see124

Figure 1(a) and Figure 1(b) for examples. This transformation process, for any B, is125

very efficient as data can be moved in contiguous memory chunks, called lines, of size126

nb. Since there are N B matrices this efficient operation is also embarrassing parallel!127

One can do �N/2� parallel operations for each of the N different rectangles that make128

up the lower BPF. After completion of these �N/2� parallel steps one has transformed129

lower BPF as N variable rectangles inplace to be upper BPF as N(N+1)/2 SB matrices.130

Of course, upper BPF and upper packed SB format are identical representations of the131

same matrix. Space constraints do not allow us to discuss any details; see Gustavson132

and Swirszcz [2007] for inplace transposition and Gustavson [2008], Karlsson [2009],133

and Gustavson et al. [2011a] for inplace “vector transposition”.134

3. THE POTF3i ROUTINES135

POTF3i routines are replacement routines for POTF2. However, they are very differ-136

ent from POTF2. POTF3i work very well on BPF and not so well on full format. We137

only consider upper BPF here. They use tiny block sizes kb. We mostly choose kb = 2.138

These blocks are called register blocks. A 2 × 2 block holds four elements of A; we load139

them into four scalar variables t11, t12, t21 and t22 to alert most compilers to put140

and hold these scalars in registers. For a diagonal block ai:i+1,i:i+1 we load the upper141

triangle into t11, t12 and t22, update it with an inline form of SYRK, factor it, and142

store it over ai:i+1,i:i+1 as ui:i+1,i:i+1. This combined operation is called fusion by the143

compiler community. Note we are using colon notation [Golub and Van Loan 1996].144

For an off diagonal block ai:i+1,j:j+1 we load it, update it with an inline form of GEMM,145

scale it with an inline form of TRSM, and store it. This again is an example of fu-146

sion. For scaling by ui,i and ui+1,i+1 we use reciprocal multiplies. The two reciprocals147

are saved in two registers during the factor fusion computation. As used here, fusion148

also avoids procedure call overheads for many very small computations that POTF3i149

performs; in effect, we replace all calls to Level-3 BLAS by in-line code. Gustavson150

[1997], Gustavson and Jonsson [2000], and Yotov et al. [2007] for related remarks on151

this point.152

The key loop in the inline form of our GEMM and TRSM fusion computation is the153

inline form of the GEMM loop. For this loop, the code of Figure 3(a) is what we used154

in one of the POTF3i versions, called DPOTF3a. In Figure 3(a) we show the inline155
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Fig. 3. (a) GEMM loop code for C = C − ATB. & (b) Table for DPOTF3i.

form of the GEMM loop. The underlying array is Ai,j and the 2 by 2 register block156

starts at location (ii,jj) of array Ai,j; see Figure 3(b) where information is given for157

the three register blocks of GEMM operands A, B, C. DPOTF3a uses 8 local variables158

that compilers will place in registers. The loop body does 4 memory accesses and 8159

floating-point operations. In DPOTF3b, we accumulate into a vector block of size 1×4.160

Each iteration of the vector loop involves 8 floating-point operations as for the 2×2161

case; however, 5 real numbers are loaded from cache instead of 4.162

We usually got faster execution by having an inner inline form of the GEMM loop163

that updated both 2 by 2 blocks Ai,j and Ai,j+1. This version of POTF3i is called164

DPOTF3c. For it the scalar variables aki and aki1 need only be loaded once, so we165

now have 6 memory accesses and 16 floating-point operations. If possible, all 14 local166

variables of this loop should be assigned to registers. Code for POTF3c is available in167

the TOMS paper [Gustavson et al. 2007b, Algorithm 865]. Routine DPOTF3d is similar168

to DPOTF3a. However, DPOTF3d does not use the FMA instruction. Instead, it uses169

multiplies followed by adds. We close this section by making a very important remark:170

Level-1 BLAS AXPY is slower than Level-1 BLAS DOT. The opposite statement is171

true when the matrix data resides in floating point registers.172

3.1. POTF3iPOTF3iPOTF3i Routines Can Use a Larger Block Size nbnbnb173

The element domain of A for Cholesky factorization using POTF3i is an upper triangle174

of a SB. Furthermore, in the outer loop of POTF3i at stage j, where 0 ≤ j < nb, only175

address locations L(j) = j(nb − j) of the upper triangle of Figure 1(b)2 are accessed.176

The maximum value of nb2/4 of address function L occurs at j = nb/2. Hence, during177

execution of POTF3i, only half of the cache block of size nb2 is used and the maximum178

usage of cache at any time instance is just one quarter of the size of a SB. Thus, POTF3i179

can use a larger block size before its performance will start to degrade. This fact is true180

for all four POTF3i computations.181

4. PERFORMANCE182

In Gustavson et al. [2011b] we presented several experiments that corroborate our183

conjectures. In this article, however, we will only provide details on Experiment I.184

Our calculations are done in DOUBLE PRECISION. Thus, the names of the subrou-185

tines are DPOTRF and DPOTF2 from the LAPACK library and four simple Fortran186

Level-3 DPOTF3i routines described in the following and also in Section 3. These four187

routines are subroutines used entirely by DBPTRF for matrix orders below size about188

2nb = 2 in Figure 1(b). In real applications nb ≈ 100 and so the triangle holds 5050 elements out of 10000
when nb = 100. Also, nb2/4 = 2500.
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120. LAPACK DPOTRF calls LAPACK DPOTF2, which calls Level-2 BLAS routine189

DGEMV. DPOTRF and DBPTRF both call Level-3 BLAS routines DTRSM, DSYRK,190

and DGEMM. DPOTRF also calls LAPACK subroutine ILAENV, which sets the block191

size nb used by DPOTRF. The four Fortran routines DPOTF3i are a new type of Level-3192

BLAS called FACTOR BLAS.193

We only use upper BPF in our performance studies. We do not try to take advantage194

of additional parallelism that is inherent in upper BPF. This allows for a fairer com-195

parison of POTRF and BPTRF in an SMP environment that is traditionally Level-3196

BLAS based. In fact, this decision is unfair to BPTRF because POTRF makes O(N)197

calls to Level-3 BLAS whereas BPTRF makes O(N2) to Level-3 BLAS; see Table 1198

of Section 3.1 in Gustavson et al. [2011b] where the calling overhead of POTRF and199

BPTRF is given a detailed treatment. The reason we say unfair has to do with Level-3200

BLAS having more surface area per call in which to optimize. The greater surface area201

comes about because POTRF makes O(N) calls whereas BPTRF has to make O(N2)202

calls. In addition, a highly optimized BLAS library may have BLAS-2 routines, such203

as GEMV, that use thread-level parallelism that will speed up POTF2.204

4.1. Performance Preliminaries for Experiment I205

We consider matrix orders of 40, 64, 72, 100 since these orders will typically allow the206

computation to fit comfortably in Level-1 or Level-2 caches.207

Comparison numbers in Table I are given in Mflop/s. Results are given for six plat-208

forms: SUN UltraSPARC IV+, SGI - Intel Itanium2, IBM Power6, Intel Xeon, AMD209

Dual Core Opteron, and Intel Xeon Quad Core. Table I has 13 columns. The matrix210

order is in column one. Results of the vendor optimized Cholesky routine DPOTRF211

and the Recursive Algorithm [Andersen et al. 2001] are given in columns two and212

three. Column 4 contains results when DPOTF2 is used within DPOTRF with block213

size nb = 64. On most of our computers this block size was best. Column 5 contains214

results when DPOTF2 is called by itself. In columns 7, 9, 11, 13 the four DPOTF3i rou-215

tines are called by themselves. In columns 6, 8, 10, 12 the four DPOTF3i, i=a,b,c,d,216

routines are called by DPOTRF with block size nb = 64.217

The resolution of our timer used in Table I was too coarse. Thus, for small matrices218

our time is the average of several executions run in a loop. On some platforms we had219

to run in batch mode; eg, IBM Huge. Thus, there were some anomalous timings; for220

instance, for n = 40 column 5 time should be less than column 4 time.221

4.2. Interpretation of Performance Results for Experiment I222

We use five Fortran routines in this study besides DPOTRF; see Section 3 and223

Figure 3(b) for details. They are the following.224

(1) LAPACK routine DPOTF2. Columns 4 and 5 show results of calling DPOTRF and225

of only calling routine DPOTF2.226

(2) The 2×2 blocking routine DPOTF3a is specialized for the operation FMA (a×b + c)227

using seven floating point registers (FPRs). DPOTRF calls DPOTF3a in column 6228

and DPOTF3a is called alone in column 7.229

(3) The 1×4 blocking routine DPOTF3b is optimized for the case mod(n, 4) = 0 where230

n is the matrix order. It uses eight FPRs. DPOTRF calls DPOTF3b in column 8 and231

DPOTF3b is called alone in column 9.232

(4) The 2×4 blocking routine DPOTF3c uses fourteen FPRs. DPOTRF calls DPOTF3c233

in column 10 and DPOTF3c is called alone in column 11.234

(5) The 2×2 blocking routine DPOTF3d. It is not specialized for the FMA operation235

and uses six FPRs. DPOTRF calls DPOTF3d in column 12 and DPOTF3d is called236

alone in column 13.237
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Table I. Performance in Mflop/s of the Kernel Cholesky Algorithm. Comparison between Different Computers
and Different Versions of Subroutines

Mat Ven Recur dpotf2 2x2 w. fma 1x4 2x4 2x2
ord dor sive 8 flops 8 flops 16 flops 8 flops

lap lap lap fac lap fac lap fac lap fac lap fac
1 2 3 4 5 6 7 8 9 10 11 12 13

Newton: SUN UltraSPARC IV+, 1800 MHz, dual-core, Sunperf BLAS
40 759 547 490 437 1239 1257 1004 1012 1515 1518 1299 1317
64 1101 1086 738 739 1563 1562 1291 1295 1940 1952 1646 1650
72 1183 978 959 826 1509 1626 1330 1364 1764 2047 1582 1733

100 1264 1317 1228 1094 1610 1838 1505 1541 1729 2291 1641 1954
Freke: SGI-Intel Itanium2, 1.5 GHz/6, SGI BLAS

40 396 652 399 408 1493 1612 1613 1769 2045 2298 1511 1629
64 623 1206 624 631 2044 2097 1974 2027 2723 2824 2065 2116
72 800 1367 797 684 2258 2303 2595 2877 2945 3424 2266 2323

100 1341 1906 1317 840 2790 2648 2985 3491 3238 4051 2796 2668
Huge: IBM Power6, 4.7 GHz, Dual Core, ESSL BLAS

40 5716 1796 1240 1189 3620 3577 2914 4002 4377 5903 3508 4743
64 8021 3482 1265 1293 5905 6019 5426 5493 7515 7700 6011 5907
72 8289 3866 1622 1578 5545 5178 5205 4601 6416 6503 5577 4841

100 9371 5423 3006 2207 7018 5938 6699 6639 7632 8760 7050 6487
Battle: 2×Intel Xeon, CPU @ 1.6 GHz, Atlas BLAS

40 333 355 455 461 818 840 781 799 806 815 824 846
64 489 483 614 620 1015 1022 996 1005 1003 1002 1071 1077
72 616 627 648 700 914 1100 898 1105 903 1090 936 1163

100 883 904 883 801 1093 1191 1080 1248 1081 1210 1110 1284
Nala: 2×AMD Dual Core Opteron 265 @ 1.8 GHz, Atlas BLAS

40 350 370 409 397 731 696 812 784 773 741 783 736
64 552 539 552 544 925 909 1075 1064 968 959 944 987
72 568 570 601 568 871 909 966 1065 901 964 926 992

100 710 686 759 651 942 1037 972 1231 949 1093 950 1114
Zoot: 4×Intel Xeon Quad Core E7340 @ 2.4 GHz, Atlas BLAS

40 497 515 842 844 1380 1451 1279 1294 1487 1502 1416 1412
64 713 710 1143 1146 1675 1674 1565 1565 1837 1841 1674 1674
72 863 874 1203 1402 1522 1996 1492 1877 1633 2195 1527 1996

100 1232 1234 1327 1696 1533 2294 1503 2160 1563 2625 1530 2285
1 2 3 4 5 6 7 8 9 10 11 12 13

It is important to note that Level-3 BLAS are called only in columns 4, 6, 8, 10, 12238

for block sizes 72 and 100, as ILAENV has set the block size to be 64 in our study. In239

odd columns 5 to 13 DPOTF2 and DPOTF3i are called.240

In column 11 the DPOTF3c code is very successful on the Sun (Newton), SGI (Freke),241

IBM (Huge) and Quad Core Xeon (Zoot) computers. For these four platforms, it greatly242

outperforms the compiled LAPACK code and the recursive algorithm. Except on the243

IBM (Huge) platform for n ≥ 40 it outperforms all the other vendor optimized codes.244

The DPOTF3d code in column 13 is best on the Intel Xeon (Battle) computer. The245

DPOTF3b code in column 9 is superior on the Dual Core AMD (Nala) platform. All the246

best results are colored in red.247

Table I reveals an innovation about using Level-3 Fortran DPOTF3(a,b,c,d) codes248

over use of Level-2 LAPACK DPOTF2 code, which we now explain. The results of249

columns 10 and 11 are about equal n = 40 and n = 64. Column 10 does extra work250

in which DPOTRF calls ILAENV, which sets nb = 64. It then calls DPOTF3c and251
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returns after DPOTF3c completes. In column 11 only DPOTF3c is called. Thus col-252

umn 10 time is slightly more than column 11 time. Now take n = 72 and n = 100.253

In DPOTRF, ILAENV sets nb = 64, and then does a Level-3 blocked computation. Let254

n = 100. With nb set to 64 DPOTRF does a sub blocking of block sizes equal to 64 and255

36 and DPOTRF calls Factor(64), DTRSM(64,36), DSYRK(36,64), and Factor(36) be-256

fore returning. The two Factor calls are to the DPOTF3c routine. However, in column257

11, DPOTF3c is called only once with n = 100. In column 11 performance is always258

increasing over doing the Level-3 blocked computation of DPOTRF. This means that259

DPOTF3c is outperforming DTRSM and DSYRK as n increases from 64 to 100. Now,260

look at columns 4 and 5. For n = 40 and n = 64 the results are again about equal. For261

n = 72 and n = 100 the results favor DPOTRF with Level-3 blocking except for the262

Zoot platform and the Battle platform for n = 72. Zoot and Battle are 4 way and 2 way263

Intel platforms. We suspect DGEMV has been made parallel; see the last paragraph264

of Section 4. Thus, one sees DPOTF2 performance is decreasing relative to a blocked265

computation as n increases from 64 to 100. An increasing result is true for most of the266

columns six to thirteen; namely DPOTF3(a,b,c,d) performance is increasing relative to267

the blocked computation as n increases from 64 to 100. The exception is the IBM Huge268

platform for columns (6,7), (8,9), (12,13). This platform has 32 FPRs. Column (10,11) is269

using 14 FPRs and DPOTF3c exhibits the increasing result. In the three exceptional270

columns DPOTF3(a,b,d) uses 7, 8 and 6 FPRs.271

We have just seen that routines DPOTF3i outperform DPOTF2 for n ≈ nb. Also,272

both DBPTRF and DPOTRF perform better for large n when DPOTF3i routines are273

substituted for DPOTF2. We explain. Take any n for DPOTRF. DPOTRF will do a274

blocked computation with this larger block size for n ≥ nb. All three BLAS subroutines,275

DGEMM, DSYRK and DTRSM, of DPOTRF will now perform better when called by276

DPOTRF with this larger block size!277

Andersen et al. [2005] give large n performance results for BPHF where nb was278

set larger than 64. The results for nb = 100 were much better. The explanations in279

Sections 3 and 4 explain why. They also confirm the results of Whaley [2008]. Finally,280

see Section 1.1.1 and the remaining Sections of 3 in Gustavson et al. [2011b] where we281

give further confirming experimental results for large n.282

These results emphasize that LAPACK users should use ILAENV to set nb based on283

the speeds of Factorization, DTRSM, DSYRK and DGEMM. This information is part284

of the LAPACK User’s Guide. The results of [Whaley 2008] provide a means of setting285

a variable nb for DPOTRF where nb increases as n increases.286

The code for the 1×4 DPOTF3b subroutine is available from the companion pa-287

per [Gustavson et al. 2007b, Algorithm 865]. The code for POTRF and its subroutines288

is available from the LAPACK package [Anderson et al. 1999].289

5. SUMMARY AND CONCLUSIONS290

We demonstrated that four simple Fortran codes DPOTF3i produce Level-3 Cholesky291

factorization routines that perform better than the Level-2 LAPACK DPOTF2 routine.292

DPOTF3i allowed DPOTRF to increase its block size nb. Since nb is the k dimension293

of the Level-3 BLAS GEMM, SYRK and TRSM routines their SMP performance294

increases. Hence the performance of SMP POTRF increases. In Gustavson et al.295

[2011b] we provided “three performance conjectures” with explanations on why they296

were “true”. Also, three performance studies were conducted that “verified” these297

conjectures. These three performance results were corroborated by the results of298

Andersen et al. [2005] and Whaley [2008]. Also, in Gustavson et al. [2011b], DBPTRF299

performance was usually optimal for one nb for an entire range of n values. For300

DPOTRF, using DPOTF2, one needs to increase nb as n increased to obtain optimal301
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performance. Because of space limitations this article included only performance302

results of experiment I from Gustavson et al. [2011b].303

We described BPF format, which has two cases lower and upper BPF. Lower BPF304

format consists of N = �n/nb� rectangular blocks whose LDA’s are n−i·nb for 0 ≤ i < N.305

Upper BPF had the additional property that each of its rectangular blocks were also306

a multiple number of square blocks so there are N(N + 1)/2 SB in all. We presented307

algorithm DBPTRF and showed that its code were trivial modifications of the LAPACK308

POTRF and PPTRF algorithms. Upper BPF is multicore data layout. The current Cell309

implementations of Kurzak et al. [2008], for full format, should carry over to BPTRF310

with trivial modifications. Agullo et al. [2010] and Bouwmeester and Langou [2010]311

indicate this is true.312

We described in Section 2.1 how a vertical rectangular block could be very efficiently313

transformed inplace to be a multiple of square blocks by a parallel vector inplace trans-314

pose algorithm. A purpose of our article is to promote the new Block Packed Data315

Format storage or its variants. Traditional LAPACK full format algorithms and their316

related Level-3 BLAS are no longer being used on multicore processors. For full format317

symmetric and triangular matrices the format used by multicore is SBPF; for packed318

format SBPF is equal to upper BPF.319
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