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Abstract

Polyhedral compilation has been successful in the design and
implementation of complex loop nest optimizers and paralleliz-
ing compilers. The algorithmic complexity and scalability lim-
itations remain one important weakness. We address it using
sub-polyhedral under-aproximations of the systems of constraints
resulting from affine scheduling problems. We propose a sub-
polyhedral scheduling technique using (Unit-)Two-Variable-Per-
Inequality or (U)TVPI Polyhedra. This technique relies on simple
polynomial time algorithms to under-approximate a general poly-
hedron into (U)TVPI polyhedra. We modify the state-of-the-art
PLuTo compiler using our scheduling technique, and show that
for a majority of the Polybench (2.0) kernels, the above under-
approximations yield polyhedra that are non-empty. Solving the
under-approximated system leads to asymptotic gains in complex-
ity, and shows practically significant improvements when com-
pared to a traditional LP solver. We also verify that code generated
by our sub-polyhedral parallelization prototype matches the per-
formance of PLuTo-optimized code when the under-approximation
preserves feasibility.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization

General Terms Approximations, Complexity, Scheduling, Opti-
mization, Performance

Keywords Approximation Algorithms, Complexity Theory, Com-
piler Optimizations, Parallelism, Loop Transformations, Affine
Scheduling, Optimization, Geometric Algorithms

1. Motivation

Polyhedral compilation is well established as the most effective
framework to reason with loop programs. At its heart lie the rep-
resentation of loop nests as polyhedra, and the search for their
semantics-preserving loop transformations. In general, semantics
preservation amounts to the feasibility of rational polyhedra, while
performance and profitability are related to optimization on ra-
tional polyhedra. This simplicity is both the strength as well as
the weakness of polyhedral compilation. Strength because polyhe-
dral abstractions are extremely powerful to analyze loops, encoding
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multitudes of useful transformations, with the ability to automati-
cally parallelize and tile them on newer architectures being one of
the main practical applications. And weakness because the richness
of polyhedra itself becomes an obstacle due to the complexity of its
core algorithms. This latter issue creates a practical challenge when
programs of non-trivial size are being compiled. Our view is that
using approximations of polyhedra alleviates and provides a solu-
tion for this scalability challenge.

In a previous paper [53], we proposed different directions for
sub-polyhedral compilation, where approximations of general con-
vex polyhedra could be used so that the problems that are being
solved by polyhedral compilers can be made scalable with worst-
case polynomial time guarantee. This was followed by the intro-
duction of sub-polyhedral scheduling in [54], where we proposed
using (U)TVPI sub-polyhedral under-approximations to reduce the
complexity of affine scheduling.

In the current paper, we build from the above works and make
solid progress towards polyhedral schedulers that are intrinsically
scalable in the program size. Our techniques rely on strongly poly-
nomial algorithms, i.e., whose time complexity is polynomial only
in the number of integers in the input and not on the bit-size of the
input encoding. For example, we are able to substitute linear pro-
gramming with min-cost flow and shortest paths problems, which
are solvable using graph theoretic methods like the well known
Bellman-Ford algorithm.

Our method applies to latency and depth minimization ap-
proaches like Feautrier’s algorithm [25], as well as methods cen-
tered on loop tiling like Bondhugula et al.’s PLuTo [13, 29].

1.1 Polyhedral compilation

Affine scheduling [21] now is a part and parcel of many com-
pilers which aspire to compile for parallel architectures (GCC,
LLVM, IBM XL, Reservoir Labs R-Stream). The seminal work
of Feautrier [25] opened the avenue of constraint-based affine
transformation methods, building on the affine form of the Farkas
lemma. This approach has been refined, extended and applied in
many directions. To cite only two recent achievements at the two
extremes of the complexity spectrum: the tiling-centric PLuTo al-
gorithm of Bondhugula et al. [13] extending the Forward Com-
munication Only (FCO) principle of Griebl et al. [29] for coarse-
grain parallelization, and the complete, convex characterization of
Vasilache [55] and decoupled exploration heuristic of Pouchet et
al. [39]. Much progress has been made in the understanding of
the theoretical and practical complexity of polyhedral compilation
problems. Nevertheless, when considering multidimensional affine
transformations, none of these are strongly polynomial in the size
of the program. The lowest complexity heuristics such as PLuTo
are reducible to linear programming, which is only weakly polyno-
mial, its traditional Simplex implementation being associated with



large memory requirements and having a worst-case exponential
complexity.

1.2 Unscalability of a current scheduler
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Figure 1. Unscalability for Large Loop Programs

In this section, we show an example of unscalability of cur-
rent methods in PLuTo. We have artificially unrolled two typical
kernels from PolyBench [40], matmul and seidel, by a variable
number of times so as to increase the number of dependences in the
loop nests. We have also enclosed the unrolled loops in two “time
loops”, mimicking the behavior of a scientific computing kernel.
The above transformations induce thousands of dependences in the
input program. The compilation times are shown in Figure 1. with
matmul in blue (crosses) and seidel in red (circles).

We checked that the compilation time (auto trans time of
PLuTo) increases in a roughly n5 complexity in the number of
statements in the system. The rest of the modules of PLuTo—in
particular, dependence analysis and code generation (CLooG)—
took significantly less than the above.

It may seem that the above unrolling based method is an artifi-
cial way to induce unscalability, with inlining being a better can-
didate for the same in real world benchmarks. While unrolling is
much simpler to simulate, limitations of current infrastructures do
not provide a platform to study the asymptotic time complexity as-
sociated with code size increases associated with inlining. Hence,
the above examples could only be taken as representatives of the
unscalability problem. But it should also be remembered that when
discussing the solution time with respect to the input code size in-
crease, the number of constraints in the overall LP problem is linear
in the number of dependences in the input code. So, a method like
the above which gives a representative sample to increase the size
of the LP program is not a limitation.

Further, in current benchmarks for loop nest optimization—like
the PolyBench—the range of dependences is in tens, and it can ar-
guably be said that presently there exists no scalability problem
like in the above artificial examples. But, polyhedral compilers will
soon face such large problems, arising from aggressive interproce-
dural optimization, domain-specific program generation, or simply
as the applicability restrictions continue to be lifted [10, 51]. In ad-
dition, there could be a restriction of the time limit in just-in-time
compilers that would further exacerbate the scalability problem,
such as just-in-time applications of LLVM/Polly [30]. Note that
IBM XL, LLVM, and R-Stream have schedulers similar to PLuTo.

In the following, we aim for lower complexity feasibility and
optimization algorithms, with worst-case strongly polynomial

bounds, and closer to n2 time complexity for large-scale and/or
just-in-time compilation applications.

1.3 Contributions

In this paper, we make the following contributions:

• We show that state-of-the-art parallelization and affine schedul-
ing heuristics such as PLuTo can be adapted to (U)TVPI sub-
polyhedra, thereby reducing their algorithmic complexity.

• Using elementary polyhedral concepts, we present a simple and
powerful framework (an approximation scheme) which can be
used for designing Under-Approximation (UA) algorithms of
general convex polyhedra, linearizing the UA problem.

• We evaluate these methods by integrating them into PLuTo. We
show that for a significant percentage of Farkas-polyhedra aris-
ing from a wide range of test cases from affine scheduling, the
(U)TVPI-UAs proposed above are precise enough to preserve
feasibility. We show that our approximations when solved with
a Bellman-Ford algorithm show considerable improvement in
running time over a well established Simplex implementation.
Further, we show that preliminary integration of the above UA
polyhedra into PLuTo yields code in most cases that does not
suffer significant increase in execution time.

• We show how our framework is general enough to extend to
various other problems in compiler scheduling, either within
the affine transformations or beyond.

The paper is structured as follows. Section 2 introduces TVPI
and UTVPI sub-polyhedra. Section 3 introduces polyhedral schedul-
ing, our method to tackle with the scalability problem, and the
mathematical framework for the linearization of the under-approximation
problem and for establishing its correctness. Section 4 proposes
simple algorithms that under-approximate a general convex poly-
hedron into a (U)TVPI polyhedron. Section 5 discusses the theo-
retical and practical implications of the above algorithms. In Sec-
tion 6, we discuss the various methods for having better control of
feasibility in the presence of multiple polyhedra. In Section 7 we
discuss the results of implementing these algorithms in PLuTo. In
Section 8 we discuss extensions and related work, and we conclude
in Section 9.

2. Sub-Polyhedra: TVPI and UTVPI

In this section, we briefly cover some basics of TVPI and UTVPI
approximations of polyhedra. A more extensive discussion on
these, including other flavors of sub-polyhedra as used by the static
analysis community can be found in our earlier work [53]. For a
polyhedron described in constraint form, let m be the number of
inequalities, n be the number of variables and B the upper bound
on the absolute value of the coefficients describing the system.

2.1 TVPI sub-polyhedra

In TVPI polyhedra, each constraint is of the form: axi + bxj ≤ c
a, b, c ∈ Q. TVPI are obviously closed under projection, and
hence many algorithms on geometric operations that are developed
for planar polyhedra (polygons) are directly applicable to general
TVPI, giving rise to simple algorithms with low complexity. Fur-
thermore, the dual of a TVPI program is a generalized min-cost
flow problem, which can be solved using graph algorithms. So, the
linear programming community has been interested in TVPI poly-
hedra because it can be dealt with strongly polynomial time algo-
rithms.

Application of graph theory to linear programming using TVPI
systems was pioneered by Shostak [46]. Aspvall and Shiloach [4]
showed the polynomiality of the feasibility problem of TVPI-LP



formulations by introducing a unique strongly polynomial time
procedure that can be used to decide the range of a particular
variable with respect to a given constant. This latter procedure is
a Bellman-Ford style propagation of values assigned to variables
through inequalities in the system, and is the heart of all subse-
quent algorithms in the TVPI literature. The following result by
Wayne [58] is the best to date for the TVPI optimization problem:

Lemma 2.1.1 [LP optimization on TVPI] Linear programming
optimization on TVPI systems can be solved in O(m3n2 logm logB)
worst case time.

It is well known that for general polyhedra, the optimization
and the feasibility problems have the same weakly-polynomial
time hardness. But it is interesting to note that till date, they have
different complexities on TVPI systems. The feasibility problem
on TVPI systems has lower complexity than the above weakly
polynomial time result by Wayne on the optimization problem.
Network flow based (“combinatorial”) strongly polynomial time
algorithms for the feasibility problem were given by Cohen and
Megiddo [16]. Hochbaum and Naor [32] showed that feasibility of
TVPI polyhedra can be determined in strongly polynomial time:

Lemma 2.1.2 [Feasibility on TVPI] Feasibility of TVPI systems
can be solved in O(mn2 logm) worst case time.

The above nearly cubic time algorithm by Hochbaum-Naor is
surprisingly simple. It embeds the mentioned decision procedure
of Aspvall-Shiloach into a binary search, along with a selected ap-
plication of Chernikova on a planar polyhedron. It can be seen that
the above result can as well be used to derive strongly polynomial
time cubic bounds for Fourier-Motzkin elimination, and for projec-
tion of variables from TVPI systems.

TVPI systems have been used for various problems in abstract
interpretation and verification [47].

2.2 UTVPI sub-polyhedra (octagons)

Octagons have constraints of the form axi + bxj ≤ c; a, b ∈
{0,±1}, c ∈ Q, and are called so because in 2-dimensions, their
geometric shape is octagonal. They are also referred to as Unit Two
Variables Per Inequality (UTVPI) because of the nature of their
constraints. Since UTVPI ⊂ TVPI, the complexity bounds of TVPI
polyhedra apply to UTVPI polyhedra as well. But, as the dual of
the LP formulation of shortest-paths problem has just difference
constraints [1] with the form xi − xj ≤ c, general UTVPI systems
can be solved with same quadratic complexity as Bellman-Ford,
giving the following lemma:

Lemma 2.2 [Feasibility on UTVPI] Feasibility of UTVPI stys-
tems can be solved in O(mn) worst case time and in O(m + n)
space.

The above decision algorithm can also return a feasibility cer-
tificate of the UTVPI polyhedron.

UTVPI polyhedra have successfully been used for various
problems in abstract interpretation and program verification [38].
Also, they have well supported implementations, in Apron [34],
the Astrée analyzer [12, 17], and in the Parma Polyhedra Library
(PPL) [5].

2.3 Sub-polyhedra vs. general (convex) polyhedra

The use of sub-polyhedra by the static analysis community has dif-
ferent requirements than our proposed application to affine schedul-
ing. In the former, they serve as abstract domains and provide oper-
ations like union, intersection, projection etc., which are efficiently
solved by (U)TVPI polyhedra providing better worst-case com-
plexity. The objective functions in polyhedral scheduling are very
simple functionals with unit coefficients, and lexicographic min-
ima. Our (U)TVPI sub-polyhedral approximate solutions are based

on the assumption that the objective function itself could be ap-
proximated and any valid feasibility certificate is usually enough.
In this aspect, sub-polyhedra fare better than general convex poly-
hedra for which efficient algorithms are usually based on the widely
used Simplex [18] algorithm.

The worst-case complexity of LP is known to be (weakly)
polynomial in time [44], and the Simplex algorithm, while taking
exponential time on worst-case scenario squashed cube inputs (as
shown by Klee-Minty), is known to run well in practice [11].

In practice, we are more interested in the average-case com-
plexity of LP, to evaluate the merit of our approximation methods.
Let Z(m,n) be the complexity of LP using the Simplex algorithm
with m constraints and n variables. Determining typical value of Z
is not an easy task, as it is well known to depend on many details of
the algorithm, like relative ratio of m and n, pivoting rule, method
of exploiting sparsity, and even many implementation details. In
this paper however, we will be using the following folklore result
which does not count the bit-size complexity: on a typical input,
Z = O((m+ n)mn) on average.

In the above empirical estimate, we assume that the Gaussian
elimination steps of the Simplex are very fast, exploiting sparsity,
and assuming a linear number O(m + n) of pivoting steps. Also,
the above estimate is practically very accurate for the LP pro-
grams we observe, despite the recent invalidation of Hirsch con-
jecture [43, 61]. Note that advanced algorithmic analyses using
novel perturbation-based probabilistic techniques have even been
proposed by Spielman and Teng [48] to establish the average-case
polynomial running time; but these results go way beyond the em-
pirical estimate we need to evaluate our algorithms.

3. Polyhedral Scheduling and Approximations

In this section, we show how the above classes of sub-polyhedra
could be used to help in overcoming the scalability challenge in
affine scheduling.

3.1 Polyhedral scheduling and Farkas lemma

Let us first recall some essential notations and results about poly-
hedral compilation.

The input to any polyhedral scheduling algorithm is a polyhe-
dral dependence graph G, which is a result of a dependence anal-
ysis, and is defined to be a multi-graph G = (V,E), where V is
the set of statements, and each particular dependence edge e ∈ E
is annotated with a parametrized polyhedron De. Each of the con-
straints of De is affine and involves (I,N) where vectors I and N
are the iteration and parameter vectors, respectively.

In Feautrier’s algorithm [25], these are converted into a per-
dependence edge polyhedron Pe(µ, λ), with µ-variables being
the Farkas multipliers that come from domain constraints and λ-
variables being the Farkas multipliers that come from dependence
constraints. This conversion is done by application of the affine
form of the Farkas lemma [44, Corollary 7.1h] given as:

Lemma 3.1 [Affine Form of Farkas’s Lemma] Let D be a
nonempty polyhedron defined by p inequalities akx + bk ≥ 0,
for any k ∈ {1, . . . , p}. An affine form Φ is non-negative over D
if and only if it is a non-negative affine combination of the affine
forms used to define D, meaning:

Φ(x) ≡ λ0 +

p
∑

k=1

λk(akx+ bk); ∀k ∈ [0, p]λk ≥ 0

The nonnegative values λk are called Farkas’ multipliers.
In the per-edge Farkas polyhedron Pe(µ, λ), both of the newly

created λ and µ variables are called the Farkas multipliers. By
putting together all the per-edge Farkas polyhedra, one obtains an



overall Farkas polyhedron P = ∩e∈EPe, which is amenable to
Linear Programming. Any rational point that satisfies P is consid-
ered a valid schedule.

The above application of the Farkas lemma results in all the con-
straints in the Feautrier’s scheduler, with some additional variables
to model the strong/strict satisfaction of dependences at a given di-
mension of the affine schedule. In PLuTo, a different but conceptu-
ally similar method results in a majority of dependence constraints
of the same form as Feautrier’s.

It has been shown elsewhere [27, 53] that these methods re-
sult in an LP problem of size m × n ≈ (d · |E|) × (d · |V |),
where d is the mean depth of the loop nests. Assuming a usual sim-
plex method—whose complexity has been alluded in the previous
section—for solving systems with bounded d leads to a close to
O(|E|2|V |) = O(|V |5) asymptotic complexity (not counting the
bit-size complexity, and assuming |E| = O(|V |2)), closely match-
ing the curves in Figure 1 and leading to unscalability problems.

3.2 Schedule space under-approximation

In this paper, we propose that P be Under-Approximated (UA) to
improve the scalability of the scheduling algorithm. This means
that instead of searching for an optimal feasible point in P , we
search in Pa = UA(P ). The above approximation is legal and only
leads to a conservative approximation of losing schedules, though
it is well proven [39] that P is highly redundant with respect to
schedule points. The overall process has to ensure that the approx-
imation algorithm, as well as the solution finding time be scalable
algorithms. We can restrict these requirements further and say that
both of these algorithms should have worst-case strongly polyno-
mial time running times matching the complexities of (U)TVPI
polyhedra introduced in Section 2.

The above approximation can also be done on a per-dependence-
edge basis. In this method, the per-dependence-edge Farkas poly-
hedra Pe are under-approximated, and the solution is found from
the overall polyhedron obtained by putting together all the per-
dependence UAs. Namely, by doing Pa = UA(P ) = ∩e∈EUA(Pe).
If the above approximation leads to a non-empty polyhedron, then
we can find schedule using UA(P ) instead of P .

In the above, we are exploiting the property that each of the
individual Pe’s of polyhedral compilation are guaranteed to be
non-empty [25] directly as a result of dependence analysis. It also
helps that each of the per-dependence-edge Farkas polyhedra Pe

are comparably much smaller than the overall polyhedron.
In the rest of this section, we define a simple and sound math-

ematical background to build (U)TVPI approximations of poly-
hedra, to linearize the problem of finding approximations, and to
prove that the algorithms we construct in later sections return valid
approximations. For giving these sufficiency conditions, we take
two approaches: an intuitive and geometric explanation using du-
ality/polarity in next section, followed by a more direct way using
the equivalent Farkas solution.

3.3 Convexity and approximations

Starting with a polyhedron given in constraint form as P =
{x|Ax+ b ≥ 0}, we show that simple approximations of P can
be obtained by reasoning about over-approximations of the dual

(polar), associated with the transpose matrix [A |b]T . To accom-
plish the above, we introduce some basic lemmas about convexity
and then show how these geometric concepts help reasoning about
under-approximations and over-approximations in a unified man-
ner. The reader may refer to standard books for a complete cover-
age [44, 61]. A more detailed presentation of this material can be
found in [52, 54].

3.3.1 Homogenization and conical polarity

In projective geometry, homogenization can be done on polyhedra
in H-form—constraint form—or in V-form—vertex form or gen-
erator form. The following definition is when P is in H-form.

Definition 3.3.1a [Homogenization] Let P = P (A,b) (P =
{x|Ax+ b ≥ 0}) be a H-polyhedron, then its homogenization is
a cone and is also a H-polyhedron:

homog(P ) =

((

A b

0T 1

)

,

(

0

0

))

= C(P ) (1)

It can be noted that if A is a m×n-matrix (m constraints and n
variables), and b is a m×1-vector, then the homogenized constraint
system C (or homog(P )) is of size (m + 1) × (n + 1). Note
that the constants dimension has become an additional dimension
in the (n + 1)-dimensional space. We would be referring to this
dimension as homogenizing dimension and the other dimensions
as non-homogenizing dimensions. Though the homogenization is a
rather trivial process, involving special marking of the dimensions,
it however needs to be mentioned because this paper deals with
(U)TVPI constraints having at most two non-zero coefficients in
the non-homogenizing dimensions.

The following is the definition of polar of a polyhedron:

Definition 3.3.1b [Conical Polarity] For C ⊆ Rn, the polar set
is defined by

C∗ = {c ∈ (Rn)∗ : cx ≤ 0 for all x ∈ C} ⊆ (Rn)∗

From the above definition, K, the polar cone corresponding to
P can directly be constructed from homog(P ) in (1), and whose
generator vectors are columns of the following matrix:

K = cone

(

AT 0

bT 1

)

(2)

In matricial form, K is of size (n+1)× (m+1), the transpose of
constraint matrix of (1), and can also be written as the following:

K = cone

{(

aT
1

b1

)

, . . . ,

(

aT
j

bj

)

, . . . ,

(

aT
m

bm

)

,

(

0

1

)}

(3)

3.3.2 Polarity, (U)TVPI and (U)TCPV

Though a polyhedron can be represented in either of H/V-forms
there is certain naturality in describing the primal in H-form for
problems that occur in polyhedral compilation. The polar can be
built in linear time in V-form as in (3). But converting the primal
to V-form or the polar to H-form is very costly; it involves the
Chernikova algorithm which takes exponential time. In the follow-
ing lemma, we will implicitly be using the above dual interpreta-
tion, without making an actual call to Chernikova.

Lemma 3.3.2 [(U)TVPI and (U)TCPV] For a TVPI-polyhedron,
the polar has vertices and rays (generators) which have not more
than two non-zero components in the non-homogenizing dimen-
sions. For a UTVPI-polyhedron, the polar has generators which
have not more than two non-zero components each in the non-
homogenizing dimensions, with them being from {−1,+1}. We
define the polar of a (U)TVPI constraint as (Unit-)Two-Components-
Per-Vector or (U)TCPV vector. Further, we define the polar of a
(U)TVPI polyhedron as a (U)TCPV polyhedron.

3.3.3 Under-approximation and over-approximation

The following lemma and its corollary are standard results:

Lemma 3.3.3a [Polarity and Inclusivity] For any two cones K1

and K2, K1 ⊆ K2 ⇔ K∗
1 ⊇ K∗

2 .



Corollary 3.3.3b [Toggling between OA/UA] (OA(K∗))∗ ⊆ K
The above corollary means that by taking the polar of a cone

and taking the resultant’s Over-Approximation (OA) one obtains a
cone whose polar is an UA of the original cone. By using it, the
problem of finding a UA of a polyhedron in H-form is reduced
to the problem of finding a OA of its polar cone in V-form. More
specifically, if we let Pa (respectively Ka) be the approximation of
P (respectively K), we have the following:

Ka ⊇ K ⇔ Pa ⊆ P (4)

So, the objective in the polar space of finding the TCPV-OA of cone
K given in V-form as in (3), is equivalent to finding a cone Ka such
that:

K ∈ cone (Ka) (5)

By this equation, if each column of K as in (3) can be written as
a conical sum of the vectors in Ka, then the approximation remains
a valid approximation. If each vector in Ka is a (U)TCPV vector,
then the corresponding Pa would be a (U)TVPI approximation of
P .

3.4 Approximation scheme for TVPI-UA

In this section, we formulate the sufficient conditions to prove that
the UAs we will construct in Section 4 are valid approximations.
In fact, with the Farkas lemma in Section 3.1 and the equivalent
homogenization-polarity intuition in Section 3.3, we do have all
the necessary ammunition to construct an approximation scheme
which allows us to built TVPI-UAs of general polyhedra. (UTVPI-
UAs are simple extensions of the material in this section.)

In the rest of this section, for ease of exposition, we assume
that the polyhedron P is 3-dimensional; these are also called 3VPI
polyhedra. Generalization to n > 3 is straightforward.1

Let the j-th column of K, with 1 ≤ j ≤ m, be Kj =

(aj , bj)
T =

(

aj,1 aj,2 aj,3 bj
)T

. Then we have

Kj =







aj,1

aj,2

aj,3

bj






∈ cone









tj,11 tj,12 0
tj,21 0 tj,23

0 tj,32 tj,33

pj1 pj2 pj3









= cone(T j)

(6)
where the (t, p)-variables constitute the elements of the unknown
T -matrix and are to be found out.

It can be noticed that each column of the matrix T j is a TCPV
vector and hence is a TVPI constraint in the primal space. The
above is what we call an approximation scheme. In this scheme:

Definition 3.4 [Approximation scheme] A non-TVPI constraint
aj,1x1+aj,2x2+aj,3x3+bj ≥ 0 in the original system is replaced

by the set of constraints UA(x1, x2, x3) = {tj,11 x1+tj,21 x2+pj1 ≥
0; tj,12 x1 + tj,32 x3 + pj2 ≥ 0; tj,23 x2 + tj,33 x3 + pj3 ≥ 0}.

In the above scheme, every column vector of K which has
more than two non-zero components is replaced by a set of TCPV
vectors such that the original vector remains in the conical sum
of the replacements. The conical combination of the replacement
vectors would hence be an OA of the original vector Kj satisfying
(5). The above scheme remains valid as long as the (t, p) variables
and the (a, b) constants satisfy the convexity requirement. One way
for ensuring the same is by making the (t, p)-variables satisfy the
following additional constraints, which we would be referring to as

1 It is also possible to reduce a general polyhedron into an equivalent 3VPI
one. According to Shostak [46], the transformation has been suggested by
R. Tarjan. It is similar to the reduction of an arbitrary boolean satisfiability
(“SAT”) problem to a 3SAT problem. This transformation is not an approx-
imation, which is the subject of this paper.

context constraints for reasons that will be exposed later:

{tj,11 + tj,12 = aj,1; t
j,2
1 + tj,23 = aj,2; t

j,3
2 + tj,33 = aj,3;

pj1 + pj2 + pj3 = bj} (7)

If such a set of T matrices can be found for each non-TCPV vec-
tor of K, then we have Ka =

{

T 1, T 2, . . . , Tm
}

and the resultant

TCPV approximation would be K ∈ cone
{

T 1, T 2, . . . , Tm
}

. We
have the following theorem:

Theorem 3.4 [TVPI and UA] Pa is a valid TVPI-UA of the
original Polyhedron P .
Proof We employ the affine form of Farkas lemma, with the
premise of non-emptiness of P guaranteed because of the per-
constraint method. For the UA to be proper, the affine form cor-
responding to the original constraint ajx + bj should be express-
ible as a positive sum of the replacement TVPI vectors: aj,1x1 +
aj,2x2+aj,3x3+bj ≡ λj

0+λj
1(t

j,1
1 x1+tj,21 x2+pj1)+λj

2(t
j,1
2 x1+

tj,32 x3 + pj2) + λj
3(t

j,2
3 x2 + tj,33 x3 + pj3), where the λ-multipliers

satisfy λj
0, λ

j
1, λ

j
2, λ

j
3 ≥ 0. Pairwise matching for each of the x-

variables yields:

{aj,1 = λj
1t

j,1
1 + λj

2t
j,1
2 ; aj,2 = λj

1t
j,2
1 + λj

3t
j,2
3 ;

aj,3 = λj
2t

j,3
2 + λj

3t
j,3
3 ; bj = λj

0 + λ1p
j
1 + λj

2p
j
2 + λj

3p
j
3} (8)

Setting λj
1 = λj

2 = λj
3 = 1 yields the context constraints defined

in (7) proving the validity of the approximation, except for the

additional λj
0 in the homogenizing-dimension-matching. Setting

λj
0 = 0 is safe, and we will see later that it actually contributes

to the quality of the approximation. �

The problem remains to find such a set of (t, p) variables satis-
fying the above context constraints (7), so that the approximation
remains valid. It can be seen that searching for the (t, p) variables
directly could lead to a non-linear (quadratic) formulation. Even
searching for t-variables that satisfy the above constraints turns
out to be non-linear. But, as they are existentially quantified, the
equations can be solved using advanced quantifier elimination tech-
niques like [49], which are well known to be unscalable beyond
small inputs and certainly not polynomial.

The next section proposes some linearizations of the above men-
tioned approximation scheme, so that the approximation algorithms
remain scalable. This is done first as a heuristic where both (t, p)-
variables are arbitrarily fixed, then as a more careful method where
only the t-variables are fixed, while the p-variables are found by an
LP formulation.

4. TVPI and UTVPI UA Algorithms

In this section, we use the framework developed in earlier section
and develop worst-case polynomial time algorithms for obtaining
(U)TVPI under-approximations of Polyhedra.

4.1 The median method for TVPI-UA

In this section, we introduce a simple, per-constraint, strongly poly-
nomial heuristic, using the framework developed in Section 3.4.
The main idea of this approximation is (5), saying that the original
vector can be approximated by any set of the replacement TCPV
vectors, as long as the former remains in the cone of the latter.

Definition 4.1 [Median method: 3-d case] The inequality ax +
by + cz + 1 ≥ 0 can be approximated by the set of inequalities
{ax+ by + 2

3
≥ 0; ax+ cz + 2

3
≥ 0; by + cz + 2

3
≥ 0; }.



Geometric intuition for the above derives from the observation
of the polar space, where the above approximation is the following:


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
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1
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The intuition for the above approximation comes from (6). The
values of the t-variables and p-variables need to satisfy (7). As
explained earlier, the t-variables have to be instantiated a priori to
avoid solving a non-linear problem. The method in this section fixes
the p variables also in a heuristic manner by dividing the available
“budget” in the homogenizing dimensions equally between the
values in the homogenizing dimensions of the replacement TCPV
vectors. We call it the median method because the original vector
is the median of the replacement vectors in the polar space.

General n-d case The above can be easily generalized to n-d
polyhedra. Let s be the sparsity of a polyhedron, i.e., the number
of non-zero variables (outside the homogenizing dimension) for a
specific constraint, with 1 ≤ s ≤ n. Let q =

(

s

2

)

= s(s−1)/2 and
let r = s− 1. The resultant set of TCPV vectors corresponding to
the particular constraint are n+ 1 dimensional, with cardinality q.
The coefficients of the non-homogenizing dimensions are divided
by r, while the homogenizing dimension is uniformly divided by q.

In each of the cases, it can be seen that the approximation being
proposed is a TCPV approximation, making its polar a TVPI ap-
proximation. It can also be verified using the construction given in
the earlier sections and equations (5) and (6) that the UA proposed
in each case is a valid approximation.

Example 1 Let the input system be the triangular pyramid (3d-
simplex) {x, y, z ≥ 0;x + y + z ≤ 1}. Only the inequality
x + y + z ≤ 1 is not TVPI and is approximated by the set of in-
equalities {x+y ≤ 2

3
;x+z ≤ 2

3
; y+z ≤ 2

3
}. It can be seen that the

approximation is a non-empty TVPI system (it is a UTVPI system),
with vertices {(0, 0, 0), ( 2

3
, 0, 0), (0, 2

3
, 0), (0, 0, 2

3
), ( 1

3
, 1
3
, 1
3
)},

each of which are inside the vertices of the original system
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}. (The above example is
similar [21, 25] to the Farkas system induced in the compilation
of the matrix-vector-product: s[i]+ = A ∗ x[i].) �

With reference to the choice of Farkas multiplier λ0 in Theo-
rem 3.4, it can be seen that setting λ0 = 0 in the above exam-
ple has the advantage that the three replacement TVPI hyperplanes
intersect exactly on the original non-TVPI hyperplane. Any other
strictly positive choice for λ0 would mean that the point of intersec-
tion would lie strictly inside the positive half-space of the original
and thus giving rise to an UA which is in a way less effective.

Example 2 Let the input system be the skewed triangular pyra-
mid {x, y, z ≥ 0; 1000x + 100y + 10z ≤ 1}. Only the in-
equality 1000x + 100y + 10z ≤ 1 is not TVPI and is approxi-
mated by the set of inequalities {1000x + 100y ≤ 2

3
; 1000x +

10z ≤ 2
3
; 100y + 10z ≤ 2

3
}. It can be seen that the resul-

tant approximation is a non-empty TVPI system with vertices:
{(0, 0, 0), ( 1

1500
, 0, 0), (0, 1

150
, 0), (0, 0, 1

15
), ( 1

3000
, 10
3000

, 100
3000

)},
each of which are inside the vertices of the original system, which
are {(0, 0, 0), ( 1

1000
, 0, 0), (0, 0, 1

10
), (0, 1

100
, 0)}. �

It can be seen that the median method is simple and easy to
implement, but does not have any guarantee of ensuring that the
resultant approximation is non-empty. In the next section, we will
generalize this method to formulate a parametrized approximation
and formulate an LP problem to find the approximation.

4.2 LP-based parametrized TVPI approximation

To ease the exposition, we will primarily deal with 3-dimensional
polyhedra again; higher dimensional extensions are straightfor-
ward.

The median method can easily be extended by defining the
approximation as a parametrization on the values in the homoge-
nizing dimension entries: as UA2(ajx ≥ bj) = {(x,pj)|aj,1x1+
aj,2x2 ≥ 2pj1; aj,1x1 + aj,3x3 ≥ 2pj2; aj,2x2 + aj,3x3 ≥
2pj3;

∑

pj = bj ; } where the values of the 3-dimensional pj-
vector are unknown and have to be found out.

In the above approximation, it can be observed that the coef-
ficients in the non-homogenizing dimensions (t-variable values)
have been fixed, much similar to their choice in the median method.
But, the coefficients in the homogenized dimension (p-variable val-
ues) are unknown and have to be found out. The context constraint
∑

pj = pj1 + pj2 + pj3 = bj is not arbitrary. It is determined by the
choice of the multipliers for the t-variables so that the Kj vector is
in the convex-sum of T j , as given in (6).

The resultant system is SHD(x,pj) = {(x,pj)|a1x ≥
b1; . . . ;aj−1x ≥ bj−1; UA2(ajx ≥ bj);aj+1x ≥ bj+1; . . . ;amx ≥
bm; }. In the following discussion, we show that the higher di-
mensional system SHD(x,pj) can be interpreted in two ways, a
geometric and an algorithmic ways, each having its own merits.

4.2.1 A parametrized approximation

SHD can geometrically be considered as a parametrized approxi-
mation, with pj being the parametric vector and the context con-
straint

∑

pj = bj considered as the parametric context. When the
values of the vector pj are known, then the system:

S2(x) = SHD(x,pj)|pj
(9)

is a non-parametrized LP problem, which can be tested for feasibil-
ity in the usual x-variables. Since the context constraint

∑

pj = bj
is respected, it follows from the proofs of earlier sections that S2(x)
is a proper approximation of S(x). If the value of the vector pj

is not known, S2(x) can be considered as a parametrized approx-
imation of S(x). Note that the context constraint is only on the
p-variables, while the t-variables have been assigned a fixed value.

4.2.2 An LP formulation

Algorithmically we can consider SHD(x,pj) to be a non-parametric
LP system with unknown variables (x,pj). Such an interpretation
is possible because there exist no non-linear terms in the defini-
tion of S2(x,p

j) and it is only the feasibility of the approximation
that is interesting. Supposing the system SHD(x,pj) is solved for
feasibility, with the unknown variables vector as (x,pj), and a
valid assignment for the values of both x-variables as well as the
pj-variables is found, then the system S2(x) as given by (9) can
be considered an approximation of the system S(x), as long as
the pj-variables satisfy the constraint

∑

pj = bj . On the other
hand, SHD(x,pj) is a higher dimensional system than S(x) and
hence cannot be considered as an approximation of the latter. It is
an intermediate form useful for algorithmic purposes.

Example 3 Here is a reduced example from Banerjee’s book [8].
S(x, y, z) = {(x, y, z) | − z + 3 ≥ 0;x− z ≥ 0;−y + z − 1 ≥
0;−x + y + z + 1 ≥ 0}. It is clearly not a TVPI system as the
fourth constraint is non-TVPI. The median method applied to this
constraint yields the system S1(x, y, z) = {(x, y, z)| − z + 3 ≥
0;x− z ≥ 0;−y + z − 1 ≥ 0;−x+ y + 2

3
≥ 0;−x+ z + 2

3
≥

0; y + z + 2
3

≥ 0}, which turns out to be an empty system.
On the other hand, the method in this section would lead to the
following higher dimensional system: SHD(x, y, z, p1, p2, p3) =
{(x, y, z, p1, p2, p3)|−z+3 ≥ 0;x−z ≥ 0;−y+z−1 ≥ 0;−x+



y+2p1 ≥ 0;−x+z+2p2 ≥ 0; y+z+2p3 ≥ 0; p1+p2+p3 = 1},
where the variables p1, p2, p3 are additional context variables and
the last constraint p1 + p2 + p3 = 1 is a context constraint. When
system SHD is solved for a feasible point, and the set of p-variables
that are obtained as solution ( 1

2
, 0, 1

2
) are substituted, we obtain

S2(x, y, z) = {(x, y, z)| − z + 3 ≥ 0;x− z ≥ 0;−y + z − 1 ≥
0;−x+ y + 1 ≥ 0;−x+ z ≥ 0; y + z + 1 ≥ 0}. The reader can
verify the satisfiability of the two approximations S1 and S2. �

The above method involves only one call to a standard LP
solver. The disadvantage is that the system SHD(x,p) has n +
(

‖aj‖
2

)

= n + ‖aj‖(‖aj‖ − 1)/2 ≈ O(n + ‖aj‖
2) dimensions,

where ‖aj‖ is the number of non-zero elements in the vector aj .
As the method involves a call to an LP solver, its theoretical cost is
not strongly polynomial time.

4.3 Multiple constraint LP formulations

When there exist multiple non-TVPI constraints in S(x), each one
of them has to approximated to find a TVPI approximation of
the polyhedron. Let mk be the number of non-TVPI constraints
in S(x), with mk ≤ m. Without loss of generality, we can as-
sume that the constraints have been ordered such that the non-
TVPI constraints come first, followed by the TVPI constraints. This
means that the constraints of S(x) are {1, . . . ,mk, . . . ,m}, with
the constraints {1, . . . ,mk} being non-TVPI constraints and the
constraints {mk + 1, . . . ,m} being TVPI constraints.

4.3.1 One-shot method

A straightforward way in which one can find a TVPI approxima-
tion of the above non-TVPI system S(x) is to construct a sys-
tem SHD(x,p1, . . . ,pmk ) in which all the non-TVPI constraints
in S(x) are approximated using the scheme described in Sec-
tion 4.2.2. This system can be solved using an LP formulation in
variables as {x,p1, . . . , ,pmk}. An approximation of S(x) could
be found as SHD(x,p1, . . . ,pmk )|p1, . . . ,pmk . It can easily be
shown that the latter system is a proper approximation as long as the
context constraints

∑

p1 = b1, . . . ,
∑

pmk = bmk
are respected.

But, finding the approximations of all the non-TVPI constraints
simultaneously in the above fashion would lead to a large LP sys-

tem. SHD(x,p1, . . . ,pmk ) could have up to n +
∑mk

l=1

(

‖al‖
2

)

=
n +

∑mk

l=1 ‖al‖(‖al‖ − 1)/2-dimensions which could be as large

as O(n+ ̂‖Smk
‖3), with ‖̂Smk

‖ being the average number of non-
zero coefficients in the non-TVPI constraints in S(x).

4.3.2 Iterative methods

We can also iterate the above process described in Section 4.2.2
for each of the mk non-TVPI constraints in S(x) on an iterative
basis. Clearly, there could be choice in the methods in whether the
original system is being updated with the approximation constraints
of each non-TVPI constraint or not. We refer to the case when the
original system is immediately updated as the incremental method.
We refer to the case when the approximations of all non-TVPI
constraints are found by constructing LP formulations on the same
LP system as the independent method.

It could be noticed that each of the above methods involves mul-
tiple LP calls: one for each non-TVPI constraint S(x). This means
making upto O(m) LP calls in total for building the approximation
system. But, the dimension of each of the LP systems is in the or-

der of O(n + ̂‖Smk
‖2), which is much more reasonable than the

previous one-shot formulation.

4.4 Per constraint UTVPI-UA of TVPI

Let us sketch a simple per-constraint algorithm that takes a TVPI
constraint and returns its UTVPI under-approximation.

From Lemma 3.3.2, a vector in the polar space needs to be
TCPV, and should have equal magnitude components in the non-
homogenizing dimensions for the original to be UTVPI. So, the
intuition for this algorithm is similar to the TCPV-OA, namely that
reasoning about the original TCPV vectors in the polar space and
computing a set of UTCPV vectors which OA the original TCPV
vector resulting in an OA.

Suppose the TCPV vector has components as (a, b, p) in the
(xi, xj , x0) dimension (with x0 being the homogenizing dimen-
sion), then we can replace it with two UTCPV vectors. The re-
placement has to just take care of the fact that the new UTCPV
vectors are such that the original vector is in the conical sum of
the replacements. As the case when a = b means that the vec-
tor is already a UTCPV vector, the other cases can be handled in

the following way:

{

a > b : cone{(b, b, p

2
)T , (a− b, 0, p

2
)T }

a < b : cone{(a, a, p

2
)T , (0, b− a, p

2
)T }

.

In either of the above cases, it can be noticed that the first vector is
a UTCPV vector and the second is an interval vector. The first case
is illustrated in Figure 2.

(a,b,p)

x_i

x_j

(b,b,p/2)

(a−b,0,p/2)

a>b

Figure 2. TCPV to UTCPV approximation

Lemma 4.4 [Validity of the above UTVPI approximation] Given
a TVPI constraint, the above method returns a valid UTVPI-UA of
the constraint.
Proof The geometric proof derives from the observation that the
sum of the corresponding UTCPV replacement vectors is the orig-
inal vector. Hence every vector in the polar space that is reachable
by the original vector is reachable by these replacement vectors,
meaning that they give an OA in the polar space. In the primal
space, the replacements necessarily give an UA (Cor. 3.3.3b). �

Example 4 Let PV = conv{(1, 1), (4, 1), (1, 2)}, with the H-

form of P being PH = {1 ≤ x ≤ 4; 1 ≤ y ≤ 2;x + 3y ≤ 7}. It
can be seen that P is a TVPI system, but not a UTVPI system,
as the third constraint is a non-UTVPI constraint. The UTVPI
approximation by the above method is {1 ≤ x ≤ 4; 1 ≤ y ≤
2;x+ y ≤ 7

2
; 2y ≤ 7

2
} which can be seen to be non-empty. �

The cost of finding the UA is linear and the method is simple to
implement, just like the median method mentioned in Section 4.1.
Just like that method, this method does not have any guarantee that
the approximated system is non-empty.

4.5 LP based parametrized UTVPI approximation

This approximation is similar to the parametrized TVPI approxima-
tion of Section 4.2, in the sense of searching for p variables instead
of t’s. We are not covering it for lack of space.

5. Metrics and Discussion

Let us now study the size of the new system, the complexity of the
conversion, the overall complexity of finding a solution, and discuss
some fundamental and methodological limitations of our approach.

5.1 Sizes

Let the original matrix be of size m × n: m constraints and n
variables with mk and mt being the number of non-TVPI and



TVPI constraints respectively. Also let the overall sparsity factor
of the system be ŝ, which means that for a constraint in the input
system, on average ŝ variable elements are non-zero. It will be seen
in Sections 7.1 that for practical purposes, ŝ is a small constant
(little more than 4) and relatively independent of n.

TVPI-UA For a system described as above, each of the TVPI-
UA methods (given in Sections 4.1 and 4.2) replace a non-TVPI

constraint aj with the same number of
(

‖aj‖
2

)

= ‖aj‖(‖aj‖−1)/2
TVPI constraints. Doing the above process for each of the mk

non-TVPI constraints creates an approximated TVPI system of size

ma × n, where ma = mt + ‖̂Smk
‖(‖̂Smk

‖ − 1)mk/2. It can be
assumed that the new system is approximately of the size ŝ2m×n.
In the rare case that ŝ = n (which means that the constraint matrix
does not have any zero entries) then the size of the resultant TVPI

constraint system is
n(n−1)m

2
×n which is of the order of n2m×n.

UTVPI-UA For UTVPI approximation given in Section 4.4, we
have the same order of complexity of additional constraints as in
the TVPI-UA case, though double in number.

Constraint graph The Bellman-Ford algorithm constructs a con-
straint graph, or incidence matrix, of nearly twice the size of the
input UTVPI system before solving it: a m×n input system results
in (2n + 1) nodes and (2m + 2n) edges, due to simple transfor-
mations of addition of positive and negative forms of each variable
[38, Section 2.2], and addition of a pseudo-source-vertex for the
shortest-paths problem [1]. The former is a relaxation of UTVPI
into difference constraints and is exact for rational points [38],
though some (odd) integer points in the original are lost.

5.2 Complexity of conversion

Both the median method of TVPI approximation covered in Sec-
tion 4.1 and the UTVPI approximation covered in Section 4.4 are
strongly polynomial time algorithms as they do not use any LP call
when constructing the approximation. The parametric approxima-
tion covered in Section 4.2.2 is a weakly polynomial time algorithm
for it needs to solve an LP problem for finding the homogenizing
dimension values.

For the case of multiple constraints, complexity of conversion is
one LP call for the one-shot algorithm of Section 4.3.1, and one LP
call per non-TVPI constraint for both incremental and independent
algorithms. Each of the above numbers are weakly polynomial
time, but are worst-case times nonetheless.

5.3 Complexity of finding a solution

For the TVPI approximation, as the worst-case complexity of
Hochbaum-Naor is O(mn2 logm) [32], applying it to the resul-
tant approximated system would lead to O(ŝ2mn2 log ŝm) time
with constraint sparsity ŝ, and O(n4m log nm) in the unlikely case
when ŝ = O(n).

For the UTVPI approximation, as the theoretical worst-case
complexity of solving UTVPI systems is O(mn) (if we use the
traditional Bellman-Ford algorithm on the difference constraints),
the corresponding complexities would be O(ŝ2mn), and O(n3m)
respectively. We will see in Section 7.1 empirical evidence suggest-
ing that TVPI constraints are always UTVPI in practice, making
this method very attractive.

5.4 Pre/post-processing

It can be noticed that our algorithms do not ask for removal of
redundant inequalities, which is as hard as determining if the input
system is feasible.

Polyhedra in compilation have lot of duplicate constraints,
which gets reflected in the approximations as well. Compilers like
PLuTo remove these by methods like textual matching which leads

to a large decrease in the number of constraints. A more advanced
scheme, finely-tuned to UTVPI constraints, would use a hashing or
radix-sort technique (like in [3]) packing the UTVPI constraint in a
few integers: exploiting the fact that the non-homogenizing dimen-
sion values are from {0,±1}, while the homogenizing dimension
values are always from a very small set [−5, 5]. It would bring the
simplification complexity to linear time. We thus believe that the
problem of duplicate elimination is asymptotically insignificant.

The following example shows an inherent limitation of the
process of TVPI-UA itself.

Example 5 The polyhedron described using the constraints {x+
y+ z ≥ −1;x+ y+ z ≤ 1} is not TVPI. Though it is unbounded
in both directions, the only TVPI approximations that are possible
of the above polyhedron are bounded TVPI polyhedra, which can
be considered a failure of the UA approach. �

The above kinds of polyhedra can be considered as degener-
ate cases and identified by a pre-processing step that removes the
lineality space from the input polyhedron. Further, the Farkas poly-
hedra that arise in polyhedral scheduling are always pointed poly-
hedra and can never have non-trivial lineality space.

5.5 Integer scaling and TU polyhedra

The parametric approximations of Sections 4.2 and 4.5 can ensure
that the resulting difference constraints are integer constraints of
the type xi − xj ≤ c, where c ∈ Z. This would involve scal-
ing up the pseudo-parametric variables, changing the context con-
straints accordingly, and solving an ILP problem—instead of the
usual LP problem—though on a per-Pe basis. Such a local trans-
formation will not only induce integer schedules because incidence
matrices are a sub-class of network matrices, but also has the addi-
tional property that all vertices of the resultant overall polyhedron
are integral (because such matrices are Totally Unimodular [44,
Chapter 19]). We will show in Section 8 that this method would
help in polynomial time approximations of NP-Complete problems
and code-generation.

6. Feasibility Control With Many Polyhedra

The previous sections discuss algorithms for the under approxima-
tion of one single polyhedron, so that the UA polyhedron can be
solved as a means of trading expressiveness (e.g., the ability to find
“good” affine transformations) for scalability. In affine scheduling
however, the overall system P is an intersection of many polyhe-
dra, each of them arising from a dependence-edge as in the case of
Feautrier’s scheduler [25, 26], or the above along with some addi-
tional constraints as in the case of Bondhugula’s scheduler [13, 29].
More specifically:

• Feautrier’s scheduler to minimize latency: PL = ∩e∈EPe,
where Pe is the per-dependence-edge Farkas polyhedron. A
given dependence edge induces a (weak satisfaction) constraint
in the system until it is strongly satisfied by outer dimensions of
the multidimensional affine schedule (i.e., the sink of a depen-
dence is scheduled at a strictly higher time step than the source).

• Bondhugula’s FCO scheduler to expose loop tiling opportun-
ties: PFCO = ∩e∈EPe∩v∈V Hv∩v∈V Nv , where Pe is similar
to Feautrier’s scheduler’s per-dependence polyhedron, enforc-
ing weak dependence satisfaction only, but at all dimensions
of the multidimensional affine schedule; while Hv collects the
per-statement linear independence constraints, and Nv collects
the per-statement non-negativity or trivial solution avoidance
constraints.

These two cases are different because, thanks to the condi-
tions in [26], the polyhedron built by Feautrier’s multi-dimensional
scheduler is known to be always feasible. This condition however is



not necessarily true for FCO-based systems: though the number of
problematic, additional constraints |HV | + |NV | is small (around
2|V | or less than 10%) when compared to Farkas multiplier con-
straints |PE |, the overall polyhedron could be empty, complicating
the UA procedure.

The feasibility preservation problem is to find a non-empty
UA(P ) in each of the above cases, without making any queries—

like an LP call—on the overall system P .2

In this section we discuss practical methods to increase the
control on feasibility for the overall approximated system.

6.1 Feautrier’s scheduler

Let us first discuss a technique for Feautrier’s scheduler. Let us start
by approximating each of the Pe by calling the one-shot algorithm
discussed in Section 4.3.1, and construct the overall approximation
by putting all the individual approximations together: UA(P ) =
∩e∈EUA(Pe). The overall approximation is the result of |E| calls
to the one-shot procedure. This will be affordable because each of
the Pe-s are quite small.

Feautrier’s algorithm always finds a (rational) multi-dimensional
affine schedule, which guarantees that P is a feasible polyhedron.
The main question is whether feasibility will be preserved when
intersecting the per-dependence approximations. It may sound as a
surprise that the answer is yes. Notice that he original schedule of
the source program is always feasible. The key idea is to seed the
approximation of the per-dependence Pe polyhedra, forcing this
original schedule into the UA. It simply amounts to substituting
the values of the coefficients of the original schedule in the Farkas
constraints, and adding the resulting (in)equalities to the systems
before applying the one-shot UA method.

This result is important because of the large number of affine
scheduling heuristics deriving from Feautrier’s algorithm. Feautrier’s
fine-grain parallelization method is already useful for loop vector-
ization [26]. Our seeding approach is directly applicable to coarse-
grain parallelization heuristics as well [36].

We could stop there and declare success. But more advanced
methods combining tiling for locality enhancement and parallelism
extraction require additional effort to preserve feasibility. The next
section studies the most successful of these heuristics, pushing us
to enhance the under-approximation method to tackle feasibility
preservation in presence of more complex affine constraints.

6.2 FCO scheduling in PLuTo

In this section, we discuss the approximation of P in the context
of Bondhugula’s FCO scheduler, as implemented in PLuTo. Here,
seeding with the original schedule is not possible since the loops
of the source program may not be directly permutable/tilable. We
study a variety of Per-Dependence constraint clustering techniques.

PD1: Fully-separate Each Pe is approximated alone, and all the
additional constraints are approximated together as in: UA(P ) =
∩e∈EUA(Pe)∩UA(∩v∈V Hv ∩v∈V Nv). The overall approxima-
tion is the result of |E|+ 1 applications of the one-shot method.

PD2: Total augmentation Each Pe is augmented with all the
additional constraints, and this augmented polyhedron is approx-
imated, as in: UA(P ) = ∩e∈EUA(Pe ∩v∈V Hv ∩v∈V Nv). The
overall approximation is the intersection of |E| one-shot approx-
iations, and each element in HV and NV could be approximated
multiple-times.

PD3: Selected augmentation Each Pe is augmented with its sec-
tion of the additional constraints Hu and Nu (for statements u on

2 If such a query could be made, then it could as well be used to solve for
the objective function resulting in the schedule...

either side of dependence edge) and the augmented per-dependence
polyhedron is approximated. If e : v1 → v2, UA(P ) = ∩eUA(Pe∩
Hv1 ∩Hv2 ∩Nv1 ∩Nv2). The overall approximation is the inter-
section of |E| one-shot approximations.

PD4: Just Farkas Each Pe is approximated independently, just
like in Feautrier’s scheduler, while the additional constraints are
thrown away. The overall approximation is the intersection of |E|
one-shot approximations.

This method clearly does not give an UA. It is meant to bet-
ter characterize the source of the infeasibility in the previous
three methods. Indeed, considering the intersection of UAs of per-
dependence, weak-satisfaction constraints we know that the Pe’s
are homogeneous cones. This tells us that the origin can be used as
a seed to build a non-empty approximation.

7. Experimental Results

We conduct systematic experiments, tiling and parallelizing the
PolyBench (2.0) [40] with the source-to-source polyhedral opti-
mizer PLuTo (PLuTo-0.6). Subsequent to our experiments, later
versions of PolyBench( 3.x) have been released, and which have
similar numbers. Farkas systems are extracted from PLuTo. We
compare the default linear programming calls to PIP [24] with the
TVPI-UA and then the UTVPI-UA algorithms. The UTVPI-UA is
further relaxed into a constraint graph (or incidence matrix) which
is fed to a custom implementation of the Bellman-Ford algorithm.

Note that we still use PIP for the much smaller linear program-
ming problems arising from the feasibility enhancing heuristics.
Also, Pluto makes use of PIP in parts unrelated with the scalability
of affine scheduling problems: the PIP calls from PLuTo originate
from the functions
dep satisfaction test (DS), get dep direction (DIR) and
find permutable hyperplanes (FPH).

We focus on FPH calls which correspond to affine scheduling
problems. There are a lot more calls of the DS and DIR variety
when compared to the FPH calls, optimization of the former pair
of LP calls is entirely a different problem from the FPH variety
in many ways. Primarily, the former need to be over-approximated
[21, 53] as otherwise, it results in incorrect transformations. The
latter of course are the main topic of this paper and need to be
under-approximated leading to a conservative approximation and
perhaps loss of useful schedules.

7.1 Features of the polyhedra

Here we are referring to Table 1.a. The initial three columns refer
to the size of the loop nest: L is the number of loops, S the number
of statements, and D the number of dependences. The next sets
of columns indicate the polyhedral characteristics of the different
varieties of calls from PLuTo. As the DS and DIR variety are
similar types of calls, they have been summarized together. The
remaining 8 columns (Table 1.b) will be discussed in the next
section.

The number of polyhedra of different types are indicated in the
P columns (PDS, PDIR and PFPH). As written earlier, there are
lot more polyhedral calls of DS/DIR than when compared to FPH.
But the former are smaller calls and are linearly dependent on the
size of the loop nest. For a particular benchmark and variety of
polyhedra (DS/DIR or FPH), n and m̂ columns indicate the number
of variables (unknowns), and average number of constraints in the
particular LP formulation respectively. m̂t column indicates the
average number of TVPI constraints for that benchmark and variety
of polyhedra.

DS/DIR As it can be expected, most of the constraints in the
DS/DIR polyhedra are TVPI constraints. In these polyhedra, there



Loop nest PDS(1)/PDIR(2) PFPH

Bench #L #S #D #P1 #P2 n m̂ m̂t #P n m̂ m̂t ‖̂Smk
‖ m̂a m̂u

adi 12 4 54 90 564 9 20 19 3 20 200 65 5 1844 614

corcol 12 6 14 38 194 9 17 16 3 22 22 13 5 130 77

covcol 13 7 26 41 228 15 25 24 3 24 18 14 4 29 55

dsyr2k 3 1 3 9 18 8 18 17 3 7 8 6 3 11 18

dsyrk 3 1 3 9 18 8 18 17 3 7 8 7 3 11 18

fdtd-2d 11 4 48 39 168 10 22 21 3 20 96 35 6 1010 367

gemver 7 4 13 29 161 6 13 12 2 14 21 15 4 48 47

jacobi-1d 4 2 10 16 88 7 14 13 2 10 32 14 5 232 104

jacobi-2d 6 2 14 21 84 9 19 18 3 12 65 15 7 1135 212

lu 5 2 10 12 60 11 23 22 3 10 35 17 5 232 106

matmul 3 1 3 9 18 10 21 21 3 9 9 7 4 20 24

mvt 4 2 11 31 68 6 13 12 2 9 20 12 3 46 52

seidel 3 1 27 37 162 12 24 23 3 8 33 15 5 168 179

ssymm 8 3 15 33 126 8 19 19 3 14 15 10 3 22 36

strmm 3 1 4 8 24 8 17 16 3 7 12 8 3 20 30

tmm 3 1 3 9 18 10 21 21 3 9 11 8 4 23 30

Median LP (indep) PD2 PD4

YY YN YY YN YY YN YY YN

0 3 0 3 0 3 3 0

1 2 0 3 3 0 3 0

3 0 3 0 3 0 3 0

3 0 3 0 3 0 3 0

3 0 3 0 3 0 3 0

0 3 1 2 0 3 3 0

0 2 2 0 1 1 2 0

0 2 0 2 0 2 2 0

0 3 0 3 0 3 3 0

0 3 0 3 0 3 3 0

3 0 3 0 3 0 3 0

0 2 2 0 2 0 3 0

0 3 3 0 0 3 3 0

3 0 3 0 3 0 3 0

0 3 3 0 0 3 3 0

3 0 3 0 3 0 3 0

19 26 29 16 24 21 45 0

Table 1. (a) Problem size, Polyhedral and TVPI-ness characteristics, (b) UA effectiveness

is never more than 1 constraint per polyhedron which is non-TVPI.
In all the cases, whenever a constraint is TVPI, it is always a
UTVPI constraint, having the same absolute magnitude for the two
coefficients, when it has two entries.

FPH In the FPH variety, it can be noticed that the sizes of some
of the FPH polyhedra are small and comparable to the DS/DIR
polyhedra. This is either the result of a small problem size or
because PLuTo uses Fourier-Motzkin elimination, along with a
syntactic heuristic to reduce the duplicate constraints. As it can be
expected, m̂t, number of TVPI constraints in the original system, is
highly benchmark dependent. But, just like in DS/DIR polyhedra,
a TVPI constraint is always a UTVPI constraint.

‖̂Smk
‖ is the average number of non-zero coefficients in the

non-TVPI constraints for that benchmark. It can be seen that this
number, though again being benchmark dependent, is a small con-
stant when compared to the dimension size n. m̂a is the number of
constraints in the new (approximated TVPI) system. As seen ear-

lier, m̂a = ‖̂Smk
‖(‖̂Smk

‖ − 1)(m−mt)/2 +mt.
The relative growth of the approximated system with respect to

the original one is defined as the ratio between the sum of entries
in the m̂a and m̂ columns. We found the average value of this to
be 8, meaning that the overall sparsity factor ŝ is a little more than
4. Sometimes the growth of the approximated system is significant,
but it has to be remembered that m̂a is the number of constraints
without any simplification, while m is obtained after systematic
simplification and elimination of duplicates in PLuTo.

For comparison purposes with m̂a, we have added the m̂u

column, which is the average unsimplified system size when the
simplification techniques used in PLuTo are turned off. It can be
observed that m̂u and m̂a are of comparable sizes. Our experience
is that when the approximated system undergoes simplification and
duplication removal techniques, it leads to a much smaller system,
comparable to the one in m columns. Also, asymptotically, the size
increase that only depends on sparsity does not matter much.

7.2 UA feasibility

Here we are referring to Table 1.b. These numbers are for TVPI-
UA. (The results for UTVPI-UA are similar and are not being given
because of space constraint.) These columns refer to the median
method discussed in Section 4.1, to the LP based independent
method discussed in Section 4.3.2 and the per-dependence methods
discussed in Section 6 respectively. All the columns except for the
LP-indep method refer to the per-dependence methods. Only the
LP-indep method was implemented on the overall Farkas system,

one that is obtained after putting together all the individual systems
and after simplification by PLuTo.

The PLuTo calls of the FPH variety are for LexMin. In the cur-
rent table, we discuss the feasibility results only. The columns YY
(Yes-Yes), YN (Yes-No), denote the feasibility (Y) or infeasibility
(N) of the original and approximated systems respectively. They
have been highlighted accordingly. Since the FPH system is used to
find an optimization point in the overall system, a YN entry would
mean loss of parallelization.

It can be seen that the LP-indep method (29 YY and 16 YN
cases or 10 out of 16 PolyBench problems) performs much bet-
ter than the median method (19 YY and 26 YN cases or 6 out of
16 PolyBench problems). The latter performs not as poorly as the
simplicity of the approach would hint to. We expect the incremental
method to have much better performance than the current indepen-
dent method. The results of PD1 (not shown) fare marginally better
than the median method. The results of PD2 are close to LP-indep
(24 YY and 21 YN cases or 8 out of 16 PolyBench loop nests).
Advanced clustering strategy PD3 has not been implemented. PD4
(Just Farkas) gives 100% feasibility preservation results (45 YY
and 0 YN), making it quite attractive. The next sections study the
impact on compilation time and on the performance of the gener-
ated code.

7.3 Scalability comparison: Simplex vs. Bellman-Ford
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Figure 3. Simplex (PIP) vs. Bellman-Ford (BF)

Figure 3 shows the running times of the Simplex on the origi-
nal system vs. Bellman-Ford (BF) on a UTVPI approximated sys-
tem (PD4). The former uses the quite well used dual-simplex im-
plementation of PIP [24] (similar [50] to many LP solvers like
CPLEX [11]) called on a rational polyhedron for feasibility, while



the latter is our own implementation of a standard Bellman-Ford
algorithm called for testing for presence of negative weight cycles.

The input programs matmul and seidel are the same as in Fig-
ure 1, and each call of auto trans of PLuTo to find schedule hy-
perplanes has tens of calls of the above variety, which explains the
difference in scales. Prior to solving either of these, the duplicates
were eliminated using a syntactic matching like currently in PLuTo.
Even on the systems with duplicates, the improvements were simi-
lar, though being more prominent.

It can be seen from the graphs that for their respective inputs,
BF (worst-case O(ŝ2mn) ≈ O(|E||V |) ≈ O(|V |3)) is asymp-
totically as well as empirically faster than PIP’s Simplex (observed
O((m+ n)mn) ≈ O(|V |5)), answering positively the scalability
challenge. The regression coefficients (linear R2) for the above for-
mulae are around 99.9%. The curves for BF appear linear because
the x-axis counts the number of dependences, which is practically
O(|V |2). Though the memory improvements are not shown in the
above graphs, the linear memory of BF is considerably lighter than
the quadratic memory of Simplex.

The relatively lesser magnitudes and hence lesser improvements
of seidel when compared to matmul could be attributed to the
fact that while the former has just uniform dependences which are
easily amenable to the Gaussian eliminations of PIP, the latter has
more complex affine dependences and also induces many more
Farkas multiplier variables.

7.4 UA generated code performance

Perf. Comparison (Seconds)

Benchmark Orig Par cur Par new Til cur Til new

gemver 0.31 0.15 (2x) 0.15 (2x) 0.15 (2x) 0.15 (2x)

mvt 1.40 0.27 (5x) 0.28 (5x) 0.42 (5x) 0.43 (5x)

seidel 11.8 3.6 (3x) 3.6 (3x) 11.5 (1x) 11.5 (1x)

Table 2. UA Code Performance

We are referring here to Table 2, limiting ourselves to a subset
of the YY cases in the previous table that our current implemen-
tation could handle; we will later consider all YY and YN cases
with a more robust implementation. In each case, we replaced the
original system(s) by the approximated TVPI ones obtained by the
independent LP method. The cost function was unchanged and the
solution was found using PIP. It can be seen that performance gains
closely match the default polyhedral method in PLuTo, despite the
approximation taking place. The impact of YN approximations on
PLuTo’s effectiveness is yet to be studied, but we express some
hope on PLuTo’s loop distribution heuristic to break infeasible sys-
tems.

8. Extensions and Related Work

In this section we will first see how our framework can be applied to
other (scalability) problems, either in affine scheduling framework
or beyond, and then cover some related work.

8.1 Applications to other loop transformation problems

One important strength of our under-approximation framework is
its ability to trade precision for scalability using (U)TVPI approx-
imations of polyhedra. Scalability arises from the excellent worst-
case complexities of sub-polyhedral operations, and the ability to
largely implement the approximation as an independent optimiza-
tion problem for each dependence-edge. The latter property is an-
other strength of our approach, which happens to be general enough
to be applied to other compilation problems, related and unrelated
to scheduling.

Darte-Vivien’s scheduling As the framework of Feautrier which
we build from is the most powerful among the class of algorithms
that find affine schedules [56], the LP formulation in Darte-Vivien’s
scheduling [22] can directly be approximated by our method.

Shifting 1-d loops for pipelining and compaction To solve
the cyclic scheduling (decomposed software pipelining) problem,
Calland et al. [14] give an LP formulation whose constraint ma-
trix is built from incidence matrices of the original and a retimed
dependence graph, and prove it to be a Totally Unimodular (TU)
matrix. As given, the formulation is not a (U)TVPI polyhedron
having at most 3 non-zero elements per row. But, it can benefit
from our framework as the constraints are constructed on a per-
dependence-edge basis, and the constraint matrix elements belong
to the set {0,±1}. Darte-Huard’s loop shifting for compaction [19]
uses a very similar framework to the above paper, where an LP for-
mulation which is a variation of a min-cost flow problem is used,
and hence could as well benefit from a (U)TVPI approximation
resulting in a strongly polynomial time algorithm.

n-d loop alignment for fusion Darte-Huard show that external
shifting in the multi-dimensional loop alignment problem is NP-
Complete [20]. They provide an ILP formulation constructed on
a per-dependence-edge basis, with 4 variables per constraint and
general coefficients (not just {0,±1}). A possible heuristic for
their formulation that builds on our techniques would be to under-
approximate each per-edge constraint and to solve the overall sys-
tem using the Bellman-Ford algorithm. This is correct because
rational relaxation and subsequent UA may result in less integer
points, but no new ones. The overall UA, if non-empty, can be
solved in polynomial time. Further, it can be made to directly re-
sult in an integer multi-dimensional shift using the integer scaling
discussed earlier in Section 5.5. In this method, an ILP problem
is solved on a per-Pe-basis, while solving a normal Bellman-Ford
problem on the overall UA polyhedron resulting in an integer multi-
dimensional shift. In this aspect, UTVPI polyhedra are very special,
and such a polynomial time shifting algorithm will not be possible
even with a TVPI-UA, as solving integer-TVPI polyhedra is known
to be NP-Complete [35].

Simpler code generated As seen earlier, by the TU property, a
restriction of the homogenizing dimensions to integers can ensure
that all the vertices of the resultant UTVPI-UA are integers. Using
these UAs in scheduling has the additional advantage of simpler
code being generated, even with affine schedules generated through
(rational) linear programming (PLuTo uses integer linear program-
ming by default). Rational schedule coefficients may indeed induce
modulos in loop bounds and conditional expressions of the gener-
ated code, a risk completely eliminated with our approach.

8.2 Related work

Feautrier’s scalable modular scheduling Feautrier’s approach
[27] starts with Gaussian elimination, and suggests a Minkowski
decomposition (generator representation) of Pe for projection. We
consider this approach as complementary to ours in the sense of
per-dependence methods, but the use of generator representation
makes it less likely to be scalable than ours.

Approximations in loop optimization Previous approaches to ap-
proximations in loop optimization concerned themselves with re-
stricting the kinds of input programs or the kinds of transforma-
tions being searched for [21, 60]. The most notable examples of
the above are the Dependence Levels of Allen and Kennedy [2]
and Direction Vectors of Wolf and Lam [59]. Each of the above are
less powerful than the affine scheduling model of Feautrier [25].
Our approach tackles the scalability problem from within the affine
scheduling model and is more powerful.



(U)TVPI in loop optimization UTVPI polyhedra have previously
been used by Balasundaram and Kennedy [7] in task level loop par-
allelization and pipelining applications, by data dependence anal-
ysis, domain simplification and (limited form of) code generation.
Their use is similar to the framework of classical dependence over-
approximations [21, 53, 60]. Our use of (U)TVPI is more pow-
erful than theirs because of our affine scheduling framework and
UA algorithms. Further, Pugh [42] and Maydan et al. [37] also hint
that (U)TVPI polyhedra could be solved with better complexity and
hence used in dependence analysis citing some statistics from par-
allelization benchmarks. Our statistics in Table 1.a could be seen as
extensions of the above.

(U)TVPI in static analysis General polyhedra are known [31, 33,
38] to be considerably more expensive than (U)TVPI polyhedra
for abstract domain operations. Hence, sub-polyhedra have been
widely employed in abstract interpretation problems by the static
analysis community as a means of trading precision for scalabil-
ity. A comparison of the use of sub-polyhedra, along with their
applicability to polyhedral compilation can be found in [53]. Of
the many classes of sub-polyhedra, (U)TVPI polyhedra have ex-
tensively been used [6, 38, 47], with impressive results such as in
Astrée [12, 17].

Approximations to sub-polyhedra We are not aware of any pre-
vious algorithm for finding approximations of general polyhedra
into sub-polyhedra other than finding the interval (“box”) polyhe-
dral OAs. The literature is scarce about polyhedral approximations
and more so for UAs. (The naı̈ve method of projecting out the extra
variables on a per-constraint basis using Fourier-Motzkin method
leads to an over-approximation with no bound on the complexity.)
Vivien-Wicker [57] propose an algorithm to find the parallelepiped-
OA of a 3d-polyhedron in vertex representation. Miné [38, Sec-
tion 4.3] adapts the vertex method for finding the UTVPI-OA of
a general polyhedron. Simon et al. [47, Section 3.2.6] propose an
iterative algorithm for the TVPI-OA of a general polyhedron using
LP. Our algorithm for TVPI-UA in Section 4.3 can be seen as com-
plementary to the latter, though our algorithm formulates the LP
problem by searching only for the replacements in the homogeniz-
ing dimension.

Feasibility and optimization algorithms The state of the art in
feasibility testing for TVPI systems is by Hochbaum-Naor [32],
and for optimization of TVPI systems by Wayne [58]. We are
not aware of existing implementations of the above algorithms.
The state of the art for feasibility and optimization of UTVPI
systems is by the well understood Bellman-Ford algorithm [41],
which involves constructing a nearly 2m × 2n size constraint
graph encoding the difference constraints [23] and testing it for
presence of negative weight cycles using the shortest-path problem.
The latter has been extensively studied, beginning from [9, 28] to
most recently in [15]. Efficient, though closure based methods for
the same [6, 38] are available in Apron [34] and PPL [5]. More
general forms than ours, like boolean formulae involving UTVPI
constraints have been considered in constraint programming, like
by Seshia et al. [45].

9. Conclusions and Future Work

We have presented sub-polyhedral scheduling using (U)TVPI poly-
hedra. We have proposed worst-case polynomial time algorithms
to compute (U)TVPI under-approximations from a general convex
polyhedron. We have shown initial results of the above approxima-
tions as well as their integration in PLuTo. Our experiments clearly
indicate an asymptotic improvement in scalability, answering posi-
tively the scalability challenge.

To stay within polynomial time, care was taken to linearize the
under-approximation model, avoiding the exponential vertex and
ray construction associated with the Chernikova algorithm. The
most difficult problem is the lack of a scalable way to reliably pre-
serve the non-emptiness of the underapproximation when the orig-
inal polyhedron is non-empty. The one-shot linear programming
method offers this guarantee, but not in strongly polynomial time.
We explore different heuristics relying on bounded-size linear pro-
grams to trade complexity for feasibility. We know this problem is
difficult because a strongly polynomial method with this guaran-
tee could directly lead to a solution of finding strongly polynomial
feasibility test for general polyhedra.

The scalability experiments indicate an asymptotic improve-
ment of Bellman-Ford over linear programming. Future experi-
ments should include a fast duplicate elimination, a complete eval-
uation of the performance impact of the approximation on all Poly-
Bench using an approximated objective function compatible with
the Bellman-Ford algorithm, and a complementary study of the
memory complexity (known to be overwhelmingly in our favor).

An illustration of the power of our approximation scheme has
been shown on important affine scheduling problems. Future work
would involve applying the scheme to a wider range of compila-
tion problems, including ILP or mixed-ILP formulations, so that ei-
ther heuristics with better complexity measures are obtained, or the
resulting approximations provide practical improvements on com-
plex systems.
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