
Content Based Image Retrieval System Using NOHIS-tree

Mounira TAILEB
King Abdulaziz University

Faculty of Computing and Information Technology
P.O Box 42808
Jeddah. 21551

mtaileb@kau.edu.sa

ABSTRACT

Content-based image retrieval (CBIR) has been one of the most
important research areas in computer vision. It is a widely used
method for searching images in huge databases. In this paper we
present a CBIR system called NOHIS-Search. The system is
based on the indexing technique NOHIS-tree. The two phases of
the system are described and the performance of the system is
illustrated with the image database ImagEval. NOHIS-Search
system was compared to other two CBIR systems; the first that
using PDDP indexing algorithm and the second system is that
using the sequential search. Results show that NOHIS-Search
system outperforms the two other systems.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – clustering, search process.

General Terms

Algorithms, Performance, Experimentation.

Keywords

Content-based image retrieval system, high-dimensional indexing,
k-nearest neighbors search.

1. INTRODUCTION
The increasing size of image databases requires the use of image
retrieval systems. There are two approaches in such systems, text-
based and content-based image retrieval (CBIR). In text-based
approach images are indexed by text terms and retrieved by
matching terms in query with those indexed. However, text
annotation is inadequate with large databases. The content-based
retrieval systems have become increasingly important in many
applications areas such as geography, commerce, medicine. CBIR
systems retrieve the most similar images to a query within an
image database. This process requires describing automatically
the visual content of the images and represents each image by a
set of multidimensional vectors called descriptors [1].

In this paper a content-based image retrieval system called
NOHIS-Search is described with its two phases. The rest of the
paper is organized as follows. Section 2 describes the two phase
of NOHIS-Search. In the off-line phase the indexing method is

detailed and in the on-line phase the search algorithm is given.
Section 3 evaluates the performance of NOHIS-Search and
finally, the section 4 concludes the paper.

2. ARCHITECTURE OF NOHIS-SEARCH
The architecture of the implemented CBIR system, NOHIS-
Search, is presented in figure 1. It consists mainly of two phases;
the off-line and on-line phase. In the off-line phase the descriptors
are extracted from each image in the database, and then the
descriptors are indexed using the high-dimensional indexing
method NOHIS-tree [2]. The on-line phase handles the process of
querying the image database; the descriptors of the query are
extracted and compared with that of other images in the database.
The images that are visually similar to the query are displayed.

Figure 1. Architecture of NOHIS-Search

2.1 Off-line phase

2.1.1 Descriptor computation
In the content-based image retrieval systems descriptor
computation is an important step. There are globally two types of
descriptors; global and local descriptor. In NOHIS-Search, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MoMM2012, 3–5 December, 2012, Bali, Indonesia.
Copyright 2012 ACM 978-1-4503-1307-0/12/12…$15.00.

image indexing technique used is based on the computation of
local descriptors around the points of interest. We chose the multi-
scale Harris detector [3] based on the Harris detector [4] following
a comparative study between several points of interest in [5].

To compute the descriptors, regions around the points of interest
are characterized using Zernike moments. These descriptors are
invariant to rotation and fast in computation time. In [5], Zernike
moments were compared with Hu moments and the moments of
Legendre, Zernike moments are more efficient in indexing than
the two other moments. They are also invariant to rotation,
translation, change of scale and they are robust in the case of
noisy images.

The used descriptors are the coefficients of the Zernike moments
of order 3. The dimension of the descriptor is 12.

2.1.2 The Indexing technique NOHIS-tree
The existing multi-dimensional indexing techniques can be
divided in two groups according to the partitioning strategy, the
data-partitioning and the space-partitioning based index structure.
When the nearest neighbors search is applied on a data-
partitioning index, additional clusters are visited due to the
overlapping between the bounding forms (spheres or rectangles).
In the case of the space-partitioning index; consultation of few
populated or empty clusters is extremely probable. By using
NOHIS-tree, the overlapping is avoided and the quality of clusters
is preserved.

NOHIS indexing algorithm proceeds as follows:

1. The entire set of descriptors extracted from the image
database constitutes the initial cluster; this cluster is
divided into two sub-clusters using the hierarchical
clustering algorithm PDDP [6]. Each of the two sub-
clusters is divided into two partitions recursively. The
result of the recursive division is a hierarchical structure
of clusters arranged into a binary tree.

2. Descriptors of each obtained sub-clusters are gathered
by hyper-rectangles directed according to the leading
principal component to ensure the non-overlapping
between the two bounding forms (see figure 2.d).

2.1.2.1 Cluster partition
The entire set of descriptors is represented by an n x m matrix M =

(d1, d2, …, dm) where each di is a descriptor, m is the size of
descriptors and n their dimension. Let COV, given by (1), be the
covariance matrix and U its first principal component. Partition is
made by the hyper-plane orthogonal to the leading principal
component and passing through the centroid w of the cluster (see
figure 2.b). The principal direction is the eigenvector
corresponding to the largest eigenvalue of the covariance matrix.

 															���	 = 	 �� − 	
���	� − 	
��� (1) 	

															 = � . �� +	�� +⋯+	��� = � . �.
 (2)

 = �1,1,… . . ,1��

Data is divided recursively into two parts PR and PL (R for right
and L for left) according to the following rule:

����� = ����� − 	� ≥ 0					⟹					�� 	 ∈ �

 ����� = ����� − 	� < 0					 ⟹ 					 �� 	 ∈ �"

Figure 2 illustrates the example of a cluster partition, in 2D, into
two sub-clusters.

y Leading

Principal

component

w

x
(a) e1

(b)

Separating

hyper-plane

y

x

w

U

e1

(c)

w

x
e1

Figure 2. Example, in 2D, of the indexing technique

The algorithm of the clustering algorithm [7] is given in figure 3
below.

Figure 3. PDDP Algorithm

2.1.2.2 Orientation of the bounding forms
The bounding forms used to envelop the descriptors of clusters are
the hyper-rectangles (starting from 3D). For clarity we will use
the term MBR, for minimum bounding rectangle, to refer to the
hyper-rectangle. The figure 2.c represents the case when the
MBRs are in the origin reference mark; in which the coordinates
of the vectors are expressed. It is clear that there is an overlap
between the MBRs and consequently, in a nearest neighbors
search, additional clusters will be visited without improving the
results. To avoid the overlap, NOHIS indexing algorithm directs
the MBRs according to the leading principal component (figure
2.d). In this case, a change of reference mark is essential to
compute the coordinates of the descriptors in the new reference
mark.

Let B={e1,e2,…,en} be the canonical base of R
n,

e1=(1,0,0...,0), e2=(0,1,0...,0), e3=(0,0,1...,0), ….

The goal is to build an orthonormal base B’={u1,u2,…,un}

where a vector is equal to U (u1 = U), such a base can be

obtained by transforming B by an orthogonal isomorphism,

for example by an orthogonal symmetry S. We must have

B'=(S(e1),S(e2),….,S(en)) and in particular S(e1)= u1=U.

 Let � = �#$%&�‖#$%&‖ (3)

and H be the hyper-plane orthogonal to V, (= �), so that H is
the mediator hyper-plane of e1 and U.

We define S as the orthogonal symmetry with respect to H.

The image of the vector x by S is: S(x) = x – 2<x,V>.V, where
<x,V> is the scalar product of x and V.

In particular, we have: ui = ei – 2<ei,V>.V 1 ≤ i ≤ n

With this definition of S when has, in fact, u1 = S(e1) = U.

In fact: u1 = e1 - 2α < e1,U - e1>.(U - e1)

With: * = 	 ‖#$	%&	‖+ = ‖#‖+,‖%&‖+$�〈%&	,			#〉
 ‖�‖� = ‖
‖� 	= 1 ⟹ 	* = 	 12�1 −	〈
	,			�〉�
 0 =
 − 22�1 −	〈
	,			�〉� �〈
	,			�〉 − 	1��� −
�
 0 =
 + 1�〈
	,			�〉 − 	1� �〈
	,			�〉 − 	1��� −
�
 0 =
 + �� −
� = 	�

Let NR (resp. NL) be the matrix containing the descriptors of

PR (resp. PL) in the base B’.

We have: NR = MR - 2.V
T
.V. MR = (I - 2V

T
.V). MR (4)

 NL= ML - 2.V
T
.V. ML = (I - 2V

T
.V). ML (5)

Descriptors of NR (resp. NL) are included in a MBR RR

(resp. RL). A property of the MBR is that each of his face

passes by a descriptor at least. MBRs are characterized by

the vectors S and T, where:

SR = min (NR) (resp. SL = min (NL)) and

TR = max (NR) (resp. TL = max (NL))

Note that the minimum and the maximum of this formula

are taken line by line, so that S = (s1,..,si,...sn) et T =

(t1,..,ti,...tn) where si (resp. ti) is the minimum (resp. the

maximum) of the ith component of the considered vectors.

The final result is a not-balanced binary tree called NOHIS-

tree. In an internal node (not a leaf) of NOHIS-tree,

following information are stored: SR, TR, SL, TL and the

common vector V given by (3). A leaf node contains the

descriptors. Leaves represent the obtained clusters.

0. Start with the matrix of vectors M(n x m), and
a desired number of clusters cmax.

1. Initialize Binary tree with a single Root node
2. For c = 2,3,…., cmax do
3. Select node C with largest ScatterValue
4. Create L & R : = left & right children of C
5. For i = 1 to Csize

 Compute g(xi), if g(xi) ≤ 0 assign xi to L

 else assign it to R

6. Result: A binary tree with cmax leaf nodes

(d)

x

w

U

e1

2.2 On-line phase
The image retrieval process consists of querying the image
database. When a user issues a query image to the system, this
involves the following steps:

1. Computation of the descriptors of the query. Descriptors are
computed by the same method used in the off-line phase.

2. Search the k-nearest neighbors for each descriptor in NOHIS-
tree. This step returns the nearest neighbors and the ID of the
images they belong to, which provides a list of images that may
be similar to the query. The search algorithm will be described.

3. Matching the images obtained from the previous step with the
query and display the images that the system considers similar to
the query. The matching process is not explained in this paper.

2.2.1 The search algorithm
Before starting the search of nearest neighbors of a

descriptor q, its coordinates in the new reference mark (i.e.

the new base B’) must be computed in order to compute its

distance to the MBR. The computing of new coordinates is

done in each level in the NOHIS-tree until a leaf node. The

passage of the q from a father node to its child requires the

computing of its new coordinates because a change of the

reference mark has occurred. Two children of the same

father have a common reference mark.

B’ is orthonormal, so coordinates of q in B’ (q’) are given

by the products scalar:

 〈1, 0�〉 = 	 〈1,
�〉 	− 2〈
� , �〉	. 〈1, �〉
 1′ = 3	〈1, 0〉, 〈1, 0�〉, … . . , 〈1, 04〉5�

 																								16 = 	1 − 2〈1, �〉	. � (6)

Distance separating q from a rectangle R is calculated as given in
[8] using q’, S and T. MINDIST is the distance between the query
vector and an MBR.

														�7897:;�16, <� = 	∑ >16� −	?�>�4�@ (7)

 with: ?� = 	A B� CD	16� < B�E� CD	16� > E�	1′�
GB
 H

And when q’ is inside the rectangle R, �7897:;�16, <� = 0

In algorithm 1, we present our k-nearest neighbors search (k-nn)
adapted to the obtained NOHIS-tree. We note that NOHIS-tree
support also a range query search. For a vector query q, the k
nearest vectors must be returned. list_Neighbors (LN) is the table
containing k-nearest neighbors. For each nearest vector, LN must
contain: its index in the database, the index of the cluster to which
it belongs, and its distance from q. Distances of the returned
nearest neighbors are initialized in the infinite value. Returned LN
is sorted according to the distances. This algorithm is recursive;

the first call is done with the root of the NOHIS-tree and a
distance called maxDist initialized at 0. If the node is not a leaf
then, first q' is calculated by (6) and then distances MINDIST
given by (7) are computed between q' and the two children’s
MBRs of the node. A first recursive call in the algorithm 1 can be
made with the child node having smallest distance MINDIST, let
M[j] be this smallest distance.

We attribute to M[j] the maximum between M[j] itself and
maxDist. The condition of this recursive call is that M[j] must be
lower than the biggest distance contained in LN (LN.dist[k]). A
second call can be made with the second child if the same
condition is satisfied. Else if the considered node is a leaf,
Euclidian distances between q’ and all the vectors of the node are
computed. Only vectors having a distance lower than LN.dist[k]
are inserted in LN by an insertion sort algorithm.

Algorithm 1 : K-NN Search

1. Begin

2. If the node is a leaf

3. For i : = 1 to node.size

4. Compute distance between vectQuestion and

 node.vect[i], let be dist;

5. if (dist < list_Neighbors.dist[k])

6. Insertion sort of current vector in list_Neighbors

7. end if

8. end For

9. Else

10. For j : = 1 to 2 (the two child nodes)

11. Compute coordinates of vectQuestion in the new

 reference mark, let be vectQuestion’

12. M[j] = MINDIST(vectQuestion’, MBR of node.child j)

13. end For

14. Take the child node having the smallest distance M[j];

15. M[j] = max (maxDist, M[j])

16. if (M[j] < list_Neighbors.dist[k])

17. Recursive call of K-NN Search passing the child node

 and M[j] as maxDist

18. end if

19. let MS the MINDIST of the second child

 20. MS = max(maxDist, MS)

21. if (MS <list_Neighbors.dist[k])

22. Recursive call of K-NN Search with the second child

 and MS as maxDist

23. end if

24. end Else

24. End

The condition of the recursive call in algorithm 1 (M[j] <

LN.dist[k]) is necessary because distances of vectors included in a
MBR from a query vector can be only higher or equal to M[j], and

as LN is sorted in the ascending order, therefore LN.dist[k] is the
biggest distance contained in LN, and consequently if M[j] is not
lower than LN.dist[k], the MBR cannot contains closer vectors to
the query vector that those already found.

In a hierarchical index the bounding forms of a level are
contained in that of the inferior level. Taking the example of a
father node, the bounding forms of its children are contained in its
bounding form and consequently, the distance from a query vector
to the father node is lower or equal to its distances to the children.
This gives a property to the hierarchical index that the distance of
a query vector q to the bounding forms increases from a level to
that highest.

In our index structure NOHIS-tree, bounding rectangles of
children (R1, R2) are not included completely in the bounding
rectangle of their father node R, as shown in figure 4.

The instruction M[j] = max (maxDist, M[j]) in the line 15 of
algorithm 1, (resp. MS = max (maxDist, MS) in the line 20),
preserve the property that the distance increases from a level to
that highest in the search tree. M[j] expresses the distance to their
intersection.

Figure 4. Example of a rectangle with its children

3. EXPERIMENTS
Descriptor computation algorithm, clustering algorithm and the
search algorithm were implemented in C++. Algorithms run on a
PC with Intel processor, its CPU is 1.8 GHz and 2 Go of RAM.
We used ImagEval database for CBIR system evaluation, it
consists of 9811 images. 2,416,975 descriptors were computed
from these images.

Search time is an important factor to evaluate the performance of
the CBIR system. In experiment 1 we compare three CBIR
systems; NOHIS-Search system, the second is that using PDDP
indexing algorithm and the third system is that using the
sequential search. Table 1 and Figure 5 show the total search time
for the three systems. The given times are the mean times when
searching similar images for 10 queries; they include the time
needed for the descriptor computation of the 10 queries. NOHIS-
Search system significantly outperforms the other two systems. It
performs the queries 19 times faster than the system using
sequential search when using the database of 3800 images and 36
times faster than the system using sequential search when using

the database of 9811 images. Besides, NOHIS-Search system is 2
times faster than the system using PDDP algorithm.

Table 1. Mean time for the three systems

Size of the

database

Mean time of search

NOHIS-

Search

system

PDDP

system
Seq.system

3800 26,05 45,97 500

9811 50,15 106,98 1380

Figure 5. Exp. 1, Retrieval time, 10 query images

In experiment 2, the rapidity of NOHIS-Search system is
explained. The number of the visited clusters is computed when
comparing NOHIS-tree and PDDP-tree. Results given in table 2
and figure 6 show that less clusters are visited using NOHIS-tree
than PDDP-tree. The orientation of MBRs in NOHIS-tree avoids
the overlap which explains the obtained results.

Table 2. The visited clusters when comparing NOHIS-tree and

PDDP-tree

0

200

400

600

800

1000

1200

1400

1600

3800 9811

R
e

sp
o

n
se

 t
im

e
 (

s)

Image database

NOHIS-Search System

PDDP-System

Sequential System

Size of the

database

Number of

clusters

Number of the visited clusters

NOHIS-tree PDDP-tree

50,000 499 20 231

100,000 1189 24 529

250,000 1993 37 937

350,000 2397 41 1081

500,000 2995 43 882

x

R1

R2

R

d1 d2

Figure 6. Exp. 2, Visited clusters, 20 NNs for 200 query

descriptors, increasing size

Examples of images retrieved when using NOHIS-Search system
are shown in the figures 7. In each figure, the first image in the
top is the query and the other images are the responses of the
system. Just the first 10 retrieved images are displayed.

Figure 7. Results with NOHIS-Search system

4. CONCLUSION
A content-based image retrieval system called NOHIS-Search was
presented in this paper, the system is based on the indexing
technique NOHIS-tree. The on-line and off-line phases of the
system were described. The performance evaluation of the
proposed system with other systems shows that NOHIS-Search is
faster that the two other systems. NOHIS-Search, however,
requires further investigations especially in the matching process.

5. REFERENCES
[1] Faloutsos, C. 1996. Searching Multimedia Databases by

Content. Kluwer Academic Publishers.

[2] Taileb, M. Lamrous, S., and Touati, S. 2008. Non
Overlapping Hierarchical Index Struture. In International

Journal of Computer Science, vol. 3 no. 1, pp. 29-35.

[3] Mikolajczyk, K., Schmid, C. 2004. Scale and affine invariant

interest point detectors. In International Journal of Computer

Vision. 60(1), pages : 63–86.

[4] Harris, C.J., Stephens, M. 1988. A combined corner and edge
detector. In Proceedings of the 4th Alvey Vision Conference,
Manchester, pages 147–151.

[5] Sayah, S.H.-K. 2007. Indexation d’images par moments:
Acces par le contenu aux documents visuels. Doctoral
Thesis. Ecole Normale Superieure de Cachan.

[6] D. L. Boley, D. L. 1998. Principal Direction Divisive
Partitioning. Data Mining and Knowledge Discovery
2(4):325-344.

[7] Savaresi,S., Boley, D. L., Bittanti, S., Gazzaniga, G. 2000.
Choosing the cluster to split in bisecting divisive clustering

algorithms. CSE Report TR-00-055, University of
Minnesota, 2000.

[8] Roussopoulos, N., Kelly, S., Vincent, F. 1995. Nearest
Neighbor Queries”. In Proceeding of ACM SIGMOD, May.

0

200

400

600

800

1000

1200

50000 100000 250000 350000 500000

V
is

it
e

d
 c

lu
st

e
rs

Database size

NOHIS_tree

PDDP-tree

Query

Query

