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ABSTRACT 

Content-based image retrieval (CBIR) has been one of the most 
important research areas in computer vision. It is a widely used 
method for searching images in huge databases. In this paper we 
present a CBIR system called NOHIS-Search. The system is 
based on the indexing technique NOHIS-tree. The two phases of 
the system are described and the performance of the system is 
illustrated with the image database ImagEval. NOHIS-Search 
system was compared to other two CBIR systems; the first that 
using PDDP indexing algorithm and the second system is that 
using the sequential search. Results show that NOHIS-Search 
system outperforms the two other systems.  

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – clustering, search process.  

General Terms 

Algorithms, Performance, Experimentation. 

Keywords 

Content-based image retrieval system, high-dimensional indexing, 
k-nearest neighbors search.  

1. INTRODUCTION 
The increasing size of image databases requires the use of image 
retrieval systems. There are two approaches in such systems, text-
based and content-based image retrieval (CBIR). In text-based 
approach images are indexed by text terms and retrieved by 
matching terms in query with those indexed. However, text 
annotation is inadequate with large databases. The content-based 
retrieval systems have become increasingly important in many 
applications areas such as geography, commerce, medicine. CBIR 
systems retrieve the most similar images to a query within an 
image database. This process requires describing automatically 
the visual content of the images and represents each image by a 
set of multidimensional vectors called descriptors [1].  

In this paper a content-based image retrieval system called 
NOHIS-Search is described with its two phases. The rest of the 
paper is organized as follows. Section 2 describes the two phase 
of NOHIS-Search. In the off-line phase the indexing method is 

detailed and in the on-line phase the search algorithm is given. 
Section 3 evaluates the performance of NOHIS-Search and 
finally, the section 4 concludes the paper. 

2. ARCHITECTURE OF NOHIS-SEARCH 
The architecture of the implemented CBIR system, NOHIS-
Search, is presented in figure 1. It consists mainly of two phases; 
the off-line and on-line phase. In the off-line phase the descriptors 
are extracted from each image in the database, and then the 
descriptors are indexed using the high-dimensional indexing 
method NOHIS-tree [2]. The on-line phase handles the process of 
querying the image database; the descriptors of the query are 
extracted and compared with that of other images in the database. 
The images that are visually similar to the query are displayed.  

  

Figure 1. Architecture of NOHIS-Search 

 

2.1 Off-line phase 

2.1.1 Descriptor computation 
In the content-based image retrieval systems descriptor 
computation is an important step. There are globally two types of 
descriptors; global and local descriptor. In NOHIS-Search, the 
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image indexing technique used is based on the computation of 
local descriptors around the points of interest. We chose the multi-
scale Harris detector [3] based on the Harris detector [4] following 
a comparative study between several points of interest in [5].  

To compute the descriptors, regions around the points of interest 
are characterized using Zernike moments. These descriptors are 
invariant to rotation and fast in computation time. In [5], Zernike 
moments were compared with Hu moments and the moments of 
Legendre, Zernike moments are more efficient in indexing than 
the two other moments. They are also invariant to rotation, 
translation, change of scale and they are robust in the case of 
noisy images. 

The used descriptors are the coefficients of the Zernike moments 
of order 3. The dimension of the descriptor is 12. 

2.1.2 The Indexing technique NOHIS-tree 
The existing multi-dimensional indexing techniques can be 
divided in two groups according to the partitioning strategy, the 
data-partitioning and the space-partitioning based index structure. 
When the nearest neighbors search is applied on a data-
partitioning index, additional clusters are visited due to the 
overlapping between the bounding forms (spheres or rectangles). 
In the case of the space-partitioning index; consultation of few 
populated or empty clusters is extremely probable. By using 
NOHIS-tree, the overlapping is avoided and the quality of clusters 
is preserved. 

NOHIS indexing algorithm proceeds as follows: 

1. The entire set of descriptors extracted from the image 
database constitutes the initial cluster; this cluster is 
divided into two sub-clusters using the hierarchical 
clustering algorithm PDDP [6]. Each of the two sub-
clusters is divided into two partitions recursively. The 
result of the recursive division is a hierarchical structure 
of clusters arranged into a binary tree. 

2. Descriptors of each obtained sub-clusters are gathered 
by hyper-rectangles directed according to the leading 
principal component to ensure the non-overlapping 
between the two bounding forms (see figure 2.d). 

2.1.2.1 Cluster partition  
The entire set of descriptors is represented by an n x m matrix M = 

(d1, d2, …, dm) where each di is a descriptor, m is the size of 
descriptors and n their dimension. Let COV, given by (1), be the 
covariance matrix and U its first principal component. Partition is 
made by the hyper-plane orthogonal to the leading principal 
component and passing through the centroid w of the cluster (see 
figure 2.b). The principal direction is the eigenvector 
corresponding to the largest eigenvalue of the covariance matrix. 
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Data is divided recursively into two parts PR and PL (R for right 
and L for left) according to the following rule: 
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Figure 2 illustrates the example of a cluster partition, in 2D, into 
two sub-clusters. 
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Figure 2. Example, in 2D, of the indexing technique  
 

 

The algorithm of the clustering algorithm [7] is given in figure 3 
below. 

 

 

 

 

 

 

 

 

 

 

Figure 3.  PDDP Algorithm 

 

2.1.2.2 Orientation of the bounding forms 
The bounding forms used to envelop the descriptors of clusters are 
the hyper-rectangles (starting from 3D). For clarity we will use 
the term MBR, for minimum bounding rectangle, to refer to the 
hyper-rectangle. The figure 2.c represents the case when the 
MBRs are in the origin reference mark; in which the coordinates 
of the vectors are expressed. It is clear that there is an overlap 
between the MBRs and consequently, in a nearest neighbors 
search, additional clusters will be visited without improving the 
results. To avoid the overlap, NOHIS indexing algorithm directs 
the MBRs according to the leading principal component (figure 
2.d). In this case, a change of reference mark is essential to 
compute the coordinates of the descriptors in the new reference 
mark. 

Let B={e1,e2,…,en} be the canonical base of R
n, 

e1=(1,0,0...,0), e2=(0,1,0...,0), e3=(0,0,1...,0), …. 

 

The goal is to build an orthonormal base B’={u1,u2,…,un} 

where a vector is equal to U (u1 = U), such a base can be 

obtained by transforming B by an orthogonal isomorphism, 

for example by an orthogonal symmetry S. We must have 

B'=(S(e1),S(e2),….,S(en)) and in particular S(e1)= u1=U.  
 

          Let     � = �#$%&�‖#$%&‖                   (3)  

and H be the hyper-plane orthogonal to V, ( = �), so that H is 
the mediator hyper-plane of e1 and U. 

We define S as the orthogonal symmetry with respect to H. 

The image of the vector x by S is: S(x) = x – 2<x,V>.V, where 
<x,V> is the scalar product of x and V. 

In particular, we have: ui = ei – 2<ei,V>.V               1 ≤ i ≤ n 

With this definition of S when has, in fact, u1 = S(e1) = U. 

In fact: u1 = e1 - 2α < e1,U - e1>.(U - e1)   
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Let NR (resp. NL) be the matrix containing the descriptors of 

PR (resp. PL) in the base B’. 

We have: NR = MR - 2.V
T
.V. MR = (I - 2V

T
.V). MR            (4)  

                 NL= ML - 2.V
T
.V. ML = (I - 2V

T
.V). ML             (5) 

Descriptors of NR (resp. NL) are included in a MBR RR 

(resp. RL). A property of the MBR is that each of his face 

passes by a descriptor at least. MBRs are characterized by 

the vectors S and T, where: 

SR = min (NR) (resp. SL = min (NL))       and 

TR = max (NR) (resp. TL = max (NL)) 

Note that the minimum and the maximum of this formula 

are taken line by line, so that S = (s1,..,si,...sn) et T = 

(t1,..,ti,...tn) where si (resp. ti) is the minimum (resp. the 

maximum) of the ith component of the considered vectors. 

The final result is a not-balanced binary tree called NOHIS-

tree. In an internal node (not a leaf) of NOHIS-tree, 

following information are stored: SR, TR, SL, TL and the 

common vector V given by (3). A leaf node contains the 

descriptors. Leaves represent the obtained clusters. 

0. Start with the matrix of vectors M(n x m), and 
a desired number of clusters cmax. 

1. Initialize Binary tree with a single Root node 
2. For  c = 2,3,…., cmax  do 
3.      Select node C with largest ScatterValue  
4.      Create L & R : = left & right children of C 
5.      For i = 1 to Csize 

   Compute g(xi), if g(xi) ≤ 0 assign xi to L  

                            else assign it to R 

6. Result: A binary tree with cmax leaf nodes  

(d) 

x 

w 

U 

e1 



2.2 On-line phase 
The image retrieval process consists of querying the image 
database. When a user issues a query image to the system, this 
involves the following steps: 

1. Computation of the descriptors of the query. Descriptors are 
computed by the same method used in the off-line phase. 

2. Search the k-nearest neighbors for each descriptor in NOHIS-
tree. This step returns the nearest neighbors and the ID of the 
images they belong to, which provides a list of images that may 
be similar to the query. The search algorithm will be described. 

3. Matching the images obtained from the previous step with the 
query and display the images that the system considers similar to 
the query. The matching process is not explained in this paper.  

2.2.1 The search algorithm  
Before starting the search of nearest neighbors of a 

descriptor q, its coordinates in the new reference mark (i.e. 

the new base B’) must be computed in order to compute its 

distance to the MBR. The computing of new coordinates is 

done in each level in the NOHIS-tree until a leaf node. The 

passage of the q from a father node to its child requires the 

computing of its new coordinates because a change of the 

reference mark has occurred. Two children of the same 

father have a common reference mark. 

B’ is orthonormal, so coordinates of q in B’ (q’) are given 

by the products scalar:  

 〈1, 0�〉 = 	 〈1, 
�〉 	− 2〈
� , �〉	. 〈1, �〉 
 1′ = 3	〈1, 0〉, 〈1, 0�〉, … . . , 〈1, 04〉5� 

 																								16 = 	1 − 2〈1, �〉	. �                                      (6) 

 

Distance separating q from a rectangle R is calculated as given in 
[8] using q’, S and T. MINDIST is the distance between the query 
vector and an MBR. 
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   with:     ?� = 	A B� CD	16� < B�E� CD	16� > E�	1′� 
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And when q’ is inside the rectangle R, �7897:;�16, <� = 0 

In algorithm 1, we present our k-nearest neighbors search (k-nn) 
adapted to the obtained NOHIS-tree. We note that NOHIS-tree 
support also a range query search. For a vector query q, the k 
nearest vectors must be returned. list_Neighbors (LN) is the table 
containing k-nearest neighbors. For each nearest vector, LN must 
contain: its index in the database, the index of the cluster to which 
it belongs, and its distance from q. Distances of the returned 
nearest neighbors are initialized in the infinite value. Returned LN 
is sorted according to the distances. This algorithm is recursive; 

the first call is done with the root of the NOHIS-tree and a 
distance called maxDist initialized at 0. If the node is not a leaf 
then, first q' is calculated by (6) and then distances MINDIST 
given by (7) are computed between q' and the two children’s 
MBRs of the node. A first recursive call in the algorithm 1 can be 
made with the child node having smallest distance MINDIST, let 
M[j] be this smallest distance. 

We attribute to M[j] the maximum between M[j] itself and 
maxDist. The condition of this recursive call is that M[j] must be 
lower than the biggest distance contained in LN (LN.dist[k]). A 
second call can be made with the second child if the same 
condition is satisfied. Else if the considered node is a leaf, 
Euclidian distances between q’ and all the vectors of the node are 
computed. Only vectors having a distance lower than LN.dist[k] 
are inserted in LN by an insertion sort algorithm. 

 

Algorithm 1 : K-NN Search 

1. Begin 

2.    If the node is a leaf  

3.       For i : = 1 to node.size 

4.           Compute distance between vectQuestion and 

              node.vect[i], let be dist; 

5.           if (dist < list_Neighbors.dist[k])  

6.              Insertion sort of current vector in list_Neighbors  

7.           end if 

8.        end For    

9.    Else 

10.     For j : = 1 to 2 (the two child nodes) 

11.         Compute coordinates of vectQuestion in the new  

              reference mark, let be vectQuestion’ 

12.         M[j] = MINDIST(vectQuestion’, MBR of node.child j)  

13.     end For     

14.      Take the child node having the smallest distance M[j]; 

15.          M[j] = max (maxDist, M[j]) 

16.      if (M[j]  <  list_Neighbors.dist[k])  

17.          Recursive call of K-NN Search passing the child node 

               and M[j] as maxDist 

18.      end if        

19.     let MS the MINDIST of the second child 

 20.    MS = max(maxDist, MS) 

21.      if (MS <list_Neighbors.dist[k]) 

22.            Recursive call of K-NN Search with the second child 

                 and MS as maxDist 

23.      end if 

24.    end Else 

24. End  

 
The condition of the recursive call in algorithm 1 (M[j] < 

LN.dist[k]) is necessary because distances of vectors included in a 
MBR from a query vector can be only higher or equal to M[j], and 



as LN is sorted in the ascending order, therefore LN.dist[k] is the 
biggest distance contained in LN, and consequently if M[j] is not 
lower than LN.dist[k], the MBR cannot contains closer vectors to 
the query vector that those already found. 

In a hierarchical index the bounding forms of a level are 
contained in that of the inferior level. Taking the example of a 
father node, the bounding forms of its children are contained in its 
bounding form and consequently, the distance from a query vector 
to the father node is lower or equal to its distances to the children. 
This gives a property to the hierarchical index that the distance of 
a query vector q to the bounding forms increases from a level to 
that highest. 

In our index structure NOHIS-tree, bounding rectangles of 
children (R1, R2) are not included completely in the bounding 
rectangle of their father node R, as shown in figure 4. 

The instruction M[j] = max (maxDist, M[j]) in the line 15 of 
algorithm 1, (resp. MS = max (maxDist, MS) in the line 20), 
preserve the property that the distance increases from a level to 
that highest in the search tree. M[j] expresses the distance to their 
intersection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of a rectangle with its children 

 

3. EXPERIMENTS 
Descriptor computation algorithm, clustering algorithm and the 
search algorithm were implemented in C++. Algorithms run on a 
PC with Intel processor, its CPU is 1.8 GHz and 2 Go of RAM. 
We used ImagEval database for CBIR system evaluation, it 
consists of 9811 images. 2,416,975 descriptors were computed 
from these images.  

Search time is an important factor to evaluate the performance of 
the CBIR system. In experiment 1 we compare three CBIR 
systems; NOHIS-Search system, the second is that using PDDP 
indexing algorithm and the third system is that using the 
sequential search. Table 1 and Figure 5 show the total search time 
for the three systems. The given times are the mean times when 
searching similar images for 10 queries; they include the time 
needed for the descriptor computation of the 10 queries. NOHIS-
Search system significantly outperforms the other two systems. It 
performs the queries 19 times faster than the system using 
sequential search when using the database of 3800 images and 36  
times faster  than the system using sequential search when using 

the database of 9811 images. Besides, NOHIS-Search system is 2 
times faster than the system using PDDP algorithm. 

 

Table 1. Mean time for the three systems 

Size of the 

database 

Mean time of search 

NOHIS-

Search 

system 

PDDP 

system 
Seq.system 

3800 26,05 45,97 500 

9811 50,15 106,98 1380 

 

 

 

Figure 5. Exp. 1, Retrieval time, 10 query images 

 

In experiment 2, the rapidity of NOHIS-Search system is 
explained. The number of the visited clusters is computed when 
comparing NOHIS-tree and PDDP-tree. Results given in table 2 
and figure 6 show that less clusters are visited using NOHIS-tree 
than PDDP-tree. The orientation of MBRs in NOHIS-tree avoids 
the overlap which explains the obtained results. 

 

Table 2. The visited clusters when comparing NOHIS-tree and 

PDDP-tree 
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Figure 6. Exp. 2, Visited clusters, 20 NNs for 200 query 

descriptors, increasing size 

 

 
 

Examples of images retrieved when using NOHIS-Search system 
are shown in the figures 7. In each figure, the first image in the 
top is the query and the other images are the responses of the 
system. Just the first 10 retrieved images are displayed. 

 

 

 
 

 

 

Figure 7. Results with NOHIS-Search system 

 

4. CONCLUSION 
A content-based image retrieval system called NOHIS-Search was 
presented in this paper, the system is based on the indexing 
technique NOHIS-tree. The on-line and off-line phases of the 
system were described. The performance evaluation of the 
proposed system with other systems shows that NOHIS-Search is 
faster that the two other systems. NOHIS-Search, however, 
requires further investigations especially in the matching process. 
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