
ar
X

iv
:1

30
3.

17
16

v1
  [

cs
.P

L]
  7

 M
ar

 2
01

3

Static and Dynamic Semantics of NoSQL Languages

Véronique Benzaken1 Giuseppe Castagna2 Kim Nguyễn1 Jérôme Siméon3
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Abstract
We present a calculus for processing semistructured data that spans
differences of application area among several novel query lan-
guages, broadly categorized as “NoSQL”. This calculus letsusers
define their own operators, capturing a wider range of data process-
ing capabilities, whilst providing a typing precision so far typical
only of primitive hard-coded operators. The type inferencealgo-
rithm is based on semantic type checking, resulting in type infor-
mation that is both precise, and flexible enough to handle structured
and semistructured data. We illustrate the use of this calculus by
encoding a large fragment of Jaql, including operations anditera-
tors over JSON, embedded SQL expressions, and co-grouping,and
show how the encoding directly yields a typing discipline for Jaql
as it is, namely without the addition of any type definition ortype
annotation in the code.

1. Introduction
The emergence of Cloud computing, and the ever growing impor-
tance of data in applications, has given birth to a whirlwindof new
data models [19, 24] and languages. Whether they are developed
under the banner of “NoSQL” [12, 35], for BigData Analytics [5,
18, 28], for Cloud computing [3], or as domain specific languages
(DSL) embedded in a host language [21, 27, 32], most of them
share a common subset of SQL and the ability to handle semistruc-
tured data. While there is no consensus yet on the precise bound-
aries of this class of languages, they all share two common traits:
(i) an emphasis on sequence operations (eg, through the popular
MapReduce paradigm) and(ii) a lack of types for both data and pro-
grams (contrary to, say, XML programming or relational databases
where data schemas are pervasive). In [21, 22], Meijer argues that
such languages can greatly benefit from formal foundations,and
suggests comprehensions [7, 33, 34] as a unifying model. Although
we agree with Meijer for the need to provide unified, formal foun-
dations to those new languages, we argue that such foundations
should account for novel features critical to various application do-
mains that are not captured by comprehensions. Also, most ofthose
languages provide limited type checking, or ignore it altogether. We
believe type checking is essential for many applications, with usage
ranging from error detection to optimization. But we understand the
designers and programmers of those languages who are averseto
any kind of type definition or annotation. In this paper, we propose
a calculus which is expressive enough to capture languages that go
beyond SQL or comprehensions. We show how the calculus adapts
to various data models while retaining a precise type checking that
can exploit in a flexible way limited type information, information

An extended abstract of this work is included in the proceeding of
POPL 13, 40th ACM Symposium on Principles of Programming Languages,
ACM Press, 2013.

that is deduced directly from the structure of the program even in
the absence of any explicit type declaration or annotation.

Example. We use Jaql [5, 18], a language over JSON [19] devel-
oped for BigData analytics, to illustrate how our proposed calculus
works. Our reason for using Jaql is that it encompasses all the fea-
tures found in the previously cited query languages and includes a
number of original ones, as well. Like Pig [28] it supports sequence
iteration, filtering, and grouping operations on non-nested queries.
Like AQL [3] and XQuery [6], it features nested queries. Further-
more, Jaql uses a rich data model that allows arbitrary nesting of
data (it works on generic sequences of JSON records whose fields
can contain other sequences or records) while other languages are
limited to flat data models, such as AQL whose data-model is sim-
ilar to the standard relational model used by SQL databases (tuples
of scalars and of lists of scalars). Lastly, Jaql includes SQL as an
embedded sub-language for relational data. For these reasons, al-
though in the present work we focus almost exclusively on Jaql, we
believe that our work can be adapted without effort to a wide array
of sequence processing languages.

The following Jaql program illustrates some of those features.
It performs co-grouping [28] between one JSON input, containing
information about departments, and one relational input contain-
ing information about employees. The query returns for eachde-
partment its name and id, from the first input, and the number of
high-income employees from the second input. A SQL expression
is used to select the employees with income above a given value,
while a Jaql filter is used to access the set of departments andthe
elements of these two collections are processed by the groupex-
pression (in Jaql “$” denotes the current element).

group
(depts -> filter each x (x.size > 50))

by g = $.depid as ds,
(SELECT * FROM employees WHERE income > 100)

by g = $.dept as es
into { dept: g,

deptName: ds[0].name,
numEmps: count(es) };

The query blends Jaql expressions (eg, filter which selects, in
the collectiondepts, departments with asize of more than50
employees, and the grouping itself) with a SQL statement (select-
ing employees in a relational table for which the salary is more
than100). Relations are naturally rendered in JSON as collections
of records. In our example, one of the key difference is that field
access in SQL requires the field to be present in the record, while
the same operation in Jaql does not. Actually, field selection in Jaql
is very expressive since it can be applied also to collections with the
effect that the selection is recursively applied to the components of
the collection and the collection of the results returned, and simi-
larly for filter and other iterators. In other words, the expression
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filter each x (x.size > 50) above will work as much when
x is bound to a record (with or without asize field: in the latter
case the selection returnsnull), as whenx is bound to a collection
of records or of arbitrary nested collections thereof. Thisaccounts
for the semistructured nature of JSON compared to the relational
model. Our calculus can express both, in a way that illustrates the
difference in both the dynamic semantics and static typing.

In our calculus, the selection of all records whosemandatory
field income is greater than 100 is defined as:
let Sel =

‘nil => ‘nil
| ({income: x, .. } as y , tail) =>

if x > 100 then (y,Sel(tail)) else Sel(tail)

(collections are encoded as listsà la Lisp) while the filtering among
records or arbitrary nested collections of records of thosewhere the
(optional)size field is present and larger than 50 is:
let Fil =

‘nil => ‘nil
| ({size: x, .. } as y,tail) =>

if x > 50 then (y,Fil(tail)) else Fil(tail)
| ((x,xs),tail) => (Fil(x,xs),Fil(tail))
| (_,tail) => Fil(tail)

The terms above show nearly all the basic building blocks of our
calculus (only composition is missing), building blocks that we dub
filters. Filters can be defined recursively (eg, Sel(tail) is a recur-
sive call); they can perform pattern matching as found in functional
languages (the filterp⇒⇒⇒ f executesf in the environment resulting
from the matching of patternp); they can be composed in alterna-
tion (f1|||f2 tries to applyf1 and if it fails it appliesf2), they can
spread over the structure of their argument (eg, (((f1,f2))) —of which
(x,Sel(tail)) is an instance— requires an argument of a prod-
uct type and applies the correspondingfi component-wise).

For instance, the filterFil scans collections encoded as listsà
la Lisp (ie, by right associative pairs with‘nil denoting the empty
list). If its argument is the empty list, then it returns the empty list;
if it is a list whose head is a record with asize field (and possibly
other fields matched by “. .”), then it captures the whole record in
y, the content of the field inx, the tail of the list intail, and keeps
or discardsy (ie, the record) according to whetherx (ie, the field)
is larger than 50; if the head is also a list, then it recursively applies
both on the head and on the tail; if the head of the list is neither a
list, nor a record with a size field, then the head is discarded. The
encoding of the whole grouping query is given in Section 5.3.

Our aim is not to propose yet another “NoSQL/cloud comput-
ing/bigdata analytics” query language, but rather to show how to
expressandtypesuch languages via an encoding into our core cal-
culus. Each such language can in this way preserve its execution
model but obtain for free a formal semantics, a type inference sys-
tem and, as it happens, a prototype implementation. The typeinfor-
mation is deduced via the encoding (without the need ofany type
annotation) and can be used for early error detection and debugging
purposes. The encoding also yields an executable system that can
be used for rapid prototyping. Both possibilities are critical in most
typical usage scenarios of these languages, where deployment is
very expensive both in time and in resources. As observed by Mei-
jer [21] the advent of big data makes it more important than ever
for programmers (and, we add, for language and system designers)
to have a single abstraction that allows them to process, transform,
query, analyze, and compute across data presenting utter variability
both in volume and in structure, yielding a “mind-blowing number

For the sake of precision, to comply with Jaql’s semantics the last pat-
tern should rather be({..},tail) => Fil(tail): since field selection
e.size fails whenevere is not a record or a list, this definition would detect
the possibility of this failure by a static type error.

of new data models, query languages, and execution fabrics”[21] .
The framework we present here, we claim, encompasses them all.
A long-term goal is that the compilers of these languages could use
the type information inferred from the encoding and the encoding
itself to devise further optimizations.

Types. Pig [28], Jaql [18, 29], AQL [3] have all been conceived
by considering just the map-reduce execution model. The type (or,
schema) of the manipulated data did not play any role in theirde-
sign. As a consequence these languages are untyped and, when
present, types are optional and clearly added as an afterthought.
Differences in data model or type discipline are particularly im-
portant when embedded in a host language (since they yield the
so-called impedance mismatch). The reason why types were/are
disregarded in such languages may originate in an alleged tension
between type inference and heterogeneous/semistructureddata: on
the one hand these languages are conceived to work with collec-
tions of data that are weakly or partially structured, on theother
hand current languages with type inference (such as Haskellor
ML) can work only on homogeneous collections (typically, lists of
elements of the same type).

In this work we show that the two visions can coexist: we type
data by semantic subtyping [16], a type system conceived forsemi-
structured data, and describe computations by ourfilters which are
untyped combinators that, thanks to a technique of weak typing in-
troduced in [9], can polymorphically type the results of data query
and processing with a high degree of precision. The conception of
filters is driven by the schema of the data rather than the execution
model and we use them(i) to capture and give a uniform semantics
to a wide range of semi structured data processing capabilities,(ii)
to give a type system that encompasses the types defined for such
languages, if any, notably Pig, Jaql and AQL (but also XML query
and processing languages: see Section 5.3),(iii) to infer the pre-
cise result types of queries written in these languagesas they are
(so without the addition of any explicit type annotation/definition or
new construct), and(iv) to show how minimal extensions/modifi-
cations of the current syntax of these languages can bring dramatic
improvements in the precision of the inferred types.

The types we propose here are extensible record types and het-
erogeneous lists whose content is described by regular expressions
on types as defined by the following grammar:

Types t ::= v (singleton)
| {{{ℓ:t, . . . , ℓ:t}}} (closed record)
| {{{ℓ:t, . . . , ℓ:t , ......}}} (open record)
| [r] (sequences)
| int | char (base)
| any | empty | null (special)
| t|||t (union)
| t\\\t (difference)

Regexp r ::= ε | t | r* | r+ | r? | r r | r|||r

whereε denotes the empty word. The semantics of types can be
expressed in terms of sets ofvalues(values are either constants
—such as1, 2, true, false, null, ’1’, the latter denoting the
character1—, records of values, or lists of values). So the single-
ton typev is the type that contains just the valuev (in particular
null is the singleton type containing the valuenull). The closed
record type{{{a:int, b:int}}} contains all record values with exactly
two fields a and b with integer values, while the open record
type{{{a:int, b:int , ......}}} contains all record values withat leasttwo
fieldsa andb with integer values. The sequence type[r] is the set
of all sequences whose content is described by theregular expres-
sionr; so, for example[char*] contains all sequences of charac-
ters (we will usestring to denote this type and the standard double
quote notation to denote its values) while[({{{a:int}}} {{{a:int}}})+]

2 2018/10/31



denotes nonempty lists of even length containing record values of
type{{{a:int}}}. The union types|||t contains all the values ofs and
of t, while the difference types\\\t contains all the values ofs that
are not int. We shall usebool as an abbreviation of the union of
the two singleton types containing true and false:‘true|||‘false.
any andempty respectively contain all and no values. Recursive
type definitions are also used (see Section 2.2 for formal details).

These types can express all the types of Pig, Jaql and AQL,
all XML types, and much more. So for instance, AQL includes
only homogeneous lists of typet, that can be expressed by our
types as[ t* ]. In Jaql’s documentation one can find the type
[ long(value=1), string(value="a"), boolean* ]which
is the type of arrays whose first element is 1, the second is thestring
"a" and all the other are booleans. This can be easily expressed in
our types as[1 "a" bool*]. But while Jaql only allows a lim-
ited use of regular expressions (Kleene star can only appearin tail
position) our types do not have such restrictions. So for exam-
ple [char* ’@’ char* ’.’ ((’f’ ’r’)|(’i’ ’t’))] is the
type of all strings (ie, sequences of chars) that denote email ad-
dresses ending by either.fr or .it. We use some syntactic sugar
to make terms as the previous one more readable (eg, [ .* ’@’
.* (’.fr’|’.it’)]). Likewise, henceforth we use{{{a?:t}}} to de-
note that the fielda of typet is optional; this is just syntactic sugar
for stating that either the field is undefined or it contains a value of
typet (for the formal definition see Appendix G).

Coming back to our initial example, the filterFil defined before
expects as argument a collection of the following type:

type Depts = [ ( {size?: int, ..} | Depts )* ]

that is a, possibly empty, arbitrary nested list of records with an
optionalsize field of typeint: notice that it is important to specify
the optional field and its type since asize field of a different type
would make the expressionx > 50 raise a run-time error. This
information is deduced just from thestructureof the filter (since
Fil does not contain any type definition or annotation).

We define a type inference system that rejects any argument of
Fil that has not typeDepts, and deduces for arguments of type
[({size: int, addr: string}| {sec: int} | Depts)+]
(which is a subtype ofDepts) the result type[({size: int,
addr: string}|Depts)*] (so it does not forget the fieldaddr
but discards the fieldsec, and by replacing* for + recognizes that
the test may fail).

By encoding primitive Jaql operations into a formal core cal-
culus we shall provide them a formal and clean semantics as
well as precise typing. So for instance it will be clear that apply-
ing the following dot selection[ [{a:3}] {a:5, b:true} ].a
the result will be[ [3] 5 ] and we shall be able to deduce
that _.a applied to arbitrary nested lists of records with an op-
tional integera field (ie, of type t = {{{a?:int}}} | [ t * ] )
yields arbitrary nested lists ofint or null values (ie, of type
u = int | null | [ u * ]).

Finally we shall show that if we accept to extend the current
syntax of Jaql (or of some other language) by some minimal filter
syntax (eg, the pattern filter) we can obtain a huge improvement in
the precision of type inference.

Contributions. The main contribution of this work is the defini-
tion of a calculus that encompasses structural operators scattered
over NoSQL languages and that possesses some characteristics
that make it unique in the swarm of current semi-structured data
processing languages. In particular it is parametric (though fully
embeddable) in a host language; it uniformly handles both width
and deep nested data recursion (while most languages offer just the

The only exception are the “bags” types we did not include in order to focus
on essential features.

former and limited forms of the latter); finally, it includesfirst-class
arbitrary deep composition (while most languages offer this opera-
tor only at top level), whose power is nevertheless restrained by the
type system.

An important contribution of this work is that it directly com-
pares a programming language approach with the tree transducer
one. Our calculus implements transformations typical of top-down
tree transducers but has several advantages over the transducer ap-
proach:(1) the transformations are expressed in a formalism im-
mediately intelligible to any functional programmer;(2) our cal-
culus, in its untyped version, is Turing complete;(3) its transfor-
mations can be statically typed (at the expenses of Turing com-
pleteness) without any annotation yielding precise resulttypes(4)
even if we restrict the calculus only to well-typed terms (thus losing
Turing completeness), it still is strictly more expressivethan well-
known and widely studied deterministic top-down tree transducer
formalisms.

The technical contributions are(i) the proof of Turing com-
pleteness for our formalism,(ii) the definition of a type system
that copes with records with computable labels(iii) the definition
of a static type system for filters and its correctness,(iv) the defini-
tion of a static analysis that ensures the termination (and the proof
thereof) of the type inference algorithm with complexity bounds
expressed in the size of types and filters and(iv) the proof that
the terms that pass the static analysis form a language strictly more
expressive than top-down tree transducers.

Outline. In Section 2 we present the syntax of the three com-
ponents of our system. Namely, a minimal set ofexpressions, the
calculus offilters used to program user-defined operators or to en-
code the operators of other languages, and the coretypesin which
the types we just presented are to be encoded. Section 3 defines
the operational semantics of filters and a declarative semantics for
operators. The type system as well as the type inference algorithm
are described in Section 4. In Section 5 we present how to han-
dle a large subset of Jaql. Section 8 reports on some subtler de-
sign choices of our system. We compare related works in Section 9
and conclude in Section 10. In order to avoid blurring the presen-
tation, proofs, secondary results, further encodings, andextensions
are moved into a separate appendix.

2. Syntax
In this section we present the syntax of the three componentsof our
system: a minimal set ofexpressions, the calculus offilters used to
program user-defined operators or to encode the operators ofother
languages, and the coretypesin which the types presented in the
introduction are to be encoded.

The core of our work is the definition of filters and types. The
key property of our development is that filters can be graftedto
any host language that satisfies minimal requirements, by simply
adding filter application to the expressions of the host language.
The minimal requirements of the host language for this to be possi-
ble are quite simple: it must have constants (typically for typesint,
char, string, andbool), variables, and either pairs or record val-
ues (not necessarily both). On the static side the host language must
have at least basic and products types and be able to assign a type to
expressions in a given type environment (ie, under some typing as-
sumptions for variables). By the addition of filter applications, the
host language can acquire or increase the capability to define poly-
morphic user-defined iterators, query and processing expressions,
and be enriched with a powerful and precise type system.

2.1 Expressions

In this work we consider the following set of expressions

3 2018/10/31



Definition 1 (expressions).
Exprs e ::= c (constants)

| x (variables)
| (e, e) (pairs)
| {e:e, ..., e:e} (records)
| e+ e (record concatenation)
| e \ ℓ (field deletion)
| op(e, ..., e) (built-in operators)
| fe (filter application)

wheref ranges overfilters (defined later on),c over generic con-
stants, andℓ overstringconstants.

Intuitively, these expressions represent the syntax supplied by
the host language —though only the first two and one of the next
two are really needed— that we extend with (the missing expres-
sions and) the expression of filter application. Expressions are
formed by constants, variables, pairs, records, and operation on
records: record concatenation gives priority to the expression on
the right. So if inr1 + r2 both records contains a field with the
same label, it is the one inr2 that will be taken, while field deletion
does not require the record to contain a field with the given label
(though this point is not important). The metavariableop ranges
over operators as well as functions and other constructionsbelong-
ing to or defined by the host language. Among expressions we sin-
gle out a set ofvalues, intuitively the results of computations, that
are formally defined as follows:

v ::= c | (v, v) | {ℓ:v; . . . ; ℓ:v}

We use"foo" for character string constants,’c’ for characters,
1 2 3 4 5 and so on for integers, and backquoted words, such as
‘foo, for atoms (ie, user-defined constants). We use three distin-
guished atoms‘nil, ‘true, and‘false. Double quotes can be
omitted for strings that are labels of record fields: thus we write
{name:"John"} rather than{"name":"John"}. Sequences (aka,
heterogeneous lists, ordered collections, arrays) are encodedà la
LISP, as nested pairs where the atom‘nil denotes the empty list.
We use[e1 . . . en] as syntactic sugar for(e1, . . . , (en, ‘nil)...).

2.2 Types

Expressions, in particular filter applications, are typed by the fol-
lowing set of types (typically only basic, product, recursive and
—some form of— record types will be provided by the host lan-
guage):

Definition 2 (types).

Types t ::= b (basic types)
| v (singleton types)
| (((t,,,t))) (products)
| {{{ℓ:t, . . . , ℓ:t}}} (closed records)
| {{{ℓ:t, . . . , ℓ:t , ......}}} (open records)
| t|||t (union types)
| t&&&t (intersection types)
| ¬¬¬t (negation type)
| empty (empty type)
| any (any type)
| µT.t (recursive types)
| T (recursion variable)
| Op(t, ..., t) (foreign type calls)

where every recursion is guarded, that is, every type variable is
separated from its binder by at least one application of a type
constructor (ie, products, records, orOp).

Most of these types were already explained in the introduction.
We have basic types (int, bool, ....) ranged over byb and sin-
gleton typesv denoting the type that contains only the valuev.

Record types come in two flavors: closed record types whose val-
ues are records with exactly the fields specified by the type, and
open record types whose values are records withat leastthe fields
specified by the type. Product types are standard and we have a
complete set of type connectives, that is, finite unions, intersections
and negations. We useempty, to denote the type that has no values
andany for the type of all values (sometimes denoted by “_” when
used in patterns). We added a term for recursive types, whichal-
lows us to encode both the regular expression types defined inthe
introduction and, more generally, the recursive type definitions we
used there. Finally, we useOp (capitalized to distinguish it from
expression operators) to denote the host language’stypeoperators
(if any). Thus, when filter applications return values whosetype
belongs just to the foreign language (eg, a list of functions) we sup-
pose the typing of these functions be given by some type operators.
For instance, ifsucc is a user defined successor function, we will
suppose to be given its type in the formArrow(int,int) and, simi-
larly, for its application, sayapply(succ,3) we will be given the type
of this expression (presumablyint). HereArrow is a type operator
andapply an expression operator.

The denotational semantics of types as sets of values, that we
informally described in the introduction, is at the basis ofthe defi-
nition of the subtyping relation for these types. We say thata type
t1 is a subtype of a typet2, notedt1 ≤ t2, if and only if the set
of values denoted byt1 is contained (in the set-theoretic sense) in
the set of values denoted byt2. For the formal definition and the
decision procedure of this subtyping relation the reader can refer to
the work on semantic subtyping [16].

2.3 Patterns

Filters are our core untyped operators. All they can do are three
different things:(1) they can structurally decompose and transform
the values they are applied to, or(2) they can be sequentially
composed, or(3) they can do pattern matching. In order to define
filters, thus, we first need to define patterns.

Definition 3 (patterns).

Patterns p ::= t (type)
| x (variable)
| (((p,,,p))) (pair)
| {{{ℓ:p, . . . , ℓ:p}}} (closed rec)
| {{{ℓ:p, . . . , ℓ:p , ......}}} (open rec)
| p|||p (or/union)
| p&&&p (and/intersection)

where the subpatterns forming pairs, records, and intersections
have distinct capture variables, and those forming unions have the
same capture variables.

Patterns are essentially types in which capture variables (ranged
over byx, y, . . . ) may occur in every position that is not under a
negation or a recursion. A pattern is used to match a value. The
matching of a valuev against a patternp, notedv/p, either fails
(notedΩ) or it returns a substitution from the variables occurring
in the pattern, into values. The substitution is then used asan
environment in which some expression is evaluated. If the pattern is
a type, then the matching fails if and only if the pattern is matched
against a value that does not have that type, otherwise it returns
the empty substitution. If it is a variable, then the matching always
succeeds and returns the substitution that assigns the matched value
to the variable. The pair pattern(((p1,,,p2))) succeeds if and only if it
is matched against a pair of values and each sub-pattern succeeds
on the corresponding projection of the value (the union of the two
substitutions is then returned). Both record patterns are similar to
the product pattern with the specificity that in the open record
pattern “..” matches all the fields that are not specified in the
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pattern. An intersection patternp1&&&p2 succeeds if and only if
both patterns succeed (the union of the two substitutions isthen
returned). The union patternp1|||p2 first tries to match the patternp1
and if it fails it tries the patternp2.

For instance, the pattern(((int&&&x,,,y))) succeeds only if the
matched value is a pair of values(v1, v2) in which v1 is an in-
teger —in which case it returns the substitution{x/v1, y/v2}—
and fails otherwise. Finally notice that the notation “p as x” we
used in the examples of the introduction, is syntactic sugarfor p&&&x.

This informal semantics of matching (see [16] for the formal
definition) explains the reasons of the restrictions on capture vari-
ables in Definition 3: in intersections, pairs, and records all patterns
must be matched and, thus, they have to assign distinct variables,
while in union patterns just one pattern will be matched, hence the
same set of variables must be assigned, whichever alternative is se-
lected.

The strength of patterns is their connections with types andthe
fact that the pattern matching operator can be typedexactly. This is
entailed by the following theorems (both proved in [16]):

Theorem 4 (Accepted type [16]).For every patternp, the set of all
valuesv such thatv/p 6= Ω is a type. We call this set theaccepted
typeof p and note it by*p+.

The fact that the exact set of values for which a matching succeeds
is a type is not obvious. It states that for every patternp there exists
a syntactic type produced by the grammar in Definition 2 whose
semantics is exactly the set of all and only values that are matched
by p. The existence of this syntactic type, which we note*p+, is
of utmost importance for a precise typing of pattern matching. In
particular, given a patternp and a typet contained in (ie, subtype of)
*p+, it allows us to compute theexacttype of the capture variables
of p when it is matched against a value int:

Theorem 5 (Type environment [16]). There exists an algorithm
that for every patternp, and t ≤ *p+ returns a type environment
t/p ∈ Vars(p)→ Typessuch that(t/p)(x) = {(v/p)(x) | v : t}.

2.4 Filters

Definition 6 (filters). A filter is a term generated by:

Filters f ::= e (expression)
| p⇒⇒⇒ f (pattern)
| (((f ,f))) (product)
| {{{ℓ:f, . . . , ℓ:f , ..}}} (record)
| f|||f (union)
| µµµX...f (recursion)
| Xa (recursive call)
| f ;f (composition)
| o (declarative operators)

Operators o ::= groupby f (filter grouping)
| orderby f (filter ordering)

Arguments a ::= x (variables)
| c (constants)
| (((a,a))) (pairs)
| {{{ℓ:a, ..., ℓ:a}}} (record)

such that for every subterm of the formf ;g, no recursion variable
is free inf .

Filters are like transducers, that when applied to a value re-
turn another value. However, unlike transducers they possess more
“programming-oriented” constructs, like the ability to test an in-
put and capture subterms, recompose an intermediary resultfrom
captured values and a composition operator. We first describe in-
formally the semantics of each construct.

The expression filtere always returns the value corresponding
to the evaluation ofe (and discards its argument). The filterp⇒⇒⇒ f
applies the filterf to its argument in the environment obtained by
matching the argument againstp (provided that the matching does
not fail). This rather powerful feature allows a filter to perform two
critical actions:(i) inspect an input with regular pattern-matching
before exploring it and(ii) capture part of the input that can be
reused during the evaluation of the subfilterf . If the argument ap-
plication of fi to vi returnsv′i then the application of the product
filter (((f1,f2))) to an argument(v1, v2) returns(v′1, v

′
2); otherwise, if

any application fails or if the argument is not a pair, it fails. The
record filter is similar: it applies to each specified field thecorre-
sponding filter and, as stressed by the “. .”, leaves the other fields
unchanged; it fails if any of the applications does, or if anyof the
specified fields is absent, or if the argument is not a record. The fil-
terf1|||f2 returns the application off1 to its argument or, if this fails,
the application off2. The semantics of a recursive filter is given by
standard unfolding of its definition in recursive calls. Theonly real
restriction that we introduce for filters is that recursive calls can be
done only on arguments of a given form (ie, on arguments that have
the form of values where variables may occur). This restriction in
practice amounts to forbid recursive calls on the result of another
recursively defined filter (all other cases can be easily encoded).
The reason of this restriction is technical, since it greatly simpli-
fies the analysis of Section 4.5 (which ensures the termination of
type inference) without hampering expressiveness: filtersare Tur-
ing complete even with this restriction (see Theorem 7). Filters can
be composed: the filterf1;f2 appliesf2 to the result of applying
f1 to the argument and fails if any of the two does. The condition
that in every subterm of the formf ;g, f does not contain free re-
cursion variables is not strictly necessary. Indeed, we could allow
such terms. The point is that the analysis for the termination of the
typing would then reject all such terms (apart from trivial ones in
which the result of the recursive call is not used in the composition).
But since this restrictiondoes notrestrict the expressiveness of the
calculus (Theorem 7 proves Turing completeness with this restric-
tion), then the addition of this restriction is just a design(rather
than a technical) choice: we prefer to forbid the programmerto
write recursive calls on the left-hand side of a composition, than
systematically reject all the programs that use them in a non-trivial
way.

Finally, we singled out some specific filters (specifically, we
chosegroupby and orderby ) whose semantics is generally
specified in a declarative rather than operational way. These do not
bring any expressive power to the calculus (the proof of Turing
completeness, Theorem 7, does not use these declarative operators)
and actually they can be encoded by the remaining filters, butit
is interesting to single them out because they yield either simpler
encodings or more precise typing.

3. Semantics
The operational semantics of our calculus is given by the reduction
semantics for filter application and for the record operations. Since
the former is the only novelty of our work, we save space and omit
the latter, which are standard anyhow.

3.1 Big step semantics

We define a big step operational semantics for filters. The definition
is given by the inference rules in Figure 1 for judgements of the
form δ;γ ⊢eval f(a)  r and describes how the evaluation of
the application of filterf to an argumenta in an environmentγ
yields an objectr wherer is either a value orΩ. The latter is
a special value which represents a runtime error: it is raised by
the rule(error) either because a filter did not match the form of
its argument (eg, the argument of a filter product was not a pair)
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(expr)
δ;γ ⊢eval e(v)  r

r = eval(γ, e)

(prod) δ;γ ⊢eval f1(v1) r1 δ;γ ⊢eval f2(v2) r2
δ;γ ⊢eval (((f1,f2)))(v1, v2) (r1, r2)

if r1 6= Ω
andr2 6= Ω

(patt) δ;γ , v/p ⊢eval f(v)  r
δ;γ ⊢eval (p ⇒⇒⇒ f)(v)  r

if v/p 6= Ω

(comp) δ;γ ⊢eval f1(v)  r1 δ;γ ⊢eval f2(r1) r2
δ;γ ⊢eval (f1;f2)(v)  r2

if r1 6= Ω

(union1) δ;γ ⊢eval f1(v)  r1
δ;γ ⊢eval (f1|||f2)(v)  r1

if r1 6= Ω

(union2) δ;γ ⊢eval f1(v)  Ω δ;γ ⊢eval f2(v)  r2
δ;γ ⊢eval (f1|||f2)(v)  r2

(rec) δ, (X 7→ f);γ ⊢eval f(v)  r
δ;γ ⊢eval (µµµX...f)(v)  r

(rec-call) δ;γ ⊢eval (δ(X))(a)  r
δ;γ ⊢eval (Xa)(v)  r

(error)
δ;γ ⊢eval f(a)  Ω

if no other rule applies

(recd) δ;γ ⊢eval f1(v1) r1 · · · δ;γ ⊢eval fn(vn) rn
δ;γ ⊢eval {{{ℓ1:f1, ..., ℓn:fn , ..}}}({{{ℓ1:v1, ..., ℓn:vn, ..., ℓn+k:vn+k}}}) {{{ℓ1:r1, ..., ℓn:rn, ..., ℓn+k:vn+k}}}

if ∀i, ri 6= Ω

Figure 1. Dynamic semantics of filters

or because some pattern matching failed (ie, the side condition
of (patt) did not hold). Notice that the argumenta of a filter is
always a valuev unless the filter is the unfolding of a recursive
call, in which case variables may occurr in it (cf. rule rec-call).
Environmentδ is used to store the body of recursive definitions.

The semantics of filters is quite straightforward and inspired
by the semantics of patterns. Theexpressionfilter discards its
input and evaluates (rather, asks the host language to evaluate) the
expressione in the current environment (expr). It can be thought
of as the right-hand side of a branch in amatch_with construct.

Theproductfilter expects a pair as input, applies its sub-filters
component-wise and returns the pair of the results (prod). This
filter is used in particular to express sequence mapping, as the first
componentf1 transforms the element of the list andf2 is applied
to the tail. In practice it is often the case thatf2 is a recursive call
that iterates on arbitrary lists and stops when the input is‘nil. If
the input is not a pair, then the filter fails (rule (error ) applies).

Therecordfilter expects as input a record value withat leastthe
same fields as those specified by the filter. It applies each sub-filter
to the value in the corresponding field leaving the contents of other
fields unchanged (recd). If the argument is not a record value or it
does not contain all the fields specified by the record filter, or if the
application of any subfilter fails, then the whole application of the
record filter fails.

Thepatternfilter matches its input valuev against the patternp.
If the matching fails so the filter does, otherwise it evaluates its sub-
filter in the environment augmented by the substitutionv/p (patt).

Thealternativefilter follows a standard first-match policy: If the
filter f1 succeeds, then its result is returned (union-1). If f1 fails,
thenf2 is evaluated against the input value (union-2). This filter is
particularly useful to write the alternative of two (or more) pattern
filters, making it possible to conditionally continue a computation
based on the shape of the input.

Thecompositionallows us to pass the result off1 as input tof2.
The composition filter is of paramount importance. Indeed, without
it, our only way to iterate (deconstruct) an input value is touse a
productfilter, which always rebuilds a pair as result.

Finally, a recursivefilter is evaluated by recording its body in
δ and evaluating it (rec), while for arecursive callwe replace the
recursion variable by its definition (rec-call).

This concludes the presentation of the semantics of non-
declarative filters (ie, without groupby and orderby). These form a
Turing complete formalism (full proof in Appendix B):

Theorem 7 (Turing completeness). The language formed by
constants, variables, pairs, equality, and applications of non-
declarative filters is Turing complete.

Proof (sketch). We can encode untyped call-by-valueλ-calculus
by first applying continuation passing style (CPS) transformations
and encoding CPS term reduction rules and substitutions viafilters.
Thanks to CPS we eschew the restrictions on composition.

3.2 Semantics of declarative filters

To conclude the presentation of the semantics we have to define the
semantics of groupby and orderby. We prefer to give the semantics
in a declarative form rather than operationally in order notto tie it
to a particular order (of keys or of the execution):

Groupby: groupby f applied to a sequence[v1 . . . vm] reduces
to a sequence[ (k1, l1) . . .(kn, ln) ] such that:
1. ∀i, 1 ≤ i ≤ m, ∃j, 1 ≤ j ≤ n, s.t.kj = f(vi)
2. ∀j, 1 ≤ j ≤ n, ∃i, 1 ≤ i ≤ m, s.t.kj = f(vi)
3. ∀j, 1 ≤ j ≤ n, lj is a sequence:[ vj1 . . . vjnj

]

4. ∀j, 1 ≤ j ≤ n, ∀k, 1 ≤ k ≤ nj , f(vjk) = kj
5. ki = kj ⇒ i = j
6. l1, . . . , ln is a partition of[v1 . . . vm ]

Orderby: orderby f applied to[v1 . . . vn] reduces to[v′1 . . . v
′
n]

such that:
1. [v′1 . . . v

′
n] is a permutation of[v1 . . . vn],

2. ∀i, j s.t.1 ≤ i ≤ j ≤ n, f(vi) ≤ f(vj)

Since the semantics of both operators is deeply connected toa
notion of equality and order on values of the host language, we
give them as “built-in” operations. However we will illustrate how
our type algebra allows us to provide very precise typing rules,
specialized for their particular semantics. It is also possible to
encode co-grouping (orgroupby on several input sequences) with
a combination ofgroupby and filters (cf. Appendix H).

3.3 Syntactic sugar

Now that we have formally defined the semantics of filters we can
use them to introduce some syntactic sugar.

Expressions. The reader may have noticed that the productions
for expressions (Definition 1) do not define any destructor (eg,
projections, label selection, . . . ), just constructors. The reason is
that destructors, as well as other common expressions, can be
encoded by filter applications:

e.ℓ
def
= ({{{ℓ:x , ......}}} ⇒⇒⇒ x)e

fst(e)
def
= ((((x,,,any)))⇒⇒⇒ x)e

snd(e)
def
= ((((any,,,x)))⇒⇒⇒ x)e

let p = e1 in e2
def
= (p⇒⇒⇒ e2)e1

if e then e1 else e2
def
= (‘true⇒⇒⇒ e1|||‘false⇒⇒⇒ e2)e
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match e with p1⇒⇒⇒ e1|...|pn⇒⇒⇒ en
def
= (p1⇒⇒⇒ e1||| . . . |||pn⇒⇒⇒ en)e

These are just a possible choice, but others are possible. For in-
stance in Jaql dot selection is overloaded: when_.ℓ is applied to
a record, Jaql returns the content of itsℓ field; if the field is ab-
sent or the argument isnull, then Jaql returnsnull and fails if
the argument is not a record; when applied to a list (‘array’ in Jaql
terminology) it recursively applies to all the elements of the list. So
Jaql’s “_.ℓ” is precisely defined as

µµµX...({{{ℓ:x , ......}}} ⇒⇒⇒ x ||| ({{{..}}}|||null)⇒⇒⇒ null ||| (((h,,,t)))⇒⇒⇒ (((Xh,Xt ))))

Besides the syntactic sugar above, in the next section we will use
t1 + t2 to denote the record type formed by all field types int2
and all the field types int1 whose label is not already present int2.
Similarly t\ ℓ will denote the record types formed by all field types
in t apart from the one labelled byℓ, if present. Finally, we will also
use for expressions, types, and patterns the syntactic sugar for lists
used in the introduction. So, for instance,[p1 p2 ... pn] is matched
by lists ofn elements provided that theiri-th element matchespi.

4. Type inference
In this section we describe a type inference algorithm for our
expressions.

4.1 Typing of simple and foreign expressions

Variables, constants, and pairs are straightforwardly typed by

[VARS]

Γ ⊢ x : Γ(x)

[CONSTANT]

Γ ⊢ c : c

[PROD]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ (e1, e2) : (((t1,,,t2)))

whereΓ denotes a typing environment that is a function from ex-
pression variables to types andc denotes both a constant and the
singleton type containing the constant. Expressions of thehost lan-
guage are typed by thetype function which given a type environ-
ment and a foreign expression returns the type of the expression,
and that we suppose to be given for each host language.

[FOREIGN]
Γ ⊢ e1 : t1 · · · Γ ⊢ en : tn

Γ ⊢ op(e1,..., en) : type((Γ, x1:t1, ..., xn:tn), op(x1,..., xn))

Since the variousei can contain filter applications, thus unknown
to the host language’s type system, the rule [FOREIGN] swaps them
with variables having the same type.

Notice that our expressions, whereas they includefilter appli-
cations, do not include applications of expressions to expressions.
Therefore if the host language provides function definitions, then
the applications of the host language must be dealt as foreign ex-
pressions, as well (cf. the expression operatorapply in Section 2.2).

4.2 Typing of records

The typing of records is novel and challenging because record ex-
pressions may contain stringexpressionsin label position, such as
in {{{e1:e2}}}, while in all type systems for record we are aware of,
labels are never computed. It is difficult to give a type to{{{e1:e2}}}
since, in general, we do not statically know the value thate1 will
return, and which is required to form a record type. All we can
(and must) ask is that this value will be a string. To type a record
expression{{{e1:e2}}}, thus, we distinguish two cases according to

The functiontype must be able to handle type environments with types
of our system. It can do it either by subsuming variable with specific types
to the types of the host language (eg, if the host language does not support
singleton types then the singleton type3 will be subsumed toint) or by
typing foreign expressions by using our types.

whether the typet1 of e1 is finite (ie, it contains only finitely many
values, such as, say,Bool) or not. If a type is finite, (finiteness of
regular types seen as tree automata can be decided in polynomial
time [10]), then it is possible to write it as a finite union of values
(actually, of singleton types). So consider again{{{e1:e2}}} and lett1
be the type ofe1 and t2 the type ofe2. First, t1 must be a sub-
type of string (since record labels are strings). So ift1 is finite
it can be expressed asℓ1||| · · · |||ℓn which means thate1 will return
the stringℓi for somei ∈ [1..n]. Therefore{{{e1:e2}}} will have type
{{{ℓi : t2}}} for somei ∈ [1..n] and, thus, the union of all these types,
as expressed by the rule [RCD-FIN ] below. If t1 is infinite instead,
then all we can say is that it will be a record with some (unknown)
labels, as expressed by rule [RCD-INF].

[RCD-FIN ]
Γ ⊢ e : ℓ1||| · · · |||ℓn Γ ⊢ e′ : t

Γ ⊢ {e:e′} : {{{ℓ1:t}}}||| · · · |||{{{ℓn:t}}}

[RCD-INF]
Γ ⊢ e : t Γ ⊢ e′ : t′ t ≤ string

t is infiniteΓ ⊢ {e:e′} : {{{..}}}

[RCD-MUL ]
Γ ⊢ {e1:e′1} : t1 · · · Γ ⊢ {en:e′n} : tn
Γ ⊢ {e1:e′1, . . . , en:e′n} : t1 + · · ·+ tn

[RCD-CONC]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 t1 ≤ {{{..}}}

t2 ≤ {{{..}}}Γ ⊢ e1 + e2 : t1 + t2

[RCD-DEL]
Γ ⊢ e : t

t ≤ {{{..}}}
Γ ⊢ e \ ℓ : t \ ℓ

Records with multiple fields are handled by the rule [RCD-MUL ]
which “merges” the result of typing single fields by using thetype
operator+ as defined inCDuce [4, 15], which is a right-priority
record concatenation defined to take into account undefined and
unknown fields: for instance,{{{a:int, b:int}}} + {{{a?:bool}}} =
{{{a:int|||bool, b:int}}}; unknown fields in the right-hand side may
override known fields of the left-hand side, which is why, forin-
stance, we have{{{a:int, b:bool}}} + {{{b:int , ......}}} = {{{b:int , ......}}};
likewise, for every record typet (ie, for every t subtype of{{{..}}})
we havet + {{{..}}} = {{{..}}}. Finally, [RCD-CONC] and [RCD-DEL]
deal with record concatenation and field deletion, respectively, in
a straightforward way: the only constraint is that all expressions
must have a record type (ie, the constraints of the form... ≤ {{{..}}}).
See Appendix G for formal definitions of all these type operators.

Notice that these rules do not ensure that a record will not have
two fields with the same label, which is a run-time error. Detect-
ing such an error needs sophisticated type systems (eg, dependent
types) beyond the scope of this work. This is why in the rule [RCD-
MUL ] we used type operator “+” which, in case of multiple occur-
ring labels, since records are unordered, corresponds to randomly
choosing one of the types bound to these labels: if such a fieldis
selected, it would yield a run-time error, so its typing can be am-
biguous. We can fine tune the rule [RCD-MUL ] so that when all the
ti are finite unions of record types, then we require to have pairwise
disjoint sets of labels; but since the problem would still persist for
infinite types we prefer to retain the current, simpler formulation.

4.3 Typing of filter application

Filters are not first-class: they can be applied but not passed around
or computed. Therefore we do not assign types to filters but, as for
any other expression, we assign types tofilter applications. The
typing rule for filter application

[FILTER-APP]
Γ ⊢ e : t Γ;∅;∅ ⊢fil f(t) : s

Γ ⊢ fe : s
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relies on an auxiliary deduction system for judgments of theform
Γ;∆;M ⊢fil f(t) : s that states that if in the environments
Γ,∆,M (explained later on) we apply the filterf to a value of
typet, then it will return a result of types.

To define this auxiliary deduction system, which is the core of
our type analysis, we first need to define*f+, the type accepted by
a filter f . Intuitively, this type gives a necessary condition on the
input for the filter not to fail:

Definition 8 (Accepted type). Given a filterf , theaccepted type
of f , written*f+ is the set of values defined by:

*e+ = any
*p⇒⇒⇒ f+ = *p +&&& * f+
*f1|||f2+ = *f1 + ||| * f2+
*(((f1,f2)))+ = ((( * f1 + ,,, * f2 + )))
*f1;f2+ = *f1+

*Xa+ = any
*µµµX...f+ = *f+
*groupby f+ = [any*]
*orderby f+ = [any*]

*{{{ℓ1:f1,.., ℓn:fn , ..}}}+ = {{{ℓ1: * f1 + ,.., ℓn: * f2 + , ......}}}

It is easy to show that an argument included in the accepted type is
a necessary (but not sufficient, because of the cases for composition
and recursion) condition for the evaluation of a filter not tofail:

Lemma 9. Let f be a filter andv be a value such thatv /∈ *f+.
For everyγ, δ, if δ;γ ⊢eval f(v) r, thenr ≡ Ω.

The proof is a straightforward induction on the structure ofthe
derivation, and is detailed in Appendix C. The last two auxiliary
definitions we need are related to product and record types. In the
presence of unions, the most general form for a product type is a
finite union of products (since intersections distribute onproducts).
For instance consider the type

(((int,,,int)))|||(((string,,,string)))
This type denotes the set of pairs for which either both projections
areint or both projections arestring. A type such as

(((int|||string,,,int|||string)))
is less precise, since it also allows pairs whose first projection is an
int and second projection is astring andvice versa. We see that
it is necessary to manipulate finite unions of products (and similarly
for records), and therefore, we introduce the following notations:

Lemma 10 (Product decomposition). Let t ∈ Types such that
t ≤ (((any,,,any))). A product decompositionof t, denoted byπππ(t) is a
set of types:

πππ(t) = {(((t11,,,t
1
2))), . . . ,(((t

n
1 ,,,t

n
2)))}

such thatt =
∨

ti∈πππ(t) ti. For a given product decomposition, we
say thatn is the rank of t, notedrank(t), and use the notation
πππj

i (t) for the typetji .

There exist several suitable decompositions whose detailsare
out of the scope of this paper. We refer the interested readerto [15]
and [23] for practical algorithms that compute such decompositions
for any subtype of(((any,,,any))) or of {{{......}}}. These notions of decom-
position, rank and projection can be generalized to records:

Lemma 11 (Record decomposition).Let t ∈ Types such that
t ≤ {{{..}}}. A record decompositionof t, denoted byρρρ(t) is a finite
set of typesρρρ(t)={r1, . . . , rn} where eachri is either of the form
{{{ℓi1:ti1, . . . , ℓ

i
ni

:tini
}}} or of the form{{{ℓi1:ti1, . . . , ℓ

i
ni

:tini
, ......}}} and

such thatt =
∨

ri∈ρρρ(t) ri. For a given record decomposition, we

say thatn is therankof t, notedrank(t), and use the notationρρρjℓ(t)
for the type of labelℓ in thejth component ofρρρ(t).

In our calculus we have three different sets of variables. The
set Vars of term variables, ranged over byx, y, ..., introduced
in patterns and used in expressions and in arguments of callsof
recursive filters. The setRVars of term recursion variables, ranged
over byX, Y, ... and that are used to define recursive filters. The
setTVars of type recursion variables, ranged over byT,U, ... used

to define recursive types. In order to use them we need to define
three different environments:Γ : Vars → Types denotingtype
environmentsthat associate term variables with their types;∆ :
RVars → Filters denotingdefinition environmentsthat associate
each filter recursion variable with the body of its definition; M :
RVars × Types → TVars denotingmemoization environments
which record that the call of a given recursive filter on a given
type yielded the introduction of a fresh recursion type variable.
Our typing rules, thus work on judgments of the formΓ;∆;M ⊢
f(t) : t′ stating that applyingf to an expression of typet in the
environmentsΓ, ∆, M yields a result of typet′. This judgment
can be derived with the set of rules given in Figure 2.

These rules are straightforward, when put side by side with the
dynamic semantics of filters, given in Section 3. It is clear that this
type system simulatesat the level of typesthe computations that are
carried out by filters on values at runtime. For instance, rule [FIL -
EXPR] calls the typing function of the host language to determine
the type of an expressione. Rule[FIL -PROD] applies a product filter
recursively on the first and second projection for each member of
the product decomposition of the input type and returns the union
of all result types. Rule[FIL -REC] for records is similar, recursively
applying sub-filters label-wise for each member of the record de-
composition and returning the union of the resulting recordtypes.
As for the pattern filter (rule[FIL -PAT ]), its subfilterf is typed in
the environment augmented by the mappingt/p of the input type
against the pattern (cf. Theorem 5). The typing rule for the union
filter, [FIL -UNION] reflects the first match policy: when typing the
second branch, we know that the first was not taken, hence thatat
runtime the filtered value will have a type that is int but not in*f1+.
Notice that this isnot ensured by the definition of accepted type —
which is a rough approximation that discards grosser errorsbut,
as we stressed right after its definition, is not sufficient toensure
that evaluation off1 will not fail— but by the type system itself:
the premisescheckthat f1(t1) is well-typed which, by induction,
implies thatf1 will never fail on values of typet1 and, ergo, that
these values will never reachf2. Also, we discard from the output
type the contribution of the branches that cannot be taken, that is,
branches whose accepted type have an empty intersection with the
input typet. Composition (rule[FIL -COMP]) is straightforward. In
this rule, the restriction thatf1 is a filter with no open recursion
variable ensures that its output types is also a type without free
recursion variables and, therefore, that we can use it as input type
for f2. The next three rules work together. The first,[FIL -FIX ] intro-
duces for a recursive filter a fresh recursion variable for its output
type. It also memoize in∆ that the recursive filterX is associated
with a bodyf and inM that for an input filterX and an input type
t, the output type is the newly introduced recursive type variable.
When dealing with a recursive callX two situations may arise.
One possibility is that it is the first time the filterX is applied to
the input typet. We therefore introduce a fresh type variableT
and recurse, replacingX by its definitionf . Otherwise, if the input
type has already been encountered while typing the filter variable
X, we can return its memoized type, a type variableT . Finally,
Rule [FIL -ORDBY ] and Rule[FIL -GRPBY ] handle the special cases
of groupby andorderby filters. Their typing is explained in the
following section.

4.4 Typing of orderby and groupby

While the “structural” filters enjoy simple, compositionaltyping
rules, the ad-hoc operationsorderby andgroupby need specially
crafted rules. Indeed it is well known that when transformation
languages have the ability to compare data values type-checking
(and also type inference) becomes undecidable (eg, see [1, 2]).
We therefore provide two typing approximations that yield agood
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[FIL -EXPR]

Γ ;∆ ;M ⊢fil e(t) : type(Γ, e,)

[FIL -PAT ]
Γ ∪ t/p ;∆ ;M ⊢fil f(t) : s

t ≤ *p +&&& * f+
Γ ;∆ ;M ⊢fil p⇒⇒⇒ f(t) : s

[FIL -PROD]
i=1..rank(t), j=1, 2 Γ;∆ ;M ⊢fil fj(πππ

i
j(t)) : s

i
j

Γ ;∆;M ⊢fil (((f1,f2)))(t) :
∨

i=1..rank(t)

(((si1,,,s
i
2)))

[FIL -REC]
i=1..rank(t), j=1..m Γ ;∆ ;M ⊢fil fj(ρρρ

i
ℓj
(t)) : sij

Γ ;∆ ;M ⊢fil {{{ℓ1:f1, . . . , ℓm:fm , ..}}}(t) :
∨

i=1..rank(t)

{{{ℓ1:si1, . . . , ℓm:sim , ......}}}

[FIL -UNION]
i = 1, 2 Γ ;∆ ;M ⊢fil fi(ti) : si t ≤ *f1 + ||| * f2+

t1 = t&&& * f1+
t2 = t&&&¬*f1+Γ ;∆ ;M ⊢fil f1|||f2(t) :

∨

{i|si 6=empty}

si

[FIL -COMP]
Γ ;∆ ;M ⊢fil f1(t) : s Γ ;∆ ;M ⊢fil f2(s) : s′

Γ ;∆;M ⊢fil f1;f2(t) : s′

[FIL -FIX ]
Γ ;∆, (X 7→ f);M, ((X, t) 7→ T ) ⊢fil f(t) : s

T fresh
Γ ;∆;M ⊢fil (µµµX...f)(t) : µµµT...s

[FIL -CALL -NEW]
Γ ;∆ ;M, ((X, t) 7→ T ) ⊢fil ∆(X)(t) : t′ t = type(Γ, a)

(X, t) 6∈ dom(M)
T freshΓ;∆ ;M ⊢fil (Xa)(s) : µµµT...t′

[FIL -CALL -MEM]
t = type(Γ, a)

(X, t) ∈ dom(M)Γ ;∆ ;M ⊢fil (Xa)(s) : M(X, t)

[FIL -ORDBY ]
∀ti ∈ item(t) Γ;∆ ;M ⊢fil f(ti) : si t ≤ [any*]∨

i
si is orderedΓ ;∆ ;M ⊢fil (orderby f)(t) : OrderBy(t)

[FIL -GRPBY ]
∀ti ∈ item(t) Γ ;∆;M ⊢fil f(ti) : si

t ≤ [any*]
Γ ;∆ ;M ⊢fil (groupby f)(t) : [((((

∨
i si),OrderBy(t))))*]

Figure 2. Type inference algorithm for filter application

compromise between precision and decidability. First we define an
auxiliary function over sequence types:

Definition 12 (Item set). Let t ∈ Types such thatt ≤ [any*].
The item setof t denoted byitem(t) is defined by:

item(empty) = ∅
item(t) = item(t&&&(((any,any)))) if t 6≤ (((any,any)))
item(

∨

1≤i≤rank(t)

(((t1i ,,,t
2
i)))) =

⋃

1≤i≤rank(t)

({t1i } ∪ item(t2i ))

The first and second line in the definition ensure thatitem() returns
the empty set for sequence types that are not products, namely for
the empty sequence. The third line handles the case of non-empty
sequence type. In this caset is a finite union of products, whose
first components are the types of the “head” of the sequence and
second components are recursively the types of the tails. Note also
that this definition is well-founded. Since types are regular trees the
number of distinct types accumulated byitem() is finite. We can
now defined typing rules for theorderby andgroupby operators.

orderby f : The orderby filter uses its argument filterf to
compute a key from each element of the input sequence and then
returns the same sequence of elements, sorted with respect to their
key. Therefore, while the types of the elements in the resultare still
known, their order is lost. We useitem() to compute the output
type of anorderby application:

OrderBy(t) = [(
∨

ti∈item(t)

ti) ∗ ]

groupby f : The typing oforderby can be used to give a rough
approximation of the typing ofgroupby as stated by rule [FIL -
GRPBY ]. In words, we obtain a list of pairs where the key com-
ponent is the result type off applied to the items of the sequence,
and useOrderBy to shuffle the order of the list. A far more pre-
cise typing ofgroupby that keeps track of the relation between list
elements and their images viaf is given in Appendix E.

4.5 Soundness, termination, and complexity

The soundness of the type inference system is given by the property
of subject reduction for filter application

Theorem 13 (subject reduction). If ∅;∅;∅ ⊢fil f(t) : s, then
for all v : t, ∅;∅ ⊢eval f(v) r impliesr : s.

whose full proof is given in Appendix C. It is easy to write a fil-
ter for which the type inference algorithm, that is the deduction
of ⊢fil , does not terminate:µµµX...x ⇒⇒⇒ X(((x,x))). The deduction of
Γ;∆;M ⊢fil f(t) : s simulates an (abstract) execution of the
filter f on the typet. Since filters are Turing complete, then in
general it is not possible to decide whether the deduction of⊢fil

for a given filterf will terminate for every input typet. For this
reason we define a static analysisCheck(f) for filters that ensures
that if f passes the analysis, then for every input typet the deduc-
tion of Γ;∆;M ⊢fil f(t) : s terminates. For space reasons the
formal definition ofCheck(f) is relegated to Appendix A, but its
behavior can be easily explained. Imagine that a recursive filter f
is applied to some input typet. The algorithm tracks all the recur-
sive calls occurring inf ; next it performs one step of reduction of
each recursive call by unfolding the body; finally it checks in this
unfolding that if a variable occurs in the argument of a recursive
call, then it is bound to a type that is a subtree of the original type
t. In other words, the analysis verifies that in the execution of the
derivation forf(t) every call tos/p for some types and pattern
p always yields a type environment where variables used in re-
cursive calls are bound to subtrees oft. This implies that the rule
[FIL -CALL -NEW] will always memoize for a givenX, types that are
obtained from the arguments of the recursive calls ofX by replac-
ing their variables with a subtree of the original typet memoized
by the rule[FIL -FIX ]. Sincet is regular, then it has finitely many
distinct subtrees, thus[FIL -CALL -NEW] can memoize only finitely
many distinct types, and therefore the algorithm terminates.

More precisely, the analysis proceeds in two passes. In the first
pass the algorithm tracks all recursive filters and for each of them it
(i) marks the variables that occur in the arguments of its recursive
calls,(ii) assigns to each variable an abstract identifier represent-
ing the subtree of the input type to which the variable will bebound
at the initial call of the filter, and(iii) it returns the set of all types
obtained by replacing variables by the associated abstractidentifier
in each argument of a recursive call. The last set intuitively repre-
sents all the possible ways in which recursive calls can shuffle and
recompose the subtrees forming the initial input type. The second
phase of the analysis first abstractly reduces by one step each re-
cursive filter by applying it on the set of types collected in the first
phase of the analysis and then checks whether, after this reduction,
all the variables marked in the first phase (ie, those that occur in ar-
guments of recursive calls) are still bound to subtrees of the initial
input type: if this checks fails, then the filter is rejected.
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It is not difficult to see that the type inference algorithm con-
verges if and only if for every input type there exists a integer n
such that aftern recursive calls the marked variables are bound
only to subtrees of the initial input type (or to something that does
not depend on it, of course). Since deciding whether such ann
exists is not possible, our analysis checks whether for all possible
input types a filter satisfies it forn=1, that is to say, that at every
recursive call its marked variables satisfy the property; otherwise it
rejects the filter.

Theorem 14 (Termination). If Check(f), then for every typet the
deduction ofΓ;∅;∅ ⊢fil f(t) : s is in 2-EXPTIME. Furthermore,
if t is given as a non-deterministic tree automaton (NTA) then
Γ;∅;∅ ⊢fil f(t) : s is in EXPTIME, where the size of the problem
is |f | × |t|.

(for proofs see Appendix A for termination and Appendix D for
complexity). This complexity result is in line with those ofsimilar
formalisms. For instance in [20], it is shown that type-checking non
deterministic top-down tree transducers is in EXPTIME whenthe
input and output types are given by a NTA.

All filters defined in this paper (excepted those in Appendix B)
pass the analysis. As an example consider the filterrotate that ap-
plied to a list returns the same list with the first element moved to
the last position (and the empty list if applied to the empty list):

µµµX... ( (((x,(((y,z))))))⇒⇒⇒ (((y,X(((x,z)))))) ||| w⇒⇒⇒ w )
The analysis succeeds on this filter. If we denote byιx the abstract
subtree bound to the variablex, then the recursive call will be ex-
ecuted on the abstract argument(((ιx,ιz))). So in the unfolding of the
recursive callx is bound toιx, whereasy andz are bound to two
distinct subtrees ofιz . The variables in the recursive call,x andz,
are thus bound to subtrees of the original tree (even though the ar-
gument of the recursive call isnot a subtree of the original tree),
therefore the filter is accepted . In order to appreciate the precision
of the inference algorithm consider the type[int+ bool+], that is,
the type of lists formed by some integers (at least one) followed by
some booleans (at least one). For the application ofrotate to an
argument of this type our algorithmstatically infers the most pre-
cise type, that is,[int* bool+ int]. If we apply it once more the
inferred type is[int* bool+ int int]|[bool* int bool].

Generic filters are Turing complete. However, requiring that
Check() holds —meaning that the filter is typeable by our system—
restricts the expressive power of our filters by preventing them
from recomposinga new value before doing a recursive call. For
instance, it is not possible to typecheck a filter which reverses the
elements of a sequence. Determining the exact class of transforma-
tions that typeable filters can express is challenging. However it is
possible to show (cf. Appendix F) that typeable filters are strictly
more expressive than top-down tree transducers with regular look-
ahead, a formalism for tree transformations introduced in [14]. The
intuition about this result can be conveyed by and example. Con-
sider the tree:

a(u1(. . . (un()))v1(. . . (vm())))
that is, a tree whose root is labeleda with two children, each being
a monadic tree of heightn andm, respectively. Then it is not pos-
sible to write a top-down tree transducer with regular look-ahead
that creates the tree

a(u1(. . . (un(v1(. . . vm())))))
which is just the concatenation of the two children of the root, seen
as sequences, a transformation that can be easily programmed by
typeable filters. The key difference in expressive power comes from
the fact that filters are evaluated with anenvironmentthat binds
capture variables to sub-trees of the input. This feature isessential
to encode sequence concatenation and sequence flattening —two
pervasive operations when dealing with sequences— that cannot be
expressed by top-down tree transducers with regular look-ahead.

5. Jaql
In this Section, we show how filters can be used to capture some
popular languages for processing data on the Cloud. We consider
Jaql [18], a query language for JSON developed by IBM. We give
translation rules from a subset of Jaql into filters.

Definition 15 (Jaql expressions).We use the following simplified
grammar for Jaql (where we distinguish simple expressions,ranged
over bye, from “core expressions” ranged over byk).

e ::= c (constants)
| x (variables)
| $ (current value)
| [e,..., e] (arrays)
| { e:e,..., e:e } (records)
| e.l (field access)
| op(e,...,e) (function call)
| e -> k (pipe)

k ::= filter (each x )? e (filter)
| transform (each x)? e (transform)
| expand ((each x)? e)? (expand)
| group ((each x)? by x = e (as x)?)? into e (grouping)

5.1 Built-in filters

In order to ease the presentation we extend our syntax by adding
“filter definitions” (already informally used in the introduction) to
filters and “filter calls” to expressions:

e ::= let filter F[F1, . . . , Fn] = f in e (filter defn.)
f ::= F[f, . . . , f] (call)

whereF ranges overfilter names. The mapping for most of the
language we consider rely on the following built-in filters.

let filter Filter [F] =µµµX...
‘nil⇒⇒⇒ ‘nil

||| ((((((x,,, xs))),,,tl)))⇒⇒⇒ (((X(x, xs),X(tl))))
||| (((x,,,tl)))⇒⇒⇒ Fx ;(‘true⇒⇒⇒ (((x, X(tl))))|||‘false⇒⇒⇒ X(tl))

let filter Transform [F] =µµµX...
‘nil⇒⇒⇒ ‘nil

||| ((((((x,,, xs))),,,tl)))⇒⇒⇒ (((X(x, xs),X(tl))))
||| (((x,,,tl)))⇒⇒⇒ (((Fx, X(tl))))

let filter Expand =µµµX...
‘nil⇒⇒⇒ ‘nil

||| (((‘nil,,,tl)))⇒⇒⇒ X(tl)
||| ((((((x,,, xs))),,,tl)))⇒⇒⇒ (((x,X(xs, tl))))

5.2 Mapping

Jaql expressions are mapped to our expressions as follows (where
$ is a distinguished expression variable interpreting Jaql’s$ ):
JcK = c
JxK = x
J$ K = $

J{e1:e
′
1,...,en:e

′
n}K = {{{Je1K :Je′1K , ...,JenK :Je′nK}}}

Je.lK = JeK .l
Jop(e1, ..., en)K = op(Je1K , ...,JenK)
J[e1,...,en]K = (Je1K , ...(JenK , ‘nil)...)
Je -> kK = JeK ;JkK

F

Jaql core expressions are mapped to filters as follows:
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Jfilter eK
F

= Jfilter each $ eK
F

Jfilter each x eK
F

= Filter [x⇒⇒⇒JeK ]
Jtransform eK

F
= Jtransform each $ eK

F

Jtransform each x eK
F

= Transform [x⇒⇒⇒JeK ]
Jexpand each x eK

F
= JexpandK

F
;Jtransform each x eK

F

JexpandK
F

= Expand

Jgroup into eK
F

= Jgroup by y=true into eK
F

Jgroup by y=e1 into e2KF
= Jgroup each $ by y=e1 into e2KF

Jgroup each x by y=e1 into e2KF
=

Jgroup each x by y = e1 as $ into e2KF

Jgroup each x by y = e1 as g into e2KF
=

groupby x⇒⇒⇒Je1K ; Transform [(((y,g)))⇒⇒⇒Je2K ]

This translation defines the (first, in our knowledge) formalseman-
tics of Jaql. Such a translation isall that is needed to define the
semantics of a NoSQL language and, as a bonus, endow it with the
type inference system we describedwithout requiring any modi-
fication of the original language. No further action is demanded
since the machinery to exploit it is all developed in this work.

As for typing, every Jaql expression is encoded into a filter for
which type-checking is ensured to terminate:Check() holds for
Filter[], Transform[], andExpand (provided it holds also for
their arguments) since they only perform recursive calls onrecom-
binations of subtrees of their input; by its definition, the encoding
does not introduce any new recursion and, hence, it always yields a
composition and application of filters for whichCheck() holds.

5.3 Examples

To show how we use the encoding, let us encode the example of
the introduction. For the sake of the concision we will use filter
definitions (rather than expanding them in details). We useFil
and Sel defined in the introduction,Expand and Transform[]
defined at the beginning of the section, the encoding of Jaql’s field
selection as defined in Section 3.3, and finallyHead that returns the
first element of a sequence and a family of recursive filtersRgrpi
with i ∈ N+ both defined below:

let filter Head = ‘nil => null | (x,xs) => x

let filter Rgrpi = ‘nil => ‘nil
| ((i,x),tail) => (x , Rgrpi tail)
| _ => Rgrpi tail

Then, the query in the introduction is encoded as follows

[employees depts];1

[Sel Fil];2

[Transform[x =>(1,x)] Transform[x =>(2,x)]];3

Expand;4

groupby ( (1,$)=>$.dept | (2,$)=>$.depid );5

Transform[(g,l)=>(6

[(l; Rgrp1) (l; Rgrp2)];7

[es ds] =>8

{ dept: g,9

deptName: (ds ; Head).name),10

numEmps: count(es) } )]11

In words, we perform the selection on employees and filter the
departments (lines1-2); we tag each element by1 if it comes from
employees, and by2 if it comes from departments (line3); we
merge the two collections (line4); we group the heterogeneous list
according to the corresponding key (line5); then for each element
of the result of grouping we capture ing the key (line6), split the
group into employees and depts (line7), capture each subgroup into
the corresponding variable (ie, es andds) (line8) and return the
expression specified in the query after the “into” (lines8-10). The
general definition of the encoding for the co-grouping is given in
Appendix H.

Let us now illustrate how the above composition of filters is
typed. Consider an instance where:

• employees has type [ Remp* ], where
Remp≡ { dept: int, income:int, ..}

• depts has type[ (Rdep | Rbranch)* ], where
Rdep≡ {depid:int, name: string, size: int}
Rbranch≡ {brid:int, name: string}
(this type is a subtype ofDept as defined in the introduction)

The global input type is therefore (line1)
[ [ Remp* ] [ (Rdep | Rbranch)* ] ]

which becomes, after selection and filtering (line2)
[ [ Remp* ] [ Rdep* ] ]

(note how all occurrences ofRbranchare ignored byFil). Tagging
with an integer (line3) and flattening (line4) yields

[ (1,Remp)* (2,Rdep)* ]
which illustrates the precise typing of products coupled with sin-
gleton types (ie, 1 instead ofint). While thegroupby (line5) in-
troduces an approximation the dependency between the tag and the
corresponding type is kept

[ (int, [ ((1,Remp) | (2,Rdep) )+ ]) * ]
Lastly the transform is typed exactly, yielding the final type
[ {dept:int, deptName:string|null, numEmps:int }* ]

Note hownull is retained in the output type (since there may be
employees without a department, thenHead may be applied to an
empty list returningnull, and the selection ofname of null re-
turnsnull). For instance suppose to pipe the Jaql grouping defined
in the introduction into the following Jaql expression, in order to
produce a printable representation of the records of the result

transform each x (
(x.deptName)@":"@(to_string x.dep)@":"@(x.numEmps))

where@ denotes string concatenation andto_string is a conver-
sion operator (from any type to string). The composition is ill-typed
for three reasons: the fielddept is misspelled asdep, x.numEmps
is of typeint (so it must be applied toto_string before con-
catenation), and the programmer did not account for the factthat
the value stored in the fielddeptName may benull. The encoding
produces the following lines to be appended to the previous code:

Transform[ x =>12

(x.deptName)@":"@(to_string x.dep)@":"@(x.numEmps)]13

in which all the three errors are detected by our type system.A
subtler example of error is given by the following alternative code

Transform[12

{ dept : d, deptName: n&String, numEmps: e } =>13

n @ ":" @ (to_string d) @ ":" @ (to_string e)14

| { deptName: null, .. } => ""15

| _ => "Invalid department" ]16

which corrects all the previous errors but adds a new one since, as
detected by our type system, the last branch can be never selected.
As we can see, our type-system ensures soundness, forcing the pro-
grammer to handle exceptional situations (as in thenull example
above) but is also precise enough to detect that some code paths
can never be reached.

In order to focus on our contributions we kept the language of
types and filters simple. However there already exists several con-
tributions on the types and expressions used here. Two in particular
are worth mentioning in this context: recursive patterns and XML.

Definition 3 defines patterns inductively but, alternatively, we
can consider the (possibly infinite) regular treescoinductivelygen-
erated by these productions and, on the lines of what is done in
CDuce, use the recursive patterns so obtained to encode regular
expressions patterns (see [4]). Although this does not enhance ex-
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pressiveness, it greatly improves the writing of programs since it
makes it possible to capture distinct subsequences of a sequence by
a single match. For instance, when a sequence is matched against
a pattern such as[ (int as x | bool as y | _)* ], thenx
captures (the list of) all integer elements (capture variables in reg-
ular expression patterns are bound to lists),y captures all Boolean
elements, while the remaining elements are ignored. By suchpat-
terns, co-grouping can be encoded without theRgrp. For instance,
the transform in lines 6-11 can be more compactly rendered as:

Transform[(g,[ ((1,es)|(2,ds))* ]) =>6

{ dept: g,7

deptName: (ds;Head).name,8

numEmps: count(es) }]9

For what concerns XML, the types used here were originally de-
fined for XML, so it comes as a no surprise that they can seamlessly
express XML types and values. For exampleCDuce uses the very
same types used here to encode both XML types and elements as
triples, the first element being the tag, the second a record repre-
senting attributes, and the third a heterogeneous sequencefor the
content of the element. Furthermore, we can adapt the results of [9]
to encode forward XPath queries in filters. Therefore, it requires
little effort to use the filters presented here to encode languages
such as JSONiq [12] designed to integrate JSON and XML, or to
precisely type regular expressions, the import/export of XML data,
or XPath queries embedded in Jaql programs. This is shown in the
section that follows.

6. JSON, XML, Regex
There exist various attempts to integrate JSON and XML. For
instance JSONiq [12] is a query language designed to allow XML
and JSON to be used in the same query. The motivation is that
JSON and XML are both widely used for data interchange on the
Internet. In many applications, JSON is replacing XML in Web
Service APIs and data feeds, while more and more applications
support both formats. More precisely, JSONiq embeds JSON into
an XML query language (XQuery), but it does it in a stratified way:
JSONiq does not allow XML nodes to contain JSON objects and
arrays. The result is thus similar to OCamlDuce, the embedding of
CDuce’s XML types and expressions into OCaml, with the same
drawbacks.

Our type system is derived from the type system ofCDuce,
whereas the theory of filters was originally designed to useCDuce
as an host language. As a consequence XML types and expressions
can be seamlessly integrated in the work presented here, without
any particular restriction. To that end it suffices to use forXML
elements and types the same encoding used in the implementation
of CDuce, where an XML element is just a triple formed by a tag
(here, an expression), a record (whose labels are the attributes of
the element), and a sequence (of characters and or other XML ele-
ments) denoting its content. So for instance the following element

<product system="US-size">
<number>557</number>
<name>Blouse</name>

</product>

is encoded by the following triple:

("product" , { system : "US-size" } ,
[
("number" , {} , [ 557 ])
("name", {}, "Blouse")

]
)

and this latter, with the syntactic sugar defined forCDuce, can be
written as:

<product system="US-size">[
<number>[ 557 ]
<name>[ Blouse ]

]

Clearly in our system there are no restrictions in merging and
nesting JSON and XML and no further extension is required to our
system to define XML query and processing expressions. Just,the
introduction of syntactic sugar to make the expressions readable,
seems helpful:

e ::= <e e>e
f ::= <f f>f

The system we introduced here is already able to reproduce (and
type) the same transformations as in JSONiq, but without there-
strictions and drawbacks of the latter (this is why we argue that it
is better to extend NoSQL languages with XML primitives directly
derived from our system rather than to use our system to encode
JSONiq). For instance, the example given in the JSONiq draftto
show how to render in Xhtml the following JSON data:

{
"col labels" : ["singular", "plural"],
"row labels" : ["1p", "2p", "3p"],
"data" :

[
["spinne", "spinnen"],
["spinnst", "spinnt"],
["spinnt", "spinnen"]

]
}

can be encoded in the filters presented in this work (with the new
syntactic sugar) as:

{ "col labels" : cl ,
"row labels" : rl ,
"data" : dl

} =>
<table border="1" cellpadding="1" cellspacing="2">[
<tr>[ <th>[ ] !(cl; Transform[ x -> <th>x ]) ]
!(rl; Transform[ h ->

<tr>[ <th>h !(dl; Transform[ x -> <td>x ]) ]
]

)
]

(where! expands a subsequence in the containing sequence). The
resulting Xhtml document is rendered in a web browser as:

Similarly, Jaql built-in libraries include functions to convert and
manipulate XML data. So for example as it is possible in Jaql to
embed SQL queries, so it is possible to evaluate XPath expres-
sions, by the functionxpath() which takes two arguments, an
XML document and a string containing an xpath expression—eg,
xpath(read(seq(("conf/addrs.xml")) , "content/city")
—. Filters can encode forward XPath expressions (see [23]) and
precisely type them. So while in the current implementationthere
is no check of the type of the result of an external query (nor for
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XPath or for SQL) and the XML document is produced indepen-
dently from Jaql, by encoding (forward) XPath into filters wecan
not only precisely type calls to Jaql’sxpath() function but also
feed them with documents produced by Jaql expressions.

Finally, the very same regular expressions types that are used
to describe heterogeneous sequences and, in particular, the con-
tent of XML elements, can be used to type regular expressions.
Functions working on regular expressions (regex for short)form,
in practice, yet another domain specific language that is embedded
in general purpose languages in an untyped or weakly typed (typ-
ically, every result is of typestring) way. Recursive patterns can
straightforwardly encode regexp matching. Therefore, by combin-
ing the pattern filter with other filters it is possible to encode any
regexp library, with the important advantage that, as stated by The-
orem 4, the set of values (respectively, strings) accepted by a pattern
(respectively, by a regular expression), can be precisely computed
and can be expressed by a type. So a function such as the built-in
Jaql’s functionregex_extract(), which extracts the substrings
that match a given regex, can be easily implemented by filtersand
precisely typed by our typing rules. Typing will then amountto
intersect the type of the string (which can be more precise than
juststring) with the type accepted by the pattern that encodes the
regex at issue.

7. Programming with filters
Up to now we have used the filters to encode operators hard-
coded in some languages in order to type them. Of course, it is
possible to embed the typing technology we introduced directly
into the compilers of these language so as to obtain the flexible
typing that characterizes our system. However, an important aspect
of filters we have ignored so far is that they can be used directly by
the programmer to define user-defined operators that are typed as
precisely as the hard-coded ones. Therefore a possibility is extend
existing NoSQL languages by adding to their expressions thefilter
applicationfe expression.

The next problem is to decide how far to go in the definition
of filters. A complete integration, that is taking forf all the defi-
nitions given so far, is conceivable but might disrupt the execution
model of the host language, since the user could then define com-
plex iterators that do not fit map-reduce or the chosen distributed
compilation policy. A good compromise could be to add to the host
language only filters which have “local” effects, thus avoiding to
affect the map-reduce or distributed compilation execution model.
The minimal solution consists in choosing just the filters for pat-
terns, unions, and expressions:

f ::= e | p => f | f|f

Adding such filters to Jaql (we use the “=>” arrow for patterns in
order to avoid confusion with Jaql’s “->” pipe operator) would not
allow the user to define powerful operators, but their use would al-
ready dramatically improve type precision. For instance wecould
define the following Jaql expression

transform ( {{{a:x,..}}} as y => {{{y.*, sum:x+x}}} | y => y )

(with the convention that a filter occurring as an expressionde-
notes its application to the current argument$ ). With this syntax,
our inference system is able to deduce that feeding this expression
with an argument of type[{{{a?:int, c:bool}}}*] returns a result
of type [({{{a:int, c:bool, sum:int}}} ||| {{{c:bool}}})*]. This
precision comes from the capacity of our inference system todis-
criminate between the two branches of the filter and deduce that
a sum field will be added only if thea field is present. Similarly
by using pattern matching in a Jaql “filter” expression, we can
deduce thatfilter ( int => true | _ => false ) fed with any
sequence of elements always returns a (possibly empty) listof in-

tegers. An even greater precision can be obtained for grouping ex-
pressions when the generation of the key is performed by a filter
that discriminates on types: the result type can keep a precise cor-
respondence between keys and the corresponding groups. As an
example consider the following (extended) Jaql grouping expres-
sion:

group e by({town: ("Roma"|"Pisa"), ..} => "Italia"
|{town: "Paris", ..} => "France"
| _ => "?")

if e has type[{town:string, addr:string}*], then the
type inferred by our system for this groupby expression is

[( ("Italia", [{town:"Roma"|"Pisa", addr:string}+])
|("France", [{town:"Paris", addr:string}+])
|("?", [{town:string/("Roma"|"Pisa"|"Paris"),

addr:string}+])
)*]

which precisely associates every key to the type of the elements it
groups.

Finally, in order to allow a modular usage of filters, adding just
filter application to the expression of the foreign languagedoes not
suffice: parametric filter definitions are also needed.

e ::= fe | let filter F[F1, . . . , Fn] = f in e

However, on the line of what we already said about the disruption of
the execution model, recursive parametric filter definitions should
be probably disallowed, since a compilation according to a map-
reduce model would require to disentangle recursive calls.

8. Commentaries
Finally, let us explain some subtler design choices for our system.

Filter design: The reader may wonder whether products and
record filters are really necessary since, at first sight, the filter
(((f1,f2))) could be encoded as(x, y) ⇒⇒⇒ (f1x, f2y) and similarly
for records. The point is thatf1x andf2y are expressions —and
thus their pair is a filter— only if thefi’s are closed (ie, wihtout
free term recursion variables). Without an explicit product filter it
would not be possible to program a filter as simple as the identity
map,µµµX...‘nil ⇒⇒⇒ ‘nil|||(h, t) ⇒⇒⇒ (((h,Xt))) sinceXt is not an ex-
pression (X is a free term recursion variable). Similarly, we need
an explicit record filter to process recursively defined record types
such asµµµX...({{{head:int, tail:X}}}|||‘nil).

Likewise, one can wonder why we put in filters only the “open”
record variant that copy extra fields and not the closed one. The
reason is that if we want a filter to be applied only to records with
exactly the fields specified in the filter, then this can be simply
obtained by a pattern matching. So the filter{{{ℓ1:f1, . . . , ℓn:fn}}}
(ie, without the trailing “. .”) can be simply introduced as syntactic
sugar for{{{ℓ1:any, . . . , ℓn:any}}} ⇒⇒⇒ {{{ℓ1:f1, . . . , ℓn:fn , ..}}}

Constructors: The syntax for constructing records and pairs is
exactly the same in patterns, types, expressions, and filters. The
reader may wonder why we did not distinguish them by using, say,
× for product types or= instead of: in record values. This, com-
bined with the fact that values and singletons have the same syntax,
is a critical design choice that greatly reduces the confusion in these
languages, since it makes it possible to have a unique representation

Syntactically we could writeµµµX...‘nil ⇒⇒⇒ ‘nil|||(h, t) ⇒⇒⇒ (((h,(Xt)v)))
wherev is any value, but then this would not pass type-checking since the
expression(Xt)v must be typeable without knowing the∆ environment
(cf. rule [FILTER-APP] at the beginning of Section 4.3). We purposedly
stratified the system in order to avoid mutual recursion between filters and
expressions.
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for constructions that are semantically equivalent. Consider for in-
stance the pattern(((x,,,(((3,,,‘nil)))))). With our syntax(((3,,,‘nil))) denotes
both the product type of two singletons3 and‘nil, or the value
(((3,,,‘nil))), or the singleton that contains this value. According to
the interpretation we choose, the pattern can then be interpreted as
a pattern that matches a product or a pattern that matches a value.
If we had differentiated the syntax of singletons from that of values
(eg, {v}) and that of pairs from products, then the pattern above
could have been written in five different ways. The point is that
they all would match exactly the same sets of values, which iswhy
we chose to have the same syntax for all of them.

Record types: The definition of records is redundant (both for
types and patterns). Instead of the current definition we could
have used just{{{ℓ:t}}}, {{{}}}, and {{{..}}}, since the rest can be en-
coded by intersections. For instance,{{{ℓ1:t1, . . . , ℓn:tn , ......}}} =
{{{ℓ1:t}}}&&&...&&&{{{ℓn:tn}}}&&&{{{..}}}. We opted to use the redundant defini-
tion for the sake of clarity. In order to type records with computed
labels we distinguished two cases according to whether the type of
a record label is finite or not. Although such a distinction issimple,
it is not unrealistic. Labels with singleton types cover the(most
common) case of records with statically fixed labels. The dynamic
choice of a label from a statically known list of labels is a usage
pattern seen in JavaScript when building an object which must con-
form to some interface based on a run-time value. Labels withinfi-
nite types cover the fairly common usage scenario in which records
are used as dictionaries: we deduce for the expression computing
the label the typestring, thus forcing the programmer to insert
some code that checks that the label is present before accessing it.

The rationale behind the typing of records was twofold. First
and foremost, in this work we wanted to avoid type annotations
at all costs (since there is not even a notion of schema for JSON
records and collections —only the notion of basic type is defined—
we cannot expect the Jaql programmer to put any kind of type
information in the code). More sophisticated type systems,such
as dependent types, would probably preclude type reconstruction:
dependent types need a lot of annotations and this does not fitour
requirements. Second, we wanted the type-system to be simple
yet precise. Making the finite/infinite distinction increases typing
precision at no cost (we do not need any extra machinery since
we already have singleton types). Adding heuristics or complex
analysis just to gain some precision on records would have blurred
the main focus of our paper, which is not on typing records but
on typingtransformationson records. We leave such additions for
future work.

Record polymorphism: The type-oriented reader will have no-
ticed that we do not use row variables to type records, and nev-
ertheless we have a high degree of polymorphism. Row variables
are useful to type functions or transformations since they can keep
track of record fields that are not modified by the transformation. In
this setting we do not need them since we do not type transforma-
tions (ie, filters) but just the application of transformations (filters
are not first-class terms). We have polymorphic typing via filters
(see how the first example given in Section 7 keeps track of thec
field) and therefore open records suffice.

Record selection: Some languages —typically, the dynamic ones
such as Javascript, Ruby, Python— allow the label of a field selec-
tion to be computed by an expression. We considered the definition
of a fine-grained rule to type expressions of the forme1...e2: when-
evere2 is typed by a finite unions of strings, the rule would give
a finite approximation of the type of the selection. However,such
an extension would complex the definition of the type system,just
to handle few interesting cases in which a finite union type can be
deduced. Therefore, we preferred to omit its study and leaveit for
future work.

9. Related Work
In the (nested) relational (and SQL) context, many works have
studied the integration of (nested)-relational algebra orSQL into
general purpose programming languages. Among the first attempts
was the integration of the relational model in Pascal [31] orin
Smalltalk [11]. Also, monads or comprehensions [7, 33, 34] have
been successfully used to design and implement query languages
including a way to embed queries within host languages. Signif-
icant efforts have been done to equip those languages with type
systems and type checking disciplines [8, 25, 26] and more re-
cently [27] for integration and typing aspects. However, these ap-
proaches only support homogeneous sequences of records in the
context of specific classes of queries (practically equivalent to
a nested relational algebra or calculus), they do not account for
records with computable labels, and therefore they are not easily
transposable to a setting where sequences are heterogeneous, data
are semi-structured, and queries are much more expressive.

While the present work is inspired and stems from previous
works on the XML iterators, targeting NoSQL languages made the
filter calculus presented here substantially different from the one
of [9, 23] (dubbed XML filters in what follows), as well in syntax
as in dynamic and static semantics. In [9] XML filters behave as
some kind of top-down tree transducers, termination is enforced by
heavy syntactic restrictions, and alessconstrained use of the com-
position makes type inference challenging and requires sometimes
cumbersome type annotations. While XML filters are allowed to
operate by composition on theresultof a recursive call (and, thus,
simulate bottom-up tree transformations), the absence of explicit
arguments in recursive calls makes programs understandable only
to well-trained programmers. In contrast, the main focus ofthe
current work was to make programs immediately intelligibleto any
functional programmer and make filters effective for the typing
of sequence transformations: sequence iteration, elementfiltering,
one-level flattening. The last two are especially difficult to write
with XML filters (and require type annotations). Also, the integra-
tion of filters with record types (absent in [9] and just sketched in
[23]) is novel and much needed to encode JSON transformations.

10. Conclusion
Our work addresses two very practical problems, namely the typ-
ing of NoSQL languages and a comprehensive definition of their
semantics. These languages add to list comprehension and SQL
operators the ability to work on heterogeneous data sets andare
based on JSON (instead of tuples). Typing precisely each of these
features using the best techniques of the literature would probably
yield quite a complex type-system (mixing row polymorphismfor
records, parametric polymorphism, some form of dependent typ-
ing,...) and we are skeptical that this could be achieved without us-
ing any explicit type annotation. Therefore we explored theformal-
ization of these languages from scratch, by defining a calculus and
a type system. The thesis we defended is that all operations typical
of current NoSQL languages, as long as they operate structurally
(ie, without resorting on term equality or relations), amount to a
combination of more basic bricks: our filters. On the structural side,
the claim is that combining recursive records and pairs by unions,
intersections, and negations suffices to capture all possible struc-
turing of data, covering a palette ranging from comprehensions, to
heterogeneous lists mixing typed and untyped data, throughregular
expressions types and XML schemas. Therefore, our calculusnot
only provides a simple way to give a formal semantics to, recip-
rocally compare, and combine operators of different NoSQL lan-
guages, but also offers a means to equip these languages, in they
current definition (ie, without any type definition or annotation),
with precise type inference.
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As such we accounted for both components that, according to
Landin, constitute the design of a language: operators and data
structures. But while Landin considers the design of terms and
types as independent activities we, on the contrary, advocate an
approach in which the design of former isdriven by the form of
latter. Although other approaches are possible, we tried toconvey
the idea that this approach is nevertheless the only one thatyields
a type system whose precision, that we demonstrated all the work
long, is comparable only to the precision obtained with hard-coded
(as opposed to user-defined) operators. As such, our type inference
yields and surpasses in precision systems using parametricpoly-
morphism and row variables. The price to pay is thattransforma-
tions are not first class: we do not type filters but just their appli-
cations. However, this seems an advantageous deal in the world
of NoSQL languages where “selects” are never passed around (at
least, not explicitly), but early error detection is critical, especially
in the view of the cost of code deployment.

The result are filters, a set of untyped terms that can be easily
included in a host language to complement in a typeful framework
existing operators with user-defined ones. The requirements to in-
clude filters into a host language are so minimal that every modern
typed programming language satisfies them. The interest resides
not in the fact that we can add filter applications to any language,
rather that filters can be used to define a smooth integration of calls
to domain specific languages (eg, SQL, XPath, Pig, Regex) into
general purpose ones (eg, Java, C#, Python, OCaml) so as both can
share the same set of values and the same typing discipline. Like-
wise, even though filters provide an early prototyping platform for
queries, they cannot currently be used as a final compilationstage
for NoSQL languages: their operations rely on a Lisp-like encod-
ing of sequences and this makes the correspondence with optimized
bulk operations on lists awkward. Whether we can derive an effi-
cient compilation from filters to map-reduce (recovering the bulk
semantics of the high-level language) is a challenging question.

Future plans include practical experimentation of our technique:
we intend to benchmark our type analysis against existing collec-
tions of Jaql programs, gauge the amount of code that is ill typed
and verify on this how frequently the programmer adopted defen-
sive programming to cope with the potential type errors.
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A. Termination analysis algorithm
In order to deduce the result type of the application of a filter to
an expression, the type inference algorithm abstractly executes the
filter on the type of the expression. As explained in Section 4, the
algorithm essentially analyzes what may happen to the original
input type (and to its subtrees) after a recursive call and checks
that, in all possible cases, every subsequent recursive call will
only be applied to subtrees of the original input type. In order to
track the subtrees of the original input type, we use an infinite set
Ids = {ι1, ι2, . . .} of variable identifiers(ranged over by, possible
indexed,ι). These identifiers are used to identify the subtrees of the
original input type that are bound to some variable after a recursive
call. Consider for instance the recursive filter:

µµµX...(((x1,,,(((x2,,,x3))))))⇒⇒⇒ X(((x1,x3))) ||| _⇒⇒⇒ ‘nil.

The algorithm records that at the first call of this filter eachvariable
xi is bound to a subtreeιi of the input type. The recursive call
X(((x1,x3))) is thus applied to the “abstract argument”(((ι1,ι3))). If we
perform the substitutions for this call, then we see thatx1 will be
bound toι1 and thatx2 andx3 will be bound to two subtrees of
the ι3 subtree. We do notcare aboutx2 since it is not used in
any recursive call. What is important is that bothx1 andx3 are
bound to subtrees of the original input type (respectively,to ι1 and
to a subtree ofι3) and therefore, for this filter, the type inference
algorithm will terminate for every possible input type.

The previous example introduces the two important concepts
that are still missing for the definition of our analysis:

1. Recursive calls are applied tosymbolic arguments, such as
(((ι1,ι3))), that are obtained from arguments by replacing variables
by variable identifiers. Symbolic arguments are ranged overby
A and are formally defined as follows:

Symb Args A ::= ι (variable identifiers)
| c (constants)
| (((A,A))) (pairs)
| {{{ℓ:A, . . . , ℓ:A}}} (records)
| ⊥ (indeterminate)

2. We said that we “care” for some variables and disregard others.
When we analyze a recursive filterµµµX...f the variables we care
about are those that occur in arguments of recursive calls ofX.
Given a filterf and a filter recursion variableX the set of these
variables is formally defined as follows

MarkX(f) = {x | Xa ⊑ f andx ∈ vars(a)}

where⊑ denotes the subtree containment relation andvars(e)
is the set of expression variables that occur free ine. With an
abuse of notation we will usevars(p) to denote the capture
variables occurring inp (thus,vars(fe) = vars(f) ∪ vars(e)
andvars(p⇒⇒⇒ f) = vars(f) \ vars(p), the rest of the definition
being standard).

As an aside notice that the fact that for a given filterf the type
inference algorithm terminates on all possible input typesdoes
not imply that the execution off terminates on all possible input
values. For instance, our analysis correctly detects that for the filter
µµµX...(((x1,,,x2))) ⇒⇒⇒ X(((x1,x2)))|||_ ⇒⇒⇒ _ type inference terminates on
all possible input types (by returning the very same input type)
although the application of this same filter never terminates on
arguments of the form(((v1,v2))).

We can now formally define the two phases of our analysis
algorithm.

First phase. The first phase is implemented by the function
Trees_(_, _). For every filter recursion variableX, this function
explores a filter and does the following two things:

1. It builds a substitutionσ : Vars → Ids from expression
variables to variables identifiers, thus associating each capture
variable occurring in a pattern of the filter to a fresh identifier
for the abstract subtree of the input type it will be bound to.

2. It uses the substitutionσ to compute the set of symbolic argu-
ments of recursive calls ofX.

In other words, ifn recursive calls ofX occur in the filterf ,
thenTreesX(σ, f) returns the set{A1, ..., An} of then symbolic
arguments of these calls, obtained under the hypothesis that the free
variables off are associated to subtrees as specified byσ. The
formal definition is as follows:
TreesX(σ, e) = ∅
TreesX(σ, p⇒⇒⇒ f) = TreesX(σ ∪

⋃

xi∈vars(p)

{xi 7→ ιi}, f) (ιi fresh)

TreesX(σ,(((f1,f2)))) = TreesX(σ, f1) ∪ TreesX(σ, f2)
TreesX(σ, f1|||f2) = TreesX(σ, f1) ∪ TreesX(σ, f2)
TreesX(σ,µµµX...f) = ∅
TreesX(σ,µµµY ...f) = TreesX(σ, f) (X 6= Y )
TreesX(σ, Xa) = {aσ}
TreesX(σ, f1;f2) = TreesX(σ, f2)
TreesX(σ, of) = TreesX(σ, f) (o = groupby , orderby )
TreesX(σ,{{{ℓi:fi , ..}}}i∈I) =

⋃

i∈I

TreesX(σ, fi)

whereaσ denotes the application of the substitutionσ to a.
The definition above is mostly straightforward. The two impor-

tant cases are those for the pattern filter where the substitution σ

is updated by associating every capture variable of the pattern with
a fresh variable identifier, and the one for the recursive call where
the symbolic argument is computed by applyingσ to the actual
argument.

Second phase. The second phase is implemented by the function
Check(). The intuition is thatCheck(f) must “compute” the appli-
cation off to all the symbolic arguments collected in the first phase
and then check whether the variables occurring in the arguments
of recursive calls (ie, the “marked” variables) are actually bound
to subtrees of the original type (ie, they are bound either to vari-
able identifiers or to subparts of variable identifiers). If we did not
have filter composition, then this would be a relatively easytask:
it would amount to compute substitutions (by matching symbolic
arguments against patterns), apply them, and finally verifythat the
marked variables satisfy the sought property. Unfortunately, in the
case of a composition filterf1;f2 the analysis is more complicated
than that. Imagine that we want to check the property for the ap-
plication of f1;f2 to a symbolic argumentA. Then to check the
property for the recursive calls occurring inf2 we must compute
(or at least, approximate) the set of the symbolic argumentsthat
will be produced by the application off1 toA and that will be thus
fed intof2 to compute the composition. ThereforeCheck(f) will
be a function that rather than returning just true or false, it will re-
turn a set of symbolic arguments that are the result of the execution
of f , or it will fail if any recursive call does not satisfy the property
for marked variables.

More precisely, the functionCheck() will have the form

CheckV(σ, f, {A1, ..., An})

whereV ⊆ Vars stores the set of marked variables,f is a filter,σ
is a substitution for (at least) the free variables off into Ids, and
Ai are symbolic arguments. It will either fail if the marked vari-
ables do not satisfy the property of being bound to (subcomponents
of) variable identifiers or return an over-approximation ofthe result
of applyingf to all theAi under the hypothesisσ. This approxi-
mation is either a set of new symbolic arguments, or⊥. The latter
simply indicates thatCheck() is not able to compute the result of
the application, typically because it is the result of some expression

18 2018/10/31



• CheckV(σ, f, {A1, ..., An}) =
n
⋃

i=1

CheckV(σ, f, Ai)

• If (⌉⌉⌉A⌈⌈⌈&&& *** f+++ = ∅) then CheckV(σ, f, A) = ∅ otherwise:

CheckV(σ, e, A) =

{

{aσ} if e ≡ a

⊥ otherwise

CheckV(σ, f1;f2, A) = CheckV(σ, f2,CheckV(σ, f1, A))

CheckV(σ, Xa,A) = ⊥

CheckV(σ,µµµX...f, A) =

{

fail if CheckMarkX (f)(σ, f, A) = fail
⊥ otherwise

CheckV(σ, f1|||f2, A) =











CheckV(σ, f2, A) if *** f1 +++&&&⌉⌉⌉A⌈⌈⌈ = ∅

CheckV(σ, f1, A) if ⌉⌉⌉A⌈⌈⌈ \ ***f1+++ = ∅

CheckV(σ, f1, A) ∪ CheckV(σ, f2, A) otherwise

CheckV(σ,(((f1,f2))), A) =











CheckV(σ, f1, A1)×CheckV(σ, f2, A2) if A ≡ (A1, A2)

CheckV(σ, f1, ι1 )× CheckV(σ, f2, ι2) if A ≡ ι (whereι1 andι2 are fresh)

fail if A ≡ ⊥

CheckV(σ,{{{ℓi:fi , ..}}}1≤i≤n, A) =



















⋃

Bi∈CheckV (σ,fi,Ai)

{{{ℓ1:B1, ..., ℓn:Bn, ..., ℓn+k:An+k , ..}}} if A ≡ {{{ℓi:fi , ..}}}1≤i≤n+k

⋃

Bi∈CheckV (σ,fi,ιi)

{{{ℓ1:B1, ..., ℓn:Bn, ..., ℓn+k:An+k , ..}}} if A ≡ ι (where allιi are fresh)

fail if A ≡ ⊥

CheckV(σ, p⇒⇒⇒ f,A) =

{

fail if A V/ p = fail
CheckV(σ ∪ (A V/ p), f, A) otherwise

Figure 3. Definition of the second phase of the analysis

belonging to the host language (eg, the application of a function) or
because it is the result of a recursive filter or of a recursivecall of
some filter.

The full definition ofCheck_(_, _, _) is given in Figure 3. Let us
comment the different cases in detail.

CheckV(σ, f, {A1, ..., An}) =
n
⋃

i=1

CheckV(σ, f, Ai)

simply states that to compute the filterf on a set of symbolic argu-
ments we have to computef on each argument and return the union
of the results. Of course, if anyCheckV(σ, f, Ai) fails, so does
CheckV(σ, f, {A1, ..., An}). The next case is straightforward: if
we know that an argument of a given form makes the filterf fail,
then we do not perform any check (the recursive call off will never
be called) and no result will be returned. For instance, if weapply
the filter{{{ℓ:f , ..}}} to the symbolic argument(((ι1,ι2))), then this will
always fail so it is useless to continue checking this case. Formally,
what we do is to consider⌉⌉⌉A⌈⌈⌈, the set of all values that have the
form of A (this is quite simply obtained fromA by replacingany
for every occurrence of a variable identifier or of⊥) and check
whether in it there is any value accepted byf , namely, whether the
intersection⌉⌉⌉A⌈⌈⌈&&& *** f+++ is empty. If it is so, we directly return the
empty set of symbolic arguments, otherwise we have to perform a
fine grained analysis according to the form of the filter.

If the filter is an expression, then there are two possible cases:
either the expression has the form of an argument (≡ denotes

syntactic equivalence), in which case we return it after having
applied the substitutionσ to it; or it is some other expression, in
which case the function says that it is not able to compute a result
and returns⊥.

When the filter is a composition of two filters,f1;f2, we first
call CheckV(σ, f1, A) to analyzef1 and compute the result of
applyingf1 to A, and then we feed this result to the analysis of
f2:

CheckV(σ, f1;f2, A) = CheckV(σ, f2,CheckV(σ, f1, A))

When the filter is recursive or a recursive call, then we are not able
to compute the symbolic result. However, in the case of a recursive
filter we must check whether the type inference terminates onit. So
we mark the variables of its recursive calls, check whether its def-
inition passes our static analysis, and return⊥ only if this analysis
—ie, CheckMarkX(f)(σ, f, A)— did not fail. Notice that⊥ is quite
different from failure since it allows us to compute the approxima-
tion as long as the filter after the composition does not bind (parts
of) the result that are⊥ to variables that occur in arguments of re-
cursive calls. A key example is the case of the filterFilter[F]
defined in Section 5.1. If the parameter filterF is recursive, then
without ⊥ Filter[F] would be rejected by the static analysis.
Precisely, this is due to the compositionFx;(‘false⇒⇒⇒ Xl||| · · · ).
WhenF is recursive the analysis supposes thatFx produces⊥,
which is then passed over to the pattern. The recursive callXl is
executed in the environment⊥/‘true, which is empty. Therefore
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A/x =

{

{x 7→ A} if A ≡ v or A ≡ ι or x /∈ V

fail otherwise

A/(((p1,,,p2))) =



















(A1/p1) ∪ (A2/p2) if A ≡ (((A1,,,A2)))

(ι1/p1) ∪ (ι2/p2) if A ≡ ι (whereι1, ι2 are fresh)

fail if A ≡ ⊥
Ω otherwise

A/p1&&&p2 = A/p1 ∪ A/p2

A/p1|||p2 =

{

A/p1 if A/p1 6= Ω

A/p2 otherwise

A/{{{ℓ1:p1, ..., ℓn:pn}}} =



























⋃

i≤i≤n

Ai/pi if A ≡ {{{ℓ1:A1, ..., ℓn:An}}}

⋃

i≤i≤n

ιi/pi if A ≡ ι (whereιi are fresh)

fail if A ≡ ⊥
Ω otherwise

A/{{{ℓ1:p1, ..., ℓn:pn , ......}}} =



























⋃

i≤i≤n

Ai/pi if A ≡ {{{ℓ1:A1, ..., ℓn:An, ..., ℓn+k:An+k}}}

⋃

i≤i≤n

ιi/pi if A ≡ ι (whereιi are fresh)

fail if A ≡ ⊥
Ω otherwise

A/t = ∅

Figure 4. Pattern matching with respect to a setV of marked variables

the result of theFx call, whatever it is, cannot affect the termina-
tion of the subsequent recursive calls. Even though the composition
uses the result ofFx, the form of this result cannot be such as to
make typechecking ofFilter[F] diverge.

For the union filterf1|||f2 there are three possible cases:f1 will
always fail onA, so we return the result off2; or f2 will never
be executed onA sincef1 will never fail onA, so we return just
the result off1; or we cannot tell which one off1 or f2 will be
executed, and so we return the union of the two results.

If the filter is a product filter(((f1,f2))), then its accepted type
***(((f1,f2)))+++ is a subtype of(((any,any))). Since we are in the case where
⌉⌉⌉A⌈⌈⌈&&&***(((f1,f2)))+++ is not empty, thenA can have just two forms: either
it is a pair or it is a variable identifierι. In the former case we check
the filters component-wise and return as result the set-theoretic
product of the results. In the latter case, recall thatι represents a
subtree of the original input type. So if the application does not fail
it means that each subfilter will be applied to a subtree ofι. We
introduce two fresh variable identifiers to denote these subtrees of
ι (which, of course are subtrees of the original input type, too) and,
as in the previous case, apply the check component-wise and return
the set-theoretic product of the results. The case for the record filter
is similar to the case of the product filter.

Finally, the case of pattern filter is where the algorithm checks
that the marked variables are indeed bound to subtrees of theinitial
input type. WhatCheck() does is to match the symbolic argument
against the pattern and update the substitutionσ so as to check the
subfilterf in an environment with the corresponding assignments
for the capture variables inp. Notice however that the pattern
matchingA V/ p receives as extra argument the setV of marked
variables, so that while computing the substitutions for the capture

variables inp it also checks that all capture variables that are also
marked are actually bound to a subtree of the initial input type.
A V/ p is defined in Figure 4 (to enhance readability we omitted the
V index since it matters only in the first case and it does not change
along the definition). The check for marked variables is performed
in the first case of the definition: when a symbolic argumentA is
matched against a variablex, if the variable is not marked (x 6∈ V),
then the substitution{x 7→ A} is returned; if it is marked, then the
matching (and thus the analysis) does not fail only if the symbolic
argument is either a value (so it does not depend on the input type)
or it is a variable identifier (so it will be exactly a subtree of the
original input type). The other cases of the definition ofA V/ p
are standard. Just notice that in the product and record patterns
whenA is a variable identifierι, the algorithm creates fresh new
variable identifiers to denote the new subtrees in whichι will be
decomposed by the pattern. Finally, the reader should not confound
Ω andfail. The former indicates that the argument does not match
the value, while the latter indicates that a marked variableis not
bound to a value or to exactly a subtree of the initial input type
(notice that the caseΩ cannot happen in the definition ofCheck()
sinceA V/ p is called only when⌉⌉⌉A⌈⌈⌈ is contained in***p+++).

The two phases together. Finally we put the two phases to-
gether. Given a recursive filterµµµX...f we run the analysis by mark-
ing the variables in the recursive calls ofX in f , running the
first phase and then and feeding the result to the second phase:
CheckMarkX(f)(∅, f, TreesX(∅, f)). If this function does not fail
then we say thatµµµX...f passed the check:

Check(µµµX...f) ⇐⇒ CheckMarkX(f)(∅, f, TreesX(∅, f)) 6= fail
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For filters that are not recursive at toplevel it suffices to add a
dummy recursion:Check(f)

def
= Check(µµµX...f) with X fresh.

Theorem 16 (Termination). If Check(f) then the type inference
algorithm terminates forf on every input typet.

In order to prove the theorem above we need some auxiliary
definitions:

Definition 17 (Plinth [15]). A plinth i ⊂ Types is a set of types
with the following properties:

• i is finite
• i containsany, empty and is closed under Boolean connectives

(&&&,|||,¬¬¬)
• for all typest = (((t1,,,t2))) in i, t1 ∈ i andt2 ∈ i
• for all typest = {{{ℓ1:t1, . . . , ℓn:tn, (......)}}} in i, ti ∈ i for all
i ∈ [1..n].

We define the plinth oft, notedi(t), as the smallest plinth contain-
ing t.

Intuitively, the plinth oft is the set of types that can be obtained
by all possible boolean combination of the subtrees oft. Notice
thati(t) is always defined since our types are regular: they have
finitely many distinct subtrees, which (modulo type equivalence)
can thus be combined in finitely many different ways.

Definition 18 (Extended plinth and support). Let t be a type and
f a filter. Theextended plinthof t andf , notedî(f, t) is defined
asi(t ∨

∨

v⊑f v) (wherev ranges over values).
Thesupportof t andf , noted asSupport(f, t), is defined as

Support(f, t)
def
= î(f, t) ∪

⋃

A∈Trees∅(∅,f)

{Aσ | σ : Ids(A)→ î(f, t)}

The extended plinth oft andf is the set of types that can be
obtained by all possible boolean combination of the subtrees of t
and of values that occur in the filterf . The intuition underlying the
definition of support oft andf is that it includes all the possible
types of arguments of recursive calls occurring inf , when f is
applied to an argument of typet.

Lastly, let us prove the following technical lemma:

Lemma 19. Let f be a filter such that Check(f) holds. Lett be a
type. For every derivationD (finite or infinite) of

Γ;∆;M ⊢fil f(t) : s ,
for every occurrence of the rule[FIL -CALL -NEW]

Γ′
;∆′

;M ′, ((X, t′′) 7→ T ) ⊢fil ∆
′(X)(t′′) : t′ t′′ = type(Γ′, a)

(X, t′′) 6∈ dom(M ′)
T freshΓ′

;∆′
;M ′ ⊢fil (X a)(s) : µµµT...t′

in D, for everyx ∈ vars(a), Γ′(x) ∈ î(f, t) (or equivalently,
type(Γ′, a) ∈ Support(f, t))

Proof. By contradiction. Suppose that there exists an instance of
the rule for whichx ∈ vars(a) ∧ x /∈ î(f, t). This means that
Γ′(x) is neither a singleton type occurring inf nor a type obtained
from t by applying left projection, right projection or label selec-
tion (⋆). But sinceCheck(f) holds,x must be bound to either an
identifier or a valuev (see Figure 4) during the computation of
CheckMarkX (f)(∅, f,TreesX(∅, f)). Since identifiers inCheck(f)
are only introduced for the input parameter or when performing a
left projection, right projection or label selection of another identi-
fier, this ensure thatx is never bound to the result of an expression
whose type is not in̂i(f, t), which contradicts(⋆).

We are now able to prove Theorem 16. Lett be a type andf a
filter define

D(f, t) = {(X, t′) | X ⊑ f, t′ ∈ Support(f, t)}

Notice that sinceSupport(f, t) is finite and there are finitely many
different recursion variables occuring in a filter, thenD(f, t) is
finite, too. Now letf and t be the filter and type mentioned in
the statement of Theorem 16 and consider the (possibly infinite)
derivation ofΓ;∆;M ⊢fil f(t) : s. Assign to every judgment
Γ′
;∆′

;M ′ ⊢fil f
′(t′) : s′ the following weight

Wgt(Γ′
;∆′

;M ′ ⊢fil f
′(t′) : s′) = (((|D(f, t)\dom(M ′)| , size(f ′))))

where|S| denotes the cardinality of the setS (notice that in the
definitionS is finite),dom(M ′) is the domain ofM ′, that is, the set
of pairs(X, t) for whichM ′ is defined, andsize(f ′) is the depth of
the syntax tree off ′.

Notice that the set of all weights lexicographically ordered form
a well-founded order. It is then not difficult to prove that every
application of a rule in the derivation ofΓ;∆;M ⊢fil f(t) : s
strictly decreasesWgt, and therefore that this derivation must be
finite. This can be proved by case analysis on the applied rule, and
we must distinguish only three cases:

[FIL -FIX ] Notice that in this case the first component ofWgt
either decreases or remains constant, and the second component
strictly decreases.

[FIL -CALL -NEW] In this case Lemma 19 ensures that the first
component of theWgt of the premise strictly decreases. Since
this is the core of the proof let us expand the rule. Somewherein
the derivation ofΓ;∆;M ⊢fil f(t) : s we have the following
rule:

[FIL -CALL -NEW]
Γ′
;∆′

;M ′, ((X, t′′) 7→ T ) ⊢fil ∆
′(X)(t′′) : t′ t′′ = type(Γ′, a)

(X, t′′) 6∈ dom(M ′)
T freshΓ′

;∆′
;M ′ ⊢fil (Xa)(s) : µµµT...t′

and we want to prove that(D(f, t) \ dom(M ′)) ) (D(f, t) \
(dom(M ′) ∪ (X, t′′)) and the containment must be strict to
ensure that the measure decreases. First of all notice that
(X, t′′) 6∈ dom(M ′), since it is a side condition for the appli-
cation of the rule. So in order to prove that containment is strict
it suffices to prove that(X, t′′) ∈ D(t, f). But this is a con-
sequence of Lemma 19 which ensures thatt′′ ∈ Support(f, t),
whence the result.

[FIL -*] With all other rules the first component ofWgt remains
constant, and the second component strictly decreases.

A.1 Improvements

Although the analysis performed by our algorithm is alreadyfine
grained, it can be further refined in two simple ways. As explained
in Section 4, the algorithm checks that afterone stepof reduction
the capture variables occurring in recursive calls are bound to sub-
trees of the initial input type. So a possible improvement consists
to try to check this property for a higher number of steps, too. For
instance consider the filter:

µµµX...(((‘nil,,,x)))⇒⇒⇒ X({{{ℓ:x}}})
||| (((y,,,_)))⇒⇒⇒ X((((‘nil,,,(((y,,,y)))))))
||| _⇒⇒⇒ ‘nil

This filter does not pass our analysis since ifιy is the identifier
bound to the capture variabley, then when unfolding the recursive
call in the second branch thex in the first recursive call will be
bound to(((ιy,,,ιy))). But if we had pursued our abstract execution
one step further we would have seen that(((ιy,,,ιy))) is not used in a
recursive call and, thus, that type inference terminates. Therefore,
a first improvements is to modifyCheck() so that it does not stop
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type M = (K,V) | (V,V,K)
type V = { var : string } | { lambda2 : (string, string, M) }
type K = { var : string } | { lambda1 : (string, M) }

let filter Eval =
| ( { lambda2 : (x, k, m) }, v , h ) -> m ; Subst[x,v] ; Subst[k,h]; Eval
| ( { lambda1 : (x, m) }, v ) -> m ; Subst[x,v] ; Eval
| x -> x

let filter Subst[c,F] =
| ( Subst[c,F] , Subst[c,F] , Subst[c,F] )
| ( Subst[c,F] , Subst[c,F] )
| { var : c } -> F
| { lambda2 : (x&¬c, k&¬c, m) } -> { lambda2 : (x, k, m;Subst[c,F]) }
| { lambda1 : (x&¬c, m) } -> { lambda1 : (x, m;Subst[c,F]) }
| x -> x

Figure 5. Filter encoding ofλcps

just after one step of reduction but tries to go downn steps, with
n determined by some heuristics based on sizes of the filter andof
the input type.

A second and, in our opinion, more promising improvement
is to enhance the precision of the test⌉⌉⌉A⌈⌈⌈&&& *** f+++ = ∅ in the
definition of Check, that verifies whether the filterf fails on the
given symbolic argumentA. In the current definition the only
information we collect about the type of symbolic argumentsis
their structure. But further type information, currently unexploited,
is provided by patterns. For instance, in the following (admittedly
stupid) filter

µµµX...(((int,,,x)))⇒⇒⇒ x
||| y&&&int⇒⇒⇒ X((((y,,,y))))
||| z⇒⇒⇒ z

if in the first pass we associatey with ιy , then we know that(((ιy,,,ιy)))
has type(((int,,,int))). If we record this information, then we know
that in the second pass(((ιy,,,ιy))) will always match the first pattern,
and so it will never be the argument of a further recursive call. In
other words, there is at most one nested recursive call. The solution
is conceptually simple (but yields a cumbersome formalization,
which is why we chose the current formulation) and amounts to
modify Trees(,) so that when it introduces fresh variables it records
their type information with them. It then just suffices to modify the
definition of ⌉⌉⌉A⌈⌈⌈ so as it is obtained fromA by replacing every
occurrence of a variable identifier by its type information (rather
than byany) and the current definition ofCheck() will do the rest.

B. Proof of Turing completeness (Theorem 7)
In order to prove Turing completeness we show how to define by
filters an evaluator for untyped (call-by-value)λ-calculus. If we al-
lowed recursive calls to occur on the left-hand side of composition,
then the encoding would be straightforward: just implementβ and
context reductions. The goal however is to show that the restric-
tion on compositions does not affect expressiveness. To that end
we have to avoid context reductions, since they require recursive
calls before composition. To do so, we first translateλ-terms via
Plotkin’s call-by-value CPS translation and apply Steele and Rab-
bit’s administrative reductions to them obtaining terms inλcps. The
latter is isomorphic to cbvλ-calculus (see for instance [30]) and
defined as follows.

M ::= KV | V V K
V ::= x | λx.λk.M
K ::= k | λx.M

with the following reduction rules (performed at top-level, without
any reduction under context).

(λx.λk.M)VK −→ M [x := V ][k := K]
(λx.M)V −→ M [x := V ]

In order to prove Turing completeness it suffices to show how to
encodeλcps terms and reductions in our calculus. For the sake
of readability, we use mutually recursive types (rather than their
encoding inµ-types), we use records (though pairs would have
sufficed), we write just the recursion variableX for the filterx ->
Xx, and use¬t to denote the typeany\t. Term productions are
encoded by the recursive types given at the beginning of Figure 5.

Next we define the evaluation filterEval. In its body it calls the
filter Subst[c,F] which implements the capture free substitution
and, whenc denotes a constant, is defined as right below.

It is straightforward to see that the definitions in Figure 5 imple-
ment the reduction semantics of CPS terms. Of course the defini-
tion above would not pass our termination condition. Indeedwhile
Subst would be accepted by our algorithm,Eval would fail since
it is not possible to ensure that the recursive calls ofEval will re-
ceive fromSubst subtrees of the original input type. This is ex-
pected: while substitution always terminate they may return trees
that are not subtrees of the original term.

C. Proof of subject reduction (Theorem 13)
We first give the proof of Lemma 9, which we restate:

Let f be a filter andv be a value such thatv /∈ *f+. Then for
everyγ, δ, if δ;γ ⊢eval f(v) r, r ≡ Ω.

Proof. By induction on the derivation ofδ;γ ⊢eval f(v)  r, and
case analysis on the last rule of the derivation:

(expr): here,*e+ = any for any expressione, therefore this rule
cannot be applied (since∀v, v ∈ any).

(prod): assumev /∈ *(((f1,f2)))+ ≡ ((( * f1 + ,,, * f2 + ))). then either
v /∈ (((any,,,any))), in which case only rule(error) applies and
thereforer ≡ Ω. Or v ≡ (v1, v2) andv1 /∈ *f1+. Then by
induction hypothesis on the first premise,δ;γ ⊢eval f1(v1) r1
andr1 ≡ Ω, which contradicts the side conditionr1 6= Ω (and

We were a little bit sloppy in the notation and used a filter parameter
as a pattern. Strictly speaking this is not allowed in filtersand, for in-
stance, the branch{ var : c } -> F in Subst should rather be writ-
ten as { var : y } -> ( (y=c); (true -> F | false -> { var
: y }) ). Similarly, for the other two cases.
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similarly for the second premise). Therefore this rule cannot be
applied to evaluate(((f1,f2))).

(patt): Similarly to the previous case. Ifv /∈ *p⇒⇒⇒ f+ = *p+&&&*f+
then eitherv /∈ *p+ (which contradictsv/p 6= Ω) or v /∈ *f+
and by induction hypotheis,δ;γ, v/p ⊢eval f(v) Ω.

(comp): If v /∈ *f1;f2+ ≡ *f1+, then by induction hypothesis on
the first premise,r1 ≡ Ω, which contradicts the side condition
r1 6= Ω. Therefore only rule(error) can be applied here.

(recd): Similar to product type: eitherv is not a record and there-
fore only the rule(errro) can be applied, or one of theri = Ω
(by induction hypothesis) which contradicts the side condition.

(union1) and (union2): sincev /∈ *f1|||f2+, this means thatv /∈
*f1+ and v /∈ *f2+. Therefore if rule(union1) is chosen, by
induction hypothesis,r1 ≡ Ω which contradicts the side con-
dition. If rule (union2) is chosen, then by induction hypothesis
r2 ≡ Ω which givesr ≡ Ω.

(rec-call) trivially true, since it cannot be thatv /∈ any

(rec) we can apply straightfowardly the induction hypothesis on
the premise and have thatr ≡ Ω.

(groupby) and (orderby): If v /∈ f then the only rule that applies
is (error) which givesr ≡ Ω.

We are now equipped to prove the subject reduction theorem
which we restate in a more general manner:

For everyΓ,∆, M , γ, δ such that∀x ∈ dom(γ), x ∈ dom(Γ)∧
γ(x) : Γ(x), if Γ;∆;M ⊢fil f(t) : s, then for all v : t,
δ;γ ⊢eval f(v) r impliesr : s.

The proof is by induction on the derivation ofδ;γ ⊢eval f(v) 
r, and by case analysis on the rule. Beside the basic case, the only
rules which are not a straightforward application of induction are
the rulesunion1 andunion2 that must be proved simulatneously.
Other cases being proved by a direct application of the induction
hypothesis, we only detail the case of the product constructor.

(expr): we suppose that the host languages enjoys subject reduc-
tion, hencee(v) = r : s.

(prod): Here, we know thatt ≡
∨

i≤rank(t)(t
i
1, t

i
2). Sincev is a

value, andv : t, we obtain thatv ≡ (v1, v2). Since(v1, v2)
is a value,∃i ≤ rank(t) such that(v1, v2) : (ti1, t

i
2). The

observation thatv is a value is crucial here, since in general
given a typet′ ≤ t with t′ ≡

∨

j≤rank(t′)(t
′
1
j
, t′2

j
) it is not

true that∃i, j s.t.(t′1
j
, t′2

j
) ≤ (t1

i, t2
i). However this property

holds for singleton types and therefore for values. We have
therefore thatv1 : ti1 and v2 : ti1. Furthermore, since we
suppose that a typing derivation exists and the typing rulesare
syntax directed, thenΓ;∆;M ⊢fil f(t

i
1) : si1 must be a used

to prove our typing judgement. We can apply the induction
hypothesis and deduce thatδ;γ ⊢eval f(v1)  r1 and similarly
for v2. We have therefore that the filter evaluates to(r1, r2)
which has type(si1, s

i
2) ≤

∨

j≤rank(s)(s1
i, s2

i) which proves
this case.

(union1) and (union2): both rules must be proved together. In-
deed, given a filterf1|||f2 for which we have a typing derivation
for the judgementΓ;∆;M ⊢fil f1|||f2(t) : s, eitherv : t&&& *
f1+ and we can apply the induction hypothesis and therefore,
Γ;∆;M ⊢fil f1|||(t&&& * f1+) : s1 and if δ;γ ⊢eval f(v1)  r1
(caseunion1) r1 : s1. However it might be thatv /∈ t&&& * f1+.
Then by Lemma 9 we have thatδ;γ ⊢eval f(v1)  Ω (case
union2) and we can apply the induction hypothesis on the sec-
ond premise, which gives usδ;γ ⊢eval f(v1) r2 which allows
us to conclude.

(error): this rule can never occur. Indeed, ifv : t andΓ;∆;M ⊢fil

f(t) : s, that means in particular thatt ≤ *f+ and therefore
that all of the side conditions for the rulesprod, pat andrecd
hold.

D. Complexity of the typing algorithm
Proof. For clarity we restrict ourselves to types without record
constructors but the proof can straihgtforwardly be extended to
them. First remark that our types are isomorphic to alternating tree
automata (ATA) with intersection, union and complement (such
as those defined in [10, 17]). From such an ATAt it is possible
to compute a non-deterministic tree automatont′ of sizeO(2|t|).
When seeingt′ in our type formalism, it is a type generated by the
following grammar:

τ ::= µX.τ | τ|||const | const
const ::= (((τ,,,τ))) | atom
atom ::= X | b

whereb ranges over negation and intersections of basic types. In-
tuitively each recursion variableX is a state in the NTA, a finite
union of products is a set of non-deterministict transitions whose
right-hand-side are each of the products andatomproductions are
leaf-states. Then it is clear than ifCheck(f) holds, the algorithm
considers at most|f | × |t′| distinct cases (thanks to the memoiza-
tion setM ). Furthermore for each rule, we may test a subtyping
problem (eg, t ≤ *f+), which itself is EXPTIME thus giving the
bound

E. Precise typing ofgroupby
The process of inferring a precise type forgroupby f(t) is decom-
posed in several steps. First we have to compute the setD(f) of
discriminant domains for the filterf . The idea is that these domains
are the types on which we know thatf may give results of differ-
ent types. Typically this corresponds to all possible branchings that
the filterf can do. For instance, if{t1, ..., tn} are pairwise disjoint
types andf is the filter t1 ⇒⇒⇒ e1||| · · · |||tn ⇒⇒⇒ en, then the set of
discriminant domains for the filterf is {t1, ..., tn}, since the vari-
oussi obtained from∅;∅;∅ ⊢fil f(ti) : si may all be different,
and we want to keep track of the relation between a result typesi
and the input typeti that produced it. FormallyD(f) is defined as
follows:

D(e) = {any}
D((((f1,f2)))) = D(f1)×D(f2)
D(p⇒⇒⇒ f) = {***p +++&&&t | t ∈ D(f)}
D(f1|||f2) = D(f1) ∪ {t\***f1+++ | t ∈ D(f2)}
D(µµµX...f) = D(f)
D(Xa) = {any}
D(f1;f2) = D(f1)
D(of) = {[any*]} (o = groupby , orderby )
D({{{ℓi:fi , ..}}}i∈I) =

⋃

ti∈D(fi)

{{{ℓi:ti , ..}}}i∈I

Now in order to have a high precision in typing we want to
compute the type of the intermediate list of the groupby on a set of
disjoint types. For that we define a normal form of a set of types that
given a set of types computes a new set formed of pairwise disjoint
types whose union covers the union of all the original types.

N ({ti | i ∈ S}) =
⋃

∅⊂I⊆S

(
⋂

i∈I

ti \
⋃

j∈S\I

tj)

Recall that we are trying to deduce a type forgroupby f(t), that
is for the expressiongroupby f when applied to an argument of
typet. Which types shall we use as input for our filterf to compute
the type of the intermediate result? Surely we want to have all the
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types that are in theitem(t). This however is not enough since we
would not use the information of the descriminant domains for the
filter. For instance if the filter gives two different result types for
positive and negative numbers and the input is a list of integers,
we want to compute two different result types for positive and
negatives and not just to compute the result of the filter application
on generic integers (indeeditem([int*]) = {int}). So the idea
is to add to the set that must be normalized all the types of theset
of discriminant types. This however is not precise enough, since
these domains may be much larger than the item types of the input
list. For this reason we just take the part of the domain typesthat
intersects at least some possible value of the list. In otherterms we
consider the normal form of the following set

item(t) ∪ {σi ∧∧∧
∨

ti∈D(f)

ti | σi ∈ item(t)}

The idea is then that if{ti}i∈I is the normalized set of the set
above, then the type of grouby is the type[

∨

i∈I (((f(ti),,,[ti+])))*]
with the optimization that we can replace the* by a+ if we know
that the input list is not empty.

F. Comparison with top-down tree transducers
We first show that every Top-down tree transducers with regular
look-ahead can be encoded by a filter. We use the definition of [14]
for top-down tree transducers:

Definition 20 (Top-down Tree transducer with regular look-a-
head). A top-down tree transducer with regular look-ahead(TDTTR)
is a 5-tuple< Σ,∆, Q,Qd, R > whereΣ is the input alphabet,
∆ is the output alphabet,Q is a set of states,Qd the set of initial
states andR a set of rules of the form:

q(a(x1, . . . , xn)), D → b(q1(xi1), . . . , qm(xim))

wherea ∈ Σn, b ∈ ∆m, q, q1,. . . ,qm ∈ Q, ∀j ∈ 1..m, ij ∈ 1..n
andD is a mapping from{x1, . . . , xn} to2TΣ (TΣ being the set of
regular tree languages over alphabetΣ). A TDTTR is deterministic
if Qd is a singleton and the left-hand sides of the rules inR are
pairwise disjoint.

Since our filters encode programs, it only make sense to com-
pare filters anddeterministicTDTTR. We first show that given such
adeterministicTDTTR we can write an equivalent filterf and, fur-
thermore, thatCheck(f) does not fail. First we recall the encoding
of ranked labeled trees into the filter data-model:

Definition 21 (Tree encoding). Let t ∈ TΣ. We define the tree-
encoding oft and we writeJtK the value defined inductively by:

JaK = (‘a,[]) ∀a ∈ Σ0

Ja(t1, . . . , tn)K = (‘a,[ Jt1K ... JtnK ]) ∀a ∈ Σn

where the list notation[ v1 ... vn ] is a short-hand for(v1,
..., (vn, ‘nil)). We generalize this encoding to tree lan-
guages and types. LetS ⊆ Tσ, we write JSK the set of values
such that∀t ∈ S, JtK ∈ JSK.

In particular it is clear than whenS is regular,JSK is a type.

Lemma 22 (TDTTR→ filters). LetT =< Σ,∆, Q, {q0}, R >
be a deterministic TDTTR. There exists a filterfT such that:

∀t ∈ dom(T ), JT (t)K ≡ fT JtK

Proof. The encoding is as follows. For every stateqi ∈ Q, we
will introduce a recursion variableXi. Formally, the translation is
performed by the functionTR : 2Q ×Q→ Filters defined as:

TR(S, qi) = x⇒⇒⇒ Xi x if qi ∈ S
TR(S, qi) = µXi.(f1||| . . . |||fn) if qi /∈ S

where every rulerj ∈ R

rj ≡ qi(aj(x1, . . . , xn)),Dj → bj(qj1(xjk1
), . . . , qjm (xjkm

))

is translated into:

(‘aj, [ x1&&&JDj(x1)K ... xn&&&JDj(xn)K ])⇒⇒⇒ ‘bj,[]

if bj ∈ ∆0

(‘aj, [ x1&&&JDj(x1)K ... xn&&&JDj(xn)K ])⇒⇒⇒
(((‘bj ,(((xjk1

;TR(S′, qj1),((( . . . ,(((xjkm
;TR(S′, qjm ),‘nil))))))))))))

whereS′ = S ∪ {qi} otherwise

The fact that∀t ∈ dom(T ), JT (t)K ≡ TR(∅, q0)JtK is proved by a
straightforward induction ont. The only important point to remark
is that sinceT is deterministic, there is exactly one branch of the
alternate filterf1||| . . . |||fn that can be selected by pattern matching
for a given inputv. For as to whyCheck(fT ) holds, it is sufficient
to remark that each recursive call is made on a strict subtreeof the
input which guarantees thatCheck(fT ) returns true.

Lemma 23 (TDTTR 6← filters). Filters are strictly more expres-
sive than TDTTRs.

Proof. Even if we restrict filters to have the same domain as TDT-
TRs (meaning, we used a fixed input alphabetΣ for atomic types)
we can define a filter that cannot be expressed by a TDTTR. For
instance consider the filter:

y⇒⇒⇒(µX.(((‘a,,,‘nil)))⇒⇒⇒ y
|||(((‘b,,,‘nil)))⇒⇒⇒ y
|||(((‘a,,,[x])))⇒⇒⇒ (‘a, [ X x ]))
|||(((‘b,,,[x])))⇒⇒⇒ (‘b, [ X x ]))

This filter works on monadic trees of the formu1(. . . un−1(un) . . .)
whereui ∈ {a, b}, and essentially replaces the leafun of a tree
t by a copy oft itself. This cannot be done by a TDTTR. Indeed,
TDTTR have only two ways to “remember” a subtree and copy it.
One is of course by using variables; but their scope is restricted to a
rule and therefore an arbitrary subtree can only be copied atafixed
distanceof its original position. For instance in a rule of the form
q(a(x)),D → a(q1(x), b(b(q1(x)))), assuming thanq1 copies its
input, the copy of the original subtree is two-levels down from its
next sibling but it cannot be arbitrary far. A second way to copy
a subtree is to remember it using the states. Indeed, states can en-
code the knowledge that the TDTTR has accumulated along a path.
However, since the number of states is finite, the only thing that a
TDTTR can do is copy a fixed path. For instance for any givenn,
there exists a TDTTR that performs the transformation above, for
trees of heightn (it has essentially2n − 1 states which remember
every possible path taken). For instance forn = 2, the TDTTR is:

q0(a(x)),D → a(q1(x))
q1(a()),D → a(a)
q1(b()), D → a(b)
q0(b(x)),D → b(q2(x))
q2(a()),D → b(a)
q2(b()), D → b(b)

whereΣ = ∆ = {a, b}, Q = {q0, q1, q2}, Qd = {q0} and
D = {x 7→ TΣ}. It is however impossible to write a TDTTR that
replaces a leaf with a copy of the whole input, for inputs of arbitrary
size. A similar example is used in [13] to show that TDTTR and
bottom-up tree transducers are not comparable.

G. Operators on record types.
We use the theory of records defined forCDuce. We summarize
here the main definitions. These are adapted from those givenin
Chapter 9 of Alain Frisch’s PhD thesis [15] where the interested
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reader can also find detailed definitions of the semantic interpre-
tation of record types and of the subtyping relation it induces, the
modifications that must be done to the algorithm to decide it,finer
details on pattern matching definition and compilation techniques
for record types and expressions.

LetZ denote some set, a functionr : L → Z is quasi-constant
if there existsz ∈ Z such that the set{ℓ∈L | r(ℓ) 6= z} is finite; in
this case we denote this set bydom(r) and the elementz by def(r).
We useL _ Z to denote the set of quasi-constant functions from
L toZ and the notation{ℓ1 = z1, . . . , ℓn = zn, _ = z} to denote
the quasi-constant functionr : L _ Z defined byr(ℓi) = zi for
i = 1..n andr(ℓ) = z for ℓ ∈ L \ {ℓ1, . . . , ℓn}. Although this
notation is not univocal (unless we requirezi 6= z), this is largely
sufficient for the purposes of this section.

Let ⊥ be a distinguished constant, then the setsstring _
Types∪ {⊥} and string _ Values∪ {⊥} denote the set of
all record types expressions and of all record values, respectively.
The constant⊥ represents the value of the fields of a record that
are “undefined”. To ease the presentation we use the same notation
both for a constant and the singleton type that contains it: so when
⊥ occurs inL _ Values∪ {⊥} it denotes a value, while in
string _ Types∪{⊥} it denotes the singleton type that contains
only the value⊥.

Given the definitions above, it is clear that the record types
in Definition 2 are nothing but specific notations for some quasi-
constant functions instring _ Types∪ {⊥}. More precisely,
the open record type expression{{{ℓ1:t1, . . . , ℓn:tn , ......}}} denotes the
quasi-constant function{ℓ1 = t1, . . . , ℓn = tn, _ = any} while
the closed record type expression{{{ℓ1:t1, . . . , ℓn:tn}}} denotes the
quasi-constant function{ℓ1 = t1, . . . , ℓn = tn, _ = ⊥}. Simi-
larly, the optional field notation{{{..., ℓ?:t, ...}}} denotes the record
type expressions in whichℓ is mapped either to⊥ or to the typet,
that is,{..., ℓ = t |||⊥, ...}.

Let t be a type andr1, r2 two record type expressions, that is
r1, r2 : string _ Types∪ {⊥}. Themergeof r1, andr2 with
respect tot, noted⊕t and used infix, is the record type expression
defined as follows:

(r1 ⊕t r2)(ℓ)
def
=

{

r1(ℓ) if r1(ℓ)&&&t ≤ empty
(r1(ℓ) \ t)|||r2(ℓ) otherwise

Recall that by Lemma 11 arecord type(ie, a subtype of{..}) is
equivalent to a finite union ofrecord type expressions(ie, quasi-
constant functions instring _ Types∪ {⊥}). So the definition
of mergecan be easily extended to all record types as follows

(
∨

i∈I

ri)⊕t (
∨

j∈J

r′j)
def
=

∨

i∈I,j∈J

(ri ⊕t r
′
j)

Finally, all the operators we used for the typing of records in the
rules of Section 4.2 are defined in terms of the merge operator:

t1 + t2
def
= t2 ⊕⊥ t1 (1)

t \ ℓ
def
= {ℓ = ⊥, _ = c0} ⊕c0 t (2)

wherec0 is any constant different from⊥ (the semantics of the
operator does not depend on the choice ofc0 as long as it is different
from⊥).

Notice in particular that the result of the concatenation oftwo
record type expressionsr1 + r2 may result for each fieldℓ in three
different outcomes:

1. if r2(ℓ) does not contain⊥ (ie, the fieldℓ is surely defined), then
we take the corresponding field ofr2: (r1 + r2)(ℓ) = r2(ℓ)

2. if r2(ℓ) is undefined (ie, r2(ℓ) = ⊥), then we take the corre-
sponding field ofr1: (r1 + r2)(ℓ) = r1(ℓ)

3. if r2(ℓ) maybe undefined (ie, r2(ℓ) = t|||⊥ for some typet),
then we take the union of the two corresponding fields since
it can results either inr1(ℓ) or r2(ℓ) according to whether the
record typed byr2 is undefined inℓ or not: (r1 + r2)(ℓ) =
r1(ℓ)|||(r2(ℓ) \ ⊥).

This explains all the examples we gave in the main text. In partic-
ular,{{{a:int, b:int}}} + {{{a?:bool}}} = {{{a:int|||bool, b:int}}} since
“a” may be undefined in the right hand-side record while “b” is
undefined in it, and{{{a:int}}} + {{{..}}} = {{{..}}}, since “a” in the right
hand-side record is defined (witha 7→ any) and therefore has pri-
ority over the corresponding definition in the left hand-side record.

H. Encoding of Co-grouping
As shown in Section 5.2, ourgroupby operator can encode JaQL’s
group each x = e as y by e′, wheree computes the grouping key,
and for each distinct key,e′ is evaluated in the environment where
x is bound to the key andy is bound to the sequence of elements in
the input having that key. Co-grouping is expressed by:

group
l1 by x = e1 as y1

...
ln by x = en as yn

into e

Co-grouping is encoded by the following composition of filters:

[ Jl1K ... JlnK ];
[ Transform[x⇒⇒⇒ (1, x)] ... Transform[x⇒⇒⇒ (n, x)] ];
Expand;
groupby ((((1,,,$)))⇒⇒⇒Je1K ||| . . . |||(((n,,,$)))⇒⇒⇒JenK);
Transform[ (((x,,,l)))⇒⇒⇒([(l;Rgrp1)...(l; Rgrpn)];

[y1, . . . , yn]⇒⇒⇒JeK )]

where

let filter Rgrpi = ‘nil => ‘nil
| ((i,x),tail) => (x , Rgrpi tail)
| _ => Rgrpi tail

Essentially, the co-grouping encoding takes as argument a sequence
of sequences of values (then sequences to co-group). Each of
thesen sequence, is tagged with an integeri. Then we flatten this
sequences of tagged values. We can on this single sequence apply
ourgroupby operator and modify each key selectorei so that it is
only applied to a value tagged with integeri. Once this is done, we
obtain a sequence of pairs(k, l) wherek is the commen grouping
key and l a sequence of tagged values. We only have to apply
the auxiliaryRegrp filter which extracts then subsequences from
l (tagged with 1..n) and removes the integer tag for each value.
Lastly we can call the recombining expressione which has in scope
x bound to the current grouping key andy1,. . . ,yn bound to each of
the sequences of values from inputl1, . . . ,ln whose grouping key
is x.
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