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Abstract

Syntax discoverability has been a crucial advantage of structure editors for
new users of a language. Despite this advantage, structure editors have not been
widely adopted. Nevertheless, the Cheetah system, developed at Capgemini,
leverages a structure editor to aid domain experts modeling tax-benefit rules in
a domain specific language. The structure editor suffers from a lack of free
form editing and conversions from/to plain text. The Spoofax language work-
bench, developed at Delft University of Technology, uses a textual editor, which
is syntax-aware due to immediate parsing and analyses. In this thesis we describe
a migration from Cheetah to Spoofax, which aims to bring the advantages of text
editing to the tax-benefit rule modeling language.

During the migration, we experienced that current text-based language work-
benches, such as Spoofax, require redundant specification of the ingredients for
a template-based editor, which is detrimental to the quality of syntactic comple-
tion, as consistency and completeness of the definition cannot be guaranteed. We
describe the design and implementation of a specification language for syntax
definition based on templates. It unifies the specification of parser, pretty printer
and template-based editor. We evaluate the template language by application to
the tax-benefit rule modeling language and a language for mobile web applica-
tions.
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About this thesis This work essentially consists of two parts. The first part (Chap-
ter 2 up to Chapter 7) describes a migration of the Cheetah system at Capgemini to
Spoofax, and provides the motivation for the second part. The second part (Chapter 8
up to Chapter 11) describes a language that unifies the specification of grammar, pretty
printer, and templates for syntactic completion (content assist), and runtime support for
the template-based editors generated from specifications in this language. The title of
this thesis is derived from the second part.
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Chapter 1

Introduction

1.1 Domain Specific Languages

By employing a domain specific language (DSL), a software engineer can raise the
level of abstraction of their software. A well-designed DSL hides any accidental com-
plexity in the code generator or interpreter of the language, so that the DSL user can
focus on the complexity that is essential to the problem. Because a DSL can be used to
hide irrelevant details, it is possible to enable domain experts to read (and sometimes
even modify or write) programs in this language, thereby improving the communi-
cation between domain experts and software engineers. Additionally, a DSL can be
used when the natural model of computation for a domain differs from what is avail-
able in general purpose languages. Specifically, many DSLs are declarative, instead of
imperative, and often not Turing complete.

Introducing a DSL is an investment: tools need to be created that do not imme-
diately add business value, but rather increase the rate at which business value can be
generated in the future. While in the past a command line application to interpret, or
generate code from domain specific programs may have been sufficient, nowadays pro-
grammers are used to Integrated Development Environments (IDEs) such as Eclipse
and Visual Studio. As such, a new language that aims to increase productivity has
a better chance to succeed if it comes with a development environment, preferably
integrated with the development environment the team is already using.

1.2 Language Workbenches

Language workbenches [19, 34, 65] are tools that aim to drastically reduce the effort
for the language developer to develop a new DSL and the accompanying development
environment. Hence, a language workbench is an IDE for developing (domain spe-
cific) languages and IDEs for those languages. Language workbenches can be clas-
sified into those with language-aware structure editors (also known as projectional
editors), and those with textual, parser-based editors.

Language-aware structure editors provide a template-based paradigm for editing
programs, i.e. composing programs by selecting a template and filling in the place-
holders, which can again be extended using templates. A crucial advantage of structure
editors is syntax discoverability, helping new users to learn the language by present-
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1. INTRODUCTION

ing possible syntactic completions in a menu. Structure editors can be automatically
generated from a syntax definition. Notable projects aiming at automatic generation
of structure editors include MPS [65] and the Intentional Domain Workbench [51].
Structure editors can be used for general-purpose languages or for domain-specific lan-
guages (DSLs). A modern example of the former is the structure editor in MPS [65],
for extensible languages based on Java. The Intentional Domain Workbench [51] is an
example of the latter category.

Despite their good support for discoverability, structure editors have not been
widely adopted. Pure structure editors tend to introduce an increased learning curve
for basic editing operations. For example, they only support copy-pasting operations
that maintain well-formedness of the tree and require small, yet non-trivial “refactor-
ing” operations for editing existing code, e.g. when converting an if statement to an
if-else statement. They also lack integration with other tools and expose the user to
vendor lock-in. Transferring code across tools requires a shared representation that is
generally not available. With software engineering tools such as issue trackers, forums,
search, and version control being based on text, a textual representation is preferable,
but requires the use of a parser and a parseable language syntax. This forces tools
based on structure editors to find new solutions to problems long solved in the text
domain.

Modern parser-based editors, such as those in Eclipse and Visual Studio, combine
a plain text editor with language-aware editor services through parsers that run in the
background while a program is edited. Over time, they have acquired features ranging
from code folding to syntactic completions, allowing programmers to fill in textual
templates, while seamlessly switching between template-based editing and text editing
modes. The textual representation of the code makes interoperability with existing
software engineering tools easy. Spoofax [34] and Xtext [17, 18] are modern examples
of language workbenches that employ a textual, parser-based editor.

1.3 Cheetah

Cheetah is a language workbench with a language-aware structure editor, which has
been developed by the Functional Model Driven Development group at the IT services
company Capgemini. The group has developed several projects in Cheetah, among
which a DSL for modeling tax-benefit rules, from which a set of .NET services can
be generated. Cheetah’s facilities for discoverability and the use of templates are par-
ticularly effective to aid a small audience of domain expert programmers manage the
verbose syntax based on legal texts. The DSL hides the complexity of making deci-
sions over a period of time, during which the inputs to the decision vary. Additionally,
the calculation model allows decisions based on facts, as they were known to the sys-
tem at a point in time in the past.

Despite successful application of Cheetah in multiple projects, Cheetah suffers
from an underdeveloped structure editor, which does not have support for copy-pasting
operations or “refactoring” operations at all. In fact, the programs can be converted
to textual form only through code generators that output the program text in textual
form, and programs can be modified only through a few primitive operations such as
the introduction of a new node, removal of an existing node, or modification of the
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user defined text of a node. On top of the lack of features, the structure editor is rather
slow and painful to work with, because it requires loading millions of Java objects into
memory.

1.4 Spoofax

Spoofax [34] is a modern language workbench with a textual, parser-based editor. The
Spoofax language workbench is an Eclipse plugin, and generates Eclipse plugins for
the languages developed with it. Indeed, Spoofax reuses many of the capabilities of
the Eclipse text editor, while shielding the language developer from the burden of
implementing many Java interfaces for common editor services such as syntax color-
ing, code folding and outlining, which can easily be generalized to multiple languages.
Spoofax employs scannerless generalized parsing [59], allowing languages to be freely
composed and extended.

The first challenge we aim to address in this thesis is a migration of the tax-benefit
rule modeling DSL of Capgemini from the Cheetah system to the parser-based Spoofax
language workbench [34]. We use the migrated tax-benefit rule modeling DSL as
a case study for our second research question. The first challenge leads us to the
following research question:

Research Question 1: Can a DSL, such as the tax-benefit rule modeling DSL of
Capgemini, be migrated from a structure editor based language workbench, such
as the Cheetah system, to a parser-based language workbench, such as Spoofax?

1.5 Content Assist

We quickly realized that it would be impossible for a user to write new models in a
language as verbose (see Figure 1.1) as the tax-benefit rule modeling DSL, without
accurate and complete syntax discovery. In syntax-aware text editors this discovery
is provided in the form of syntactic completion. Accurate and complete syntactic
completion depends critically on two features of a language workbench:

• The syntactic completion proposals presented to the user must be relevant and
complete.

• It must be feasible to create and maintain the specification necessary to make
the editor aware of these completion proposals.

Current text-based language workbenches, including Spoofax, require redundant
specification of the ingredients for a template-based editor, i.e. concrete syntax, ab-
stract syntax, completion templates, and pretty-print rules, which is detrimental to the
quality of syntactic completion in syntax-aware editors. Evolution of the language
requires maintenance of all ingredients in order to maintain completeness and consis-
tency. It is tedious and therefore easy to make mistakes while adding or adapting a
completion template for each new or modified language construct.

3



1. INTRODUCTION

Als gedurende minstens een dag in de periode van de eerste dag van het jaar van ... tot
de eerste dag van het jaar volgend op ... geldt ( indicatie betrokkene aanwezig.Waar )

Dan
Voer uit bepaal partner voor relevante gerelateerden bij burger

Anders
"geen partnerbepaling (zie ontwerpbeslissing)"

Einde als

Het nieuwe beschikkingsnummer wordt samengesteld uit
(let op: bij numerieke deelwaarde posities van rechts naar links)

beschikking.huishouden.aanvrager.burgerservicenummer van positie 1 t/m positie 9
middeltype van positie 1 t/m positie 1
beschikking.jaar van positie 1 t/m positie 2
bepaal code type beschikking van positie 1 t/m positie 1
beschikkingsvolgnummer van positie 1 t/m positie 3
aanduiding regeling van positie 2 t/m positie 2

Einde declaratie

Figure 1.1: Tax-benefit rule modeling DSL examples

Thus, the second challenge we address in this thesis, is the design and develop-
ment of a template-based syntax definition language1 that unifies the specification of
parsers, pretty printers, and template-based editors in order to support the efficient con-
struction of template-based editing facilities in textual editors. This challenge leads to
the second research question:

Research Question 2: Can a single, declarative language unify the specification
of parser, pretty printer, and templates for syntactic completion?

A declarative specification of a template-based editor needs to be complemented
with sufficient runtime support to be of any value. Hence, as the third challenge we
address the runtime support for these template-based editing facilities in Spoofax by
investigating an approach to compute the set of applicable templates at the location of
the cursor. The third challenge leads to the third research question:

Research Question 3: Can we improve runtime support for template-based edi-
tors, so as to make the set of presented templates both relevant and complete?

1.6 Outline of this Thesis

To address Research Question 1, we first investigate the architecture of Cheetah in
Chapter 2. Then, Spoofax is introduced, accompanied with a comparison to Cheetah,
in Chapter 3. Since the persistent storage layer in Cheetah is based on XML, we start
our exploration of a migration of the tax-benefits DSL to Spoofax with an extension
to Spoofax to import a large body of XML in Chapter 4. Using this extension, we

1http://strategoxt.org/Spoofax/TemplateLanguage
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1.6. Outline of this Thesis

transform the Cheetah meta model to an SDF grammar in Chapter 5, and we convert
the Cheetah models to text files that adhere to this grammar in Chapter 6. In Chap-
ter 7 we finish with a discussion on a migration of the code generators in Cheetah. An
actual migration of these code generators is left as future work. To address Research
Question 3, we describe changes to the Spoofax runtime that improve content assist in
Chapter 8. As Spoofax is one of the text-based language workbenches that requires re-
dundant specification of concrete syntax, completion templates, and pretty-print rules,
we design and develop a template-based syntax definition language, which aims to
unify the above artifacts, in Chapter 9. We validate this approach in Chapter 10 by
applying it in two mature DSLs, thereby answering Research Question 2. Finally, we
dedicate Chapter 11 to discussion of the pretty printing back-end of our template-based
syntax definition language, as this aspect requires rather much space. We conclude this
thesis with an overview of related work in Chapter 12, and a conclusion and a discus-
sion of future work in Chapter 13.
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Chapter 2

The Architecture of Cheetah

2.1 Overview

The Cheetah system is a meta modeling tool used at Capgemini. It enables the user to
capture domain knowledge into a tree of model elements. From this knowledge base
source code and other artifacts can be generated automatically using transformation
rules written in Java. In practice, Capgemini leverages Cheetah, among other projects,
to specify a DSL for modeling tax-benefit rules, and generating complete .NET so-
lutions from programs in this DSL. Large parts of the tree with model elements are
specified using primitive input elements like text boxes, check boxes, and lists. A
designated part of the tree specifies a domain specific language, which is used in a
structure editor to model domain concepts in a more expressive way.

2.2 Model Elements

The main constituent part of Cheetah is the model element. A model element is similar
to a class in an object oriented language like Java, although prototypal inheritance is
used instead of classical inheritance:

• It has a name.
• It may have any number of properties. Each property has a name, type and some

boolean attributes. The type refers to another model element. The attributes
include things such as final and visible. A final property cannot be modified in
any instantiation or derivative of the model element. An invisible property is
hidden from the user interface.

• It extends another model element (except for the inheritance hierarchy root).
• It may be abstract.

Additionally, a model element has meta data that is not typically present in a Java
class:

• It specifies a table-based layout. This is used to organize the properties of the
model element in a table in the user interface.

• It may specify a property definition. This is a reference to a model element that
is to be used for property meta data for any property that has the first model
element as its type. The property definition is present if and only if the model
element is not used as a property definition.

7
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ModelElement ModelElementPropertyDefinition

+caption: Text

+description: Text

propDef

Number

NumberPropertyDefinition

+minimumValue: Number = -999999

+maximumValue: Number = 999999

+precision: Integer = 2

propDef

Integer

propDef

Text TextPropertyDefinition
propDef

Method

+name: Text = unnamed

+arity: Integer = 0

TextPropertyDefinition

+caption = name

+description = the visible name of the method

<<instance>>

NumberPropertyDefinition

+caption = arity

+description = number of parameters

+minimumValue = 0

+precision = 0

<<instance>>

Figure 2.1: Property definitions and their use

For example, the model element at the root of the inheritance hierarchy, Model-
Element, specifies the model element ModelElementPropertyDefinition as prop-
erty definition. That model element contains the properties caption and description.
Hence, all properties declared in the system have a caption and a description as meta
data. In the same way the NumberPropertyDefinition model element extends all
properties with the Number type with minimumValue, maximumValue and precision
meta data. This example, including the Method model element that has two properties
name and arity, is shown in Figure 2.1.

The link between model element and class is even stronger. In older versions of
Cheetah each model element was stored as Java class. That is, saving a modification
to a model element meant regenerating and compiling a Java source file. Loading a
model element meant loading the Java class into the JVM. In a newer version each
model element is stored in an XML file, optionally backed by a Java class for any
custom functionality. The core package cheetahPrimitives leverages this custom
functionality for features such as:

• Instantiating a GUI control of a type suitable to edit the model element. The
Boolean model element instantiates a check box for example, while the Text
model element instantiates a text box.

• Utility methods useful in custom Java source code in Cheetah, e.g. code gener-
ation.

• Querying the file system in, for example, the ListOfFileSystemmodel element.

8
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Figure 2.2: Two instances of the selector

Start : ModelCollection
ModelCollection : List(ModelCollection) * List(Model)

Model : List(ModelMajorVersion)
ModelMajorVersion : List(ModelMinorVersion)
ModelMajorVersion : List(ModelElementGroup) * List(ModelElement)
ModelMinorVersion : List(ModelElementGroup) * List(ModelElement)

ModelElementGroup : List(ModelElementGroup) * List(ModelElement)

Figure 2.3: Organization of model elements

2.3 Organization of Model Elements

2.3.1 The Selector

The collection of model elements is large (about 20,000 different elements) so there
must be a way to organize them. Cheetah allows the user to organize the model
elements using a tree similar to the package explorer in Eclipse. In Cheetah it is called
the selector; it is presented to the user after the application is started. Two screen cap-
tures of the selector are presented in Figure 2.2. The tree has the structure shown in
Figure 2.3.

Model collections are used for a high level classification of models into different
categories. In particular, language definition (meta model), language use (model) and
code generation are separated into different subtrees using model collections. This
separation is purely organizational, it is not enforced by the tool. Models are versioned
containers of model elements. The versions are specified using major and minor model
versions. For some models only major model versions are used. Modelelement groups
are used similarly to model collections, except they help categorize model elements

9
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instead of models. Finally, model elements are the leaf nodes in the selector.

The tree is completely built from model elements. The model collection node is
either a ModelCollection or a ModelCollectionView model element. The model
node corresponds to a Model model element, the model version corresponds to a
ModelVersion model element (major and minor are combined), and so on. Each of
those model elements has (a) list(s) of references to the child model elements. Those
lists contain a type-bound limiting it to include only model elements of a certain type.
That is, the model collection only allows ModelCollections in its first list and Models
in its second list.

2.3.2 On-disk organization of model elements

Besides the organization presented to the user through the selector, there is a natural
organization of model elements in a directory tree on the file system. Although this
organization is less visible to the user it is important because model elements are placed
on a disk location relative to the Cheetah root directory, based on their fully qualified
name. This naming scheme has the advantage that, given the fully qualified name of a
model element, its file system location can be generated using a trivial procedure. For
example, the model element with the name cheetahPrimitives.v10.Boolean has
the file name Boolean.cme, and is found in the directory cheetahPrimitives/v10.

2.4 Prototypal Inheritance

We have seen many similarities between model elements and Java classes. At this
point, however, the similarities end. When the user opens a model element, first the
Java class for that model element is loaded. Then an instance is created of the model
element. The user interface will be generated from that model element and any changes
will be saved by the model element. Effectively the user edits a prototype instance of
the model element.

When a model element is instantiated all its properties are instantiated too. More
formally, for each property the model element that is the type of that property is in-
stantiated. Since these model elements may have properties too, this procedure is
recursive. The in-memory representation of the model element therefore contains the
complete subtree of model elements and their properties below the model element. On
persistent storage only the properties that are different from their origin model element
are stored.

We recognize this as prototype-based programming, or prototypal inheritance.
Specifically, the model elements as stored on persistent storage are the prototypes.
Before a model element is instantiated all contained model elements are cloned from
their prototype before the modifications declared in the edited model element are ap-
plied. Note that model elements are instantiated when they are edited, when a model
element in which they are contained (either directly or indirectly) is edited or when
code generation is run.
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2.5 Primitive Data Types

As you may have noticed in the first part of this chapter, there are a number of basic
model elements that correspond with simple user interface elements, such as:

• Boolean
• Integer
• Number
• Enumeration
• Text
• LimitedText
• Color
• Date

Then there are model elements that present the user with a list of model elements,
references to model elements, or references to instantiated model elements in the sub-
tree below the open model element. Among the model elements that present the user
with a list are:

• ListOfModelElements
• FilteredListOfModelElements
• NamedFilteredListOfModelElements
• OrderedNamedFilterdListOfModelElements
• ListOfFilteredReferenceToModelElement
• ListOfReferenceToNodeOfTree

This works well for structuring simple data. As the data gets more complex it
becomes tedious to map everything to these primitive data types.

2.6 An Example of a Business Rule Modeled Using Model
Elements

As an example, we model the business rule “if price > 100 and customer.visit_count >
5 then discount = 10%” using the above data types. One way is to put the whole rule
in a Text element and infer the structure at a later time (i.e., during code generation)
using parser-based techniques. This is not the point of the whole mechanism of model
elements however.

So can we do better by capturing the structure of the rule using model elements?
We can, if we create model elements for the different parts of the rule, as shown in
Figure 2.4. The figure should be read as “model element name { model element prop-
erties }”, where each property is a pair of its name and either an instance of a model
element or a primitive value like a string (double quoted) or an integer.

2.7 Structure Editor

A representation of the tree of model elements using primitive user interface elements
is certainly not ideal as it does not readily convey the meaning as expressed by the
statement “if price > 100 and customer.visit_count > 5 then discount = 10%”.

11



2. THE ARCHITECTURE OF CHEETAH

IfThen {
condition: LogicalAnd {
lhs: GreaterThan {
lhs: Variable { name: "price" }
rhs: 100

}
rhs: GreaterThan {
lhs: Variable { name: "customer.visit_count" }
rhs: 5

}
}
then: Assignment {
lhs: Variable { name: "discount" }
rhs: Percentage { value: 10 }

}
}

Figure 2.4: Model elements for business rule example

public interface TextObjectElementInterface {
public String getText();
public String setText(String aText);
public boolean isTextEditable();
public boolean isTabStopRequired();
public Color getBackgroundColor();
public SimpleAttributeSet getSimpleAttributeSet();
public JFrame getFrame();

}

Figure 2.5: The TextObjectElementInterface in Cheetah

Cheetah contains a solution to this: there exists a LanguageBlock model element
which employs a custom Java class TextObjectEditor as UI component. This class
implements a rich edit control based on JTextPane1 which may be used to edit a tree
of model elements whose Java classes implement the TextObjectElementInterface
interface displayed in Figure 2.5. Although the TextObjectEditor extends JText-
Pane, which is a free-form rich text editing component, TextObjectEditor restricts
the text that can be entered. As can be seen in the interface definition, a model element
can make itself read-only and can decide whether or not the user can cycle through the
element using the tab key. Combined with content assist at insertion points, through
which only certain model elements can be selected, the editor is transformed into a
structure editor. Because it is based on a text editor, however, the projection of the tree
of model elements can only contain text.

2.8 Language Definition

So, Cheetah provides a structure editor, which allows the user to edit model elements
that implement a certain interface. That raises a question: how is the language defined?

1http://download.oracle.com/javase/6/docs/api/javax/swing/JTextPane.html
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2.8. Language Definition

LanguageElement

WholeLanguageElement

ExpressionOperatorExpression

ExpressionRelational

ExpressionValue

Statement

StatementReturnStatementCall

StatementIfThenElse

ExpressionIdentifier

Figure 2.6: Some abstract language constructs

2.8.1 Abstract language constructs and language building blocks

The language in Cheetah is implemented using the package functionalModel.v1.
language. This package contains model elements that aid in the definition of a DSL
(the package itself is DSL independent). The LanguageBlock model element, which
we have seen before, can be found here too. The majority of the model elements
in this package inherit from the LanguageElement model element. The hierarchy
of model elements splits in two parts right below this element. One subtree contains
model elements, which can be extended by language constructs in the DSL meta model
(Figure 2.6). We will refer to these as abstract language constructs. These language
constructs are abstract because concrete syntax is not specified. Most of these model
elements have an empty elements list property, that should be populated with concrete
syntax elements in the DSL specification. The other subtree contains model elements
which may be used to populate this list, i.e. to specify the syntax of the language
constructs (Figure 2.7). GLEText is used for keywords; GLETextUser is free text
(comments, the name of the variable in a declaration). SLE, ELE and GLE stand for
Statement Language Element, Expression Language Element and General Language
Element, respectively. We will refer to these as language elements.

The components of this package limit the DSLs that can be created in Cheetah: the
structure of the DSL always needs to be mapped to statements, expressions and oper-
ators. An interesting design choice in Cheetah is the implementation of expressions.
Contrary to an implementation using a tree, which is typical for parser-based tooling,
Cheetah implements expressions as a list. Wherever an expression is expected there is
an ELEExpressions language element. In the structure editor the user can enter a list
of interleaved subexpressions and operators. Then only during code generation the list
is parsed (taking into account the associativity and precedence of the operators) into a
tree structure. This design alleviates some of the limitations of structure editors, and
offers the user more freedom when editing expressions, by inferring the structure of
the expressions only during code generation. For example, when changing an addition
into a multiplication there is no need (for the user or the editor) to rearrange the tree to
be consistent with the precedence and associativity of the new operator.

The ExpressionOperator that is involved here is only used for binary infix op-
erators. Any other operator (including parentheses) is modeled as an Expression
language construct, and therefore generates a tree-like structure. This is demonstrated
with the examples in Figure 2.8.
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LanguageElement

StatementLanguageElement

ExpressionLanguageElement

GeneralLanguageElement

SLEStatements

ELEValue ELETextELEIdentifierELEExpressions

GLELineBreak GLEEnumerationGLEText

GLETextUser

ELELineBreakELEExpression

Figure 2.7: Some language elements

1 + 2 * 3 + 4:
ELEExpressions([1, Plus, 2, Times, 3, Plus, 4])

(1 + 2) * (3 + 4):
ELEExpressions([Parens([1, Plus, 2]), Times, Parens([3, Plus, 4])])

x present? and y present?:
ELEExpressions([ValuePresent("x"), LogicalAnd, ValuePresent("y")])

Figure 2.8: Expressions and operators interleaved in a list

2.8.2 Concrete language definition

Using the functionalModel.v1.language package it is then possible to model a
DSL. Concrete language constructs are created by extending one of the abstract lan-
guage constructs, and populating it with language elements to define the projection.
This is best illustrated by the example of an if X then Y statement in Figure 2.9. Be-
cause of the indirection employed by StatementIfThenElse through the condition,
whenTrue and whenFalse properties unless X then Y, X if Y or X unless Y statements can
also be created. Although it looks like the semantics of the language are specified by
the abstract language construct that is extended, this is only partially true in Cheetah.
Indeed, StatementIfThenElse and StatementDoWhile are used in execution path
analysis for generating test cases. Most other semantic issues are not covered by the
abstract language constructs, however. For those constructs the semantics are solely
determined by the code generator and the semantics of the target language, while the
language definition covers syntax only.

Given a language definition, the structure editor can be employed to edit any model
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dsl.IfThenStatement extends fm.StatementIfThenElse {
elements:

1: GLELineBreak
2: GLEText { text: "if " }
3: ELEExpressionsFixedType { fixedType: "Boolean" }
4: GLELineBreak
5: GLEText { text: "then" }
6: SLEStatements
7: GLELineBreak
8: GLEText { text: "end if" }

condition: 3 // refers to item in list of elements
whenTrue: 6
whenFalse: n/a

}

Figure 2.9: Example of the definition of the projection of an if X then Y statement

element that extends LanguageBlock. In Cheetah, this applies to a property of the
BaseMethod model element, which is extended by Method and some DSL-specific
model elements. The fact that methods trigger loading of the structure editor implies
that the method is the largest chunk of DSL code that can be edited in a single editor
at any one time. Indeed, there is no concrete syntax present in Cheetah to describe
methods (i.e., their signature) and higher level language elements. These elements are
all handled using more primitive UI elements, such as lists and text boxes.

2.9 Artifact Generation

Cheetah employs Java code generation for the back-end storage of model elements,
since each model element is a Java class / source file. The source file contains a
number of protected regions, which can be used to customize the model element in
ways that are not possible from within Cheetah.

The same mechanisms used to save model elements is used to perform generation
of arbitrary artifacts. Cheetah also contains some model elements that capture knowl-
edge about the transformations that are used to generate those artifacts. For a new
transformation Cheetah generates a *_CMETRN.java file which contains a Java class
and empty methods with the correct signature for the transformations. Each method
contains a protected region so it is safe for a developer to implement those methods,
even if the java is later regenerated. Nothing else is generated, so the body of the
transformation rules is written in plain Java. The signatures of the methods are of the
form:
SourceBlock transform(ModelelementAST input);

Which transform methods is called at a point in the tree is decided using a dy-
namic dispatch mechanism. The dynamic dispatcher decides, based on the type of
the model element to transform, a transform method that fits. If there are multiple
matches, it looks for the most specific match, and calls that method.

SourceBlock is an abstraction of a block of source code that may include pro-
tected regions. Cheetah substitutes ModelelementAST with the name of a model
element plus an AST suffix. This name refers to a manually written interface, which
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contains methods to access the properties of the model element. Such an interface
has been written for all abstract and concrete language constructs. When a method
in the interface has to return a sub-model element, the method is declared to return
the AST interface implemented by that model element. The goal of this is to decou-
ple the transformations from the model element-based AST implementation. For the
IfThenStatement example the interface might be like this:
public interface IfThenStatementAST {
public ExpressionAST getCondition();
public List<StatementsAST> getThenBlock();

}

2.10 Tax-Benefit Rule Modeling in Cheetah

The DSL we use as a case in the remainder of this thesis is a project developed with
Cheetah for modeling tax-benefit rules. One requirement for this DSL was a time trav-
eling feature, which was a main motivator for the use of model driven development
techniques. Essentially, this feature requires the assignment of a valid time and trans-
action time to each fact recorded in the system. The valid time indicates the period
during which the fact is true in the real world. The transaction time denotes the time at
which the fact entered the system. Recording these data allows the system to answer
questions based on facts as known to the system at any point in time in the past, and it
allows the system to revisit decisions made in the past based on new facts. A database
that stores facts in this way is called a bitemporal database [52]. At Capgemini, the
database also stores the reporting time, making the database a tri-temporal database.
The reporting time may be different from the transaction time: the reporting time is the
time the fact was reported to the organization, whereas the transaction time is the time
the fact was entered into the system. As the calculation model that backs the DSL for
modeling tax-benefit rules makes decisions for a period of time, rather than a single
point in time, even a simple if-then statement requires careful handling: in a single pe-
riod, the branching condition may be both true and false, so that both the then-branch
and the else-branch must be executed for different subperiods. The DSL is designed
to hide these details as much as possible. From the DSL code, an application is gener-
ated, which consists of a collection of .NET services connected through a service bus,
and which uses an SQL database for data storage. For our purposes the exact features
of the application are irrelevant. The nature of the DSL is relevant, however. Unlike
what a traditional synonym for DSLs — little languages [3, 58] — suggests, the DSL
is a rather large language: it employs 317 unique keywords (some are reused in many
constructs) in as much as 1036 language constructs2, while Java 1.5, for example, uses
only 53 unique keywords in 440 productions3. Furthermore, there are statements and
expressions with up to 15 consecutive keywords, i.e. complete Dutch sentences. As
such, many of the statements and expressions can be seen as natural language tem-
plates, with placeholders that should be filled by the domain expert with constants or
other templates.

2Counted after the migration performed in Chapter 5
3Approximation based on the Java 1.5 syntax definition in java-front, found at:

https://svn.strategoxt.org/repos/StrategoXT/java-front/trunk/syntax/src/
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Chapter 3

Spoofax and a Comparison With
Cheetah

3.1 Introduction

Spoofax is a parser-based language workbench implemented as a collection of Eclipse
plugins. Spoofax is based on the original Spoofax editor: an Eclipse editor for the
DSLs Stratego and SDF combined with a Java-based Stratego interpreter [28]. This
original Spoofax editor has since been extended with an integrated Java implemen-
tation of SGLR [30], and Java has been added as a target language of the Strate-
go/XT compiler [33]. At this point, Spoofax came to depend on the IDE Meta-tooling
Platform (IMP) [11], which provides an abstraction layer over the Eclipse APIs, and
Spoofax/IMP was born. Spoofax/IMP has now superseded the original Spoofax edi-
tor completely. In practice, the name Spoofax is now used for the project, instead of
Spoofax/IMP.

The goal of this chapter is to give an overview of the advantages and disadvantages
of structure and parser-based editors, continuing with the way syntax is defined, code
generation is performed, and editor services are declared in Spoofax, accompanied
with a short comparison to Cheetah for each of those points.

3.2 Parser-Based vs. Structure Editors

While Cheetah uses a structure editor, Spoofax employs a text editor. Advantages of a
structure editor are the capability to have multiple projections of the same underlying
AST, some may even hide certain elements of the AST completely, and the fact that
the concrete syntax can be changed at will without any model migration. Additionally,
a structure editor may display certain (parts of) ASTs in a better suited format than
plain text. Some examples are displaying a decision table or a mathematical formula,
instead of a plain text approximation of a table or formula. For numerical data an
alternate, read-only projection could graph the data.

The Intentional Domain Workbench [51] is a clear example of a language work-
bench that tries to exploit all of these features. Another state-of-the-art projectional
language workbench is JetBrains Meta Programming System (MPS) [16], although it
is still restricted to mostly textual projections.
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A disadvantage of projectional editing is that much effort is required to support
incorrect models. Incorrect models are often used by developers as an intermediate
state between two correct models. Free-form cutting and pasting of parts of a model is
also hard to accomplish in a structure editor: typically these features are restricted to
complete subtrees of the AST, or copy-pasting is limited to the structure editor (i.e., no
pasting from other tools). This last limitation could possibly be lifted by introducing
parser technology, resulting in a hybrid editor, though we do not know of any tools
employing this approach.

Parser-based editors naturally approach the last problem from the opposite direc-
tion: incorrect models and free-form cutting and pasting are principally possible, and
(research) effort is focused on retrieving as much of the AST as possible from the
potentially ill-formed textual input. Although parser-based editors cannot display any
non-text content as projectional editors can, parser-based editing has a number of other
advantages next to the intrinsic support for incorrect models. As the persisted repre-
sentation of the AST is the concrete syntax, i.e. plain text files, many well-known
development tools can be reused. Typical examples are version control systems, textu-
al/regular-expression based search/replace, and the ability to easily exchange snippets
of source code using e-mail and instant messaging protocols. Each of these examples
needs special support in an editor which supports projectional editing only. The Inten-
tional Domain Workbench, for example, includes a custom AST-node based version
control system. The workaround for a developer is to exchange parts of the AST in the
persistent representation used by the tool, e.g. XML.

Cheetah

Not many of the advantages of projectional editing are exploited in Cheetah. In Chee-
tah, there is at most one projection of a model. This projection is limited to styled text,
as the structure editor has been built on top of a rich text editor. Cutting and pasting is
not supported, nor is any other form of free-form editing: if a piece of code needs to
be moved, it must be re-entered completely. Of the advantages mentioned above, the
only other advantage — although it is barely used at Capgemini — is that the concrete
syntax can be changed at will, without performing any model migration.

3.3 Language Definition

Spoofax uses SDF (Syntax Definition Formalism) [60, 54] for the specification of
the syntax of a language. SDF is a fully declarative formalism: contrary to other
BNF-based grammar specifications for both traditional (e.g., LLgen [21], YACC [26],
ANTLR [46]), as well as generalized parser generators (e.g., Elkhound [38]), there is
no target language embedding for semantic actions, or syntactic and semantic predi-
cates [45]. The lack of specific-purpose target language embeddings in the grammar
formalism eases reuse of a single grammar file in multiple applications.

Scannerless Generalized LR parsing [59] is the parser technique used in combi-
nation with SDF, and hence, Spoofax. Generalized parsing means the complete set
of context-free languages can be parsed. This set is closed under composition [24],
which means it is guaranteed that the combined language L1+L2 is context-free, if the
languages L1 and L2 are context-free. This property enables modularization, and thus
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context-free syntax
Exp "+" Exp -> Exp {cons("Plus"), left}
Exp "*" Exp -> Exp {cons("Times"), left}
"(" Exp ")" -> Exp {bracket}

context-free priorities
Exp "*" Exp -> Exp >
Exp "+" Exp -> Exp

context-free syntax
ID -> Type {cons("Type")}
"String" -> Type {cons("StringType"), prefer}

Figure 3.1: Examples of SDF productions

helps with reuse of grammars. A side effect of generalized parsing is that ambiguous
context-free languages are parseable: as such, ambiguities are allowed at parse table
creation time, and the parser deals with them at run time, optionally returning multiple
parse trees (a parse forest), instead of a single parse tree to the application. Scan-
nerless parsing implies that the character stream is directly consumed by the parser,
instead of first tokenizing it using a separate lexical analyzer / scanner. By not having
a separate lexical analyzer, any problems with the composition of lexical analyzers can
be avoided when composing or embedding languages. As such, because scannerless,
generalized parsing is used, syntax definitions in SDF can be modularized as desired.

An example of SDF is shown in Figure 3.1. In this figure, we see three sections.
The two context-free syntax sections contain productions (grammar rules) to parse
arithmetic expressions containing only addition and multiplication, and to parse iden-
tifiers or the keyword "String" to the Type symbol. The context-free priorities

section declaratively specifies that multiplication has a higher precedence than addi-
tion.

Curly brackets are used to assign attributes to each production. These attributes
are used to specify operator associativity (e.g., left in Figure 3.1), and to prefer/
avoid certain productions over other productions. For example, in Figure 3.1, it is
preferred to parse “String” as a keyword, using the last production, and not as a generic
identifier, using the before-last production. Attributes may also be used externally, i.e.
by the application employing the parser: the most common attribute used in this way
is the cons attribute, which specifies the name of the AST node that is created for an
application of this rule by a so-called imploder, which converts the parse tree to an
AST. Furthermore, Spoofax uses attributes to let the language engineer mark syntax as
deprecated, and in a recent experiment, to automatically generate code to link usages
of variables to their declarations.

Cheetah

In Cheetah, the only DSL is the language being defined: there is no separate DSL for
syntax definition. Syntax is defined using generic (primitive) model elements, and their
accompanying user interface elements. That is, to create a new statement, for example,
the user needs to create a new model element that inherits from the Statement model
element, and then populate its list of syntactic elements by repeatedly adding a single
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model element to this list (see also §2.8). This process is tedious, and must be repeated
for each language construct. Cheetah does not offer a built-in projection that gives
an overview of the syntax of the defined language, although transformations can be
created to generate documentation that does provide this overview.

SDF is a step forward in terms of readability of the language definition because
it is tailored towards syntax definition, as opposed to storage of arbitrary structured
data. Because the tooling in Spoofax parses SDF to the terms that are used throughout
Spoofax to represent ASTs, a syntax definition in SDF can be transformed as any
AST can. A production in SDF can be annotated with meta data in custom attributes.
In other words, even though Spoofax uses a separate DSL, it is possible to generate
anything Cheetah can generate from the syntax definition.

3.4 Stratego

Spoofax employs Stratego for code generation and language specific editor service
implementation. Stratego is a term rewriting DSL, which targets program transforma-
tion. It encourages strategic programming [37], which means that local rewrite rules
are combined with generic traversal operators.

Stratego has originally been developed for the specification of optimizers for func-
tional languages [64]. The theoretical basis for Stratego has been created in 1998 with
the introduction of System S [63], which aimed to develop a calculus for rewriting lan-
guages, so as to solve the issues with ad-hoc implemented rewriting languages. Over
the course of time Stratego has been used for many other purposes too, as is mentioned
in the overview paper of Stratego/XT 0.17 [8]:

Stratego/XT has been used to build many types of transformation sys-
tem, including compilers, interpreters, static analyzers, domain-specific
optimizers, code generators, source code refactorers, documentation gen-
erators, and document transformers.

Stratego leverages rewrite rules to specify local transformations. A rewrite rule
has the form
name : input -> output where condition

where name is the name of the rule, and input is a pattern that is matched against
the current term. If there is a match, and the (optional) condition succeeds, then the
current term is replaced by output. If not, then other rules with the same name are
tried until one succeeds or all failed. A pattern such as input is a term optionally
containing wildcards and variables. Wildcards match any subterm; variables do the
same and bind this subterm to a name. By referring to this name the bound subterm
can be used in the condition(s) for the rule, or placed at any position in the output
term.

A collection of rewrite rules is an ideal way to express local transformations within
an AST. Now the question is where in the AST, and in what order, those transforma-
tions should be applied. Stratego allows the developer to answer this question using
generic traversal strategies. The standard library offers a rich set of traversal strategies.
Some examples are: innermost, which repeatedly applies a rule from bottom to top
until the rule fails on all nodes of the AST, topdown and bottomup, which apply a rule
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rename-top = {|Renamed: alltd(rename) |}

rename:
Scope(x) -> Scope(<rename-top> x)

rename:
d@VarDef(x) -> VarDef(y)
where

y := x{<new>};
rules(

Renamed : x -> y
VarDef : y -> d

)

rename:
Var(x) -> Var(<Renamed> x)

Figure 3.2: Dynamic rules in action to bind variables to their declaration

once to each node of the AST in top-down resp. bottom-up manner, and alltd, which
tries to apply a rule once to each node of the AST in a top-down manner, but does not
traverse any subtree for which the rule succeeded.

Although generic traversals and rewrite rules offer a suitable paradigm for applying
local transformations in a determined order to chosen parts of an AST, it is hard to
express non-local transformations, as information may need to be passed from one
rule application to arbitrary other rule applications. For this reason, Stratego provides
dynamic rules, which are rewrite rules programmable at runtime. Dynamic rules are
dynamically scoped using an explicit scoping construct, which implies that at any
point of choice during an AST traversal a new scope may be entered. Therefore, the
scope of dynamic rules can be matched exactly to the scope of the language constructs
we are analyzing, which makes dynamic rules suitable for local variable renaming, as
demonstrated by the Renamed dynamic rule in Figure 3.2. Furthermore, dynamic rules
allow one to implement data flow analysis, totem propagation [29], and other analyses
more easily [9], while they can also be used as a quick way to collect and transfer
information from one part of a Spoofax editor to another (the VarDef dynamic rule in
Figure 3.2).

3.5 Artifact Generation

Artifact generation in Spoofax is typically performed using Stratego. There are two
main approaches to artifact generation in Spoofax. One approach is based on trans-
forming the abstract syntax of the source language into the abstract syntax of the target
language, and then pretty printing the resulting AST. This approach may be enhanced
using concrete syntax embedding [62], which allows the developer of the transfor-
mation to write transformation rules using concrete syntax, as shown in Figure 3.31.
Concrete syntax embedding relies crucially on language composition, enabled by the
scannerless generalized parsing technique used in Spoofax. An advantage of concrete

1Adapted from http://strategoxt.org/Stratego/StrategoLanguage#Concrete_Syntax
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desugar : While(e, stm) -> If(e, DoWhile(stm, e))

(a) Transformation expressed using abstract syntax

desugar : |[ while (e) stm; ]| -> |[ if (e) do stm while(e); ]|

(b) The same transformation expressed using concrete syntax

Figure 3.3: A rewrite rule employing concrete syntax embedding

unparse : Procedure(name, args, body) -> $[
void proc_[name] ([<separate-by(|", ")> args]) {

[body]
}]

Figure 3.4: Example of indentation-safe string interpolation in Stratego

syntax embedding is that syntax errors are found earlier, and that target language syn-
tax is highlighted in the editor. Concrete syntax embedding has a set-up cost, however:
an SDF grammar for the target language must be available, and the quotation and anti-
quotation operators must be defined. Additionally, syntax errors in the concrete syntax
may prevent even the host language from being parsed, if recovery fails. The other
approach is to concatenate strings together. Stratego recently acquired an indentation-
safe string interpolation syntax2, which helps to make transformations employing this
approach more readable. An example is given in Figure 3.4. Although this way of
specifying transformations has no associated set-up cost, there is no syntax highlight-
ing for the target language, and syntax errors in the code that is being generated are
found only after running the transformations.

Cheetah

Cheetah uses transformations written in Java, supplemented with a library to perform
code generation with protected regions, to generate artifacts (see also §2.9). The li-
brary offers abstractions for (pieces of) source files, and template based code gen-
eration. Because of the use of Java as host language, however, a multi line string
template has to be represented by a concatenation of single line strings, a series of
StringBuilder.append() calls, or a list of arguments to a method that takes a vari-
able number of strings as argument.

3.6 Editor Services

Editor services in Spoofax can be classified in two categories: static, syntactic editor
services, and dynamic, semantic editor services. Syntactic editor services, such as
syntax highlighting (Figure 3.5), folding, the outline view (Figure 3.6), and completion
templates, are described using the ESV editor service DSL [31]. Both constructors and
symbols can be used to link concrete syntax to color, or mark the language element as
eligible for outlining or folding.

2https://svn.strategoxt.org/repos/StrategoXT/strategoxt/trunk/news-archive/
NEWS-0.18
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3.6. Editor Services

Figure 3.5: Syntax highlighting definition and use in Spoofax

Figure 3.6: Outliner definition and outline view use in Spoofax
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Within the ESV source of an editor in Spoofax there are also references to Stratego
strategies that implement semantic editor services, such as error markers, semantic
code completion and reference resolving. Generally, these strategies are invoked by
the Spoofax runtime on certain user actions. They receive the AST or a subtree thereof,
and should return a list of error/warning/info markers, completion proposals, or the
AST node which declares an identifier. Additionally, any number of “free-form” editor
services may be declared; these appear as items in a Transform menu, and can be used
to test transformations on the current selection or file.

Cheetah

Many of the editor services present in Spoofax can be found in Cheetah too, and there
are no editor services in Cheetah without an equivalent in Spoofax.

Syntax highlighting is present in the structure editor in Cheetah by means of a
property of each language element that specifies font style and color. E.g., GLEText
is set up to display in a blue color by default, so that keywords stand out. Because of
the projectional nature of the editor in Cheetah, and the fact that a rich text editor has
been used to implement it, Cheetah can use different fonts and font sizes for different
language elements. Spoofax does not support this due to its use of the Eclipse code
editor, which is limited to a single monospace font.

Code folding and an outline view are naturally absent in Cheetah as the largest
piece of DSL code that can be edited at any one time is one method body. The list of
method model elements serves as a good replacement of folding and an outline view.

Both syntactic and semantic content assist in Cheetah are well supported. For syn-
tactic content assist, only statements and expressions allowed at the insertion position
are displayed. This is guided by the syntax definition, which explicitly contains lists
of statements and expressions allowed within other language elements (e.g., methods).
Semantic content assist suggests only relevant local variables or object members, fil-
tered on the expected type, if any.

There is limited error checking during editing. If errors are found, the involved lan-
guage elements are highlighted using a red background. This is equivalent to the error
marker and squiggle displayed in Eclipse/Spoofax. Error checking is implemented us-
ing custom Java code; the fact that only a limited amount of error conditions (certain
type errors) are detected, suggests that error checking may benefit from an easier way
to analyze a DSL program and detect errors.

Cheetah provides no reference resolving in the DSL editor. The only reference
resolving that is present, is that, whenever a model element has to be selected in the
basic model element GUI, a button is present to open the referred model element.
In Spoofax reference resolving is implemented using a user supplied strategy that is
invoked by the runtime whenever there is a need to resolve a reference, in combination
with origin tracking of terms. That is, the user supplied strategy resolves the reference,
and the Spoofax runtime figures out which editor to open, and where to put the cursor
in that editor, using the origin information of the returned term.
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Figure 3.7: Testing language integrated in Spoofax

3.7 Testing

Spoofax provides a DSL for integration testing of editors developed with Spoofax [32]
(Figure 3.7). This DSL allows both positive and negative parse tests, and tests of
semantic editor services like content assist, reference resolving and any builders (i.e.,
custom transformations) defined for the editor. The fragments of tested DSL acquire
certain editor services, like syntax coloring and content completion, themselves: the
testing language redirects those editor services to the plugin under test. Tests in the
current file are run whenever the user stops typing for a moment. Additionally, all tests
in the project may be run in a graphical test viewer integrated with Eclipse, and Java
code that interfaces directly with JUnit3 and JSGLR can be generated.

Cheetah

Cheetah provides a testing component to aid in testing the models developed in it. This
component analyzes a piece of model code, and generates a number of test cases based
on the number of paths through the code. Regardless of the DSL implemented in Chee-
tah the number of code paths is known, because domain specific loops and conditions
extend abstract model elements such as StatementIfThenElse or StatementWhile-
Loop. The component will also collect the input and output variables used in the code
under test. Based on this analysis it will display a table of test cases with, for each
test case, a list of the input and output variables. For each variable the user must then
enter the input and/or expected output values, after which Cheetah can run the tests
against the generated .NET services and add the actual output values. Rows will then
be colored red or green depending on differences between expected output and actual
output.

This way the testing component aids in performing integration tests of models
and transformations to executable code. In Cheetah, there is no mechanism to test
language definition, transformations of non-executable artifacts (e.g., documentation),

3http://www.junit.org/
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or to test editor services, or anything else related to the user experience within Cheetah
itself. Spoofax has the edge on this aspect because of its integrated testing language
for testing of language syntax, editor services and builders (i.e., transformations).

3.8 Conclusion

Although it is hard to fit both Spoofax and Cheetah in a single feature comparison
table, we summarized some of the differences and similarities described in this chapter
in Figure 3.8. The most outstanding difference is the different editing paradigm the
tools use: whereas Cheetah uses a structure editor, without support for cut & paste or
free form editing, Spoofax uses a text editor, combined with SGLR parsing to convert
the plain text to an AST. Besides the advantages of the text editor in Spoofax, the
use of parser technology enables the persistent representation of any code to be plain
text, which allows optimal use of existing text-based tooling, such as version control
systems.

In Cheetah, a language is defined by creating a tree of model elements using prim-
itive user interface elements such as list boxes and text boxes. Spoofax leverages SDF
for the definition of a grammar of the language. We argue SDF is both easier to enter,
and easier to understand, because the structure of the language can be seen at a glance.

The Cheetah system uses Java for code generation. Java has a number of dis-
advantages in this domain, such as the lack of multi line string literals and concise
specification of tree rewrite rules. Spoofax includes Stratego, which is a DSL that fo-
cuses, among other things, on code generation. It allows multi line string literals for
template-based code generation, as well as code generation based on AST rewriting
and pretty printing.

Many editor services are available in both tools, although code folding and the
outline view are not linked to the DSL editor in Cheetah. Instead, the DSL editor
operates on a single method at a time, which is reached by navigating the tree of model
elements. There is limited support for error markers in the Cheetah editor. There are
no DSL-specific markers, which is probably due to a lack of support for writing static
analyses and constraint checks. In Spoofax, error markers are implemented as rewrite
rules in the Stratego DSL, which is arguably more suitable for such analyses than Java.

As the Cheetah system has been customized for the tax-benefit rule modeling DSL,
it features a component for testing of DSL code. This component loads the generated
.NET assemblies and invokes methods therein, based on test cases partially derived
using path analysis of the DSL code, and partially entered by the user. Cheetah con-
tains no tests of the integrated editor or any editor services. Spoofax, on the contrary,
contains a testing DSL that can be used to test many editor services. With some work,
this testing DSL can be linked to custom Stratego code to perform DSL code testing
as Cheetah does.
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Feature Cheetah Spoofax
License In-house developed LGPL
Editor Structure editor Text editor
Cut & paste - X

Free form editing - X

Parser technology n/a Scannerless Generalized
Syntax highlighting X ∗ X ∗

Code folding – † X

Outline view – † X

Reference resolving – ‡ X

Syntactic content assist X X

Semantic content assist X X

Error markers X § X

Syntax definition Tree of model elements SDF
Runtime AST format Tree of model elements Terms
Persistent representation XML & Java classes Text files
Transformation language Java Stratego
Code generation Template-based Template-based or AST

rewriting and unparsing
Multi line templates - X

Use of multiple DSLs - X

Language composition - X

Testing of editor services - X

Testing of DSL code X X ‖

∗ Only Cheetah allows font family and size to be customized per language element. Spoofax is
limited to color, bold, and italics.

† Although the DSL editor in Cheetah does not support code folding or an outline view, the
selector and other trees of model elements provide similar functionality.

‡ Not supported in the DSL editor; some of the primitive UI elements contain a button to jump
to the referred model element.

§ Suboptimal: only a limited set of markers has been implemented.
‖ Not integrated, such tests are specific to the domain. Such tests can be integrated using the

testing language, or custom Java strategies.

Figure 3.8: Feature comparison of Cheetah and Spoofax
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Chapter 4

Parsing XML in Spoofax

4.1 Introduction

As Cheetah stores its model elements as XML files we need to know if, and how,
Spoofax can read XML files before we can start on the actual migration. The collec-
tion of model elements in Cheetah consists of 1.3 gigabytes of XML spread over more
than 20,000 XML files. To be able to rapidly develop a migration or an IDE which
uses this data as input, it is important to be able to parse this XML within reason-
able time and memory constraints. The XML files employed by Cheetah use a small
subset of the features offered by the XML standard [10]. Namespaces, processing in-
structions, document type declarations, validation, CDATA and comments all remain
unused. Cheetah uses only an XML declaration specifying the XML version (1.0) and
the encoding (UTF-8), followed by elements, each containing only element content or
only character data, i.e. mixed content elements are not present. Some of the character
data elements contain only whitespace.

In this chapter we look at various existing representations of XML as ATerms in
Stratego, and discuss their suitability for the conversion we want to do. We discuss
the performance of JSGLR and implement a custom SAX-based XML parsing library
for Stratego. We ensure both techniques for parsing XML will give us an identical,
simplified AST, which is suitable for a transformation to an AST with a signature
tailored towards Cheetah. This AST will be the input to our conversions of the Cheetah
meta model (Chapter 5) and the Cheetah model (Chapter 6).

4.2 Parsing XML in Spoofax

There are three ways to load XML files into Stratego supplied with Stratego/XT [8]:
xml2aterm, parse-xml-doc, and parse-xml-info. The three tools are part of the xml-
front [7] package. They use SDF and SGLR to parse the XML using a shared XML
grammar, and Stratego to transform the parsed AST into the desired output format.

xml2aterm (Figure 4.2) directly maps the XML structure to ATerms. That is, an
element is considered an ATerm application. Its contents, both child elements
and character data are converted to term and string arguments of the application,
respectively. Strings of character data consisting of whitespace only are dropped
by a call to xml-doc-strip-whitespace [7], which makes xml2aterm unsuitable for
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<x> <y a="0" /> z </x>

Figure 4.1: XML fragment used as input for figures 4.2, 4.3, and 4.4

x(y(){("a", "0")}, " z ")

Figure 4.2: Sample output of xml2aterm for the XML fragment in Figure 4.1

Element(
Name(None(), "x")

, []
, [ Element(

Name(None(), "y")
, [Attribute(Name(None(), "a"), "0")]
, []
)

, Text(" z ")
]

)

Figure 4.3: Sample output of parse-xml-info for the XML fragment in Figure 4.1

our purpose. Even if we could fix this issue then it would still be suboptimal for
the following three reasons:

Firstly, XML has a hedge structure [40], while ATerms have a tree structure.
That is, ATerms are like function applications: they have a fixed arity (number
of child nodes), although one name can be overloaded for different arities. On
the other hand, for XML elements the exact number of child elements is rarely
fixed: what is semantically a list child of an XML element, is in practice a list of
children. Optional child elements in XML may not be present at all, while with
ATerms the Some/None constructors are used to explicitly indicate presence/ab-
sence, similar to the Maybe datatype in Haskell [27]. In other words, an XML
element has a variable size list of subtrees, while an ATerm has a fixed size list
of subtrees. Because of this hedge structure, an expensive generic term decon-
struction would be needed to match against the terms with a variable number of
arguments.

Secondly, Stratego offers no pattern matching for items in unordered sets,
such as the attributes of an XML element, so a linear search is needed every
time an item must be retrieved from such as set.

Thirdly, XML attributes are converted to a list of (key, value)-tuple ATerm
annotations. Annotations are treated specially in Stratego, which makes them
less suitable for storing XML attributes. A transformation to store the attributes
in some other way would be desired.

parse-xml-info (Figure 4.3) parses XML and then simplifies the AST using a num-
ber of transformations, one of which is — again — xml-doc-strip-whitespace.
Hence parse-xml-info is not suitable for our purpose.

parse-xml-doc (Figure 4.4) is similar to parse-xml-info, but does not simplify the
AST. This allows us to write a custom simplifying transformation which is better
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Element(
QName(None(), "x")

, []
, [ Text([Literal(" ")])
, EmptyElement(

QName(None(), "y")
, [Attribute(QName(None(), "a"), DoubleQuoted([Literal("0")]))]
)

, Text([Literal(" z ")])
]

, QName(None(), "x")
)

Figure 4.4: Sample output of parse-xml-doc for the XML fragment in Figure 4.1

suited to the problem at hand. It includes all character data so it is suitable for
our purpose.

We decided to start the conversion of the meta model (Chapter 5) and model (Chap-
ter 6) defined in Cheetah, by importing the XML grammar into a Spoofax project for an
AST with the parse-xml-doc structure. Then we copied some of the transformations
used in parse-xml-info and added some of our own to replace namespace-qualified
names with strings. This enabled us to open XML files in Spoofax and rapidly develop
and test transformation strategies on single Cheetah XML files.

4.3 Performance of JSGLR for Parsing XML

Although JSGLR is sufficient to work with a single small XML file in the IDE, the
performance on large XML files proved to be insufficient for the conversion as a whole.
Parsing XML files larger than approximately 2.5 MB was not possible with JSGLR
due to memory constraints (heap size 1024 MB) at the time the first conversion was
implemented. Parsing files close to this size took more than a minute1.

Halfway during this thesis project a new version of JSGLR has been deployed.
This new version of JSGLR features a mechanism to build an AST directly, instead
of needing to build a parse tree first. Contrary to the old JSGLR, the new build can
parse the largest XML files (5 MB) found in Cheetah within one to two minutes (heap
size 1280 MB and 1024 MB, respectively). It is impossible to parse those files with a
heap size lower than 1024 MB or a stack size lower than 1 MB (eight times the default
stack size). Certain small XML files (kilobytes) could still not be parsed by JSGLR,
because these hit an ambiguity in the concatenation of character data and entities in
the XML grammar. This ambiguity was never visible in the C tooling because the
transformation from parse tree to AST suppressed it. We removed this ambiguity from
the XML grammar so that JSGLR is able to parse all XML files. This change does
not significantly influence the time JSGLR takes for the large XML files mentioned
before, because entities are used scarcely in the project, except in a few small XML
files.

1On an Intel(R) Core(TM)2 Duo P8600 running at 2.40 GHz
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Using the new version of JSGLR and the patched XML grammar we measured how
long it takes to parse the complete 1.3 GB set of XML files (21,094,379 lines with, on
average, 66 characters). JSGLR does this in 155 minutes (140 KB/s). This result can
be explained as follows. JSGLR is essentially a parse table interpreter, while a dedi-
cated XML parser could use a parser generator (i.e., parse table compiler) or contain
a hand-optimized parser. In either case there will be less overhead, ceteris paribus.
Because JSGLR employs scannerless parsing, the size of the input to the parser will
be larger than when a separate scanner reduces the input from a stream of characters
to a stream of tokens beforehand. Such a scanner may employ a less expressive for-
malism (e.g., a regular language), which allows a faster reduction to lexical symbols
than possible using SGLR parsing. Another cause may be local ambiguities that get
resolved later on during a parse. For each such ambiguity there are effectively multiple
parsers active as long as the ambiguity exists. An XML parser that employs a pars-
ing algorithm that rejects ambiguous grammars at parse table construction time will
never have to deal with such ambiguities at run time. Additionally, the XML grammar
used with JSGLR is the grammar used by xml2aterm, parse-xml-info and parse-xml-
doc. Because the last tool returns an AST that includes whitespace, the grammar is
designed to parse whitespace, and include it in the AST. Possibly the JSGLR parser
could be faster in our case using either a grammar tailored to the parsing of XML with-
out significant layout, or a grammar tailored specifically to the XML schema used by
Cheetah.

4.4 Parsing XML Using SAX

Before the new version of JSGLR was stable we desired to parse the largest XML
files. A complete parse of the Cheetah XML files using JSGLR would take at least
155 minutes, which is too long for a rapid development/feedback cycle when devel-
oping a conversion from Cheetah to Spoofax. For these two reasons we decided to
hook a SAX-based dedicated XML parser [39] into Stratego. Simple API for XML
(SAX) is an event-driven API for parsing XML. The necessary glue code to use SAX
from Stratego has been created as a Spoofax library, i.e. Java classes implementing
primitives that can be invoked from Stratego using the prim construct.

After an initial Cheetah-specific prototype we have generalized the library to be
useful to other projects as well. To accomplish this task, we ensured our SAX Con-
tentHandler, which is responsible for building terms from the XML document events,
can handle both namespace-aware and namespace-unaware parsers. The structure of
the terms in both cases is shown in Figure 4.5. We also removed any Cheetah-specific
shortcuts in the handling of character data.

SAX has a mechanism of features [39] to allow the application to choose whether a
parser should be namespace aware, whether it should validate, etc. A feature is a tuple
of an identifying URL and a boolean which specifies whether it is enabled or disabled.
SAX contains methods to query whether a feature is enabled, and to enable/disable
a feature. We expose this method to Stratego as another primitive, which may then
be used by application code (i.e., our conversion) to toggle, for example, namespace-
awareness of the parser. Our library adds two Spoofax-specific features:
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Element : Name * List(Attribute) * List(Element) -> Element
Attribute : Name * String -> Attribute
Text : String -> Element
Name : Option(String) * String

(a) Namespace-aware parser

Element : String * List(Attribute) * List(Element) -> Element
Attribute : String * String -> Attribute
Text : String -> Element

(b) Namespace-unaware parser

Figure 4.5: Structure of the terms created by StrategoTermBuilder

http://spoofax.org/sax/features/character-data 2 This feature is enabled by default.
When enabled, XML character data (Text terms) is returned to the application.

http://spoofax.org/sax/features/mixed-content This feature is disabled by default.
Only when enabled, character data in elements that also contain child elements is
returned to the application. That is, it specifies whether character data in mixed
content elements should be returned or not. Contrary to xml2aterm and parse-
xml-info, our library never filters whitespace-only Text terms. Instead, the ap-
plication can choose to disregard all character data in mixed content elements.
For many XML documents this is sufficient, and it saves a lot of unnecessary
processing of (whitespace) character data.

4.5 Performance of our SAX-Based XML Parser

We measured how long it takes our SAX-based XML parser library to parse the com-
plete 1.3 GB set of XML files. On our system, the XML parser used by SAX was
Apache Xerces-J 2.6.23, which was included with our Java Virtual Machine. It parses
all files in 220 seconds (6 MB/s). Observation of the CPU usage revealed it was disk
bound, which makes it at least forty times faster than JSGLR.

4.6 XML Canonicalization and Simplification

At this point we have two ways of parsing the XML files: we can use our SAX-based
XML parser library for fast batch processing of many XML files, or we can use JSGLR
with the XML grammar supplied with Stratego, for slow parsing, but better IDE sup-
port. Because we want to run transformations on either input (JSGLR for its support
in the IDE and SAX for batch-parsing), we canonicalize the XML of either source into
one common format, which is the input to all subsequent transformations. We per-
form a combined canonicalization and simplification step that employs the following
transformations:

2It is common practice to name SAX extensions using a URI, including the http:// protocol speci-
fier. Requesting these URIs in the browser, however, will generally not return anything meaningful.

3http://xerces.apache.org/

33

http://xerces.apache.org/


4. PARSING XML IN SPOOFAX

xml-to-cme:
Element("elem", attrs, childs) -> elem(name, cls, childs)
with
name := <get-opt-attr(|"name")> attrs;
cls := <get-opt-attr(|"cls")> attrs

Figure 4.6: Transformation from XML element to constructor application

• Removal of the outer Document node. We do not need this node.

• Removal of the separate closing tag in each Element node. In well-formed XML
the closing tag is always identical to the opening tag, so it is redundant.

• Substitution of an empty Element for the special purpose EmptyElement. We
do not need to distinguish between <x></x> and <x/>.

• Replacing qualified names (QName) with strings. Namespaces are not used in the
Cheetah XML files.

• Entity resolution (e.g., &amp;⇒ &) and concatenation of the constituent parts
(literal text, entities) of text content into one string.

• Moving the inner text of value-elements to an attribute of their parent text-
element. Both styles are used; there is no semantic difference.

• Removal of Comment nodes and any remaining Text nodes. Only Text nodes
in value-elements are significant, and those have been converted to attributes in
the previous step.

• Removal of any elements with a deleted or deprecated attribute with a true value.
Elements with this attribute are not visible in Cheetah. Their name is kept alive
(content is erased) through an element with one of these attributes, so that model
elements opened after the act of deletion can find out what happened to the
element.

4.7 Transforming XML to a Cheetah-Specific AST

Before any further transformation we transform the XML AST to the elements which
are encoded by the XML. That is, each XML element foo is transformed to a con-
structor foo. Certain attributes are selected and stored as arguments of the constructor
application. We determined whether an attribute should be included by manual in-
spection of the XML files and inferred XML schemas. This transformation is useful
because, when pretty printed, the resulting ATerms are a lot less verbose, and hence,
easier to inspect, than the original XML. The transformations also remove any de-
pendency on the ordering and presence of XML attributes, which is desired because
Stratego lacks pattern matching for unordered lists. The transformations for this step
are performed using rewrite rules as displayed in Figure 4.6 for the transformation of
the elem XML element to an ATerm. An example of the structure of a term that could
be the output of this transformation is shown in Figure 4.7. This example has been
simplified by removing repeated elements, and many elements that are not relevant to
the example.
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root(
"mM_Basis.v1.basiselementen.taal.handelingen.AlsDanAnders"

, Some("functionalModel.v1.language.StatementIfThenElse")
, ...
, [ list(

"elements"
, [ elem("I1", Some("GLELineBreak"), [])

, elem("I5", Some("GLEText"), [text("text", "Als ")])
, elem("I11"
, Some("ELEExpressionsFixedType")
, [ elem("fixedType", None()

, [ text("modelelementName", "Boolean")]
)

]
)

, elem("I2", Some("GLELineBreak"), [])
, elem("I8", Some("GLEText"), [text("text", "Dan ")])
, elem("I9", Some("SLEStatements"), [])
, elem("I3", Some("GLELineBreak"), [])
, elem("I6", Some("GLEText"), [text("text", "Anders ")])
, elem("I10", Some("SLEStatements"), [])
, elem("I4", Some("GLELineBreak"), [])
, elem("I7", Some("GLEText"), [text("text", "Einde als")])
]

)
, ...
]

)

Figure 4.7: Output of transformation / input to the SDF generator

4.8 Conclusion

JSGLR is sufficient to enable a Spoofax editor for XML, which eases development of
the conversion of the Cheetah XML files to Spoofax. JSGLR is, however, not efficient
enough for a rapid development/feedback cycle on the complete conversion. There-
fore an XML parsing library for Spoofax has been developed. This library supports
parsing XML from strings and files and allows application code to set which XML
features should be used. As shown in Figure 4.8, it is two orders of magnitude faster
than JSGLR, because a dedicated SAX-based XML parser is used. Hence, this library
enabled us efficiently develop the conversion of the Cheetah XML files to Spoofax. To
test our transformations in the IDE and to run them in batches, we developed canoni-
calizing and simplifying transformations that transform either form of XML AST to a
common form, which is further transformed to the Cheetah-specific AST of Figure 4.7,
which is the input to the transformations in Chapter 6 and Chapter 5.
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XML parser Performance & Notes
Single file
Old JSGLR implementation Unable to parse files ≥ 2.5 MB∗

New JSGLR implementation 1-2 minutes for one 5 MB∗ file†

Complete set of 1.3 GB / 21,094,379 lines of XML
New JSGLR, disambiguated XML grammar 155 minutes
SAX-based XML parser 220 seconds‡

∗ Here, 2.5 MB is equivalent to approx. 40,000 lines of XML
† Unable to parse XML files with entities due to ambiguous grammar
‡ Disk bound, instead of CPU bound

Figure 4.8: XML parsing performance
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Chapter 5

Migrating Cheetah Meta Models to
Syntax Definitions in Spoofax

5.1 Introduction

In this chapter we will migrate the Cheetah-specific AST obtained via the XML parsers
developed in Chapter 4, to a grammar in SDF. With such a grammar available we can
produce a minimal Spoofax-based Eclipse plugin for the tax-benefit rule modeling
language.

There are two ways to perform such a migration. The first is a manual migration:
we transform each language construct by manually inspecting its definition in Cheetah,
and typing out the corresponding SDF. The second approach is an automatic migration:
we develop a transformation from the Cheetah-specific AST to a grammar in SDF. We
choose this second approach, because it makes it easy to experiment with different
translations of various aspects of the language, and because the code for the automatic
migration may be reused after a change to the syntax of the language, or even for a
different language created in the Cheetah system. Additionally, an automatic migration
reduces the chance of small errors and inconsistencies slipping in. The structure of our
automatic migration is as follows: we transform the tree represented by the XML to
an appropriate form, dropping any information that is not relevant to the grammar of
the language, and convert the remaining tree to SDF concrete syntax.

5.2 Design Decisions

The language definition in Cheetah consists of a model element for each language con-
struct. Each language construct contains an elements property with language elements,
which encode the projection of model elements to text in the projectional editor in
Cheetah. Before generating SDF some key design decisions have to be made.

Each method model element has a statements property, which specifies the state-
ments that are allowed in the method. This includes statements nested at any level
in the method, i.e. within a branch or a loop. If we enforce this in the grammar,
then we need to generate multiple copies of all productions: one for each pair of
a method type and a statement language construct that can directly or indirectly in-
clude other statements. For example, for two different method types Declaration and
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Procedure, there may need to be a DeclarationLoopStatement and a Procedure-
LoopStatement; the first allows only DeclarationStatements in the loop body,
while the second only allows ProcedureStatements. Since each statement that con-
tains a list of statements as child (e.g., control flow statements such as conditionals and
loops) must be instanced for every method type, this design results in an explosion of
the amount of productions, which, in turn, makes the generated grammar hard to main-
tain. Therefore we decided to allow all statements in all method types. A restriction
can be implemented as part of the semantic analysis of the AST.

A similar reasoning applies to expressions. In Cheetah each concept (i.e., class,
from the perspective of the DSL) specifies the expressions that can return this con-
cept. It is theoretically possible to generate an expression production for each pair of
a concept and an expression language construct. However, again this would result in
an unmaintainable amount of productions, so we decided to stay with one expression
symbol.

There is one exception: the abstract language construct ExpressionRepeating
and the corresponding language element ELEExpressionsRepeating. The latter al-
ways refers to the first, i.e. where an ELEExpressionsRepeating is present in the
meta model, the model contains a list of the referred concrete language construct that
extends ExpressionRepeating. This matches exactly with the introduction of a spe-
cial symbol for each matching pair of ExpressionRepeating and ELEExpressions-
Repeating, so that is what we do.

A last consideration relates to the fact that in Cheetah, arithmetic expressions are
lists of interleaved subexpressions and operators (see §2.8.1). In a parser-based envi-
ronment it is advantageous to parse expressions as trees, because it results in an AST
that correctly encodes the meaning of the expression, and it saves an extra parsing
step during code generation. Besides, it is what is expected when a developer encoun-
ters parser-based tooling, thus maintainability is increased. Therefore we decided to
generate a syntax definition that uses trees for arithmetic expressions.

5.3 Implementation

To generate a production these things need to be known:

Target symbol Since each language in Cheetah must be built on expressions and
statements we can select a name for the target symbol by moving up the in-
heritance hierarchy until we visit such an abstract language construct. E.g.,
a language construct that (indirectly) extends Expression will reduce to the
Expression symbol.

Symbols The symbols of the production are determined by the elements that en-
code the projection in Cheetah. Most of those language element have a clear
mapping to SDF. E.g., GLEText maps to a keyword, SLEStatements maps to
Statement*.

Constructor The constructor name should uniquely identify the production to be able
to identify the language construct in the AST. Since the name of the language
construct is unique this is a perfect fit.

With this knowledge it is conceptually straightforward to generate grammar pro-
ductions from the language definition in Cheetah. The implementation is hairier be-
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module mM_Basis/v1/basiselementen/taal/handelingen/AlsDanAnders

context-free syntax
"\n" "Als" Expression
"\n" "Dan" Statement*
"\n" "Anders" Statement*
"\n" "Einde" "als" -> Statement {cons("AlsDanAnders")}

lexical restrictions
"Als" "Dan" "Anders" "Einde" "als" -/- [A-Za-z0-9\_]

Figure 5.1: Output of the SDF generator, given Figure 4.7 as input

cause we need to tokenize GLEText elements to be able to generate a single literal
for each keyword. To do this we developed a string tokenizer that splits strings be-
tween characters, instead of on characters, because this is not available in the Stratego
standard library. Splitting between characters is necessary to correctly handle punctu-
ation characters, as in “Aanmaken (alleen id) indien”: the generated SDF should allow
layout as indicated: “Aanmaken ( alleen id ) indien”.

We ensure that, in the previous example, “alleen” and “id” are always separated by
at least one space, by generating lexical restrictions that require each keyword to be
followed by a non-alphanumeric character. We do, however, not reserve keywords by
default: in other contexts “Aanmaken”, “alleen”, “id” and “indien” may still be used
as identifiers. We cannot use reserved keywords because in the models in Cheetah
variables often have a name that is also a keyword.

The language element GLEEnumeration provides an additional challenge. This
element encodes a choice of one out of a list of literals, and is used often in Cheetah. It
is used, for example, for the semantically irrelevant Dutch articles “de” and “het”, but
also for semantically relevant literals like “<”, “>”, “<=” and “>=” in a comparison. (A
comparison is not an operator in Cheetah.) For each GLEEnumeration we introduce a
symbol Enum-X, where X is an integer that is not used for any other GLEEnumeration.
We then use Enum-X at the place of the GLEEnumeration, and we generate an injection
from each of the literals into Enum-X. Because the enumeration may have semantics
we add a constructor annotation to each injection. The constructor name is generated
from the literal itself, by removing punctuation, and converting the remaining words
to UpperCamelCase. We included special cases such as “<” ⇒ “LowerThan”, or
else the generated constructor name would be the empty string. An example of a
matching input and output of the SDF generator are given in Figure 4.7 and Figure 5.1,
respectively.

5.4 Issue: Optional and Mandatory Line Endings

In Cheetah, line breaks are integrated into the concrete syntax definition by means of
special constructs to allow the user to insert line breaks at places where there is no
line break in the language definition. For example, there is both a statement and an
expression NieuweRegel (new line), and an expression NieuweRegelEnInspringen
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context-free syntax
"\n" "Voer" "uit" Expression -> Statement {cons("VoerUit")}

"<-’" "\n" -> Expression {cons("NieuweRegel")}
"<-’" "\n" "->" -> Expression {cons("NieuweRegelEnInspringen")}
"<-’" "\n" -> Statement {cons("NieuweRegel")}

Figure 5.2: Mandatory line breaks and line continuation constructs

(new line and indent). These constructs have no semantics. They are present only to
change the layout of the program in the structure editor.

If we convert these constructs to SDF we end up with productions as shown in
Figure 5.2. The expression productions work only when expressions are parsed as
lists of interleaved subexpressions and operators (see §2.8.1), instead of trees. Since
we decided to parse expressions as trees, the NieuweRegel and NieuweRegelEn-
Inspringen productions are useless to us. The statement NieuweRegel production
is compatible with the generated grammar, although it would be desired if separator
lines between statements can be left blank, instead of forcing the user to enter the
awkward three-character symbol “<-’” shown in Figure 5.2. We have examined three
ways to deal with line endings.

No mandatory line endings

The first alternative we consider is to remove all "\n" literals from the grammar, add
the newline character to the LAYOUT symbol, and remove the line continuation con-
structs from the models. This results in clean model code, without the syntactic noise
of line continuation constructs. This approach is what is typically used in DSLs created
with Spoofax.

Line continuation construct and mandatory line endings

The second alternative is to keep "\n" literals in the grammar, remove the newline
character from the LAYOUT symbol, and insert a line continuation construct for those
cases where a single-line statement needs to be split over multiple lines. This approach
results in slightly more syntactic noise in the model code. Additionally, an extra line
break, without a line continuation construct, will result in a parse error. We believe that
both points are not ideal from a user experience point of view. Besides this, we had
trouble in practice to get the model transformation output line continuation constructs
at the proper places.

However, we observed much better parser performance than without mandatory
line endings, in particular when recovering from parse errors. We believe this can be
attributed to the fact that the language consists mainly of identifier-like tokens, partly
because the identifier sublanguage is larger than in many DSLs, and partly because
many language constructs consist of Dutch words with only minimal punctuation. This
means it may be expensive for the parser to get back “in sync” with the stream of
characters after a parse error, unless statements happen to be separated, terminated, or
preceded by a fiducial symbol [43] such as the newline character.
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Optional and mandatory line endings

The third and last alternative is to keep "\n" literals in the grammar, add the newline
character to the LAYOUT symbol, and remove the line continuation constructs from the
models. We believe this option is ideal from the user experience point of view: there is
no need to remember to insert a line continuation symbol when a blank line is desired,
and the parser is able to recover from parse errors a lot faster than when we remove
mandatory line endings completely. Fast recovery is important for editor services like
content assist.

There is a challenge, however: when a newline character may be part of LAYOUT,
then we can choose, using a restriction, whether or not LAYOUT should greedily con-
sume newlines. If we choose the greedy approach, then layout can not be allowed be-
fore a mandatory newline, for this layout will consume the mandatory newline before
it can be matched against the newline at the start of a statement. This is not acceptable,
as empty lines or space characters before a line break would generate parse errors in
seemingly arbitrary contexts. If we choose the non-greedy approach, then we create an
ambiguity every time an optional newline is present at a place where two or more con-
secutive optional layout symbols (LAYOUT?) are expected. Though SDF inserts only
one optional layout between all symbols of each context-free production, consecutive
optional layout still appears whenever any symbol is used that can produce the empty
string. For example, in A B? A there are two consecutive optional layout symbols if
B? produces the empty string. In such a case, the parser cannot know how to distribute
the actual layout over the LAYOUT? symbols, which results in an ambiguity between
the possible distributions over the two LAYOUT? symbols.

We have been able to reduce this ambiguity by using a production to greedily con-
sume layout, including optional newlines, without preventing layout to appear before a
mandatory newline (Figure 5.3). The remaining ambiguity does not occur frequently:
there have to be two consecutive optional layout symbols in the grammar, as before,
and at the position in the input text where these layout symbols are expected, there
must be a line that ends with layout, followed by a line break. In this case the lay-
out at the end of the line is consumed by the first LAYOUT? symbol, because of the
context-free restriction in Figure 5.3. The line break (and any further white space)
will be consumed by the LineBreak symbol. At this point it is ambiguous whether
the LineBreak should be combined with the layout at the end of the line, and con-
sumed by the first LAYOUT? symbol, or whether it should be consumed by the second
LAYOUT? symbol. Because this ambiguity is lexical and involves layout only, which
is not present in the AST in Spoofax, the ambiguity has the trivial structure “amb([x,
x])”. The ambiguity has been disambiguated using a custom disambiguator written in
Stratego (Figure 5.4).

Overview

We investigated three different ways to handle explicit line breaks present in the meta
model in Cheetah. The first option we considered was to remove line breaks altogether,
thereby making the migrated models insensitive to newline characters. This option
resulted in an ambiguous grammar, thus making it impossible to parse model code re-
liably. The second option was to map line breaks in Cheetah to required newline char-
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lexical syntax
[\ \t\r] -> LayoutChar
LayoutChar -> LAYOUT

"\n" ("\n" | LayoutChar)* -> LineBreak
LineBreak -> LAYOUT

lexical restrictions
LineBreak -/- [\ \t\n\r]

context-free restrictions
LAYOUT? -/- [\ \t\r]

Figure 5.3: Lexical syntax for optional and mandatory line endings

editor-disambiguate:
(ast, path, project-path) -> <alltd(disambiguate)> ast

disambiguate:
amb([x, x]) -> x

Figure 5.4: Disambiguator necessary for optional and mandatory line endings

acters in the grammar, while adding a line continuation construct for additional (op-
tional) newlines. We dismissed this option because we believe such an approach would
confuse the user, as it would be hard to learn at which places the grammar expects a
newline character. The third option employs a carefully crafted grammar for layout
(Figure 5.3), including newline characters, combined with a custom disambiguator
(Figure 5.4) for the remaining occasional ambiguity. In practice, this approach results
in a grammar that is both easy to use for the DSL user, is not ambiguous, apart from
the aforementioned LAYOUT ambiguity, and has decent recovery characteristics due to
the newline characters that act as fiducial symbols.

5.5 Issue: Priorities

After running the migration, one important part of the grammar was still missing: a
specification of the priorities of certain constructs over other constructs. For the initial
migration prototype we solved these ambiguities by defining ad-hoc disambiguation
rules. These disambiguation rules are based on common sense (multiplication has
a higher precedence than addition, etc.), and examination of actual occurrences of
ambiguities in generated model code.

5.6 Issue: Conflicting Productions

Cheetah defines four different ways of reducing an Identifier to an Expression
(Figure 5.5), which causes an ambiguity anytime an identifier is used. We disabled
part of the generated grammar, so that only one of the responsible productions remains
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context-free syntax
Identifier -> Expression {cons("BevestigendeBetekenis")}
Identifier -> Expression {cons("VragendeBetekenis")}
Identifier -> Expression {cons("Identificatie")}
Identifier -> Expression {cons("Subdeclaratie")}

Figure 5.5: Ambiguous injections

context-free syntax
Expression "en" Expression -> Expression
"bij" {Expression "en"}+ -> MethodParameters

Figure 5.6: Ambiguity between logical and operator and method parameters

active. During an analysis phase, the AST node created through this production will
then need to be transformed into a context-specific node.

5.7 Issue: Method Invocation and the Logical And

Cheetah uses the keyword en for a logical and operator, and as parameter separator
in method invocations (Figure 5.6). This introduces a number of ambiguities. In any
expression of the form “A bij B en C” it is unclear whether this is a method invocation
with two parameters B and C, a method invocation with a single boolean parameter
“A bij (B en C)”, or a method invocation with a single parameter B whose result is
the left hand side of the en operator: “(A bij B) en C”. This ambiguity is not just
theoretical; constructs of exactly this form are omnipresent in the models. Worse yet,
often the actual structure of “A bij B en C en D” is “(A bij B en C) en D” (method call
with two parameters nested in a logical and). The occurrence of this construct makes
it impossible to programmatically determine from the concrete syntax what is meant,
regardless of the way priorities are specified.

Therefore, this ambiguity has to be solved by a simultaneous refactoring of the
meta model and the model. We decided to title case the keywords bij and en to Bij
and En, and to insert parentheses to delimit the parameter list. The first change solves
the conflict between the parameter separator and the logical and operator, while the
second change defers the issue of establishing a consistent precedence for the method
call (i.e., how strong the method call binds to its last parameter). The parentheses can
be dropped when a precedence for the method call has been established.

5.8 Conclusion

In this chapter we migrated the language definition in Cheetah to SDF, to be used in a
Spoofax editor for the tax-benefit rule modeling language. Since Cheetah has not been
designed with parser-based technology in mind, there was some mismatch between
the concepts in Cheetah and the concepts in SDF. In particular, we had to make the
language accepted by our grammar more permissive than what is allowed in Cheetah
to prevent an explosion of grammar productions. Semantic analyses of the AST can
be used to lock down the language later on in the parsing & analysis process.
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The largest challenge we had to overcome to enable the Spoofax plugin for the
tax-benefit rule modeling language to parse sized chunks of DSL code was the lack of
statement separators. In a structure editor it is not a problem if the entire language con-
sists of words, with barely any punctuation. However, we found that with generalized
parsing, it is necessary to introduce a fiducial symbol, and require that identifiers con-
sist of only a single word, for acceptable parsing performance. We designed a snippet
of SDF that introduces line breaks as fiducial symbol without requiring a line contin-
uation character whenever the user wants to insert a line break in a context where it
is not required. Additional challenges consisted of disambiguating various part of the
syntax, partly through adding a priority specification, partly through the removal of
productions identical modulo constructor, and partly through changes to the syntax of
the language.

Overall we can look back at a successful migration. In particular our choice to
develop an automatic transformation was helpful when experimenting with different
translations of certain aspects of the language, such as the syntax for method invo-
cations. Although our migration resulted in a functional DSL editor in Spoofax, we
recommend to refactor the language so as to make it more suitable for parser-based
tooling. Such refactorings can be integrated into the automatic transformation, high-
lighting another advantage of an automatic migration. In the next chapter we migrate
the DSL code to text that ought to be parseable by the grammar we generated in this
chapter.
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Chapter 6

Migrating Cheetah Models to
Textual Models in Spoofax

6.1 Introduction

Since the tax-benefit rule modeling DSL is used for a system that runs in production,
much code (models) has been written in this DSL. For similar reasons as mentioned in
the introduction of Chapter 5, we choose to develop an automatic migration of these
models, instead of performing a manual conversion. Hence, the goal of this chapter
is to migrate the models in Cheetah to sentences in the language described by the
grammar generated in Chapter 5. Using the results of this migration we are able to
evaluate our work in Chapter 5.

This transformation is more involving than generating the grammar, because the
model XML files contain only the variable elements (i.e., modified by the user), due
to the prototypical inheritance in Cheetah (§2.4). Therefore, there is no one-to-one
mapping between model element and generated artifact, but instead many auxiliary
model elements need to be read to be able to generate the program text for a single
model element. Since many of the language design issues with a migration from a
structure editor to a parser-based language workbench are described in Chapter 5, we
keep this chapter focused on the automatic transformation.

6.2 Model Transformation: Generating Text

To collect the information required to convert models we have to resolve two types of
references to other model elements. First, we need to “flatten” the inheritance hierar-
chy, thereby merging all properties of inherited model elements into the current model
element. Second, we need to bring in the values of properties that are unchanged in all
model elements in the tree that results from the first step. We developed Stratego code
that reads a single model element (using the parser developed in Chapter 4), and then
traverses the inheritance hierarchy to bring in all inherited properties. Then, it walks
the resulting tree, and brings in any properties missing from model elements referred
to through the cls property, which indicates instantiation of a model elements.

Once all the information making up a model has been merged, generating the
model text is as simple as traversing the tree and writing out the concrete syntax for
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each AST element. GLEText, for example, produces the text that is inside, while
for GLEEnumeration we take the text of the enumeration item referred to by the se-
lectedItem property of the AST element. When we encounter an SLEStatements we
produce the text of the statements contained within, and then indent the whole block.
We employ similar strategies for other language elements.

6.3 Issue: Free Form Identifiers

In Cheetah, references to identifiers are always inserted using content assist, so there
is no need for any restrictions on the names of identifiers, apart from the pragmatic
requirement that two distinct identifiers that may be used in the same scope must have
a distinct representation in the user interface.

In practice, the lack of restrictions lead to identifiers consisting of multiple words
separated by whitespace, identifiers with leading or trailing whitespace, identifiers
containing characters which are often not allowed in mainstream GPLs, such as paren-
theses (used to indicate an optional plurality, e.g. “parent(s)”) or percent signs, and
identifiers that start with numbers (e.g., “50% calculation”).

For each of these cases we had to choose to either map the undesired character to
an allowed characters, or to change the ID lexical (and potentially other parts of the
grammar) to allow the special character. We made the following decisions: Leading
and trailing whitespace has been trimmed as it was not significant anywhere. Embed-
ded whitespace has been converted to dashes to be able to recognize the end of an
identifier. Parentheses, percent signs, hashes and question marks have been allowed in
identifiers; these did not result in any ambiguities. Parentheses have to be balanced for
a successful parse. Identifiers have also been allowed to start with a number, but must
contain at least one non-numeric character to prevent ambiguity between identifiers
and literal integers.

6.4 Conclusion

In this chapter we migrated the DSL code of the tax-benefit rule modeling language
to plain text, parseable by the grammar we generated in Chapter 5. We had to over-
come two challenges: collecting the information to convert a single model to text, i.e.
resolving references to extended and instantiated model elements, and sanitizing iden-
tifiers. We addressed the first challenge by developing Stratego code to read in a model
element, and all referred model elements, and merge those into a single tree containing
all information; the second challenge was addressed by picking a sweet spot between
complete sanitization of identifiers to alphanumeric characters only, and modifying the
grammar to accept all characters occurring in identifiers in practice.

The combined work of Chapter 5 and this chapter resulted in an Eclipse plugin
capable of opening real tax-benefit rule modeling DSL models, including basic edi-
tor services, such as syntax highlighting, which are automatically derived by Spoofax
from the syntax definition. In the next chapter we discuss some options w.r.t. a migra-
tion of the code generators from Cheetah to Spoofax.
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Chapter 7

Migrating Cheetah
Transformations to Stratego

7.1 Introduction

There is more to a conversion of Cheetah to Spoofax than a conversion of the syntax.
In particular, there is a set of code generators in Cheetah, which generate complete Vi-
sual Studio / .NET / C# projects from the models entered into Cheetah. Although there
have been plans to add a transformation language to Cheetah, these never took off, so
currently these code generators are written in Java. As Spoofax builds on Eclipse,
which is also written in Java, there may be an opportunity to reuse the code generators.
In this chapter we describe how this might be implemented, and which problems may
appear. Alternatively, the code generators could be rewritten in a specialized transfor-
mation language, such as Stratego [8].

7.2 Reusing Existing Transformations

Code Generators in Cheetah

The code generators in Cheetah consist of custom Java source code, which operates on
the *AST interfaces introduced in Chapter 2. As the code generators represent a mature
code base, it would be ideal if we could reuse the transformations in case of a switch
to Spoofax.

Stratego term abstraction

Stratego is not coupled to the particular term implementation it uses by default. Both
the Stratego compiler and the interpreter operate on the IStrategoTerm interface.
Any tree of objects that implement this interface can be rewritten by transformations
written in Stratego. In the past this has been used to let Stratego operate on nodes of the
ECJ AST [29], thereby allowing an Eclipse user to add custom analyses of Java code,
written in Stratego. Additionally, Spoofax offers a simple foreign function interface
(FFI), which allows the user to implement strategies in Java. By leveraging these two
features of Stratego we can write Java classes that implement both IStrategoTerm,
and one of the *AST interfaces.
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Proxying model elements

We have examined whether the existing code generators can operate on a different im-
plementation of the *AST interfaces by generating proxy objects that implement each
respective interface. Each of the methods of the interface that returns another interface
is then implemented so that it wraps the returned model element in the corresponding
proxy object. Using this approach the code generators never directly communicate
with the model elements, but operate on proxies instead, allowing us to find code in
the code generators that would certainly not work with a different implementation of
the interfaces.

Casts to the implementation type

Running the code generators using the proxy objects revealed some issues with the
transformations. Foremost, some of the code generators cast the object they receive,
of which the declared type is one of the *AST interfaces, to the type they expect to
implement the interface. Typically this is done because they need more information
then what is provided through the interface. This means that, to be able to run the
code generators on a different AST implementation, the additional information must
be added to the interface, and the casts must be removed from the code generators.

Reference equality vs. value equality

Another issue relates to the difference between the equals method and the == operator
in Java. The equals method typically compares by value (value equality), while the
== operator always compares identity (reference equality). For example, two strings
s1 and s2 with equal contents will compare equal using s1.equals(s2), but may or
may not compare equal using s1 == s2. The strings are only considered equal in the
last case if s1 and s2 point to the same String object, which may or may not be true
depending on the source of both strings [4].

In the code generators this is an issue because the == operator is regularly used to
compare two model elements, which implies our proxy objects cannot be instantiated
on the fly every time they are requested, as in our initial approach. Instead, we need
to keep track of all objects which already have a proxy object, and reuse that proxy
object whenever the object is requested again. That is, there must be a global, one-
to-one mapping from each model element instance to its proxy object. For an actual
reuse of the code generators we would need to break the sharing of subterms before
passing the AST to the code generators, to ensure the == operator never returns a true
result where it would have returned a false result in Cheetah. The alternative is, of
course, to remove all ==-based comparisons from the transformations, while ensuring
the generated code remains the same. This is the recommended way to proceed.

Inheritance hierarchy mismatch

A last, but nevertheless important issue is that the inheritance hierarchy present be-
tween model elements is not accurately represented in the interfaces implemented by
the model elements. This implies that proxy classes or IStrategoTerm implemen-
tations cannot be generated from the *AST interfaces alone: we need to look at the
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Cheetah implementation of each AST* interface, to examine whether it also imple-
ments other *AST interfaces that should have been inherited by one of the interfaces
it does implement. What makes matters worse is that Cheetah employs dynamic dis-
patch to find and invoke the best matching transform method. The dynamic dispatch
mechanism determines the best matching method by checking whether the passed ar-
guments can be assigned to the parameter types, and then taking the variant with the
most specific parameter types. Hence, if a new AST implementation is used as input
for the code generators, the dynamic dispatcher may invoke different transformation
methods unless we carefully reproduce the assignability of the new implementation to
the types expected by the code generators.

7.3 Converting Existing Transformations

A different approach to move the code generation into Spoofax is to convert the exist-
ing code generators to Stratego. The code generators consist of approximately 70,000
lines of Java code. When transforming Java to Stratego we move to a higher abstrac-
tion level and a different paradigm, so it is unlikely that a fully automatic conversion
can be pulled off. That means large parts of the code generators need to be converted
by hand.

7.4 Conclusion

Unlike Chapter 5 and Chapter 6, where we chose an automatic migration over a man-
ual migration, we recommend a manual transformation of the code generators, because
of the paradigm mismatch between Stratego and Java. With a manual transformation
it will be possible to obtain idiomatic Stratego code, which is a requirement for main-
tainable code generators in Stratego. Another approach we investigated is reuse of the
current code generators, by writing a set of adapter classes, to be able to use the code
generators on Stratego term objects. Short term, this solution may be sufficient. For
longer term maintenance, or new projects, we recommend to move the code generators
to a specialized transformation language, such as Stratego.
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Chapter 8

Content Assist

8.1 Introduction

High quality content assist is a prerequisite for a successful deployment of a parser-
based, textual editor for the tax-benefit rule modeling language, because the language
is rather verbose. In particular, it employs 317 unique keywords (some are reused
in many productions) in 1036 productions1, while Java 1.5 uses 53 unique keywords
in 440 productions2. In a parser-based language workbench like Spoofax, the user
needs to enter this content without making mistakes: a one character typo can make a
complete statement unparseable. It is therefore important to have high quality content
assist. This assertion is further reinforced by the fact that, even in the Eclipse Java
editor, content assist is one of the most used features [41].

For template-based editing (i.e., using content assist to insert code templates) to
be effective, only contextually relevant templates should be shown. Pure structure ed-
itors achieve this based on the currently selected placeholder. To achieve the same in
textual editors, the editor must be aware of the syntactic category of the text at the
cursor location at any time. The provided completions must be accurate: all applicable
templates must be included, and no inapplicable templates may be included. Which
completion templates are to be included can be determined from the syntactic cate-
gory at the cursor location. Determining this syntactic category in a language-agnostic
fashion is not trivial. If possible, changes to generated parsers to support this facility
should be provided. In addition, syntax errors need to be taken into consideration; the
editor must be able to determine what type of template should be inserted even when
a program is edited and is in a syntactically incorrect state.

In this chapter we describe an approach for gathering an accurate list of templates
in a parser-based editor, as well as a number of generic improvements to the content
assist user experience in the Spoofax language workbench.

1Counted after the migration performed in Chapter 5
2Approximation based on the Java 1.5 syntax definition in java-front, found at:

https://svn.strategoxt.org/repos/StrategoXT/java-front/trunk/syntax/src/
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8.2 Determining Relevant Completion Templates

Original implementation

The solution originally implemented in Spoofax first creates a modified program text
that includes a marker at the cursor location. The marker matches the syntax for iden-
tifiers, and is unlikely to be present anywhere else in the program text. The modified
program text is then parsed, after which the AST is searched for the marker. Spoofax
infers the symbols that should have been allowed at the position of the cursor from the
token stream, and meta data attached to AST nodes.

The interaction between the involved components is a problem with this imple-
mentation. When the modified program text is parsed, and it has parse errors, error
recovery gets involved. Unless completion is invoked at a position where an identifier
is allowed, there will be parse errors. The error recovery algorithm in the SGLR parser
used in Spoofax attempts to get the parser back on track by performing a minimum
number of token insertions and/or removals. As such, it may remove the marker, or
insert punctuation that pushes the marker into another language construct.

One solution is to make the parser aware of the cursor location, and report the
allowable syntactic categories at that character offset during parsing. This solution is
specific to SGLR, and needs to be re-implemented in every other parser. We look for
a more generic and less complex solution.

Our solution

We add a production CONTENTCOMPLETE -> X {cons("COMPLETION-X")} for every symbol
X, where the symbol CONTENTCOMPLETE recognizes the inserted marker text, including
surrounding identifier characters. When the program text with marker is parsed, the
marker can be parsed as every symbol allowed at its location. Because we encode the
name of the symbol in the AST constructor, and the parser is able to return all the dif-
ferent, ambiguous parses of the marker, the editor runtime knows all symbols allowed
at the position of the marker. The set of symbols is then used to select appropriate
completion templates to display to the user.

8.3 Content Assist User Experience

Original implementation

Applying a completion proposal in Spoofax used to work as follows. The user triggers
a content assist pop-up to appear, either by pressing a designated keyboard shortcut, or
by entering some text in the editor that matches one of the completion trigger regular
expressions declared in the editor services specification of the DSL. In this pop-up
menu, the user selects a completion proposal, or the user continues typing, in which
case the proposals will be filtered on the prefix entered by the user. The pop-up menu
will disappear if no proposals match the prefix.

Once the user selects a proposal the text of the template will be inserted in the
document. Both text elements and placeholders appear in the document as is. The
text of the first placeholder will be selected, so the user can immediately start typing
the contents of that placeholder. However, there are no visual cues apart from the text
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itself, as to the locations of other placeholders: the user will have to locate, select, and
replace them manually.

Our solution

We modified content assist in the Spoofax runtime to use the Eclipse linked mode3

feature. Linked mode is a state of the Eclipse text editor where multiple regions in
the source are marked. These regions are called linked positions or proposal positions.
While the editor is in linked mode, the tab key is used to jump to the next position, and
each position acquires a visual cue in the editor to indicate its extents to the user (see
Figure 8.1). Additionally, some or all of the positions may be part of a linked position
group, which is a group of positions with identical text, so that when any one of these
positions is modified, all positions in the group are updated. The rename refactoring
in the Eclipse Java Development Tools is a well known use of these linked position
groups. Linked mode is exited when the user starts typing outside the linked positions,
or when the escape key is pressed.

Our modification to content assist in the Spoofax runtime converts all placeholders
in a completion template to linked positions or proposal positions, and benefits all
DSLs developed with Spoofax.

8.4 Discussion

Although we have pushed content assist in Spoofax a small step forward, there are still
many areas for improvement. It should not be necessary to clone the grammar modi-
fications performed manually in §8.2 to all DSLs in Spoofax that want syntactic com-
pletion. Potentially these productions can be generated at the same time recovery pro-
ductions are generated. Another approach to the same issue could be to have the con-
tent assist runtime parse the source code twice: once without the CONTENTCOMPLETEx
literal, for syntactic completion, and once with the CONTENTCOMPLETEx literal, for
semantic completion. A problem with this approach is that parsing is relatively expen-
sive: parsing twice, instead of once, will double the response time of content assist,
which can already be long in the case of large inputs or ambiguous grammars.

It may be interesting to research if syntactic content assist can be coupled tighter
to the parser. During a parse the parser knows which symbols are acceptable at each
position in the input text as it passes along that position. If a symbol is acceptable at a
position, this implies the first symbol of each production with that target symbol would
be acceptable too. If the first symbol may produce the empty string, then the second
symbol should be added to this set, and so on. We could continue to add the whole
First-set of the symbol to the completion proposals. At some point, however, we need
to cut off the search to produce meaningful proposals to the user. Whether and how
we can acquire meaningful proposals using this approach, remains to be seen.

3http://help.eclipse.org/indigo/topic/org.eclipse.platform.doc.isv/reference/
api/org/eclipse/jface/text/link/package-summary.html
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8. CONTENT ASSIST

(a) Trigger content assist, and choose a completion proposal

(b) Apply the completion proposal, and placeholders (linked positions) appear

(c) Jump between positions, and enter values

Figure 8.1: Spoofax content assist with linked mode support in the Stratego editor
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Chapter 9

Eliminating Concrete Syntax
Repetition using Syntax Templates

9.1 Template-Based Syntax Definition

In this chapter we introduce a new syntax definition language1 based on templates
as those found in template engines such as StringTemplate [47]. Additionally, we
base the design of auxiliary features of the language, such as priority specification and
lexical syntax, on that of SDF [22, 61]. The aim of the language is to eliminate the
redundancy between different syntactic specifications, by combining concrete syntax,
abstract syntax, formatting, whitespace, and placeholder names. We argue that through
the use of templates, the language is rich in information yet elegant and simple.

Language Overview Basic template-based syntax definitions consist of template
productions that correspond to production rules in a grammar. They have the following
form:

s.label = <
template

>

where s is the name of the symbol being defined, label is its constructor label used
for the abstract representation, and template is a template that may include concrete
syntax, references to other symbols (placeholders), and layout. Both the template and
its placeholders are enclosed by <. . . > brackets.

As a first example, the following template productions define basic arithmetic ex-
pressions:

templates
Exp.Num = <<INT>>
Exp.Plus = <<Exp> + <Exp>>
Exp.Times = <<Exp> * <Exp>>

The first production defines a template for number literals, defining a template for the
Exp symbol based on a reference to the INT symbol. The other productions specify
templates for the + and * operators. The last two templates consist of five elements:
an <Exp> placeholder, whitespace, the + or * sign, more whitespace, and another place-
holder. Of these elements, the whitespace elements are not considered for parser gener-

1http://strategoxt.org/Spoofax/TemplateLanguage
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9. ELIMINATING CONCRETE SYNTAX REPETITION USING SYNTAX TEMPLATES

Statement.ArrayDeclInit = <
array <ID> = { <INT; wrap, separator=","> };

>

(a) Syntax template with a placeholder with wrap option

array a = { 3,9,20,2,1,4,6,32,5,6,77,888,
2,1,6,32,5,6,77,4,9,20,2,1,4,63,9,20,2,1,
4,6,32,5,6,77,6,32,5,6,77,3,9,20,2,1,4,6,
32,5,6,77,888,1,6,32,5 };

(b) Output of Figure 9.1(a): wrapped lines start at the left margin

Statement.ArrayDeclInit = <
array <ID> = { <INT; wrap, anchor, separator=","> };

>

(c) Syntax template with a placeholder with wrap and anchor option

array a = { 3,9,20,2,1,4,6,32,5,6,77,888,
2,1,6,32,5,6,77,4,9,20,2,1,4,
63,9,20,2,1,4,6,32,5,6,77,6,
32,5,6,77,3,9,20,2,1,4,6,32,
5,6,77,888,1,6,32,5 };

(d) Output of Figure 9.1(c): wrapped lines anchored to the left side of the placeholder

Figure 9.1: Wrap and anchor options demonstrated for a Java array initializer

ation. Instead they are used for formatting in a generated pretty printer and completion
templates. Whitespace characters treated this way are spaces, tabs, and newlines.

Placeholders can use the common * and + operators for repetition, and ? for op-
tionals. For repeated symbols with a separator symbol s, <symbol*; separator=s> can
be used. The following template productions illustrate these features, adding function
calls and definitions to the expression language.

templates
FunctionDef.Function = <
function <ID>(<ID*; separator=", ">) = <Exp>

>
Exp.Call = <<ID>(<Exp*; separator=", ">)>

Placeholder options that affect only pretty printing, are available for line wrapping,
and anchoring of wrapped lines to the left side of the placeholder (Figure 9.1). A hide

placeholder option is available to hide the placeholder from completion templates (to
be used for expert language features).

Disambiguation Grammars can be extended with disambiguation rules and annota-
tions to express language characteristics such as associativity and operator precedence.
In our running example, multiplication has a higher precedence than addition. Whereas
in SDF [36] priorities are specified declaratively by copying the relevant productions
and ordering them, separated by >-symbols, we add the option of specifying priori-
ties through references to the relevant productions, so as to eliminate redundancy. The
difference is shown in Figure 9.2.
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templates
Exp.Plus = <<Exp> + <Exp>> {left}
Exp.Times = <<Exp> * <Exp>> {left}

context-free priorities
Exp.Times >
Exp.Plus

(a) Associativity and priorities with templates
and references

context-free syntax
Exp "+" Exp -> Exp {left, cons("Plus")}
Exp "*" Exp -> Exp {left, cons("Times")}

context-free priorities
Exp "*" Exp -> Exp >
Exp "+" Exp -> Exp

(b) Equivalent associativity and priorities in SDF

Figure 9.2: Expression grammar

lexical syntax
ID = [A-Z] [A-Za-z0-9]*
INT = [0-9]+
LAYOUT = [\ \t\r\n]

(a) Lexical productions

lexical restrictions
ID -/- [A-Za-z0-9]
INT -/- [0-9]

context-free restrictions
LAYOUT? -/- [\ \t\r\n]

(b) Lexical and context-free restrictions

Figure 9.3: EBNF-ordered productions

Lexical Syntax A part of syntax definitions we have not discussed so far is lexical
syntax. Lexical syntax elements such as INT and ID in our expression language, are,
unlike the context-free productions we discussed so far, generally specified using a
form of regular expressions. In the abstract representation they are usually represented
as simple strings, making unparsing trivial. For consistency, lexical productions can be
specified in symbol-first order, as shown in in Figure 9.3. The definition of the body of
lexical productions is shared with SDF [22, 61]. Both lexical and context-free syntax
can be disambiguated using restriction sections in SDF [36], a construct that we inherit
in our syntax specification language (Figure 9.3).

The syntax of the template language is summarized in Figure 9.4. We proceed with
a description of the mapping from syntax templates to SDF, completion templates, and
pretty printing rules.

9.2 Generating Template-Based Editors

To SDF Syntax templates closely match context-free syntax in SDF. Specifically, to
go from a syntax template to an SDF production, all layout is discarded: in SDF, there
is implicit LAYOUT? between all symbols in a context-free production. The remain-
ing elements (literals and placeholders) are converted in-order to their respective SDF
equivalents. Literals are tokenized at every boundary between (sequences of) char-
acters specified with the tokenize option, and (sequences of) other characters. The
default value "()" ensures that language elements such as if(cond) can be written
(and thus pretty printed) without whitespace between if and the parenthesis, while the
grammar still allows LAYOUT? between those. Layout is trimmed from the separator
option of list placeholders. An example of the transformation to SDF is shown in Fig-
ure 9.5. Optionally, if the newlines option is present with a value other than none,
the generated grammar is modified to require newline characters between lines in the
syntax templates. This situation is depicted in Figure 9.6.
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Template language sections
templates

t∗
Section with template productions t∗

template options
o∗

Section with options o∗

Productions
Symbol = <e∗> Template with elements e∗
Symbol.Cons = <e∗> Template with elements e∗
Symbol = [e∗] Template with elements e∗ (alt. brackets)
Symbol.Cons = [e∗] Template with elements e∗ (alt. brackets)
Placeholders
<A> Placeholder (1)
<A?> Optional placeholder (0..1)
<A*> Repetition (0..n)
<A+> Repetition (1..n)
<A*; separator="\n"> Repetition with separator
<A; text="hi"> Placeholder with replacement text
<A; hide> Hidden from completion template
<A*; wrap> Repetition with word-wrap
<A*; wrap; anchor> Repetition with word-wrap, anchored to the left

column of the placeholder
Escapes
<\ \t\r\n> Element containing escaped characters
<\u0065> Unicode escape
<\\> Escape next line break
<> Empty escape sequence: no output; layout will

be allowed here in the grammar
\<, \>, \[, \], \\ Brackets/backslash (prefer alt. brackets)
Priority specification
context-free priorities
{left: Exp.Times Exp.Over} >
{left: Exp.Plus Exp.Minus}

References to template productions

Lexical syntax
lexical syntax
ID = [A-Za-z] [A-Za-z0-9]*

EBNF-order productions in SDF

Template options
keyword -/- [A-Za-z0-9] Follow restriction for keywords
tokenize : "()" Layout is allowed around these characters
newlines : none Grammar requires newline characters. Possible

values: none, separating, leading, trailing

Figure 9.4: Summary of the template language syntax
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Statement.IfThen = <
if(<Exp>) <Statement*; separator="\n">

>

⇓ generate SDF ⇓
"if" "(" Exp ")" Statement* -> Statement {cons("IfThen")}

Figure 9.5: Generate an SDF production from a syntax template

Statement.IfThen = <
if <Exp> then
<Statement*; separator="\n">

end
>

⇓ generate SDF ⇓
"if" Exp "then" ("\n" Statement)* "\n" "end" -> Statement {cons("IfThen")}

Figure 9.6: Generate an SDF production with newlines: separating option

To completion templates Completion templates in Spoofax consist of the following
components:

• A symbol that indicates the context in which the template is applicable.
• A string, which is displayed in the completion pop-up, and is used to filter the

list of proposals.
• A list of elements of the completion template. Each element is either a string,

possibly including line breaks and indentation, a placeholder, or the special
(cursor) directive. This last directive indicates the location of the cursor af-
ter the user has cycled through all placeholders. A placeholder consists of an
initial replacement text, and an optional symbol, which is used to display a list
of syntactic completions applicable at the position of that placeholder, as soon
as the user switches to this placeholder.

• A set of annotations. The only relevant annotation in use is (blank), which
constrains the completion template to blank lines.

We do not perform a linear transformation from syntax templates to completion
templates, as we did for the grammar. The reason is best illustrated with Figure 9.7.
For certain language elements, we may want to factor out repeated constructs, such as
the <Statement*; separator="\n"> placeholder in the example. The user of the editor,
however, should not be exposed to such implementation details. In particular, the
user should not be forced to repeatedly apply completion to fill in required parts of a
language construct: those required parts should be inserted into the program text as
soon as the completion proposal for the language construct is applied.
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FunctionDef.Function = <
<MetaAnnos>
function <QId>(<FArg*; separator=", ">) : <Type> {
<Statements>

}
>
MetaAnnos = <<MetaAnno*; separator="\n", hide>>
Statements = <<Statement*; separator="\n">>

⇓ expand template ⇓
FunctionDef.Function = <
<MetaAnno*; separator="\n", hide>
function <ID:QId>(<FArg*; separator=", ">) : <ID:Type> {
<Statement*; separator="\n">

}
>

⇓ simplify template ⇓
FunctionDef.Function = <
function <ID:QId>(<:FArg>) : <ID:Type> {
(cursor)

}
>

⇓ generate completion template ⇓
completion template FunctionDef: "function ID() : ID { }" =
"function " <ID:QId> "(" <:FArg> ") : " <ID:Type>

" {\n\t" (cursor) "\n}" (blank)

Figure 9.7: Generate completion templates from syntax templates

Therefore, we substitute the referred template for each placeholder with a multi-
plicity of one and higher (<A> and <A+>), unless the placeholder refers to the containing
template. In the step expand template of the example in Figure 9.7, the <MetaAnnos>

and <Statements> placeholders are expanded.

The simplify template step removes placeholders with the hide option, and pro-
cesses placeholders that can generate the empty string (<A?> and <A*>). Call those
placeholders ε-placeholders. These placeholders are treated differently depending on
their location in the template. The (cursor) directive is substituted for the first line
that consists of a single ε-placeholder. Further instances of ε-placeholders on a single
line are ignored: we expect the user to retrigger completion when they desire to insert
a template at these positions. In Figure 9.7, <MetaAnno*; separator="\n", hide> is re-
moved, and the (cursor) directive is substituted for <Statement*; separator="\n">.
Remaining ε-placeholders are replaced by an empty placeholder in the completion
template that can be expanded to a single occurrence of one of the referred templates.
In Figure 9.7 we demonstrate this by substituting <:FArg> for <FArg*; separator=", ">.
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Statement.IfThen = <
if <Exp> then
<Statement*; separator="\n">

end
>

⇓ generate Stratego pretty printing rule ⇓
prettyprint-Statement:
IfThen(a, b) -> zz
with a’ := <prettyprint-Exp> a

; b’ := <map(prettyprint-Statement); separate-by(|"\n")> b
; zz := <concat-strings> ["if ", a’, " then\n",

<pp-indent(|" ")> b’, "\nend"]

Figure 9.8: Generate Stratego pretty printer from syntax templates

To pretty printing rules A simple set of recursive, bottom-up pretty printing rules
can be generated from syntax templates. We generate these rules in the program trans-
formation language Stratego. It can be seen in Figure 9.8 that a pretty printing rule
consists of a number of components. The name of the rule, prettyprint-Statement,
is composed from the name of the symbol. The rule matches the constructor IfThen
with two arguments. The number of arguments is equal to the number of placeholders
in the syntax template.

When the rule matches, child nodes are pretty printed by (recursively) invoking
(other) pretty printing rules. Then, the text for all elements of the template is concate-
nated, while the text for child nodes is indented by the amount the respective place-
holder is indented in the syntax template. In Chapter 11 we revisit the generation of
pretty printers from syntax templates, covering topics such as the wrap and anchor

options.
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Chapter 10

Template Language — Evaluation

10.1 Introduction

In this chapter we evaluate the expressiveness of the template language developed in
the previous chapter. We perform this evaluation by inspecting a syntax definition
using both SDF and syntax templates in two languages: the tax-benefit rule modeling
language that resulted from the the conversion in Chapter 5, and Mobl, a language for
mobile web application development.

10.2 Use with the Tax-Benefit Modeling Language

10.2.1 Conversion

We changed the target language of the conversion we implemented in Chapter 5 from
SDF to the template language we implemented in Chapter 9. As such, we acquired
completion templates and a basic pretty printer for all language constructs, without
writing any additional transformations specific to the conversion from Cheetah to
Spoofax. Adapting the conversion was easy, because the structure of syntax templates
and SDF productions is identical. Sanitizing steps, such as the tokenization of GLEText
into separate keywords, could be dropped because they are performed by the template
language. Indeed, the way language constructs are stored in Cheetah is closer to the
syntax templates of the template language than to SDF productions, thereby reducing
the effort required for the conversion. The models converted in Chapter 6 could be
parsed using the grammar generated from the syntax templates without modification.

10.2.2 Results and discussion

An example of the brevity of a large language construct defined in the template lan-
guage, versus the same language construct defined in SDF, is shown in Figure 10.1. A
less extreme example, shown in Figure 10.2, still shows an increased legibility (less
syntactic noise due to quotes, in particular), and that is in addition to the code reduc-
tion because pretty printer and completion templates can be generated from the syntax
template. In both figures the SDF productions have been line wrapped by hand: the
generator outputs them on a single line.
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Figure 10.1: Language construct in SDF (top) and the template language (bottom)

If we look at the numbers we see that the generated SDF grammar consists of 2101
lines, of which 1805 are non-blank (in 129 files). The generated syntax templates for
the same language consist of 997 lines, none of which are blank. Blank lines are not
present because only one language construct is generated per file, and, contrary to
SDF, the extra section lexical restrictions is not needed with syntax templates:
it is assumed that no keyword may be immediately followed by an identifier, so the
restrictions are generated automatically.

Even though the SDF grammar is twice as long as the template language syntax
definition, all productions in the generated SDF are written on a single line, while the
syntax templates are written on multiple lines if the language construct consists of
multiple lines. Had the SDF productions been wrapped to a reasonable line length,
then the magnitude of the difference in lines would have been larger.

The size of the SDF grammar can be attributed partially to the lexical restrictions,
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Figure 10.2: Language construct in SDF (top) and the template language (bottom)

which take up one line per keyword with our converter. Additionally, we emit a lexical
restriction for each keyword in a language construct in the same file as the production,
even though the same keyword may already have an identical lexical restriction in
a different file. Technically it would have been easy to collect restrictions for the
whole project and write the set to a single file. However, keeping the restriction for a
keyword near the use of the keyword increases locality, which is important considering
the syntax definition is intended to be maintained manually.

When limiting the line count to unique lines only, the magnitude of the difference
in line count reduces significantly: 780 unique lines for SDF, versus 625 lines for
the syntax templates. Common section headers present in every file, like templates

and context-free syntax, explain a large part of the difference between the unique
line count and the total line count. Although the template language syntax definition
is only slightly smaller in terms of unique lines, only from the template language
syntax definition a complete pretty printer and a set of completion templates can be
derived. Additionally, verbose language constructs, such as those in Figure 10.1 and
Figure 10.2, are arguably more readable in a syntax template.

The generated pretty printer has been tested on approximately 20,000 lines of DSL
code in 124 files. For each of those files, parsing the pretty printed code resulted in
the same AST as when parsing the original files. From this result we conclude that the
pretty printer is correct. Using manual inspection we confirmed the prettiness of the
pretty printed code.
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context-free syntax
"foreach" "(" LValue ":" Type "in" Exp ")" "{" Statement* "}"

-> Statement {cons("For")}

(a) Original production in Mobl

templates
Statement.For =

<foreach ( <LValue> : <Type> in <Exp> ) { <Statement*> }>

(b) Intermediate (generated, unformatted) syntax template

templates
Statement.For = <

foreach(<LValue> : <Type> in <Exp>) {
<Statement*; separator="\n">

}
>

(c) Syntax template after manual tweaking

Figure 10.3: From SDF production to syntax template

10.3 Use with Mobl

10.3.1 Introduction

Mobl [23] is a DSL for the construction of mobile web applications. It features an
extensive standard library, declarative specification of user interface, static type check-
ing, and embedding of Javascript, CSS styling rules and HTML.

In this section we reimplement the Mobl language syntax using our template lan-
guage to investigate whether the template language is sufficiently expressive for a
reimplementation of the complete Mobl language syntax. The implications are that
the SDF generated from the syntax templates must be equivalent to the original syntax
definition. The completion templates must behave as was intended with the design
of the template language, and the pretty printer must be able to output correct, pretty
code.

10.3.2 Conversion

To convert the Mobl syntax definition to syntax templates, we have added a con-
verter to the SDF editor in Spoofax. It takes an SDF grammar as input, and out-
puts syntax templates, with each implicit LAYOUT? symbol replaced by a single space
character. Within a few hours we formatted the 343 unformatted syntax templates,
by inserting line breaks and indentation into 64 multi line language constructs, and
adapting layout throughout the language using search-replace. An example of each of
the three phases of the conversion (initial, intermediate, final) is displayed in Fig-
ure 10.3. Because the separator of a list element is specified whenever the list is
used, we factored placeholders such as <Statement*> out into productions such as
Statements = <<Statement*; separator="\n">>, so that we had to specify the separator
option 2, instead of 55 times. Additionally, we refactored one production to three sep-
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arate productions, because it employed the alternative operator, which is deprecated
in SDF, and (by design) not present in the template language.

10.3.3 Observations

General

We found that the template language worked well on Mobl. After some minor fixes
the syntax templates resulted in a syntax definition that could be used to parse the
example code included with the Mobl project. Overall, the template language reduced
the combined size of the syntax specification for Mobl from 1565 lines to 1163 lines,
while delivering a complete pretty printer, and a complete set of completion templates.
Although the pretty printer did not format certain constructs as well as we would have
liked, the pretty printer did result in reasonably pretty, and syntactically correct code.
The generated completion templates initially had an issue with the meta annotations
present in Mobl, making them less suitable for their purpose. The various issues are
covered in detail below.

SDF attributes

In the Mobl syntax, certain productions are marked as deprecated or rejected. The
evaluated incarnation of the template language did not respect those attributes: dep-
recated constructs would sometimes be preferred by the generated pretty printer over
their non-deprecated counterpart (depending on the order of the syntax templates), and
completion templates and pretty printer rules were generated for reject productions,
even though the language described by the reject production is, by definition, not part
of the language described by the complete syntax definition. To solve this issue we
changed the template language to not generate completion templates or pretty printer
rules for reject productions, and to not generate completion templates for deprecated
productions, while sorting pretty printing rules for deprecated productions to have a
lower precedence than the pretty printing rules for non-deprecated productions.

10.3.4 Evaluation of the generated SDF

Keywords containing special characters

The grammar of the Mobl language as specified by our template language is slightly
more permissive than the original Mobl grammar, due to keywords that contain special
characters, such as @<javascript> and @doc, which get tokenized by the SDF gen-
erator to "@<" "javascript" ">" and "@" "doc", so that layout is allowed between these
tokens. Hence, we revisited this design decision: By allowing an empty sequence of
escape characters as a zero-length space symbol, LAYOUT? can be inserted without in-
serting a space character in the pretty printer and completion templates. With such
an escape present, we proceeded to remove most of the automatic tokenization, while
making the remaining tokenization configurable (the tokenize option in Figure 9.4).
Although this solution, using a global configuration option, hinders language compo-
sition, we believe that it is adequate for the time being. In the future this option (and
other options) should be scoped, to allow different configuration of different sublan-
guages.
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@service PUT /:name
function put(req : Request, res : Response) { /* ... */ }

(a) Function with a meta annotation in Mobl

templates
FunctionDef.FunctionNoReturnType = <

<MetaAnnos>
function <QId>(<FArg*; separator=", ">) {
<Statements>

}
>

(b) Syntax template for this language construct

Figure 10.4: Meta annotations in Mobl

10.3.5 Evaluation of the generated completion templates

Mobl meta annotations

Initially, syntactic completion in our evaluation was suboptimal due to the meta anno-
tations (Figure 10.4) present in Mobl at the start of many language constructs. Because
the placeholder for these annotations is on a separate line, completion templates that
produce a blank line before the language construct were generated. This behavior is
likely not expected by the user, because these annotations are rarely used in Mobl. We
corrected this by introducing the hide option to suppress the placeholders for annota-
tions from the completion templates for many language constructs. The templates for
annotations can be invoked separately, where desired.

10.3.6 Evaluation of the generated pretty printer

Correctness

To verify basic correctness of the pretty printer we parsed all Mobl library and sample
code, pretty printed the resulting AST, parsed the pretty printed code, and compared
the ASTs. For each of the 75 files (7,800 lines of code in total), the AST of the original
file was equal to the AST of the pretty printed file, which suggests the pretty printer
is correct. Again, prettiness of the pretty printed code has been confirmed by manual
inspection of a sample of the pretty printed code.

Block/compound statements and if-else chains

A major limitation of the generated pretty printer is its lack of support for pretty
printing block statements nested in control structures in anything but the GNU cod-
ing style [53]. The syntax of such a block statement in Mobl is shown in Figure 10.5,
and various common ways of formatting such a statement are displayed in Figure 10.6.
Only the leftmost coding style of Figure 10.6 — the GNU coding style — can be pro-
duced by our generated pretty printer for this block statement. This is due to the fact
that the pretty printer operates in a bottom-up manner: first, the block statement is
pretty printed, indenting the statements within, and then this opaque block of text is
substituted for the <Statement> placeholder in the control structure, indenting it once
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templates
Statement.If = <

if(<Exp>)
<Statement>

else
<Statement>

>

templates
Statement.Block = <
{
<Statements>

}
>

Figure 10.5: Block/compound statements in Mobl

if (exp)
{
// ...

}
else

{
// ...

}

if (exp)
{
// ...

}
else
{
// ...

}

if (exp) {
// ...

}
else {
// ...

}

if (exp) {
// ...

} else {
// ...

}

Figure 10.6: GNU coding style (left) and other common coding styles (right three)

if (dx == -1 && dy == 0)
(dx, dy) = (0, 1);

else if (dx == 1 && dy == 0)
(dx, dy) = (0, -1);

else if (dx == 0 && dy == -1)
(dx, dy) = (-1, 0);

else
(dx, dy) = (1, 0);

(a) Original

if(dx == -1 && dy == 0)
(dx, dy) = (0, 1);

else
if(dx == 1 && dy == 0)
(dx, dy) = (0, -1);

else
if(dx == 0 && dy == -1)
(dx, dy) = (-1, 0);

else
(dx, dy) = (1, 0);

(b) “Pretty” printed

Figure 10.7: If-else chain in Mobl

again because of the indentation of the <Statement> placeholder. Additionally, as
shown in Figure 10.7(a), developers generally do not add an extra indentation level
for every else-if block in a chain of if-else statements. Our pretty printer does, how-
ever, as Figure 10.7(b) illustrates. Ironically, the existing pretty printing infrastructure
in Spoofax — GPP and BOX — do not handle these cases any better. So, although
the limitation is severe, it does not put us behind the competition. In Chapter 11 we
discuss these limitations and provide a solution.

10.4 Conclusion

As a first case study, we changed the target language of the Cheetah-Spoofax con-
version from SDF to the template language. We could simplify the Cheetah-specific
conversion because syntax templates have a structure similar to the syntax definition
as stored in the Cheetah system. The syntax templates resulting from the adapted con-
version were usable to parse the program text we converted in Chapter 6. Overall, the

69



10. TEMPLATE LANGUAGE — EVALUATION

Metric SDF PP ESV Total Template language
Tax-benefit rule modeling language
Lines 2101 n/a∗ n/a∗ 2101 997
Non-blank/comment lines 1805 n/a∗ n/a∗ 1805 997
Unique lines 780 n/a∗ n/a∗ 780 625
Mobl
Lines 1208 194† 163† 1565 1163
Non-blank/comment lines 854 193† 96† 1143 1072
Unique lines 753 171† 53† 977 820
∗ Not generated from the Cheetah system
† Not functional/complete

Figure 10.8: Template Language Evaluation

syntax definition in the template language was both smaller than the equivalent SDF
definition, and it let us derive a complete, correct pretty printer and a set of completion
templates.

Our second case study was an implementation of a conversion of the syntax of
Mobl from SDF to the template language. The first stage of this conversion was an au-
tomatic rewriting of SDF to unformatted syntax templates. The second stage consisted
of a number of manual and semi-automatic (i.e., search and replace) modifications of
those syntax templates to beatify the pretty printed code and completion templates to
a reasonable level. In this second case study, we found that SDF attributes such as
deprecated and reject were not yet supported by the template language. We added
support for those. Additionally, we found that the template language syntax definition
is more permissive for keywords such as @<javascript>, which consist both of letters
and punctuation, and suggested a solution. Many completion templates in Mobl started
with an empty line: space for a Mobl meta annotation. Because meta annotations are
rarely used in Mobl, it would be better if they were not present in the completion tem-
plates, so we added the hide option, which can be used to suppress a placeholder from
the completion template, to the template language. The generated pretty printers have
problems with block/compound statements and if-else-if chains, but existing pretty
printing tools in Spoofax do not handle these cases either. In Chapter 11 we discuss
these limitations of the generated pretty printers and provide a solution. Overall, the
conversion of Mobl went well: besides the issues mentioned above, the generated SDF
was sufficient to parse all example Mobl programs; the generated pretty printer could
pretty print all of them, and generated completion templates worked as planned after
the introduction of the hide option.

The reductions in code size for syntax definitions are summarized in Figure 10.8.
The reductions are lower bounds, as for neither the Capgemini DSL nor Mobl the tradi-
tional pretty printer and the completion templates are complete, while syntax templates
do result in a complete pretty printer and a complete set of completion templates.
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Chapter 11

Generating Pretty Printers from
Syntax Templates

11.1 Introduction

The recursive bottom up pretty printing rules we generated for syntax templates in
Chapter 9 do not support the template language wrap and anchor options. The existing
Spoofax pretty printing back-end BOX, however, does feature word wrapping, which
is necessary for the wrap option. In Chapter 10 we observed that pretty printing of
block/compound statements — both in our pretty printer and in BOX — is suboptimal:
none of the popular styles for formatting block/compound statements can be produced.
Therefore, in this chapter we present a new BOX operator, and a mapping from syntax
templates to Stratego rules that generate a BOX AST. Together, these contributions add
wrap and anchor support to the template language, and support for common styles
of formatting block/compound statements to both the template language and other
languages that use BOX as pretty printing back-end.

11.2 Overview of the BOX Formatting Language

BOX [56] is an intermediate language to describe the layout of text using boxes. Sev-
eral formatting operators are present, among which H and V for horizontal and vertical
formatting of sub-boxes, HV for horizontal formatting with line wrapping (inconsis-
tent line breaking), and HOV for conditional formatting depending on the line width
(consistent line breaking). Merijn de Jonge generalized the HOV operator to ALT [14],
which takes two arbitrary sub-boxes, and prints the first one if there is enough hori-
zontal space left, or the second one otherwise. Additionally, table based formatting is
supported through the alignment operators A and R. These can be used to align, for
example, the assignment operators in a list of assignments. Of these operators, the
BOX dialect shipped with Spoofax supports H, V, HV, ALT, A and R, while the CWI/IMP
dialect uses HOV instead of ALT, and additionally has a G grouping operator and an I

indentation operator [1]. The behaviour of some formatting operators is displayed in
Figure 11.1.

Many of the operators take parameters. For example, the H operator takes a hs
parameter specifying the horizontal space between the sub-boxes. The V operator takes
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H [ 1 2 3 ]⇒ 1 2 3 HV [ 1 2 3 ]⇒ 1 2 3 or
1 2
3

or
1
2
3

V [ 1 2 3 ]⇒
1
2
3

HOV [ 1 2 3 ]⇒ 1 2 3 or
1
2
3

A [ R [ 1 2 3 ] R[ 4 5 6 ] ]⇒ 1 2 3
4 5 6

Figure 11.1: BOX formatting operators

an is parameter specifying the indentation of the sub-boxes (except the first), and a vs
parameter, which specifies the vertical space between sub-boxes. An industrial case
related to COBOL inspired Mark van den Brand et al. to add a ts (tab stop) parameter,
which inserts spaces until the next box is at the specified column number [57]. The ts
parameter is not available in Spoofax.

11.3 BOX Integration in Spoofax

The Spoofax language workbench integrates [31] the BOX formatting language and
the generic pretty printer GPP [13]. By default, on each build, the tool ppgen gener-
ates a working set of GPP rules from the syntax definition, which do not include any
formatting operators. The language developer can then override rules from this file
with rules that include formatting operators. A rule is overridden by copying it from
the generated file and inserting formatting operators into it. Every time the syntax of a
language construct is changed, the change needs to be repeated in all overridden rules.
To build a complete pretty printer many rules must be overridden, because the default
of a single space character between all elements is sufficient only for small subsets of
a grammar (e.g., expressions).

11.4 Block/compound Statements

It is not possible to pretty print code as in the rightmost two examples of Figure 11.2,
because the first line of the compound statement (“{”) is placed to the right of the
remaining lines, which is not possible with a V box. As such, only the first coding
style (GNU) and the second coding style can be produced, while only the first can be
produced if we desire acceptable results when a non-compound statement is nested in
the control flow statement.
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if (exp)
{
// ...

}
else

{
// ...

}

if (exp)
{
// ...

}
else
{
// ...

}

if (exp) {
// ...

}
else {
// ...

}

if (exp) {
// ...

} else {
// ...

}

Figure 11.2: GNU coding style (left) and other common coding styles (right three)

H [ 1 V [ 2 3 4 ] 5 ]⇒
1 2

3
4 5

H [ 1 Z [ 2 3 4 ] 5 ]⇒
1 2
3
4 5

Figure 11.3: The difference between V and Z boxes

11.5 The Z Formatting Operator

There are two methods to produce the rightmost two coding styles of Figure 11.2
using BOX. The first method is a transformation that lifts the first line out of certain,
designated boxes, and puts those in the preceding H box. This lifting transformation is
complicated, as it needs to take the first sub-box of the designated box, and add it after
the last sub-box of the preceding H box, which may live in the parent, grandparent,
or further up the tree, if it exists at all. The second method adds a Z operator that
flows back the text to the left margin after the first sub-box. An implementation of
the Z operator takes only a few lines of Stratego code, and is nearly identical to the V

operator: only the left margin of the sub-boxes differs. This difference is illustrated in
Figure 11.3. To set the left margin that is employed by the Z operator, we introduce
an I operator for indentation, similar to the I operator present in the CWI/IMP BOX
dialect.

11.6 Mapping Syntax Templates to the Z Operator

In Figure 11.4 we see how syntax templates map to BOX expressions. A syntax tem-
plate maps to an unqualified list of boxes. Within a syntax template, an unindented
line maps to an H box, while the H box for an indented line is wrapped in an I box to
set the new indentation level for nested Z boxes. For each placeholder the list of boxes
for the child node is generated first. This list is put in a V box if the anchor option is

73



11. GENERATING PRETTY PRINTERS FROM SYNTAX TEMPLATES

templates
Statement.IfElse = <

if (<Exp>) <Statement>
else <Statement>

>
Statement.Compound = <

{
<Statements>

}
>

[
H hs=0 [ "if (" Z <Exp> ") " Z <Statement> ]
H hs=0 [ "else " Z <Statement> ]

]
[
H hs=0 [ "{" ]
I is=2 [ H hs=0 [ Z <Statements> ] ]
H hs=0 [ "}" ]

]

Figure 11.4: Mapping from syntax template to BOX expression

IfElse(
condition1,
Compound(actions1),
IfElse(

condition2,
Compound(actions2),
Compound(actions3)

)
)

if (condition1) {
actions1

}
else if (condition2) {

actions2
}
else {

actions3
}

Figure 11.5: Pretty printing an if-else chain

present, and in a Z box otherwise. (Or in an HV box or HZ box respectively, if the wrap

option is also present.)
Figure 11.5 demonstrates how two nested if-else statements are pretty printed ac-

cording to Figure 11.4. Observe how actions2 and actions3 are aligned to actions1, be-
cause the Z boxes generated for the compound statements let the text flow back to the
left margin after each opening bracket. With traditional V boxes, the compound state-
ments around actions2 and actions3 would have been pushed to the right of condition2.

11.7 Conclusion

We successfully implemented an improved pretty printer generator for syntax tem-
plates by targeting a modified version of the BOX language. The existing dialects of
BOX have no mechanism to let text flow back to the left margin, which forces the BOX
user to perform non-linear transformations that move language elements across boxes,
or to accept suboptimal formatting. We introduce a Z operator representing a vertical
box that flows back the text to the left margin after the first sub-box. Using the Z oper-
ator we are able to describe a simple, one-to-one mapping from a syntax template to a
partial BOX AST. As such, we were able to simplify our pretty printer generator, and
at the same time add support for the wrap and anchor options.
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Chapter 12

Related Work

12.1 Unified Syntax Specifications

There are a number of current syntax specification approaches that aim to unify the
specification of parsing and unparsing.

SYN [6] aims to be one syntax definition language for the specification of ASTs,
lexical analysis, parsing and pretty-printing. Its notation is similar to BNF, extended
with a sublanguage for the specification of a lexical analyzer, and operators h (hori-
zontal composition), hv (inconsistent line breaking), and hov (consistent line break-
ing) for the generation of a pretty printer. SYN has been implemented in Standard
ML. Because the SYN compiler translates the syntax definition to input for the tools
ML-Lex and ML-Yacc (ML implementations of the well known UNIX tools lex and
yacc), a syntax definition in SYN faces the limitations of separate scanner and parser
and LALR(1) parsing.

Extended SDF [48] is an extension of SDF that embeds other specification lan-
guages. An important application of the work is the embedding of PP pretty printing
rules in SDF attributes. Although this improves the locality of the different syntax
definitions, it does not solve redundancy, as elements of the syntax are present both in
the SDF, and in the attached pretty printing rule.

More recently, Rendel and Ostermann [49] propose partial isomorphisms for in-
vertible computation, and use these to implement a combined parser/pretty printer
library in Haskell. Productions are specified using invertible combinators used for
parsing, unparsing, and abstract syntax (de)construction.

These approaches differ from our approach in their use of explicit operators that
specify layout and formatting. By using templates, we provide a concise syntax that
forgoes the use of operators and uses plain whitespace instead, while still being suffi-
ciently expressive for our case study with two complete DSLs. In addition, they also
do not consider completion templates, which are necessary for template-based editing.

12.2 Pretty Printing Specifications

Oppen [42] describes an algorithm for pretty printing, which operates on an input
consisting of non-blanks, blanks and the special brackets J and K. The brackets denote
blocks, and the algorithm tries to break as few blocks as possible while satisfying
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the line width constraint. Hughes [25] discusses a number of features of a Haskell
pretty printing combinator library, such as horizontal and vertical composition, and
indentation (or nesting). The focus of both Oppen and Hughes is on breaking lines at
acceptable positions. Hughes extends this with separate combinators for horizontal or
vertical composition. This configurability is taken further in the work of De Jonge [12],
which combines the BOX formatting language [56] with pretty printing rules that map
AST nodes to BOX expressions. We extend those pretty printing rules, and the BOX
formatting back-end, with the Z operator, which aids with formatting chains of if-else
statements, and similar language constructs.

StringTemplate [44] is a template language for code generation and web develop-
ment that enforces model-view separation. It only focuses on the generation of code,
not parsing, but it has shown that templates are an effective tool to rapidly output well-
formatted code, even though it is not considered a pretty printer. It has been a source
of inspiration for the syntax and semantics of our syntax templates.

12.3 Template-Based Editing

Many early language workbenches used a template-based editing paradigm in structure
editors. Examples include Centaur [5] and the Synthesizer Generator [50]. While these
systems faced the same problem of having to specify both abstract and concrete syntax,
they did not have the problem of specifying both a parser and an unparser.

Hybrid textual/structure editors make it possible to switch to a text editing mode
for a part of a program. Systems used to specify these editors do have the added dimen-
sion of parsing and unparsing, where they need a specification of formatted concrete
syntax and a specification that specifies how to parse concrete syntax independent of
the layout. While there have been different ways to address the issue, there has not
been a solution that unifies the specification of all syntactic aspects. Examples of hy-
brid systems include the Programming System Generator (PSG) [2], Pregmatic [55],
and the ASF+SDF Meta-Environment [35].

Pregmatic [55] specifies syntax using as part of attribute grammars. The grammar
formalism does not include a formatting specification: instead, unformatted templates
are generated from the grammar. The user can then edit the layout in those templates
to format them as desired.

The Meta-Environment [35] is based on SDF for syntax definition, and originally
used the Generic Syntax-directed Editor (GSE) [15] as a hybrid editor. Contrary to
many earlier structure editors it does not use pretty printing to convert abstract syntax
into concrete syntax. Instead it maintains a two-way mapping between the text the user
entered and the AST, so that a pretty printer is not needed during editing, and the user
has full control over the layout of the program.

Template-based textual editors have text editing as their principal mode of opera-
tion, but can provide textual templates for editing. Examples of tools to create these
editors include MontiCore [20], Xtext [17], and our own Spoofax [34]. Each of these
systems has so far used a separate specification of syntax for parsing, pretty printing,
and completion templates. As part of our work we implemented a template language
for Spoofax, showing these aspects can be combined.
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Chapter 13

Conclusions and Future Work

13.1 Summary

Cheetah & Spoofax

In Chapter 2 and Chapter 3 we looked at the architecture of the Cheetah system, and
compared it with Spoofax. The most outstanding difference between the two language
workbenches is the different editing paradigm. Whereas Cheetah uses a structure edi-
tor, without support for cut & paste or free form editing, Spoofax leverages the Eclipse
text editor, combined with SGLR parsing to convert the plain text to an AST. The use
of parser technology enables Spoofax to use plain text as the persistent representation
of DSL code, which allows optimal use of text-based tooling, such as version control
systems.

Although most editor services are present both in Cheetah and Spoofax, the im-
plementation of many is lacking in Cheetah. Code folding and an outline view are not
present for the DSL editor, as it operates on a single method at a time; instead, code
folding and an outline view are implicitly provided by the tree the user has to navi-
gate to reach the DSL editor. Error markers, although present in Cheetah, have limited
value because they are only implemented for a few specific type errors. Clearly, the
code required for the implementation of a DSL-specific error marker outweighs the
benefits of such error markers. In Spoofax, many of the editor services that have to
be coded in Java for the Cheetah system, can be specified declaratively in the editor
service language, or concisely in Stratego, thus greatly reducing the effort required to
develop them.

Code generation in Cheetah is also performed in Java, using libraries to represent
source code files with protected regions, and to perform template-based code gener-
ation. As Java does not contain a multi line string literal, such templates are hard to
modify as quotes and concatenation operators must be introduced at line endings. The
Stratego DSL for program rewriting is more suitable for code generation than Java, be-
cause it has an indentation-safe string interpolation construct for template-based code
generation, and it allows concise specification of AST rewrite rules for code generation
using AST rewriting and unparsing.
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Migration of the Tax-Benefit Rule Modeling DSL to Spoofax

In Chapter 4 we hooked Stratego up to native SAX-based XML parsing libraries to be
able to reduce the development/feedback cycle when developing the conversions from
Cheetah to Spoofax in Chapter 5 and Chapter 6. We were able to realize a speedup of
two orders of magnitude, while at the same time making the parser more conformant.

Chapter 5 describes the migration from the DSL specification in the Cheetah sys-
tem to SDF. This transformation was straightforward, although we had to overcome a
number of challenges to disambiguate the grammar, and to make the parser sufficiently
performant. In particular, we investigated how to deal with line endings as fiducial
symbol (i.e., statement separator), without forcing the user to write line continuation
constructs at seemingly arbitrary places.

For the migration of DSL code in Cheetah to plain text in Chapter 6 we had to
resolve the prototypal inheritance present between model elements in Cheetah, using
our XML library in combination with Stratego code to collect all child elements of a
single model. With all information collected, the transformation reduced to a straight-
forward tree traversal, with the lack of restrictions on the characters in identifiers in
Cheetah being the largest challenge.

The main remaining asset specific to the tax-benefit rule modeling DSL in Cheetah
are the code generators. These code generators consist of approximately 70,000 lines
of Java code. In Chapter 7, we describe an experiment to determine whether reuse
of the existing code generators is an option. The results indicate that many assump-
tions in the transformation strategies must be fixed before such reuse is possible. The
alternative, a migration of the code generators to Stratego, looks prohibitively hard
to automate because of the different paradigms of the two languages. Hence, a man-
ual conversion of the 70,000 lines would be the recommended course of action for a
migration to idiomatic Stratego code.

The Template Language

The structure editor in Cheetah offers the user a complete set of language elements
at each insertion point. This editing paradigm is also called template-based editing.
Because the tax-benefit rule modeling DSL is rather verbose, it is crucial for Spoofax
to properly support template-based editing. Template-based editing relies crucially on
two things: first, runtime support for generated template-based editors, and second,
concise specification of the templates for a particular DSL. Traditionally, Spoofax
relies on the editor service language for the specification of completion templates,
the pretty printing language for the specification of a pretty printer, and SDF for the
specification of the grammar of a language. Each of these specifications includes the
concrete syntax of the language, albeit in a slightly different form every time. Such
redundant specifications increase the maintenance effort required to keep the system
consistent.

To eliminate this redundancy, we designed and implemented the template lan-
guage, which allows productions to be specified using syntax templates that include
layout information, in Chapter 9. We derive completion templates and a complete
pretty printer from these syntax templates. As such, we completely eliminate the
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redundancy between the three formalisms, thus reducing the maintenance effort and
increasing the quality of template-based editors in Spoofax.

We evaluated the template language in Chapter 10 with two case studies. The
first case study encompasses the tax-benefit rule modeling DSL, while the second case
study looks at an implementation of Mobl, a DSL for the development of mobile web
applications, using syntax templates. Although these case studies uncover some issues,
the general principle appears to work: we achieve a reduction in specification size for
both the tax-benefit rule modeling DSL, and Mobl, while at the same time adding a
complete pretty printer and a complete set of completion templates to both.

Based on the evaluation of the generated string-based pretty printer in Chapter 10,
and the desire to implement a feature such as word wrapping, we discuss a simple
addition to the BOX formatting language that enables us to convert syntax templates
one-to-one to pretty printing rules, in Chapter 11. We propose to add a Z operator to
BOX, that stands for a box for which all sub-boxes, except the first, are aligned to
the left margin, instead of the character position of the first sub-box. The left margin
is defined by the I operator, which we added to the Spoofax BOX dialect for this
purpose. Using the new Z operator it is possible to describe the layout of, for example, a
chain of if-else statements, without the need for complicated transformations that move
language constructs partially to different boxes. Additionally, the Z operator enabled
us to convert syntax templates one-to-one to pretty printing rules, thus also adding
support for the wrap and anchor word wrapping features of the template language.

Runtime Support for Template-Based Editors

In Chapter 8 we improved runtime support for template-based editing in Spoofax by
introducing the Eclipse linked mode feature, known from, for example, the rename
refactoring in the Eclipse Java Development Tools, to all Spoofax editors. Linked
mode is a template-based mode of the Eclipse editor, where placeholders are marked
visually with a bounding box, and the tab key is overridden to cycle through these
placeholders. This mode allows the user to quickly substitute actual content for the
placeholders in a completion template.

Because template-based editing relies crucially on the presentation of an accurate
set of completion templates to the user whenever they invoke content assist, we investi-
gated a way to encode the syntactic categories at the cursor location in the (ambiguous)
AST. We apply a grammar generation technique to generate productions that parse the
marker inserted by the Spoofax runtime to any symbol in the grammar. The ambiguous
AST is then disambiguated by the runtime, while it records the syntactic categories en-
coded in the names of the ambiguous AST nodes. These syntactic categories are used
to select only relevant completion templates to present to the user. Although this tech-
nique relies on a parser capable of parsing ambiguous fragments, it does not require
any modifications to the implementation of the parser. Therefore, it is not limited to
the current SGLR parser implementation in Spoofax; it should be equally applicable
to other implementations of SGLR and SGLL parsers.
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13.2 Contributions

• To effectively develop a conversion of the tax-benefit rule modeling DSL from
the Cheetah language workbench to Spoofax, we developed and contributed an
XML parsing library to Spoofax, which is two orders of magnitude faster than
parsing XML using JSGLR.

• We showed it is possible to perform a conversion of the tax-benefit rule modeling
DSL from the Cheetah system to an SDF grammar and plain text files that are
parseable using this grammar.

• We designed and implemented a syntax definition language based on syntax
templates, which eliminates the redundancy between the specifications of gram-
mar, pretty printer / unparser, and completion templates. We evaluated this tem-
plate language on the tax-benefit rule modeling DSL and the Mobl DSL for
mobile web application development, showing a reduction in specification size,
combined with the addition of a set of completion templates, and a working
pretty printer.

• We extended the BOX formatting language with a Z operator for a box with
sub-boxes aligned to the left margin. We adapted our template language to use
the Z operator, thereby showing its effectiveness for specifying pretty printing
rules for language constructs such as chained if-else statements, which could not
be formatted properly using GPP and traditional BOX operators such as the V

vertical box.
• We developed an experimental, parser-agnostic technique to determine the syn-

tactic categories at the cursor in parser-based text editors.

13.3 Conclusions

Research Question 1: Can a DSL, such as the tax-benefit rule modeling DSL of
Capgemini, be migrated from a structure editor based language workbench, such
as the Cheetah system, to a parser-based language workbench, such as Spoofax?

The first research question we put forward in Chapter 1 covers the migration of a DSL
from the Cheetah system to Spoofax. Such a migration consists of different aspects:
syntax of the DSL, semantics, code generators. We showed the syntax of the DSL can
be migrated automatically (Chapter 5, Chapter 6). We discussed potential reuse of the
code generators, which, in the case of Cheetah, also define the semantics of the DSL.
We argued an automatic migration of the code generators is not feasible, while reuse
might be possible, though only after numerous fixes to the code generators to rid them
of assumptions about the implementation of AST nodes (Chapter 7). Therefore, we
can give a mixed positive and negative answer to Research Question 1: yes, the syntax
of the tax-benefit rule modeling DSL can be migrated automatically from Cheetah to
Spoofax, but no, the code generators (and thus semantics) need to be ported by hand.
Based on this result, we speculate that it may be possible to migrate other DSLs from
a structure editor based language workbench to a parser-based language workbench.
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Research Question 2: Can a single, declarative language unify the specification
of parser, pretty printer, and templates for syntactic completion?

The second research question is whether it is possible to create a declarative lan-
guage that eliminates redundancy between parser, unparser /pretty printer, and comple-
tion templates. We can answer this question positively, as we successfully designed,
implemented, and evaluated such a declarative language (Chapter 9, Chapter 10).

Research Question 3: Can we improve runtime support for template-based edi-
tors, so as to make the set of presented templates both relevant and complete?

The third and last research question covers the runtime support for template-based
editors. Good runtime support is of crucial importance for editing programs in a ver-
bose DSL such as the tax-benefit rule modeling language. With the template language,
our answer to Research Question 2, we created a single specification language for a
template-based editor, so as to reduce the maintenance effort to keep the editor up to
date. The set of completion templates, however, is not useful, if irrelevant templates
are shown, or relevant templates are not shown. We applied a grammar generation
technique, combined with DSL- and parser-agnostic runtime support, to determine the
syntactic categories at the cursor location, and thus the completion templates relevant
to the user (Chapter 8). Hence, we can answer Research Question 3 positively.

13.4 Discussion/Reflection

Migrating from Cheetah to Spoofax

We have shown the syntax for a DSL in Cheetah can be migrated automatically to
Spoofax. In retrospect, it would have been more useful to spend this time on the
development of a complete prototype, including code generation and DSL testing, for
a small subset of the language, since it is unlikely that the complete infrastructure for
a working product such as the tax-benefit rule modeling DSL will be swapped out,
whereas the use of new tools on a new project is more likely.

The Template Language

Initially, we implemented the template language as an editor in the Spoofax distri-
bution, separate to all other projects under development. One of those projects was
SpoofaxLang1, an editor for a language integrating SDF, Stratego and the ESV editor
service language. By not integrating TemplateLang into SpoofaxLang, we would force
the user to choose either TemplateLang or SpoofaxLang: it would be impossible to use
both at the same time. Clearly, this scenario was undesired, so we set out to integrate
the TemplateLang editor into the SpoofaxLang editor.

Although the integration was functional for a while, keeping it up to date with
rapid developments on SpoofaxLang, as well as improving TemplateLang while it was

1http://strategoxt.org/Spoofax/SpoofaxLanguage
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tightly coupled to SpoofaxLang, proved to be a large time sink. Therefore, we decided
to separate TemplateLang, and linked it as a library to SpoofaxLang. This separa-
tion of TemplateLang and SpoofaxLang made it easier to test and develop Template-
Lang, without having to rely on correctness of SpoofaxLang and/or the integration of
SpoofaxLang and TemplateLang. Thus, in retrospect we could have saved time by
only coupling the projects loosely (through a library) in the first place.

Engineering Challenges in Spoofax/SDF/Stratego

During the work for this thesis we acquired much experience with Spoofax, Stratego,
and accompanying tools. As such, we found a number of points that could be improved
in these tools, so as to make the implementation of large systems easier.

Foremost, in Stratego currently all strategies live in the same global namespace:
there are no separate namespaces for libraries or imported modules, and there is no
mechanism to hide a strategy that is internal to a library or module, apart from inlining
it where it is used. While it is reasonably easy to prevent conflicts between names
in your own code, this quickly gets harder as more developers are added to a project.
Currently, the only solution is to use a naming scheme that encodes the library/module
name in the strategy name.

A related issue in Stratego/Spoofax, is the lack of a clearly defined way to create
reusable source code libraries. We were able to create a library for the template lan-
guage, and use it in the SpoofaxLang editor, but the steps required to create this library
required much inside knowledge of Spoofax & Stratego. Ideally, Spoofax shall be ex-
tended with a wizard in Eclipse to create a library project, and a simple mechanism to
set up another Spoofax project to depend on that library.

Initially, Spoofax projects could only be tested through carefully crafted custom
transformations, which invoke your own strategies on various inputs and check their
actual output against some expected output. During this thesis project, however, the
Spoofax Testing Language [32] has been introduced, which alleviates many of the test-
ing annoyances, by introducing a standard, low threshold way to test transformations
and editor services.

13.5 Future work

Migrating from Cheetah to Spoofax

Before a new model-driven project with Spoofax is started at Capgemini, it is recom-
mended to create a prototype on a small subset of a DSL, while covering all required
aspects, including, but not limited to: DSL testing, editor service testing, code gener-
ation, debugging, error markers, and continuous integration of Spoofax projects. The
development of this prototype should preferably be performed by the developers who
build the real product later on. We recommend to keep track of the speed at which
developers pick up Spoofax, SDF and Stratego, since in particular the last one is said
to have a steep learning curve. Essentially, the project to create the prototype should
not only focus on the engineering aspects, but also on the usability aspects of the tool.
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Runtime Support for Template-Based Editors

Our improvements to the runtime support for template-based editing in Spoofax build
on the assumption that users want to see a complete set of relevant templates. An inter-
esting research subject may be whether users really want a complete set of templates: it
might be better to infer common language constructs from existing code, for example,
and only show those by default. Another approach would be to generate and display
completion templates only for multi line language constructs. This approach builds
on the assumption that basic (arithmetic) expressions are similar in most languages,
so that users do not need discovery for those small language constructs. A user study
would have to be set up to evaluate various configurations.

An open area in our runtime support for template-based editors work, is combining
syntactic and semantic content assist. For example, for a method call, the best user
experience may be achieved by combining semantically relevant method names with
the syntax for the method call, as specified by the syntax template. Currently, the
syntax for the method call must be copied to the semantic content assist editor service,
while the syntactic completion template generated from the syntax template must be
disabled.

The Template Language

The template language would benefit from case studies on DSLs with a different de-
sign than the tax-benefit rule modeling DSL and Mobl. Most of the work to be done
however, is in making the interaction with SDF more seamless. For example, we
could integrate the converter that creates unformatted syntax templates from SDF pro-
ductions into the template language, so that SDF productions at least result in a pretty
printing rule and a completion template, although unformatted.

Another interesting extension of the template language would be the generation
of a code formatter for Eclipse. That is, a pretty printer that modifies the layout of
existing code without erasing comments. Similarly, a minimizer, as is typically used to
compress Javascript files that are published on the web, could be generated from syntax
templates for any DSL. Other features currently lacking from the template language,
are: the specification of kernel syntax (explicit layout instead of implicit layout), case
insensitive literals, ast attributes, and parameterized modules & symbols.

The BOX Formatting Language

It would be good to perform a comprehensive evaluation of the BOX operators we
introduced in Chapter 11. In particular, it would be interesting whether BOX, extended
with the Z and I operators, is now sufficient to pretty print a variety of DSLs that are
radically different from Mobl and the tax-benefit rule modeling DSL.
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