
Fo,.,,

t goa e
C++ Toolbox

Editor: G. Bowden Wise, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180; wiseb@es.rpi.edu

A Framework for Programming
Denotational Semantics in C++

Nikolaos S. Papaspyrou
(nickie@softlab.ntua.gr)

National Technical University of Athens
Division of Computer Science, Software Engineering Laboratory

Polytechnioupoli, 15780 Zografou, Athens, Greece

Abstract. In this paper, we describe how the denota-
tional semantics of programming languages can be im-
plemented in C++, by exploiting the object-oriented pro-
gramrning paradigm. Such implementations are execu-
tion models, extremely useful for the study of program-
rning languages. Although C++ is not a natural choice
for this problem domain, compared to functional pro-
gramming languages such as ML, we suggest a type-
safe framework, implemented in pure C++, that inte-
grates functional characteristics such as high-order func-
tions and is capable of naturally expressing denotational
descriptions. Finally, by comparing our approach to pos-
sible implementations using functional languages, we in-
vestigate extensions to C++ that would be valuable in this
problem domain.

Introduction

Denotational semantics, or the mathematical approach to
programming language semantics, is a formalism that was
introduced by D. S. Scott and C. Stratchey in the late '60s.
Since then, it has been widely studied by distinguished
researchers and has been used as a means for the study
of programming languages. Introductions to the deno-
tational approach, including useful bibliography, can be
found in [19] and [11]. For a more in-depth presentation
of the underlying theory and the techniques that have been
developed, the reader is referred to [18], [6] and [15].

According to the denotational approach, semantics is
described by attributing mathematical denotations to pro-
grams and program segments. Denotations are typically
high-order functions over Scott domains, computed for
each program segment by appropriately combining the

denotations of its subsegments. A denotational descrip-
tion of a programming language defines directly an exe-
cution model, i.e. an interpreter, and can be regarded as
a complete and unambiguous reference standard, of ob-
viously great value to users and language implementers.
It is not always easy to implement such an interpreter
by translating the denotational description to a program,
written in a general purpose programming language. Us-
ing an appropriate target language is very important and
can greatly reduce the complexity of this task. Several
languages have been suggested and used for this purpose,
with more or less success. It seems that functional pro-
gramming languages are more suitable, as suggested in
[20] where ML is used as a meta-language for denota-
tional descriptions. Imperative programming languages
have also been suggested, such as ALGOL 68 [12] and
Pascal [1], with considerably less success. In the first
case, an extension to the language was suggested by the
author and in the second it was clear that similar exten-
sions would be extremely valuable.

In this paper, we attempt to apply the object-oriented
programming paradigm to the problem of implement-
ing denotational descriptions and we suggest C++ as the
implementation language. It is clear that C++ is not
a natural choice for this problem domain, lacking lexi-
cal closures, expressible functions and fully operational
high-order functions. However, we believe that object-
orientation is a useful tool in this problem domain and at-
tempt to overcome the many difficulties imposed by C++.

A framework is suggested in this paper that provides
a type-safe implementation for the A-calculus over Scott
domains and can be directly used to implement denota-
tional descriptions. This framework differs from previous
approaches in the use of the object-oriented programming

16

http://crossmark.crossref.org/dialog/?doi=10.1145%2F242903.242913&domain=pdf&date_stamp=1996-08-01

/..an
paradigm. Our approach results in denotational descrip-
tions much closer to the original meta-language and there-
fore more natural than approaches using imperative lan-
guages, mentioned above. However, our implementation
is not as elegant as one in ML [20]. It is clear that the pres-
ence of features characteristic of functional programming
languages, such as high-order functions, currying, partial
binding and the A-notation, determines the suitability of
a programming language for implementing denotational
descriptions. In order to overcome the drawbacks of C++,
we attempt to integrate such features in our framework.
But, in contrast to other approaches towards the same goal
[14, 4, 9, 10, 13], our approach does not require any exten-
sions to the language. Unfortunately, there is a tradeoff
between natural description using pure C++ and perfor-
mance. In our approach, we resolve this dilemma at the
expense of performance, on the grounds that implementa-
tions of denotational descriptions are commonly used for
the study of programming languages, in a context where
performance is of little importance.

Definition of the problem

In order to formulate a denotational description, a meta-
language has to be employed. The meta-language that
will be used in this paper is a variation of the A-calculus
over Scott domains [16], which we will very briefly
present in this section. A very good introduction to do-
main theory can be found in [8]. For a complete defini-
tion and applications of domain theory in programming
language semantics, the reader is referred to [7].

Domains are mathematical spaces whose elements are
partially ordered by a relation of definedness, commonly
denoted as _U. For each domain d there is a least or bot-
tom element, denoted by _Ld, representing an undefined
value. Domains that are constructed from normal sets of
elements with the addition of a bottom element are called
flat domains and are denoted by {el, e2,...}o. The fiat
domain of integer values is denoted by N, whereas the
flat domain { true, false} ° is denoted by T. For d, dl and
d2 domains, other compound domains can be defined as
shown in Figure 1. Domain definitions can be recursive,
e.g. T r e e = N + (T r e e × Tree) , but it should be noted
that not all equations over domains have non-trivial solu-
tions.

Element expressions are formed as shown in Figure 1,
where z denotes a variable whose value belongs in a
specific domain and e, el and e2 are element expres-
sions. Further notational conventions include the omis-
sion of subscripts, the omission of variable types in the

A-notation, the representation of functions as prefix unary
and infix binary operators, as well as the omission of in l
and i n r whenever they can be deduced from the context.
Also, since the distinction between Cartesian and smash
products, as well as separated and coalesced sums, is usu-
ally clear from the context, it is possible to use the same
notation for both. As a last notational convention, (e E d)
may be used for determining whether the element of a
sum domain denoted by e corresponds to an element of
d, whereas (e [d) denotes the corresponding element of
d. These two can be expressed by using operators ou t l ,
o u t r , isl and isr appropriately.

To illustrate the use of the meta-language, we will
present a denotational description for a Pure Functional
Language with Control, which for brevity we will call
PFLC. The language features high-order functions, recur-
sion by means of a f ix operator, advanced control con-
structs, such as a b o r t , e a l l / c c and a control delim-
iter, or prompt, written as # . All control features are de-
scribed in detail in [17]. The complexity of our example
serves the purpose of using as many elements of the meta-
language as possible, in its semantic description. Fig-
ures 2 and 3 present the abstract syntax of PH_C, the syn-
tactic and semantic domains and a subset of the semantic
equations, using continuation semantics.

Implementation of a denotational description in C++
requires a means of translating abstract syntax, domain
definitions and semantic equations into C++ code) This
is the aim of the framework that we suggest in the follow-
ing sections.

Untyped version

We will first consider an implementation for an untyped
version of our meta-language. In this implementation, we
will use the envelope~letter idiom [3], in order to achieve
method polymorphism and at the same time alleviate the
memory-management problems that result from the use
of object pointers. An envelope class will be used for
the representation of Scott domain elements, whereas sev-
eral letter classes will be used for the representation of
various operations on such elements. The envelope class
Element is defined as:

class Element
{
private :

ElementImpl * censt impl;

public :
Element (ElementImpl * const ei): impl(ei) { }

1 A complete interpreter would also require a parser and a translator
from concrete to abstract syntax.

17

t gaag
Figure 1: An overview of A-calculus over Scott domains.

Domain notation.

dl -+ d2 The domain of functions from dl to d2.
dl --+s d2 The domain of strict functions from dl to d2. A function f 6 dl ~ d2 is strict iff f(.La~) = -Ld2.

d± The lifted domain that is produced by adding a new be|tom element under a distinct copy of d.
dl X d2 The Cartesian product of dl and d2.
dl ® d2 The smash product of dl and d2, obtained from the Cartesian product by identifying all pairs containing bottom elements.
dl + d2 The separated sum of dl and d2, containing distinguished copies of all elements of the two domains.
dl @ d2 The coalesced sum of dl and d2, obtained from the separated sum by identifying all bottom elements.

Element expressions.

el "~'d e2
e ..--)- el , e2

A X : d l . e
el e2

el oe2
flXd

strlcta
uPd

d o w n d

fsta, s n d a
inla, lnrd

otltld, o u t r d
isla, isra

Denotes true if et and e2 denote the same element of the flat domain d, iT if any of them denotes .Ld, false otherwise.
This construct requires e to denote an element of T; el and e2 to denote elements xl , x2 6 d respectively. Then, it denotes
x, if e denotes true, x2 if e denotes false, and ±a if e denotes i T .
The function f 6 dl --+ d2 given by f (x) --- e, where x 6 dl.
The result of applying function f 6 dl ~ d2 denoted by el to the value x 6 d, denoted by e2.
The composition of functions f l and f2 denoted by el and e2 respectively, i.e. the function f (x) = f l (.[2 (x)).
The least fixed point operator, mapping a function f 6 d ~ d to the least element a: 6 d, w.r.t. E, satisfying f (x) = x.
The function mapping each function f 6 d = dl --+ d2 to the corresponding strict function f ' 6 dl ~ , d2.
The function mapping each element of d to the corresponding element of d ±.
The function mapping each element of d ± back to the corresponding element of d, and .Lax to -Ld.
The pair belonging in dl x d2 with components x 6 dl and y 6 d2 denoted by el and e2 respectively.
Functions mapping a pair (x, y) E d = dl × d2 to x E dt and y 6 d2 respectively.
Functions mapping elements of dt and d2 respectively to the correspondingelement of d = dl + d2.
Functions mapping an element x 6 d = dl + d2 back to the corresponding element of dl or d2.
Functions mapping an element x 6 d = dl + d2 to true or false, depending on whether they belong to dt or d2.

Element (const Element & e):
impl(e.impl->copy()) (}

"Element () { delete impl; }
Element operator () (const Element & arg) const

(return Element (new ApplicationImpl (
impl, arg.impl)) ~ }

friend Element lambda (const Element & exp)
{ return Element(new AbstractionImpl(

exp.impl)) ; }
friend Element arg (int db)

{ return Element(new ParameterImpl(db));)
friend Element fix (const Element & exp)

(return Element(new FixImpl(exp.impl));)

fr'lend Element evaluate (const Element & e)
{ return Element(e.impl->evaluate()); }

);

where functions l a m b d a and a r g are used for the cre-
ation of A-abstraction elements, o p e r a t o r () is used
for the creation of function applications and function f i x
is used for the implementation of the least fixed point op-
erator. In addition, method e v a l u a t e is used for the
evaluation of elements, by applying the evaluation rules
of),-calculus over Scott domains.

A set of letter classes is defined for element im-
plementations, derived from the abstract letter class
E l e m e n t I m p l . In order to differentiate between imple-
mentation classes in run-time, we need a safe dynamic
type casting mechanism. Although run-time type infer-
ence (R'ITI) has long been suggested as part of the draft
C++ standard, it is not generally supported by compil-
ers, at least in a portable manner. For this reason, we
resort in defining a virtual w h a t I s method and a static
i s M e m b e r method for all concrete classes. The def-
inition of these two is facilitated by using two special

macros: RTTI_ABSTRACT and RTTI_SIGNATURE.
Class ElementImpl is defined as:

class Elementlmpl
{

RTTI_ABSTRACT

public:
ElementImpl () { }

virtual ~ElementImpl () (}
virtual Elementlmpl * copy () const = 0;
virtual ElementImpl * subst (int db,

const ElementImpl * val) const = 0;
virtual ElementImpl * incFV (int t = 0) const = 0;
virtual ElementImpl * evaluate () const = 0;

};

where method c o p y implements the duplication of an
object, method s u b s t is used for textual substitu-
tion, method i n c F V will be explained later and method
e v a l u a t e is used for the evaluation of dements.

Concrete letter classes can be defined for the imple-
mentation of domain operations, such as A-abstractions,
function applications or the f ix operator. A letter class
must be defined for bottom elements. Furthermore, a let-
ter class must be defined for the implementation of func-
tion parameters. For this purpose we will use de Bruijn
indices [5] instead of named dummies. 2 De Bruijn in-
dices facilitate the definition and implementation of tex-
tual substitution. Of the forementioned letter classes,
gbstractionImpl can be defined as:

class AbstractionImpl: public ElementImpl

2We will write de Bruijn indices as # n , where n > 1.

18

Figure 2: Denotational description of PFLC (abstract syntax and domains).

A b s t r a c t syntax .

P ::= E

E : := n [t r u e [f a l s e [I [E1 * E 2 [o E
J if E then El else E2 [lambda I. E J E, E2
[f i x I . E I a b o r t E J c a l l / c o E I @ E

* ::= + I - I * I / I = I < I > I < = I > = I < > I A I V
Q ::: -- ["~

Syntac t i c and s e m a n t i c d o m a i n s .

P 6 P r o g : programs B = N @ T : basic values
E E Expr :express ions F = (V --+s K -~ V) ± : function values
n 6 Nat : integer numbers V = B G F : values
I E I d e : identifiers E n v = I d e --4. V : environments
* 6 B i n 0 p : binary operators K = V ~ V : continuations
<~ 6 On0p : unary operators

{
RTTI_SIGNATURE(ElementImpl, "AbstractionImpl")

private:

ElementImpl * const expression;

public:

AbstractionImpl (const ElementImpl * exp):
expression(exp->copy()) (l

virtual -AbstractionImpl () { delete expression; }
virtual ElementZmpl * copy () const;
virtual ElementImpl * subst (int db,

const Elementlmpl * val) const;
virtual ElementImpl * incFV (int t = 0);
virtual ElementImpl * evaluate ();

ElementImpl * AbstractionImpl::apply (
const ElementImpl * arg) const;

};

Methods e v a l u a t e and s u b s t must be imple-
mented according to a set of evaluation rules for our meta-
language, a subset of which is given in Figure 4. The no-
tation E .IJ. V represents the evaluation relation whereas
E[#n := F] denotes textual substitution. Method
i n c F V implements the adjustment of de Bruijn indices,
which is necessary for substituting within A-abstractions.
According to Figure 4, the implementation of some of
these methods is given below:

ElementImpl * Applicationlmpl::evaluate () const
{

ElementImpl * eFun = function->evaluate();
ElementImpl * eArg = argument->evaluate();
ElementImpl * result =

(AbstractionImpl::isMember(*eFun))

? ((const AbstractionImpl *) eFun)->apply(arg)
: new BottomImpl();

delete eFun; delete eArg; return result;

ElementImpl * FixImpl::evaluate () const
(

ElementImpl * eExp = expression->evaluate();
ElementImpl * result =

(AbstractionImpl::isMember(*eExp))
? ((const Abstractionlmpl *) eExp)->apply(this)
: new BottomImpl();

delete eExp; return result;
}

ElementImpl * AbstractionImpl::apply (
const ElementImpl * arg) const

{
ElementImpl * applied = expression->subst(l, arg);
Elementlmpl * result = applied->evaluate();
delete applied; return result;

)

ElementImpl * AbstractionImpl::subst (int db,
const ElementImpl * val) const

(
ElementImpl * fv = val->incFV();
ElementImpl * se = expression->subst(db+l, fv);
ElementImpl * result = new AbstractionImpl(se);
delete fv; delete so; return result;

)

As an example, consider the element expression
(A z. A y. z y) (A z. z) 42, which evaluates to 42. This
expression is written as (A A # 2 # I) (A#1)42 , when
using de Bruijn indices. The evaluation of this expression
is performed by the following C++ code:

Element x = lambda(lambda(arg(2)(arg(1))))

(lambda(arg(1)))(Integer(42));
cout << x.evaluate() << endl;

where we assume that a class I n t e g e r has been derived
from E l e m e n t , an implementation for integer numbers
has been written, as well as an o p e r a t o r << for print-
ing elements. Note that, although the evaluated element
contains an implementation for the integer number 42, its
type is E l e m e n t and not I n t e g e r , as it would be ex-
pected. This is due to the untypedness of this version of
our framework and will be corrected in the next section.

It is possible to improve the efficiency of our frame-
work by implementing part of the evaluation process in
element constructors, such as l a m b d a and o p e r a t o r
() , and therefore reducing the size of element implemen-

tations. An improved framework contains a s i m p l i f y
method of E l e m e n t I m p l , which performs all possible
evaluations except least fixed point operations. Thus, in-
vocation of this method will always terminate, in constrast

19

Figure 3: A subset of the semantic equations for PFLC.

7 9 : Prog -+ V

PIE] = e[E] (AI .±v) (Ae .¢)

g : Expr --+ E n v ~ K -.+ V

g[n]pn = n (A:ln])
C [t r u e] p ~ = ~true
C[false] p ~ = ~false
g [I l p ~ = ~(P[I])
glE1 *E2]p~; = /30[*](g[E1]p)(S[E2]p)n
C[oE]p~ = UO[o](~[E]o),~
~ [i f E t h e n E l e l s e E ~] p s = E[E]p(Ae . (e lT) -+C[E,]p~ ,CIE2]P~)
gilambdaI. S] p n = tc(ck(AP.g[E]p[I~-~ P]))
C[E, E2]p~ = E[El]p(Ael.g[E2]p(Xe2.6el e2 a))
¢[f i x I . E]pn = ~c(qb(fix(Aw. 6(g[E]p[I ~-+ ~bw](Ae.e)))))
E [a b o r t E] p~ = £ [E] p(Ae. e)
E[cal l /ccElp ~ = g[E]p(Ae. 6e(rk(Ap. An'.tcp))a)
g [# E] p n = a(£[Elp(Ae.e))

/30:BinOp--+(K~V)-~ (K ~ V) ~ K ~ V
H(0 : Un0p ~ (K --~ V) --~ K --+ V

/3(0[+[fl f2 ,¢ = fl (Ael. f2 (Ae2. ,~((el IN) + (e2 IN))))
/3(0[=]fl f2 ~ = fl (A et.]2 (A e2. ~ ((el E B) ~ (el I B) =B (e2 [B), -t-v)))
/30[v] f l / 2 ,¢ = fA (A el. (e, IT) ~ '¢ true,/~ ,~)
h l O [-] f n = .f (X e. ~ (-(elN)))

q~ = X f . (u p o s t r i c t) f : F ~ V
= Ae. d o w n (e l F) : V - - ~ F

to evaluate. Also, our memory management scheme
for element implementations results in a heavy use of
operators new and d e l e t e . By overloading these op-
erators and by changing accordingly the c o p y method,
it is possible to implement a smarter memory manage-
ment scheme that would not copy element implementa-
tions when not necessary (e.g. by keeping reference coun-
ters). Better results would be achieved by using a proper
garbage collector for C++.

Type-safe version

Although the untyped version of the framework that we
suggested in the previous section succeeds in implement-
ing the numerous operations on Scott domains in a fairly
natural way, it fails to represent the Scott domains them-
selves. As an attempt to provide the elements with type in-
formation, it is possible to derive classes from Element
but operations on such elements do not propagate the type
information. Furthermore, the untyped version is only
able to diagnose semantic errors in element expressions
(e.g. application to a non-function element) at run-time.

It is possible to create a type-safe version of our
framework, implementing a typed version of our meta-
language. This version represents Scott domains as

classes derived from Element, assigns type information
to elements and propagates this type information correctly
and consistently in operations. In addition, it is able to de-
tect type errors at compile-time, by using the type system
of C++. A set of classes and class templates are derived
from E l e m e n t , as shown in Figure 5. The various class
templates represent domain constructors and are param-
eterized by the types of their operands. The same figure
also shows the complete hierarchy of implementations.

In the type-safe version, functions such as e v a l u a t e
must be replaced by function templates, propagating the
correct type information:

template<class T>
T evaluate (const T & e)
{

return T(e.getImpl()->evaluate());
}

The class template F u n c t i o n < I n , Out> repre-
sents function domains. It is defined as:

#define FUN(In, Out) Function< In, Out >

template<class In, class Out>
class Function: public Element
{
public:

Function (ElementImpl * ei): Element(el) (}
Function (const FUN(In, Out) & f): Element(f)
Out operator () (const In & arg) const;

};

()

20

Figure 4: Some evaluation rules for our meta-language with deBruijn indices.

Evaluation of terms.

AE J~ AE

Textual substitution.

T f ~ n
#m[:~n := F] = F

F ~ AE A l,t V E [# I := V] #. R
F A i R

E g AF F [# l := fix E] ~ R
f i x E ~t R

m < n m > n
.~rn[#n := F] = # m # r n [~ n := F] = # (m - - 1)

IFV(F, 0) = F ' E [# (n + I) := F'] = R E , [e n := F] = E~ E 2 [# n : = F] = E~
(AE)[~n := F] -- AR (E, E2)[~n := ~ = E~ E~

Adjustment of de Bruijn indices.

n > t n < t
I F V (# n , t) = : ~ (n + 1) I F V (# n , t) = ~ n

I F V (E , t + I) = E ' I F V (E i , t) = E ' IFV E2, t = E '
IFV(AE, t) = AE' IFV(E~ E2, t) - E ' E '

and the corresponding domain operators are defined as:

template<class In, class Out>
Out FUN(In, Out)::operator () (const In & arg) const
(

return Out(new ApplicationImpl(getImpl(),
arg.getImpl()));

}

template<class T>
T fix (const FUN(T, T) & exp)
(

return T(new FixImpl(exp.getImpl()));
)

In the typed version of A-notation it is necessary to
specify the type of the parameter. Also, in order to make
the framework type-safe, it is also necessary to explicitely
specify the type of each parameter's instance, since the
C++ compiler cannot deduce the type of an expression
such as a r g (1) .3 Therefore, the A-notation that we use
in the type-safe version of our framework is not as sim-
ple as in the untyped one. The two macros l a m b d a
and a r g hide the ugly implementation details from the
user. We used o p e r a t o r [= for the implementation of
l a m b d a because it is right associative and has a very low
precedence. An empty class template has to be defined
(L a m b d a O p e r a t o r < In>) jus t to provide the parame-
ter's type to o p e r a t o r [=.

#define lambda(T) (hambdaOperator< T >(0)) [=
#define arg(T, n) (T(new ParameterImpl(n)))

template<class In>
class LambdaOperator
(
public:

LambdaOperator (int) (}
};

3 This is a possible source of errors, since there is no way of checking
whether the types of parameter instances are consistent with the types
specified in the corresponding A-expressions.

template<class In, class Out>
FUN(In, Out) operator [= (

const LambdaOperator<In> & i, const Out & exp)
{

return FUN(In, Out)(new AbstractionImpl(
exp.getImpl()));

)

As an example, consider again the element expression
(Az : N -4 N. Ay : N. zy)(Ax : N. x)42,
written as (A N~N A N .~2 :~1) (A N :iq:l) 42, in our typed
meta-language, using de Bruijn indices. Note that the type
of each parameter's instance is determined by the type
specified by the corresponding A-abstraction. The eval-
uation of this expression is performed by the following
C++ code. The evaluated element is of the expected type
Integer.

Integer x = (lambda(FUN(Integer, Integer))
lambda(Ineeger)

arg(FUN(Integer, Integer), 2)
(arg(Integer, i)))

(lambda(Integer) arg(Integer, 1))
(Integer(42));

cout << x.evaluate() << endl;

We should note at this point that we still have two prob-
lems with the type-safe version of our framework, both
due to the type system of C++. Type unification in tem-
plates does not work as expected in some compilers. In
GNU C++, for instance, type unification fails when the
formal parameter is a (reference to a) class template and
the actual parameter is a subclass of the class template.
The same type unification succeeds in Borland C++. Fur-
thermore, defining recursive domains such as T r e e =
N + (Tree x Tree) is not a straightforward task. The
obvious definition would be something like:

class Tree;
typedef SUM(Integer, PROD(Tree, Tree)) Tree;

only this does not work, neither in GNU C++ nor in Bor-
land C++. It seems that the only way to overcome this

21

A

...... Hierarchy of implementations
........ (letter classes)

° . .
"'"..

Hierarchy of elements
(envelope classes)

Element]- "~ Boolean]

~ Functi,m<In,Out> I

t Lifted<T> I
-~ Prealuct<TI ,T2> ~--~ SPreduct<TT I,T2>]

-~ Sum<TI,T2> ~--~ CSum<TI,T2>]

Valuelmpl ~-

-~P ,~rImp, i

5 F'x'mp' I
t Conditionallmpt [

-~ Downlmpl

-~ Fstlmpl

-~ Sndlmpl

-~ Outllmpl

Outrlmpl

Isllmpl

-~ lsrlmpl

Bottomlmpl 1 ~ Abstraclionlmpl

Functionlmpl ~ Suictlmpl

-~ Booleanlmpl IL~ Updatelmpl

-~ Liftedlmpl]

Productlmpl ~ SProductlmpl

~ Sumlmpl ~--~ CSumlmpl

-~ Atomlmpl I

t Integerlmpl I

-~J BinaryOperatorlmpl<ll,12,1R> I
UnaryOperatorlmpl<l,lR> I

Figure 5: Class hierarchies for domain elements and implementations.

problem is the following definition, which is problematic
because of our previous remark:

class Tree: public SUM(Integer, PROD(Tree, Tree))
{
public:

Tree (const SUM(Integer, PROD(Tree, Tree)) & t):
SUM(Integer, PROD(Tree, Tree))(t) { }

);

Preprocessor

The framework that we suggest in the previous section is
capable of expressing denotational descriptions in a fairly
natural way. However, element expressions contain re-
dundant information and this is a possible source of errors.
The redundant information is the type of parameter in-
stances. Consider the expression A z : N. (A z : N. z) z,
which is written as:

We tried unsuccessfully to overcome these two diffi-
culties by using the C++ preprocessor. It seems that this
is not possible, because C++ lacks lexical closures and
variable scoping within expressions. It is possible, how-
ever, to implement an external preprocessor that will con-
vert A-notation with named dummies to de Bruijn indices
and explicitely typed parameter instances. We have im-
plemented such a preprocessor consisting of 183 lines in
f lex and bison, with a grammar of 8 terminal and 4 nonter-
minal symbols. By using the preprocessor, the previous
element expression can be written as:

lambda(x: Integer. lambda(y: Integer. y)(x))

No redundant information is given and this notation is
much clearer and more natural than the previous one.

Extensions
lambda(Integer) (lambda(Integer) arg(Integer, i))

(arg(Integer, i))

There are two difficulties with the representation of such
an expression: (i) named dummies in A-abstractions have
to be expressed as de Bruijn indices, and (ii) the types of
parameter instances have to be explicitely specified, al-
though this information is redundant. The former is a mat-
ter of choice, simplifying the framework and improving
its performance; on the other hand, named dummies pro-
vide a more natural way of representing A-abstractions.
The latter, however, is a problem of the implementation,
due to the lack of type inference in the type system of C++.

It is possible to enhance our framework by using a set of
extensions to C++. The set of GNU extensions allows us
to get rid of the preprocessor, without affecting the read-
ability of element expressions. The two extensions that
are particularly useful are:

• Statement expressions: compound statements within
parentheses can appear within expressions. The last
statement in the compound statement determines the
value of the whole construct.

• typeof: a compile-time operator, referring to the type
of an expression which is never evaluated. It can

22

Lang ge
be used in any type expression and is very useful in
combination with statement expressions.

The first and obvious improvement to our framework,
by using the two GNU extensions that were mentioned
above, is that our meta-language can now use named dum-
mies instead of de Bruijn indices in A-abstractions. The
set of evaluation rules must be revised, but the only point
that needs special treatment is textual substitution in A-
abstractions, solved by renaming dummies whenever nec-
essary. A second important improvement is that we can
define a class template for domains themselves, namely
Domain<E>, in addition to classes for domain elements.
This allows us to represent domain constructors as C++
operators, and use such domain expressions in element ex-
pressions, whenever this is required. The type parameter
E that is used in this class template represents the type of
domain elements. We can then define:

Domain<Integer> N;
Domain<Boolean> T;

The class template Domain<E> is defined as:

template<class E>
class Domain
(
public:

Domain () {)
E * nullInstance () const { return NULL; }
E bottomInstance () const

{ return E(new BottomImpl()); }
E operator () (const E & e) { return e; }

};

#define bottom(T) ((T).bottomInstance())
#define OBJ(T) typeof(*((T).nullInstance()))

template<class El, class E2>
Domain<FUN(E1, E2)> operator I= (

const Domain<El> & dl, const Domain<E2> & d2)
[

return Domain<FUN(E1, E2)>;
)

where o p e r a t o r I = represents the domain construc-
tor for functions and o p e r a t o r () simplifies the ex-
pression of domain elements, allowing expressions such
as N (42) . The macro b o t t o m returns the bottom ele-
ment of a domain, whereas the macro OBJ (T) returns the
type of a given domain's element. Finally, the A-notation
can be implemented as: 4

#define lambda(v, T, E) (lambdaOperator(#v, T, \
({ OBJ(T) v(new ParameterImpl(#v)); \

new typeof(E)(E);))))

template<class In, class Out>
FUN(In, Out) lambdaOperator (

const char * dummy, const Domain<In> &, Out * exp)
{

FUN(In, Out) result(new AbstractionImpl(
dummy, exp->getImpl()));

delete exp; return result;
}

4 We had to use a pointer type for the result of the statement expres-
sion because of a bug in GNU C++ statement expressions.

As an example, consider again the element expression
(Ax : N --~ N. Ay : N. z y) (A z : N. x)42. This
time, the evaluation of this expression is performed by the
following C++ code:

OBJ(N) x = (lambda(x, NI=N, lambda(y,
(lambda(x, N, x))(N(42));

cout << x.evaluate() << endl;

N, x(y))))

A third possible extension, the presence of which
would change our framework radically and would much
improve its performance, is unnamed functions as sug-
gested in [2]. Unnamed functions would render unnec-
essary the definition of a special class for A-abstractions
and would much simplify our hierarchy of implementa-
tions. They would also significantly narrow the gap be-
tween C++ and functional languages. Unfortunately, un-
named functions have not been adopted, to the best of our
knowledge, in any popular C++ compiler.

Example

We have implemented an interpreter for PFLC using the
denotational description that was given in Figures 2 and 3.
The program consisted of 971 lines of code, including a
number of test programs, whereas a similar implementa-
tion in ML consisted of only 426 lines of code. A sig-
nificant part of the C++ implementation was devoted to
the implementation of syntactic domains (336 lines, com-
pared to 38 lines in the ML implementation), since we de-
cided not to use coalesced sums and products in order to
simplify the equations. From this experience, it is now
clear that we need to facilitate the implementation of syn-
tactic domains in our framework.

The following code is a part of the implementation of
PFLC's semantic equations, in the form recognized by our
preprocessor. Syntactic and semantic domains were de-
fined earlier in the C++ program and the problem of recur-
sive domains, such as V, was handled by defining empty
classes, as discussed earlier.

V setuP (const Expr & E)
{

return semE(E) (lambda(I: Ide. BOTTOM(V)))
(lambda(e: V. e));

)

FUN(Env, FUN(K, V)) seinE (const Expr & E)
(

if (E.is ("Int' "))
return lambda(rho: Env. lambda(kappa: K.

kappa(V: : inl (B: :inl (semN(E [i])))))) ;
else if (E.is("Fix'"))

return lambda(rho: Env. lambda(kappa: K.
kappa(phi(fix(lambda(w: FUN(V, FUN(K, V)).

delta(seinE(E[2)) (update(rho, E[i) , phi (w)))
(lambda(e: V. e)))))))));

else if (E.is("Abort'"))

23

return lambda(rho: Env. lambda(kappa: K.
semE(E[1]) (rho) (lambda(e: V. e))));

The scheme for accessing syntactic domains (method i s
and o p e r a t o r []) is a simplification of the one that
was actually used. In fact, this scheme cannot be im-
plemented in a type-safe way without dynamic type cast-
ing in function seraE and a hierarchy of class templates
for syntactic domains. Except for the (rather clumsy) im-
plementation of syntactic domains, we believe that the
implementation of an interpreter for PFI_C by using the
suggested framework was entirely successful and demon-
strates the ability of C++ to implement denotational de-
scriptions in a natural way.

Conclusion

We have presented a type-safe framework for the imple-
mentation of denotational descriptions in C++, exploit-
ing the object-oriented programming paradigm. We have
demonstrated that the widespread general-purpose C++,
although not a natural choice for this problem domain, can
be successfully used for the study of programming lan-
guages. The suggested framework is implemented by us-
ing pure C++, although a set of extensions would be valu-
able as discussed earlier. It could be translated to other
object-oriented languages supporting inheritance, poly-
morphism and generic types.

The main criteria in the evaluation of our framework
are expressiveness and performance. Concerning the first
criterion, our framework provides a natural way of ex-
pressing denotational descriptions. Some drawbacks of
our approach, imposed by C++, have been discussed in
previous sections. Compared with other general purpose
programming languages that have been suggested, our
framework is inferior to implementations in functional
languages such as ML. The object-oriented programming
paradigm results in more natural denotational descriptions
than possible implementations using imperative program-
ming languages.

On the other hand, we have consciously neglected per-
formance in the implementation of our framework. Per-
formance is reduced because of three factors:

• The memory management of C++ is poor for the re-
quirements of this problem domain. This can be alle-
viated by using a garbage collector and overloading
operators new and delete.

• A-abstractions and high-order functions are managed
by the programmer instead of the compiler, resulting
in poor optimizations when compared to those that
are performed by the compiler of a functional pro-
gramming language. This can only be solved by ex-
tending C++ with an unnamed function feature, as
discussed earlier.

• A large number of virtual methods are required. This
problem though is inherent in object-oriented pro-
gramming with C++.

Nevertheless, we do not consider performance to be a
very significant factor in the evaluation of our framework.
Implementations of denotational descriptions are mainly
used as experimental execution models for the study of
programming languages. In this context, performance is
seldom an important issue.

ML is a much more natural choice than C++ for the
implementation of denotational descriptions, with respect
to both evaluation criteria. There are two main reasons
for this: (i) ML is a functional programming language
and denotational descriptions are inherently functional;
and (ii) ML has a polymorphic static type system, fea-
turing type inference and high-order functions as first-
class objects. In comparison, C++ lacks functional fea-
tures. In the suggested framework we have attempted to
integrate some functional features in C++ without extend-
ing the language. Furthermore, although C++ has a pow-
erful type system supporting inheritance, polymorphism
and generic types by means of templates, implementa-
tions in various C++ compilers present significant limita-
tions, probably because its semantics are not yet clearly
defined in a generally accepted standard.

References

[1] ALLISON, L. Programming denotational semantics.
Computer Journal 26, 2 (1983), 164--174.

[21 BREUEL, T. Lexical closures for C++. In Proceed-
ings of the USENIX C++ Conference (Denver, CO,
Oct. 1988), pp. 293-304.

[3] COPLIEN, J . O . Advanced C++ Programming
Styles and Idioms. Addison-Wesley, 1992.

[41 DAMI, L. Software Composition: Towards an In-
tegration of Functional and Object Oriented Ap-
proaches. PhD thesis, Universit6 de Gen~ve, Apr.
1994.

24

LangUage .ot lpS

[5] DE BRUIJN, N. Lambda-calculus notation with
nameless dummies: A tool for automatic formula
manipulation. Indag. Mat. 34 (1972), 381-392.

[6] GORDON, M. J .C . The Denotational Descrip-
tions of Programming Languages. Springer Verlag,
Berlin, Germany, 1979.

[7] GUNTER, C. A. Semantics of Programming Lan-
guages: Structures and Techniques. Foundations of
computing. MIT Press, Cambridge, MA, 1992.

[8] GUNTER, C. A., AND SCOTT, D. S. Semantic do-
mains. In Handbook of Theoretical Computer Sci-
ence, J. van Leeuwen, Ed., vol. B. Elsevier Science
Publishers B.V., 1990, ch. 12, pp. 633-674.

[9] KUHNE, T. Inheritance versus parameterization.
In Proceedings of Technology of Object-Oriented
Languages and Systems (TOOLS Pacific'94) (Lon-
don, 1995), C. Mingins and B. Meyer, Eds., Prentice
Hall, pp. 235-245. For correct version ask author;
proceedings contain corrupted version.

[10] LAOFER, K. A framework for higher-order func-
tions in C++. In Proceedings of the USENIX Con-
ference on Object-Oriented Technologies (COOTS)
(Monterey, CA, 26-29 June 1995), pp. 103-116.

[11] MOSSES, P .D. Denotational semantics. In
Handbook of Theoretical Computer Science, J. van
Leeuwen, Ed., vol. B. Elsevier Science Publishers
B.V., 1990, ch. 11, pp. 577-631.

[12] PAGAN, F. G. Algol 68 as a metalaguage for deno-
tational semantics. Computer Journal 22, 1 (1979),
63-66.

[13] RAMSDELL, J. D. CST: C state transformers. ACM
SIGPLANNotices 30, 12 (Dec. 1995), 32-36.

[14] ROSE, J. R., AND MULLER, H. Integrating the
Scheme and C languages. In Conference Record of
the ACM Symposium on Lisp and Functional Pro-
gramming (San Francisco, CA, 1992), pp. 247-259.

[15] SCHMIDT, D . m . Denotational Semantics: A
Methodologyfor Language Development. Allyn and
Bacon, Newton, MA, 1986.

[16] SCOTT, D.S. Domains for denotational seman-
tics. In International Colloquium on Automata,
Languages and Programs (Berlin, Germany, 1982),
vol. 140 of Lecture Notes in Computer Science,
Springer Verlag, pp. 577-613.

[17] SITARAM, D., AND FELLEISEN, M. Reasoning
with continuations II: Full abstraction for models of
control. In Conference Record of the ACM Sympo-
sium on Lisp and Functional Programming (1990),
M. Wand, Ed., ACM Press, pp. 161-175.

[18] STOY, J. E. Denotational Semantics: The Scott-
Strachey Approach to Programming Language The-
ory. MIT Press, Cambridge, MA, 1977.

[19] TENNENT, R.D. The denotational semantics of
programming languages. Communications of the
ACM 19, 8 (Aug. 1976), 437--453.

[20] WATT, D.m. Executable semantic descriptions.
Software Practice and Experience 16, 1 (Jan. 1986),
13---43.

Nikolaos S. Papaspyrou is a Ph.D. candidate in the De-
partment of Electrical and Computer Engineering at the
National Technical University of Athens (NTUA), Greece.
His doctoral research focuses on the denotational seman-
tics of programming languages and its relation with the
software development process. Other research interests
include intelligent software agents, distance learning and
educational software. He received a M.Sc. in computer
science from Cornell University, Ithaca, NY, and a B.Sc.
in electrical and computer engineering from NTUA.

25

