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Abstract. In this paper, we describe how the denota- 
tional semantics of programming languages can be im- 
plemented in C++, by exploiting the object-oriented pro- 
gramrning paradigm. Such implementations are execu- 
tion models, extremely useful for the study of program- 
rning languages. Although C++ is not a natural choice 
for this problem domain, compared to functional pro- 
gramming languages such as ML, we suggest a type- 
safe framework, implemented in pure C++, that inte- 
grates functional characteristics such as high-order func- 
tions and is capable of naturally expressing denotational 
descriptions. Finally, by comparing our approach to pos- 
sible implementations using functional languages, we in- 
vestigate extensions to C++ that would be valuable in this 
problem domain. 

Introduction 

Denotational semantics, or the mathematical approach to 
programming language semantics, is a formalism that was 
introduced by D. S. Scott and C. Stratchey in the late '60s. 
Since then, it has been widely studied by distinguished 
researchers and has been used as a means for the study 
of programming languages. Introductions to the deno- 
tational approach, including useful bibliography, can be 
found in [19] and [11]. For a more in-depth presentation 
of the underlying theory and the techniques that have been 
developed, the reader is referred to [18], [6] and [15]. 

According to the denotational approach, semantics is 
described by attributing mathematical denotations to pro- 
grams and program segments. Denotations are typically 
high-order functions over Scott domains, computed for 
each program segment by appropriately combining the 

denotations of its subsegments. A denotational descrip- 
tion of a programming language defines directly an exe- 
cution model, i.e. an interpreter, and can be regarded as 
a complete and unambiguous reference standard, of ob- 
viously great value to users and language implementers. 
It is not always easy to implement such an interpreter 
by translating the denotational description to a program, 
written in a general purpose programming language. Us- 
ing an appropriate target language is very important and 
can greatly reduce the complexity of this task. Several 
languages have been suggested and used for this purpose, 
with more or less success. It seems that functional pro- 
gramming languages are more suitable, as suggested in 
[20] where ML is used as a meta-language for denota- 
tional descriptions. Imperative programming languages 
have also been suggested, such as ALGOL 68 [12] and 
Pascal [1], with considerably less success. In the first 
case, an extension to the language was suggested by the 
author and in the second it was clear that similar exten- 
sions would be extremely valuable. 

In this paper, we attempt to apply the object-oriented 
programming paradigm to the problem of implement- 
ing denotational descriptions and we suggest C++ as the 
implementation language. It is clear that C++ is not 
a natural choice for this problem domain, lacking lexi- 
cal closures, expressible functions and fully operational 
high-order functions. However, we believe that object- 
orientation is a useful tool in this problem domain and at- 
tempt to overcome the many difficulties imposed by C++. 

A framework is suggested in this paper that provides 
a type-safe implementation for the A-calculus over Scott 
domains and can be directly used to implement denota- 
tional descriptions. This framework differs from previous 
approaches in the use of the object-oriented programming 
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paradigm. Our approach results in denotational descrip- 
tions much closer to the original meta-language and there- 
fore more natural than approaches using imperative lan- 
guages, mentioned above. However, our implementation 
is not as elegant as one in ML [20]. It is clear that the pres- 
ence of features characteristic of functional programming 
languages, such as high-order functions, currying, partial 
binding and the A-notation, determines the suitability of 
a programming language for implementing denotational 
descriptions. In order to overcome the drawbacks of C++, 
we attempt to integrate such features in our framework. 
But, in contrast to other approaches towards the same goal 
[ 14, 4, 9, 10, 13], our approach does not require any exten- 
sions to the language. Unfortunately, there is a tradeoff 
between natural description using pure C++ and perfor- 
mance. In our approach, we resolve this dilemma at the 
expense of performance, on the grounds that implementa- 
tions of denotational descriptions are commonly used for 
the study of programming languages, in a context where 
performance is of little importance. 

Definition of the problem 

In order to formulate a denotational description, a meta- 
language has to be employed. The meta-language that 
will be used in this paper is a variation of the A-calculus 
over Scott domains [16], which we will very briefly 
present in this section. A very good introduction to do- 
main theory can be found in [8]. For a complete defini- 
tion and applications of domain theory in programming 
language semantics, the reader is referred to [7]. 

Domains are mathematical spaces whose elements are 
partially ordered by a relation of definedness, commonly 
denoted as _U. For each domain d there is a least or bot- 
tom element, denoted by _Ld, representing an undefined 
value. Domains that are constructed from normal sets of 
elements with the addition of a bottom element are called 
flat domains and are denoted by {el, e2,...}o. The fiat 
domain of integer values is denoted by N, whereas the 
flat domain { true, false} ° is denoted by T. For d, dl and 
d2 domains, other compound domains can be defined as 
shown in Figure 1. Domain definitions can be recursive, 
e.g. T r e e  = N + ( T r e e  × Tree ) ,  but it should be noted 
that not all equations over domains have non-trivial solu- 
tions. 

Element expressions are formed as shown in Figure 1, 
where z denotes a variable whose value belongs in a 
specific domain and e, el and e2 are element expres- 
sions. Further notational conventions include the omis- 
sion of subscripts, the omission of variable types in the 

A-notation, the representation of functions as prefix unary 
and infix binary operators, as well as the omission of in l  
and i n r  whenever they can be deduced from the context. 
Also, since the distinction between Cartesian and smash 
products, as well as separated and coalesced sums, is usu- 
ally clear from the context, it is possible to use the same 
notation for both. As a last notational convention, (e E d) 
may be used for determining whether the element of a 
sum domain denoted by e corresponds to an element of 
d, whereas (e [ d) denotes the corresponding element of 
d. These two can be expressed by using operators ou t l ,  
o u t r ,  isl and isr  appropriately. 

To illustrate the use of the meta-language, we will 
present a denotational description for a Pure Functional 
Language with Control, which for brevity we will call 
PFLC. The language features high-order functions, recur- 
sion by means of a f ix  operator, advanced control con- 
structs, such as a b o r t ,  e a l l / c c  and a control delim- 
iter, or prompt, written as # .  All control features are de- 
scribed in detail in [17]. The complexity of our example 
serves the purpose of using as many elements of the meta- 
language as possible, in its semantic description. Fig- 
ures 2 and 3 present the abstract syntax of PH_C, the syn- 
tactic and semantic domains and a subset of the semantic 
equations, using continuation semantics. 

Implementation of a denotational description in C++ 
requires a means of translating abstract syntax, domain 
definitions and semantic equations into C++ code)  This 
is the aim of the framework that we suggest in the follow- 
ing sections. 

Untyped version 

We will first consider an implementation for an untyped 
version of our meta-language. In this implementation, we 
will use the envelope~letter idiom [3], in order to achieve 
method polymorphism and at the same time alleviate the 
memory-management problems that result from the use 
of object pointers. An envelope class will be used for 
the representation of Scott domain elements, whereas sev- 
eral letter classes will be used for the representation of 
various operations on such elements. The envelope class 
Element is defined as: 

class Element 
{ 
private : 

ElementImpl * censt impl; 

public : 
Element (ElementImpl * const ei): impl(ei) { } 

1 A complete interpreter would also require a parser and a translator 
from concrete to abstract syntax. 
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t gaag  
Figure 1: An overview of A-calculus over Scott domains. 

Domain notation. 

dl -+ d2 The domain of functions from dl to d2. 
dl --+s d2 The domain of strict functions from dl to d2. A function f 6 dl ~ d2 is strict iff f(.La~) = -Ld2. 

d± The lifted domain that is produced by adding a new be|tom element under a distinct copy of d. 
dl X d2 The Cartesian product of dl and d2. 
dl ® d2 The smash product of dl and d2, obtained from the Cartesian product by identifying all pairs containing bottom elements. 
dl + d2 The separated sum of dl and d2, containing distinguished copies of all elements of the two domains. 
dl @ d2 The coalesced sum of dl and d2, obtained from the separated sum by identifying all bottom elements. 

Element expressions. 

el "~'d e2 
e ..--)- el , e2 

A X : d l . e  
el e2 

el oe2 
flXd 

strlcta 
uPd 

d o w n  d 

fsta,  s n d a  
inla, lnrd  

otltld, o u t r d  
isla, isra 

Denotes true if et and e2 denote the same element of the flat domain d, iT if any of them denotes .Ld, false otherwise. 
This construct requires e to denote an element of T; el and e2 to denote elements xl ,  x2 6 d respectively. Then, it denotes 
x,  if e denotes true, x2 if e denotes false, and ±a if e denotes i T .  
The function f 6 dl --+ d2 given by f ( x )  --- e, where x 6 dl. 
The result of applying function f 6 dl ~ d2 denoted by el to the value x 6 d, denoted by e2. 
The composition of functions f l  and f2 denoted by el and e2 respectively, i.e. the function f ( x )  = f l  (.[2 (x)). 
The least fixed point operator, mapping a function f 6 d ~ d to the least element a: 6 d, w.r.t. E, satisfying f (x )  = x. 
The function mapping each function f 6 d = dl --+ d2 to the corresponding strict function f '  6 dl ~ ,  d2. 
The function mapping each element of d to the corresponding element of d ±. 
The function mapping each element of d ± back to the corresponding element of d, and .Lax to -Ld. 
The pair belonging in dl x d2 with components x 6 dl and y 6 d2 denoted by el and e2 respectively. 
Functions mapping a pair (x, y) E d = dl × d2 to x E dt and y 6 d2 respectively. 
Functions mapping elements of dt and d2 respectively to the correspondingelement of d = dl + d2. 
Functions mapping an element x 6 d = dl + d2 back to the corresponding element of dl or d2. 
Functions mapping an element x 6 d = dl + d2 to true or false, depending on whether they belong to dt or d2. 

Element (const Element & e): 
impl(e.impl->copy()) ( } 

"Element () { delete impl; } 
Element operator () (const Element & arg) const 

( return Element (new ApplicationImpl ( 
impl, arg.impl) ) ~ } 

friend Element lambda (const Element & exp) 
{ return Element(new AbstractionImpl( 

exp.impl) ) ; } 
friend Element arg (int db) 

{ return Element(new ParameterImpl(db)); ) 
friend Element fix (const Element & exp) 

( return Element(new FixImpl(exp.impl)); ) 

fr'lend Element evaluate (const Element & e) 
{ return Element(e.impl->evaluate()); } 

); 

where functions l a m b d a  and a r g  are used for the cre- 
ation of A-abstraction elements, o p e r a t o r  ( ) is used 
for the creation of function applications and function f i x  
is used for the implementation of the least fixed point op- 
erator. In addition, method e v a l u a t e  is used for the 
evaluation of elements, by applying the evaluation rules 
of ),-calculus over Scott domains. 

A set of letter classes is defined for element im- 
plementations, derived from the abstract letter class 
E l e m e n t I m p l .  In order to differentiate between imple- 
mentation classes in run-time, we need a safe dynamic 
type casting mechanism. Although run-time type infer- 
ence (R'ITI) has long been suggested as part of the draft 
C++ standard, it is not generally supported by compil- 
ers, at least in a portable manner. For this reason, we 
resort in defining a virtual w h a t I s  method and a static 
i s M e m b e r  method for all concrete classes. The def- 
inition of these two is facilitated by using two special 

macros: RTTI_ABSTRACT and RTTI_SIGNATURE. 
Class ElementImpl is defined as: 

class Elementlmpl 
{ 

RTTI_ABSTRACT 

public: 
ElementImpl () { } 

virtual ~ElementImpl () ( } 
virtual Elementlmpl * copy () const = 0; 
virtual ElementImpl * subst (int db, 

const ElementImpl * val) const = 0; 
virtual ElementImpl * incFV (int t = 0) const = 0; 
virtual ElementImpl * evaluate () const = 0; 

}; 

where method c o p y  implements the duplication of an 
object, method s u b s t  is used for textual substitu- 
tion, method i n c F V  will be explained later and method 
e v a l u a t e  is used for the evaluation of dements. 

Concrete letter classes can be defined for the imple- 
mentation of domain operations, such as A-abstractions, 
function applications or the f ix operator. A letter class 
must be defined for bottom elements. Furthermore, a let- 
ter class must be defined for the implementation of func- 
tion parameters. For this purpose we will use de Bruijn 
indices [5] instead of named dummies. 2 De Bruijn in- 
dices facilitate the definition and implementation of tex- 
tual substitution. Of the forementioned letter classes, 
gbstractionImpl can be defined as: 

class AbstractionImpl: public ElementImpl 

2We will write de Bruijn indices as # n ,  where n > 1. 
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Figure 2: Denotational description of PFLC (abstract syntax and domains). 

A b s t r a c t  syntax .  

P ::= E 

E : := n [ t r u e  [ f a l s e  [ I [ E1 * E 2  [ o E  
J if E then El else E2 [ lambda I. E J E, E2 
[ f i x  I .  E I a b o r t  E J c a l l / c o  E I @ E 

* ::= + I - I * I / I = I < I > I < = I > = I < > I A I V  
Q ::: -- [ "~ 

Syntac t i c  and  s e m a n t i c  d o m a i n s .  

P 6 P r o g  : programs B = N @ T : basic values  
E E Expr  :express ions  F = ( V  --+s K -~  V )  ± : function values 
n 6 Nat  : integer numbers V = B G F : values 
I E I d e  : identifiers E n v  = I d e  --4. V : environments  
* 6 B i n 0 p  : binary operators K = V ~ V : continuations 
<~ 6 On0p : unary operators 

{ 
RTTI_SIGNATURE(ElementImpl, "AbstractionImpl") 

private: 

ElementImpl * const expression; 

public: 

AbstractionImpl (const ElementImpl * exp): 
expression(exp->copy()) ( l 

virtual -AbstractionImpl () { delete expression; } 
virtual ElementZmpl * copy () const; 
virtual ElementImpl * subst (int db, 

const Elementlmpl * val) const; 
virtual ElementImpl * incFV (int t = 0); 
virtual ElementImpl * evaluate (); 

ElementImpl * AbstractionImpl::apply ( 
const ElementImpl * arg) const; 

}; 

Methods e v a l u a t e  and s u b s t  must be imple- 
mented according to a set of evaluation rules for our meta- 
language, a subset of which is given in Figure 4. The no- 
tation E .IJ. V represents the evaluation relation whereas 
E[#n := F] denotes textual substitution. Method 
i n c F V  implements the adjustment of de Bruijn indices, 
which is necessary for substituting within A-abstractions. 
According to Figure 4, the implementation of some of 
these methods is given below: 

ElementImpl * Applicationlmpl::evaluate () const 
{ 

ElementImpl * eFun = function->evaluate(); 
ElementImpl * eArg = argument->evaluate(); 
ElementImpl * result = 

(AbstractionImpl::isMember(*eFun)) 

? ((const AbstractionImpl *) eFun)->apply(arg) 
: new BottomImpl(); 

delete eFun; delete eArg; return result; 

ElementImpl * FixImpl::evaluate () const 
( 

ElementImpl * eExp = expression->evaluate(); 
ElementImpl * result = 

(AbstractionImpl::isMember(*eExp)) 
? ((const Abstractionlmpl *) eExp)->apply(this) 
: new BottomImpl(); 

delete eExp; return result; 
} 

ElementImpl * AbstractionImpl::apply ( 
const ElementImpl * arg) const 

{ 
ElementImpl * applied = expression->subst(l, arg); 
Elementlmpl * result = applied->evaluate(); 
delete applied; return result; 

) 

ElementImpl * AbstractionImpl::subst (int db, 
const ElementImpl * val) const 

( 
ElementImpl * fv = val->incFV(); 
ElementImpl * se = expression->subst(db+l, fv); 
ElementImpl * result = new AbstractionImpl(se); 
delete fv; delete so; return result; 

) 

As an example, consider the element expression 
(A z. A y. z y) (A z.  z)  42, which evaluates to 42. This 
expression is written as ( A A # 2 # I )  (A#1)42 ,  when 
using de Bruijn indices. The evaluation of this expression 
is performed by the following C++ code: 

Element x = lambda(lambda(arg(2)(arg(1)))) 

(lambda(arg(1)))(Integer(42)); 
cout << x.evaluate() << endl; 

where we assume that a class I n t e g e r  has been derived 
from E l e m e n t ,  an implementation for integer numbers 
has been written, as well as an o p e r a t o r  << for print- 
ing elements. Note that, although the evaluated element 
contains an implementation for the integer number 42, its 
type is E l e m e n t  and not I n t e g e r ,  as it would be ex- 
pected. This is due to the untypedness of this version of 
our framework and will be corrected in the next section. 

It is possible to improve the efficiency of our frame- 
work by implementing part of the evaluation process in 
element constructors, such as l a m b d a  and o p e r a t o r  
( ) ,  and therefore reducing the size of element implemen- 

tations. An improved framework contains a s i m p l i  f y  
method of E l e m e n t I m p l ,  which performs all possible 
evaluations except least fixed point operations. Thus, in- 
vocation of this method will always terminate, in constrast 
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Figure 3: A subset of the semantic equations for PFLC. 

7 9 : Prog -+ V 

PIE] = e[E] (AI .±v) (Ae .¢ )  

g : Expr --+ E n v  ~ K -.+ V 

g[n]pn = n (A:ln]) 
C [ t r u e ]  p ~  = ~true 
C[false] p ~ = ~false 
g [ I l p ~  = ~(P[I]) 
glE1 *E2]p~; = /30[*](g[E1]p)(S[E2]p)n 
C[oE]p~ = UO[o](~[E]o),~ 
~ [ i f E t h e n E l e l s e E ~ ] p s  = E[E]p(Ae . (e lT) -+C[E, ]p~ ,CIE2]P~)  
gilambdaI. S ] p n  = tc(ck(AP.g[E]p[I~-~ P])) 
C[E, E2]p~ = E[El]p(Ael.g[E2]p(Xe2.6el e2 a)) 
¢[ f i x I .  E]pn = ~c(qb(fix(Aw. 6(g[E]p[I ~-+ ~bw](Ae.e))))) 
E [ a b o r t  E ]  p~  = £ [ E ]  p(Ae.  e) 
E[cal l /ccElp  ~ = g[E]p(Ae. 6e(rk(Ap. An'.tcp))a) 
g [ # E ] p n  = a(£[Elp(Ae.e))  

/30:BinOp--+(K~V)-~ ( K ~ V ) ~ K ~ V  
H(0 : Un0p ~ (K --~ V) --~ K --+ V 

/3(0[+[ fl f2 ,¢ = fl (Ael. f2 (Ae2. ,~((el IN) + (e2 IN)))) 
/3(0[ = ]fl f2 ~ = fl (A et. ]2 (A e2. ~ ((el E B) ~ (el I B) =B (e2 [B), -t-v))) 
/30[ v ] f l / 2  ,¢ = fA (A el. (e, IT) ~ '¢ true,/~ ,~) 
h l O [ - ] f n  = .f (X e. ~ (-(elN))) 

q~ = X f . ( u p o s t r i c t )  f : F ~ V  
= Ae. d o w n  ( e l F )  : V - - ~ F  

to evaluate. Also, our memory management scheme 
for element implementations results in a heavy use of 
operators new and d e l e t e .  By overloading these op- 
erators and by changing accordingly the c o p y  method, 
it is possible to implement a smarter memory manage- 
ment scheme that would not copy element implementa- 
tions when not necessary (e.g. by keeping reference coun- 
ters). Better results would be achieved by using a proper 
garbage collector for C++. 

Type-safe version 

Although the untyped version of the framework that we 
suggested in the previous section succeeds in implement- 
ing the numerous operations on Scott domains in a fairly 
natural way, it fails to represent the Scott domains them- 
selves. As an attempt to provide the elements with type in- 
formation, it is possible to derive classes from Element 
but operations on such elements do not propagate the type 
information. Furthermore, the untyped version is only 
able to diagnose semantic errors in element expressions 
(e.g. application to a non-function element) at run-time. 

It is possible to create a type-safe version of our 
framework, implementing a typed version of our meta- 
language. This version represents Scott domains as 

classes derived from Element, assigns type information 
to elements and propagates this type information correctly 
and consistently in operations. In addition, it is able to de- 
tect type errors at compile-time, by using the type system 
of C++. A set of classes and class templates are derived 
from E l e m e n t ,  as shown in Figure 5. The various class 
templates represent domain constructors and are param- 
eterized by the types of their operands. The same figure 
also shows the complete hierarchy of implementations. 

In the type-safe version, functions such as e v a l u a t e  
must be replaced by function templates, propagating the 
correct type information: 

template<class T> 
T evaluate (const T & e) 
{ 

return T(e.getImpl()->evaluate()); 
} 

The class template F u n c t i o n < I n ,  Out> repre- 
sents function domains. It is defined as: 

#define FUN(In, Out) Function< In, Out > 

template<class In, class Out> 
class Function: public Element 
{ 
public: 

Function (ElementImpl * ei): Element(el) ( } 
Function (const FUN(In, Out) & f): Element(f) 
Out operator () (const In & arg) const; 

}; 

( ) 
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Figure 4: Some evaluation rules for our meta-language with deBruijn indices. 

Evaluation of terms. 

AE J~ AE 

Textual substitution. 

T f ~ n  
#m[:~n := F] = F 

F ~ AE A l,t V E [ # I  := V] #. R 
F A i R  

E g AF F [ # l  := fix E] ~ R 
f i x E  ~t R 

m < n  m > n  
.~rn[#n := F] = # m  # r n [ ~ n  := F] = # ( m  - -  1) 

IFV(F,  0) = F '  E [ # ( n  + I) := F'] = R E , [ e n  := F] = E~ E 2 [ # n : =  F] = E~ 
(AE)[~n := F] -- AR (E, E2)[~n := ~ = E~ E~ 

Adjustment of de Bruijn indices. 

n > t  n < t  
I F V ( # n , t )  = : ~ ( n +  1) I F V ( # n , t )  = ~ n  

I F V ( E , t + I )  = E '  I F V ( E i , t )  = E '  IFV E2, t  = E '  
IFV(AE, t) = AE' IFV(E~ E2, t )  - E '  E '  

and the corresponding domain operators are defined as: 

template<class In, class Out> 
Out FUN(In, Out)::operator () (const In & arg) const 
( 

return Out(new ApplicationImpl(getImpl(), 
arg.getImpl())); 

} 

template<class T> 
T fix (const FUN(T, T) & exp) 
( 

return T(new FixImpl(exp.getImpl())); 
) 

In the typed version of A-notation it is necessary to 
specify the type of the parameter. Also, in order to make 
the framework type-safe, it is also necessary to explicitely 
specify the type of each parameter's instance, since the 
C++ compiler cannot deduce the type of an expression 
such as a r g  ( 1 ) .3 Therefore, the A-notation that we use 
in the type-safe version of our framework is not as sim- 
ple as in the untyped one. The two macros l a m b d a  
and a r g  hide the ugly implementation details from the 
user. We used o p e r a t o r  [ = for the implementation of 
l a m b d a  because it is right associative and has a very low 
precedence. An empty class template has to be defined 
( L a m b d a O p e r a t o r <  In>) jus t  to provide the parame- 
ter's type to o p e r a t o r  [ =. 

#define lambda(T) (hambdaOperator< T >(0)) [= 
#define arg(T, n) (T(new ParameterImpl(n))) 

template<class In> 
class LambdaOperator 
( 
public: 

LambdaOperator (int) ( } 
}; 

3 This is a possible source of errors, since there is no way of checking 
whether the types of parameter instances are consistent with the types 
specified in the corresponding A-expressions. 

template<class In, class Out> 
FUN(In, Out) operator [= ( 

const LambdaOperator<In> & i, const Out & exp) 
{ 

return FUN(In, Out)(new AbstractionImpl( 
exp.getImpl())); 

) 

As an example, consider again the element expression 
(Az : N -4 N. Ay : N. zy)(Ax : N. x)42,  
written as (A N~N A N .~2 :~1) (A N :iq:l) 42, in our typed 
meta-language, using de Bruijn indices. Note that the type 
of each parameter's instance is determined by the type 
specified by the corresponding A-abstraction. The eval- 
uation of this expression is performed by the following 
C++ code. The evaluated element is of the expected type 
Integer. 

Integer x = (lambda(FUN(Integer, Integer)) 
lambda(Ineeger) 

arg(FUN(Integer, Integer), 2) 
(arg(Integer, i))) 

(lambda(Integer) arg(Integer, 1)) 
(Integer(42)); 

cout << x.evaluate() << endl; 

We should note at this point that we still have two prob- 
lems with the type-safe version of our framework, both 
due to the type system of C++. Type unification in tem- 
plates does not work as expected in some compilers. In 
GNU C++, for instance, type unification fails when the 
formal parameter is a (reference to a) class template and 
the actual parameter is a subclass of the class template. 
The same type unification succeeds in Borland C++. Fur- 
thermore, defining recursive domains such as T r e e  = 
N + (Tree  x Tree )  is not a straightforward task. The 
obvious definition would be something like: 

class Tree; 
typedef SUM(Integer, PROD(Tree, Tree)) Tree; 

only this does not work, neither in GNU C++ nor in Bor- 
land C++. It seems that the only way to overcome this 
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A 

...... Hierarchy of implementations 
........ (letter classes) 

° . .  
"'".. . . . . .  

Hierarchy of elements ........... 
(envelope classes) ....... 

Element ]- "~ Boolean ] 

~ Functi,m<In,Out> I 

t Lifted<T> I 
-~ Prealuct<TI ,T2> ~--~ SPreduct<TT I,T2> ] 

-~ Sum<TI,T2> ~--~ CSum<TI,T2> ] 

Valuelmpl ~- 

-~P . . . .  ,~rImp, i 

5 F'x'mp' I 
t Conditionallmpt [ 
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-~ Sndlmpl 

-~ Outllmpl 

Outrlmpl 

Isllmpl 

-~ lsrlmpl 

Bottomlmpl 1 ~  Abstraclionlmpl 

Functionlmpl ~ Suictlmpl 

-~ Booleanlmpl IL~ Updatelmpl 

-~ Liftedlmpl ] 
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-~ Atomlmpl I 

t Integerlmpl I 

-~J BinaryOperatorlmpl<ll,12,1R> I 
UnaryOperatorlmpl<l,lR> I 

Figure 5: Class hierarchies for domain elements and implementations. 

problem is the following definition, which is problematic 
because of our previous remark: 

class Tree: public SUM(Integer, PROD(Tree, Tree)) 
{ 
public: 

Tree (const SUM(Integer, PROD(Tree, Tree)) & t): 
SUM(Integer, PROD(Tree, Tree))(t) { } 

); 

Preprocessor 

The framework that we suggest in the previous section is 
capable of expressing denotational descriptions in a fairly 
natural way. However, element expressions contain re- 
dundant information and this is a possible source of errors. 
The redundant information is the type of parameter in- 
stances. Consider the expression A z : N. (A z : N. z) z, 
which is written as: 

We tried unsuccessfully to overcome these two diffi- 
culties by using the C++ preprocessor. It seems that this 
is not possible, because C++ lacks lexical closures and 
variable scoping within expressions. It is possible, how- 
ever, to implement an external preprocessor that will con- 
vert A-notation with named dummies to de Bruijn indices 
and explicitely typed parameter instances. We have im- 
plemented such a preprocessor consisting of 183 lines in 
f lex and bison, with a grammar of 8 terminal and 4 nonter- 
minal symbols. By using the preprocessor, the previous 
element expression can be written as: 

lambda(x: Integer. lambda(y: Integer. y)(x)) 

No redundant information is given and this notation is 
much clearer and more natural than the previous one. 

Extensions 
lambda(Integer) (lambda(Integer) arg(Integer, i)) 

(arg(Integer, i)) 

There are two difficulties with the representation of such 
an expression: (i) named dummies in A-abstractions have 
to be expressed as de Bruijn indices, and (ii) the types of 
parameter instances have to be explicitely specified, al- 
though this information is redundant. The former is a mat- 
ter of choice, simplifying the framework and improving 
its performance; on the other hand, named dummies pro- 
vide a more natural way of representing A-abstractions. 
The latter, however, is a problem of the implementation, 
due to the lack of type inference in the type system of C++. 

It is possible to enhance our framework by using a set of 
extensions to C++. The set of GNU extensions allows us 
to get rid of the preprocessor, without affecting the read- 
ability of element expressions. The two extensions that 
are particularly useful are: 

• Statement expressions: compound statements within 
parentheses can appear within expressions. The last 
statement in the compound statement determines the 
value of the whole construct. 

• typeof: a compile-time operator, referring to the type 
of an expression which is never evaluated. It can 
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be used in any type expression and is very useful in 
combination with statement expressions. 

The first and obvious improvement to our framework, 
by using the two GNU extensions that were mentioned 
above, is that our meta-language can now use named dum- 
mies instead of de Bruijn indices in A-abstractions. The 
set of evaluation rules must be revised, but the only point 
that needs special treatment is textual substitution in A- 
abstractions, solved by renaming dummies whenever nec- 
essary. A second important improvement is that we can 
define a class template for domains themselves, namely 
Domain<E>, in addition to classes for domain elements. 
This allows us to represent domain constructors as C++ 
operators, and use such domain expressions in element ex- 
pressions, whenever this is required. The type parameter 
E that is used in this class template represents the type of 
domain elements. We can then define: 

Domain<Integer> N; 
Domain<Boolean> T; 

The class template Domain<E> is defined as: 

template<class E> 
class Domain 
( 
public: 

Domain () { ) 
E * nullInstance () const { return NULL; } 
E bottomInstance () const 

{ return E(new BottomImpl()); } 
E operator () (const E & e) { return e; } 

}; 

#define bottom(T) ((T).bottomInstance()) 
#define OBJ(T) typeof(*((T).nullInstance()) ) 

template<class El, class E2> 
Domain<FUN(E1, E2)> operator I= ( 

const Domain<El> & dl, const Domain<E2> & d2) 
[ 

return Domain<FUN(E1, E2)>; 
) 

where o p e r a t o r  I = represents the domain construc- 
tor for functions and o p e r a t o r  ( ) simplifies the ex- 
pression of domain elements, allowing expressions such 
as N ( 42 ) .  The macro b o t t o m  returns the bottom ele- 
ment of a domain, whereas the macro OBJ (T) returns the 
type of a given domain's element. Finally, the A-notation 
can be implemented as: 4 

#define lambda(v, T, E) (lambdaOperator(#v, T, \ 
({ OBJ(T) v(new ParameterImpl(#v)); \ 

new typeof( E )(E); )))) 

template<class In, class Out> 
FUN(In, Out) lambdaOperator ( 

const char * dummy, const Domain<In> &, Out * exp) 
{ 

FUN(In, Out) result(new AbstractionImpl( 
dummy, exp->getImpl())); 

delete exp; return result; 
} 

4 We had to use a pointer type for the result of  the statement expres- 
sion because of  a bug in GNU C++ statement expressions. 

As an example, consider again the element expression 
(Ax : N --~ N.  Ay  : N.  z y ) ( A z  : N. x)42. This 
time, the evaluation of this expression is performed by the 
following C++ code: 

OBJ(N) x = (lambda(x, NI=N, lambda(y, 
(lambda(x, N, x))(N(42)); 

cout << x.evaluate() << endl; 

N, x(y)))) 

A third possible extension, the presence of which 
would change our framework radically and would much 
improve its performance, is unnamed functions as sug- 
gested in [2]. Unnamed functions would render unnec- 
essary the definition of a special class for A-abstractions 
and would much simplify our hierarchy of implementa- 
tions. They would also significantly narrow the gap be- 
tween C++ and functional languages. Unfortunately, un- 
named functions have not been adopted, to the best of our 
knowledge, in any popular C++ compiler. 

Example 

We have implemented an interpreter for PFLC using the 
denotational description that was given in Figures 2 and 3. 
The program consisted of 971 lines of code, including a 
number of test programs, whereas a similar implementa- 
tion in ML consisted of only 426 lines of code. A sig- 
nificant part of the C++ implementation was devoted to 
the implementation of syntactic domains (336 lines, com- 
pared to 38 lines in the ML implementation), since we de- 
cided not to use coalesced sums and products in order to 
simplify the equations. From this experience, it is now 
clear that we need to facilitate the implementation of syn- 
tactic domains in our framework. 

The following code is a part of the implementation of 
PFLC's semantic equations, in the form recognized by our 
preprocessor. Syntactic and semantic domains were de- 
fined earlier in the C++ program and the problem of recur- 
sive domains, such as V, was handled by defining empty 
classes, as discussed earlier. 

V setuP (const Expr & E) 
{ 

return semE(E) (lambda(I: Ide. BOTTOM(V) ) ) 
(lambda(e: V. e)); 

) 

FUN(Env, FUN(K, V)) seinE (const Expr & E) 
( 

if (E.is ("Int' " ) ) 
return lambda(rho: Env. lambda(kappa: K. 

kappa(V: : inl (B: :inl (semN(E [i ] ) ) ) ) ) ) ; 
else if (E.is("Fix'")) 

return lambda(rho: Env. lambda(kappa: K. 
kappa(phi(fix(lambda(w: FUN(V, FUN(K, V)). 

delta(seinE(E[2) ) (update(rho, E[i) , phi (w))) 
(lambda(e: V. e))))))))); 

else if (E.is("Abort'")) 
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return lambda(rho: Env. lambda(kappa: K. 
semE(E[1]) (rho) (lambda(e: V. e)))); 

The scheme for accessing syntactic domains (method i s  
and o p e r a t o r  [ ] ) is a simplification of the one that 
was actually used. In fact, this scheme cannot be im- 
plemented in a type-safe way without dynamic type cast- 
ing in function seraE and a hierarchy of class templates 
for syntactic domains. Except for the (rather clumsy) im- 
plementation of syntactic domains, we believe that the 
implementation of an interpreter for PFI_C by using the 
suggested framework was entirely successful and demon- 
strates the ability of C++ to implement denotational de- 
scriptions in a natural way. 

Conclusion 

We have presented a type-safe framework for the imple- 
mentation of denotational descriptions in C++, exploit- 
ing the object-oriented programming paradigm. We have 
demonstrated that the widespread general-purpose C++, 
although not a natural choice for this problem domain, can 
be successfully used for the study of programming lan- 
guages. The suggested framework is implemented by us- 
ing pure C++, although a set of extensions would be valu- 
able as discussed earlier. It could be translated to other 
object-oriented languages supporting inheritance, poly- 
morphism and generic types. 

The main criteria in the evaluation of our framework 
are expressiveness and performance. Concerning the first 
criterion, our framework provides a natural way of ex- 
pressing denotational descriptions. Some drawbacks of 
our approach, imposed by C++, have been discussed in 
previous sections. Compared with other general purpose 
programming languages that have been suggested, our 
framework is inferior to implementations in functional 
languages such as ML. The object-oriented programming 
paradigm results in more natural denotational descriptions 
than possible implementations using imperative program- 
ming languages. 

On the other hand, we have consciously neglected per- 
formance in the implementation of our framework. Per- 
formance is reduced because of three factors: 

• The memory management of C++ is poor for the re- 
quirements of this problem domain. This can be alle- 
viated by using a garbage collector and overloading 
operators new and delete. 

• A-abstractions and high-order functions are managed 
by the programmer instead of the compiler, resulting 
in poor optimizations when compared to those that 
are performed by the compiler of a functional pro- 
gramming language. This can only be solved by ex- 
tending C++ with an unnamed function feature, as 
discussed earlier. 

• A large number of virtual methods are required. This 
problem though is inherent in object-oriented pro- 
gramming with C++. 

Nevertheless, we do not consider performance to be a 
very significant factor in the evaluation of our framework. 
Implementations of denotational descriptions are mainly 
used as experimental execution models for the study of 
programming languages. In this context, performance is 
seldom an important issue. 

ML is a much more natural choice than C++ for the 
implementation of denotational descriptions, with respect 
to both evaluation criteria. There are two main reasons 
for this: (i) ML is a functional programming language 
and denotational descriptions are inherently functional; 
and (ii) ML has a polymorphic static type system, fea- 
turing type inference and high-order functions as first- 
class objects. In comparison, C++ lacks functional fea- 
tures. In the suggested framework we have attempted to 
integrate some functional features in C++ without extend- 
ing the language. Furthermore, although C++ has a pow- 
erful type system supporting inheritance, polymorphism 
and generic types by means of templates, implementa- 
tions in various C++ compilers present significant limita- 
tions, probably because its semantics are not yet clearly 
defined in a generally accepted standard. 
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