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Abstract

In this paper we show how to find a closed form solution fordhurder dif-
ference operators in terms of solutions of second orderabpes. This work is
an extension of previous results on finding closed form gmist of recurrence
equations and a counterpart to existing results on diffedeequations. As moti-
vation and application for this work, we discuss the probtgmroving positivity
of sequences given merely in terms of their defining receeesalation. The main
advantage of the present approach to earlier methods itjeitie same problem
is that our algorithm provides human-readable and ver#idt#., certified proofs.

1 Introduction

This paper presents an extension of the algorifimiver[3| [4,[6] that returns closed
form solutions for second order linear difference equatitmthird order linear dif-
ference equations. The solutions that we are looking foiraterms of (finite) sums
of squares. This is motivated by applying the algorithm foyving inequalities on
special functions, i.e., on expressions that may be defiméztins of linear difference
equations with polynomial coefficients. Conjectures almmditivity of special func-
tions inequalities arise in many applications in matheaosaind science. Proving them
usually requires profound knowledge on relations betwbesd special functions. It
is well known that there exist many algorithms for provingldinding special function
identities [30] 8, 20, 17]. For automated proving of speftiactions inequalities only
few approaches exist. Gerhold and Kaueérs [12, 15] introdaceethod that is based
on Cylindrical Algebraic Decomposition (CAD). This methlogis been proven to work
well on many non-trivial examples [13,21], but even thouglrectness is easy to be
seen, termination cannot be guaranteed, hence it is nogaritaim in the strict sense.
A first attempt to clarify the latter issue has been made ii. [D®e of the features of
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proofs of special functions identities is that they usuatiyne with a certificate, i.e.,
some easy to check identity that verifies the proof. The CABeldl approach can not
hope to have a similar certificate in the near future. The owfiresented here is a
first step toward human readable proofs of special funciioegualities, although ad-
mittedly a representation in terms of sums of squares witlitipe coefficients is not
expected to exist for any given input. Besides this appbcathe results presented are
of independent interest as they provide difference casptequarts to results obtained
for the differential case [22, 28].

First we review the available results in the differentisdeal etk be a differential
field andL4 € k[9], 0 = d/dx be a linear homogeneous third order differential opera-
tor. Singer([22] characterizes when solutiond.gfcan be written in terms of solutions
of a second order operator kid]. Van Hoeij [28] handles the similar problem when
the coefficients of the second order operator are restrioteénd shows that it will be
either of the following cases.

Case 1 L, is the symmetric square of a second order oper&tpe k[J]

Case 2 L, is gauge equivalent to a symmetric square of a second oréeatmpk’; €
k(0]

The definitions of symmetric products and gauge equivalareescalled in sections 2.3
andZ.4 below. The algorithm given in [28] returns a seconidodifferential operator,
K, € k[d/dz], and a gauge transformation/fy] that sends solutions of the symmet-
ric squares of; to solutions ofL; for Case 2.

In the differential case, the symmetric squaregfhas order 5 if and only if we
arein Case 1. In this case, there is a simple formula thasdive Case 2 is equivalent
to the symmetric square df; having order 6 and a first order right-hand side factor
in k[0] as well as a certain conic &f;([22, Equation 4.2.1]) having a non-zero solution
in k. Since fork = C(z) this conic is solvable ove(z), the last condition becomes
trivial in this case. The algorithm given in [28] in the firdsep checks the order of the
symmetric square af, to distinguish the cases.

The difference case behaves differently; here we denote by C(z)[r] the ring
of linear difference operators, wheralenotes the shift operator. Example 2.15 shows
that the cases can not be distinguished according to the oftiee symmetric squares
when the coefficients are ii(x). To set up a counterpart theorem for difference equa-
tions, this example shows that we need one more transfaymitan that in the differ-
ential case. Furthermore in Case 1, the algorithm for finttiegsecond order operator
is more complicated than in the differential case.

Summarizing, the ideas used in the differential case cab&otrried over imme-
diately to the difference case. Furthermore our aim is tehaelosed form solution
of the given input. Hence, if a factorization is found thahi solvable, this fails to
satisfy our goal. Thus we build on the ideas of the algorituiver[3, [4,[6]. Here
we say that a function is in closed form if it is a linear condiion of elementary
functions, special functions or hypergeometric functiomsr C(z). For instance the
modified Bessel function of the first kind is a closed form soluof the second order
operatorLy, := 272 — (2x +2)7 + 1 + 2.



The algorithmsolverreturns closed form solutions for second order linear diffe
ence operators. The main ideasuflveris to map the given operatdr; to an oper-
ator L, of which a solution is known. This transformation is a bijeetmap, called
GT-transformation, that sends solutionggfto solutions ofL,. If a closed form solu-
tion to one of the operators is known, then by means of thisframation the solution
of the second operator can be constructed. For this purptd#eawith second order
operators including parameters together with charatiedsta (local data) has been
constructed. This local data can be computed for the givenadpr, the corresponding
equivalent operator is found by table look-up. Then by conmggparameters of the lo-
cal data the GT-transformation can be constructed. Theactexistic data is described
in Sectior 8. To cover the extension described here the batsideen extended so that
we can give closed form solutions of certain third orderdingifference operators.

2 Preliminary

In this section we introduce notations used in this paperacall some known facts[4,
6,20/ 26] about difference operators. Additionally Casead 2 above are carried over
to the difference case for algebraic extensions in Thebrd@ 2elow.

2.1 Ring of difference oprators

Let D := C(x)[r] be the ring of linear difference operators with coefficiant&€(x),
wherer is the shift operator acting anby 7(z) = x+1. ThenD is a noncommutative
ring where

r-r b =7fori €N, 7. f = 7(f)7 for f € C(x).

ForL = agq(z)t® +--- + a1 ()7 + ao(z) € D with ag # 0, we say that. has order!
and writeord(L) = d. If furthermorea, # 0 thenL is said to be amormaloperator. In
this paper we will assume all operators to be normal.

The adjoint operator of. is defined byL* = ZLO aq—i(x + i), Suppose. =
M - N forsomeM, N € D. ThenL* = (M - N)* = (r% . N* . 7=4) . M*, where
dy = ord(M) and thus right-hand side factorsbtorrespond to left-hand side factors
of L*. We say that a third order operatbris irreducible inD if both L and L* have
no first order right-hand side factor in.

A second order operatdd = by72 + by + by € D is called afull operator if
bab1by # 0. Thus, if K is a normal but not full operator, thén = 0.

2.2 Ring of sequences

LetCN := {f | f: N — C}. Then an element € C" corresponds to a sequence
v = (v(1),v(2),v(3),...). Cis embedded it as a subring via constant sequences.
Suppose;, v, € CY, then we define

V1 F V2 1= (Ul(l) + ’1}2(1),111 (2) + ’1}2(2), .. )
V1V (= (111(1)112(1),111 (2)112(2), .. )



With the above termwise addition and multiplicati@’ forms aC-algebra. We define
the action ofr onC" by 7(v) := (v(2),v(3),v(4),...).

Let S := CN/. wheres; ~ s, if there existsN € N such that, for ali > N,
s1(7) = s2(7). Then itis easy to verify thatis a unitinS, i.e. s is invertible inS, if
and only ifs € S has only finitely many zeros. If € C(z), then the image of in
S and the action of on S are well defined. This way we can embE&¢r) to S and
call s € S rational if there exisy(z) € C(x) andN € N such thay (i) = s(7) for all
i > N. S[r] forms a ring of difference operators aftlis embedded ii$[7].

We sayL(v) = 0forv € S, L = aq(z)r? + - - + ao(z) € S[r] if there isng € N
such that

ag()v(i +d) +ag—1(i)v(i+d—1)4+---+ap(i)v(i) =0 for alli > ng.

Definition 2.1. h € S is called hypergeometric if = 7(h)/h € S\ {0} is rational
andr is called the certificate of.

If h € S is hypergeometric thefr — r)(h) = 0 wherer is the certificate ofi. We
defineV (L) :={u €S| L(u) = 0}.

Theorem 2.2. [20, Theorem 8.2.1im¢(V (L)) = ord(L) for a normal difference
operatorL € D.

Thus for a normal operatat € D, V(L) forms aC-vector space with a basis
{vieS|1<i<ord(L)}.

2.3 Term equivalence

Definition 2.3. The symmetric producty/®N, of operatorsM and N € D is an
order-minimal and monic operator such that € V(M®N) forall u € V(M) and
v e V(N).

There is a simple formula if one of the operators has otdéret L = aq(x)7? +
<o 44 a1 (z)T + ao(z) € D andr(z) € C(z). Then

d
LO(r —r(z)) = > _bi7", whereby(z) = aq(x) and

=0

-1 1)
bi(z) = ai(z) H 7 (r(x)) fori =0,...,d —1.

Thus,(7 — a(2))®(7 — b(z)) = 7 — a(z)b(z) for anya(z), b(z) € C(z).

SupposeL € D ands € S. Then the above formula gives an operafor=
L©(r — s) € S[r] such that/ (L) = {hu | L(u) = 0} whereh € S is a solution of
T —s.If L&(T — s) € D thenitis easy to see thalts rational.

Definition 2.4. L1, Lo € D are said to be term equivalent if there exi§ts= r—r € D
such that/’ (Ly) = V(L1®(r —r)), denoted byL; ~; Ls. Such aT is called the term
transformation fromL; to L.



If L; andL, are term equivalent and—r is the term transformation thén(L.) =
{hv | heV(r—r),v € V(L1)}. Supposd; and a term transformatidh are given,
thenL, can be obtained by{1).

2.4 Gauge equivalence

LetL,, Ly € D be two given operators, where a closed form solutiaf L is known.
If furthermore an operatdk € D can be determined sucht th@fw) is solution ofLs,
then a closed form solution df, can be written as a linear combination of shiftsuof
overC(z). Such a transformatiof¥ is called a gauge transformation ang and L,
are said to be gauge equivalent if such a transformatiomsexis

Definition 2.5. Let L1, Lo € D have the same orderG € D is called agauge
transformatiorfrom L, to L iff G : V(L1) — V(L3) is a bijection.

Note thatG is not required to be a normal operator.

Suppose we are given a gauge transformafiomhereord(G) > ord(L;). Then
there exisQ, G € D with ord(G) < ord(L;) such thati = QL, +G. The remainder
G is also a gauge transformation that acts in the same way as V(L,). Hence,
w.l.o.g., we may assume thatd(G) < ord(L).

Let GCRD(L, M) denote the greatest common right divisorlofM € D. Since
G is a bijection, any non zero solutierof L, does not map to zero &Y. Thus,L; and
G have no nontrivial common right hand factor, i@CRD(L;,G) = 1. Using the
extended Euclidean algorith@, L; € D can be determined such tt@6&+L, L, = 1.
ThenGG is the identity ori/ (L;) andG is an inverse ofi that send$’ (L) — V(L)
bijectively.

Definition 2.6. Two operatord.; and L, with the same order are called gauge equiv-
alent if there exists a gauge transformatiéh: V(L;) — V(L) and we use the
notationL; ~, Lo.

Supposd.; ~, Ly where the gauge transformation fram to L is a single term
operatorg(x)T™ forn < ord(Lq). Thens™ - Ly - 7—™ is term equivalent td., where

the term transformation from™ - L1 - 77" to Ly iST — %

2.4.1 How to compute the gauge transformation

Supposd.; and L, are gauge equivalent arfdis a gauge transformation froify, to
Ls. Then there is an operatdf € D,ord(H) < ord(Lz) suchthatd - L1 = Lo - G.

The algorithm that was used to find the gauge transformatifdi i6,[29] works as
follows:

1. For given operators; and L, we set up the ansatz := """~ ¢ (2)r?,

where the; (z) are undetermined coefficients.

2. Right divideL, - G by L, and set the remainder to zero. This way we obtain a
systemA of difference equations for the unknown coefficients:).



3. Compute the rational solutions of the systeimo determine the values for
thec; ().

This algorithm was efficient for second order operators fbubperators of order
three and higher, computing a solution of the systeme get at Stejl2, is very costly.
Hence in the current implementation we use the new algori#@®M to compute the
gauge transformations that give the set of homomorphiEmap(V (L), V(L))
in D sendingV'(L;) to V(Lz) for any Ly, L» € D. This means in particular that
we can drop the condition on the ordessd (L) = ord(Ls).

In short, the algorithm HOM works as follows: Fdr = Y7 a;(z)r" € D,
aq(z) = 1, we define the/-adjoint operatol.V := Z;—i:o aq—i(z+i—1)7t. Thenthere
is a one to one correspondence betwdem (L, L») and rational (invariant under the
difference Galois group) elements6f Ly ) ® V(Ly). We define a spac&1(Ly, Lo)
that is isomorphic td/(LY) ® V(L2). Then rational elements o¥1(LY, L2) corre-
spond bijectively to elements &fom(L;, L2). Thus, we compute rational elements of
M(LY, L). This is done by working directly witiy’ and L,, and we avoid comput-
ing large operators such as the symmetric produétjoénd L, (whose solution space
is a homomorphic image oM (LY, L2).)

Note that if L, and L, are of the same order, then HOM returns exactly the gauge
transformations. The algorithm HOM is availablhattp: //www.risc. jku.at/people/ycha/Hom. txt
and more details can be found in [5]. This is joint work of YgaeyCha and Mark van
Hoeij.

2.5 GT-equivalence

Definition 2.7. Suppose there is a gauge transformati@mand a term transformation
T = 7 —r(x) such that the composition 6fandT", Go T, mapsV (L,) to V (L), i.e.

G :V(Li®(1 —r(x)) — V(L2). ThenL; and L, are called GT-equivalent, denoted
by L; ~4 Lo, and the composition @ andT' is refered to as the GT-transformation
from L, to Ls.

Suppose there is a m&@l” which is a multiple composition of gauge transforma-
tions and term transformations. Then|[19, Theorem 3.3.]jwshihat we can find a
gauge transformatio&' and a term transformatidfi such thatGT(V(L,)) = G o
T(V(Ly)).

2.5.1 How to compute the GT-Transformation

Definition 2.8. LetC be a subfield of andr(z) = cp1(x)°* ---p;(z)% € C(z), for
somee; € Z, monic irreducible inp;(z) € C[z], and lets; € C equal the sum of the
roots ofp; (z).

r(x) is said to be inshift normal formif — deg(p;(z)) < Re(s;) < 0, fori =
1,...,j. We denote b§NF (r(x)) the shift normalized form af(«), which is obtained
by replacing eachy;(z) by p;(x + k;) for somek; € Z such thap;(z + k;) is in shift
normal form.
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SNF(r(x)) is unigue up to the choice @f. In the algorithm given in Sectidd 5
we assume&' = Q. For L = a4(x)7¢ + -+ + ag(x) € D, we denote bylet(L) the
determinant of the companion matrix bf which is(—1)%ag(z)/aq(z).

Theorem 2.9. [B] Theorem 2.3.9] Suppode, ~4 Lo for L1, Ly € C(z)[r] where
C is a subfield ofC. Then there exists a gauge transformati@ne C(z)[r] from
Ly ® (1 — r(z)) to L, for somer(z) € C(z) where

r(z)® = SNF(det(Ly)/ det(L1)), ord(L;) = d.

The original statement of the above theorem uses C, but the same proof works
for any subfield” of C.

Suppose we know that, ~, Lo for Li,L, € Q(x)[r] and we want to find
the GT-transformation. By the above theorem there exi6t3 € Q(z) such that
SNF(det(Lz)/det(L,)) = r(x)? whered = ord(L;). Whend is evenL (7 —r(x))
or Li®(r + r(z)) can be gauge equivalentIe. Thus the algorithm Hom will return
a non-empty set for either of the two. Furthermore, wiénodd,LS)(r — r(z)) is
gauge equivalent tds.

2.6 Symmetric powers of operators

Given an operatol. € D that annihilates a function, then in order to obtain an
operatorM € D that annihilates.? we need the symmetric squarelafin this section
we state some facts about these operators.

By L™ we denote then™ symmetric power of, i.e.,we definel.®' = L and
LO™ = [®LO®™—1 K is called a symmetric square rootbfif L = K©2,

Supposel; is a differential operator of order 2 then it is known that thider of
Lg@m ism + 1[22, Lemma 3.2, (b)]. However the following lemma shows tiéd is
not true for difference operators.

Lemma 2.10. [29, Lemma 3] LetX = as(z)7% + a1(z)7 + ao(z) € D. Then
1. ifa;(z) # 0then

K®? = bg(:c)7'3 + bQ(I)Tz + b1 (z)7T + bo(x),

where
b3(x) = a1 (x)az(z + 1)%az(x)
ba(z) = a1(x + Das(x)(ag(x + 1)az(z) — ar(x + 1)ai(x))
b1(z) = ap(x + ai(x)(ar(x + ai(x) — ap(x + 1)az(x))
bo(x) = —ayi(z 4+ 1ag(x + 1ag(z)?.

2. ifay(x) = 0thenK®? = ay(x)%72 — ap(x)?.

The formulas above give order-minimal operators for botbesa



If a full operatorK = as(z)72 + a1 (z)7 + ao(x) is @ symmetric square root of a
third order operatof,, then alsak’ = a(z)72 — ay (z)7 +aop(x) is a symmetric square
root of L. If u is a solution ofK, then(—1)%« is a solution of K. We sayK and K
are conjugates if{ ~; K where the term transformationis+ 1.

Solutions of an equation of type 2 are called Liouvilliangans [4) 14| 29]. Sup-
poseu; is a solution of K = ay(x)7% — ag(x) then{u, uz}, whereus = (—1)%uy,
forms a basis o¥/ (K) andu? = u3. Also, it is easy to verify that for arbitrary or-
dersm it holds thatK ©™ = ay(x)™72 + (—1)™*ag(x)™ with a similar proof to the
one of Lemm&2.70.

Definition 2.11. A second order operatadk is called a unity free operator if the solu-
tion space ofX” does not admit a basi&,, v2 } such that}* = v% for somen € N.

Let K = (2 + z) 72 + (22 + 2?) 7 + 2 4+ 32 + 2. Then a basis of the solution
space ofK is {zw?, xw%} wherew; andw, are solutions of? + 2 + 1 in C. Since
(zw?)3 = (2wd)? = 23 for z € N, K is not a unity free operator.

Lemma 2.12. If K € D is an irreducible second order operator then it is a unityefre
operator.

Proof. We prove this by contraposition. Suppasec D is not a unity free operator.
Then we may assuni¥& is monic and/ (K') admits a basigv,, v2} such thav] = o3
for somen € Z. Letng € Z-( be the smallest integer that satisfi€$ = v5°, then
we may assume; = (u? )*f,vs = (ub )*f for somef € S whereu,, denotes
noth root of unity andug, a, b are pairwise relatively prime. Thus = (72 — (u?_ +

no

ub )1+ ul ub )®(r — r) wherer = 7(f)/f. SinceK is an element inD and by

700 10

equation[(lL)y is in C(x) and this impliesk is reducible in D. O

Lemma 2.13.If v € S,v # 0 satisfies a full second order operatéi = by (x)7? +
b1(z)T + bo(z) € D thenv is not a zero divisor irS.

Proof. We will prove thatv has only finitely many zeros. Sind€(v) = 0 there is
ng € N such that

ba(z)v(x + 2) + by (z)v(x + 1) + bo(z)v(x) =0 2

andb; (x) has no poles or roots for all > ng, i = 1,2. Suppose(ni) = v(n1+1) =0
for somen; > ng. Thenby[(@)p(z) = 0forall z > n, and this contradicts that+ 0.
Suppose(ng) = 0,v(ny + 1) # 0 for someny > ng. Then again by[{(2)y(z) # 0
forall z > ny + 1. Thusv(z) # 0 for « large enough and heneds a unit. O

Theorem 2.14.1f L = K©™ for some irreducible full second order operathr € D
thenord(L) = m + 1

Proof. Let {v1,v,} be a basis o/ (K). We will show that then{vivy* ™" | i =
0..m} are linearly independent. Suppose there exish C, not all zero such that
emvt + cm_lvin_lvg + - F v =0.

By Lemmd2.1By, is nota unit and sinck is irreducible operator, by Lemrha2]12,
vl /ol # 1foranyn € N. Letz := vy /ve € Sandf(y) := cny™ +Cm_1y™ 1+ -+



co thenf(z) =0, i.e. f(z(z)) =0forallz € N. Thus,z(z) € {c € C| f(c) = 0}
forall z € N andwv; = zv,. Suppose: is not a constant sequence. Singels an
irreducible full operator inD, it contradicts that, is a solution of/{. Suppose is a
constant sequence. Then it contradicts tharewvs linearly independent. O

In the differential case it holds that if the symmetric seaf a third order dif-
ferential operato; € C(x)[0] has order 5, thel; = Kf?z for some second order
operatotK; € C(z)[9]. However, the following example shows that this does nad hol
in the difference case.

Example 2.15.LetE := (z+1)7% + (2823 — 42* — 36 — 842 — 7322)7% + (—69x —
7723 — 18 — 10422 — 42° — 282*) 7 + 24 4+ 523 + 822 + 4z € D. Thenord(E®?) = 5.

A solution of £ is 21, (1)? whereI,(z) denotes the modified Bessel function of the
first kind. Then the symmetric square rootstofire K; = 72 + (2 + 2z)vz + 17 —
Vr(z+1)and Ky = 72 — (2 4 22)v/x + 17 — y/z(x + 1), which are not inD. A
solution of K; and K are /zI,(1) and—+/zI, (1), respectively.

Let B := 272 — (22 + 2)7 + x + 2. Then a solution of3 is I.(z). ThenE =
K?Q ~; B®? butB and K, are not gauge equivalent iP, i.e, there is no operator
in D that sends/(B) to V(K;). Sincey/z is not a solution of any shift operator in
D, [11, Theorem 5.2]and |7, Lemma A.2K; is hot a symmetric product d8 and a
difference operator irD.

In the differential case, suppode, ~; K®? e, the solution ofl,; can be ob-
tained by multiplying a hyperexponential te/nto the solutions OKSDZ. Let{u,us}
be a basis of the solution space §f;, then L; admits a basis of the solution space
{gui, gurugz, gu3}. However, ifg is hyperexponential theyg is also hyperexponen-
tial. Thus,L, = K®?for K € C(z)[6] such thatl = K@(a—%%) whereg’ = Lh.
However ifh is a hypergeometric terry/ is not guaranteed to be a solution of an op-
erator inD.

Definition 2.16. An irreducible operatorL is said to besolvable in terms of second
order in D if it is GT-equivalent taK QK> - - - © K4 where theK;’s are irreducible
and full second order operators ib.

We need the following Lemma to prove Theorem 2.18.

Lemma 2.17. Let K1, K3 € D be full second order operators. dtd(K1®K2) = 3
then we can choose a badis; , v} of V/(K), and a basigw;, ws} of V(K3), such
thatvlwg = V2W1.

Proof. Let {vy,v2} be a basis oV (L) and{w;, w2} be a basis oV (Ly). Since
ord(K1®K2) = 3, theC-vector space generated Ky, w, v1ws, vowy, vaws} has
dimension 3. Then there exists, as, az € C, which are not all zero, such that

V1W2 = A1V1W1 + G2U2W1 + G3V2Wa3.

Supposer; = a; = 0 andas # 0 then it contradicts that; and v, are linearly
independent. Likewise, ifo = a3 = 0 anda; # 0 then it contradicts that); and



wo are linearly independent. f; = a3 = 0 andas # 0 then we have the desired
form. So, the remaining cases are either only one of the coaftsa, as, as is zero,
or all a1, as, a3 are non-zero. Here, we will prove the case whgris the only zero
coefficient. Let{w, w2} be another basis df (L3) such that

1D1 _ O as w1
1D2 - —ai 1 w2
Then for{w, ws} we havev ws = v915; as claimed. O

Theorem 2.18. Let L. be an operator of order 3, irreducible and solvable in ternfis o
second order inD. ThenL ~, K®©? for some irreducible full second order operator
K € D and furthermore

(@ L ~; K®?thenord(L®?) = 5.

(b) if the gauge transformation af ~,; K©? is not a single term operator then
ord(L®?) = 6.

Proof. Let L be a third order, irreducible operator that is solvable mteof second
order in D. Then by definition (and the restriction of the order), thexést two ir-
reducible full second order operatoks,, Ko € D such thatl ~g Ki©K,. By
Lemma[2.1F, a suitable basfs;, v} for K, and a suitable basigw, w2} for K,
can be chosen, such thatws = vaw;. Leth = wy /v = we/ve, thenh € S and
wy = hvy, andws = hve. Since{w;,ws} is a basis for an operator i, & is hyperge-
ometric and this implies thdt; ~; K> with term transformatiom — r, wherer is the
certificate of the hypergeometric teffm Summarizing, by LemmaZ.1L@; ~,; K©?
for some full operatoi € D.

(@) Let{v1,v2} be a basis o¥ (K) andr — r be the term transformation frofi©?2
to L andh be a solution of — . Then{hv?, hvivs, hv3} forms a basis of. and thus
ord(L®?) = 5 by Lemmd 2.TH4.

(b) Let{v1,v2} be a basis of/ (K). Then{G(hv?), G(hvivs), G(hv3)} forms a
basis of’ (L), whereG = cz(z)7? +¢1(z)7+co(x) € D is anon single term operator
andh is a hypergeometric term. Thew( hv?)G(hv3) # G(hviv2)? and this implies
ord(L®?) = 6. O

Supposé€., is a differential operator of order 3 ard; = KE?Q for some second
order differential operatoky. Then it is well known that there exists a formula to
construct thig(y, seel[22, Lemma 3.4]. The case where only gauge-equivateids,
i.e., Lqg ~yg K®?is more interesting. I [28] third order operators aretedavith a
focus on determining botR'; and a gauge transformation.

It is possible to implement a similar algorithm for diffenequations which re-
turns the second order operaférto which the givenl. can be reduced to and a gauge
transformation. However, in the difference case, in ordegjite a closed form solution
of K other algorithms need to be applied or a table look-up. Adsen if we are in
case[fn), finding< is not as simple as in the differential case, in particulaghdre
is a parameter included in the input. Morever to distingtishcases, the symmetric
square of a third order operator needs to be computed whiche@ome costly if many
parameters are involved.
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3 Local data

The local data that we are using are the valuation growthsié Singularities irC/Z
and generalized exponents at the point of infinity. This datmvariant under GT
transformations. In this section, we review the definitionl @n invariance property
(Theoreni 3.6, Theorem 3]14) of local data fram([3, 14, 6, 27& &khit proofs in this
paper.

3.1 Finite singularities

Valuation growth was first introduced in [27] and an algaritto compute it was given
in the same paper. Let = a47¢ + - + ao7® € D. After multiplying L from
the left by a suitable element @f(z), we may assume that the are in C[z] and
gcd(ag, - ..,aq) = 1. Theng € C is called aproblem pointof L if ¢ is a root of the
polynomialag(x)aq(x — d) andp € C/Z is called afinite singularityof L if L has
a problem point irp (i.e. p = ¢ + Z for some problem poing). Letp € C/Z. For
a,b e pcC Cwesaya > biff a — bis a positive integer.

Lete be a new indeterminant, i.e., transcendental Gvéie definel. := Zf:o a;(r+
e)r* which is obtained by substitutingwith = + ¢ in L. The mapL — L. defines an
embedding (as non-commutative rings)@(fx)[r] in C(x, ¢)[r]. Hence, ifL = M N,
thenL, = M_N..

Definition 3.1. Leta € C(¢) andC|[[¢]] be the ring of formal power series ovéfin e.
Thee-valuationv. (a) of a ate = 0 is the element dZ U co defined as follows: i # 0
thenv. (a) is the largest integem € Z such thata/e™ € C[[¢]], andv.(0) = oo.

We define arrd(L) dimensionalC(e)-vector space
Vp(Le) :={a:p— C(e) | Le(u) = 0}.

Let ¢; be the smallest root afy(z)aq(xz — d) in p, SOg; is the smallest problem point
in p. Likewise we defing, to be the largest root afy (z)aq(z — d) in p. If pis nota
singularity, that is, ifag anda, have no roots i, then choose two arbitrary elements
in p and defingy,, ¢, to be those two elements.

Definition 3.2. For non-zerou € V,(L.) and fora,b € Cif b = a + d — 1, where
d = ord(L.), we define th&ox-valuation

vy (@) = min{v.(a(m))|m = a,a +1,...,b}.
Lemma 3.3. With g;, ¢, chosen as above, we have
vq_d(ﬁ’) = v‘]l_d(ﬂ) for all q € {ql - 17 q — 27 qr — 37 e '}7

q—1 q—1

viTi(@) = vl ti(a) forallg € {g-+1,¢- + 2,0, +3,...}

We definev, (@) aSUgj:f(a) which, by Lemma 313, equals the box valuation of

any box on the left of;. Likewise we define. ,.(4) aS’UZ:i;(ﬂ).

11



Definition 3.4. Define thevaluation growttof non-zerai € V(L) as
9p.e (1) = ve (@) — ve, (1) € Z.
Define theset of valuation growthef L at p as
Gp(L) = {gpe() [ @ € Vy(Le), @ # 0} C Z.
If L is a first operator operator thep(L) has only one element.

Definition 3.5. Let L be a difference operator angd e C/Z be a finite singularity of
L. 1fg,(L) has more than one element theis called anessential singularity

The algorithm given in[27] determines the set
{gp(L) | p is an essential singularity df}.
Theorem 3.6. [4] Theorem 1] IfL; and L, are gauge equivalent then
max(gp(L1)) = max(g,(Lz)) and min(g,(L1)) = min(gp(L2))

forall p € C/Z.

The following lemma is an immediate consequence of Definf#ial.
Lemma 3.7. For eachp € C/Z,

max(g,(L®?%) = 2max(g,(L)) and min(g,(L®?) = 2min(g,(L)).

The above theorem only gives invariance under gauge eguivel To have invari-
ance under GT-equivalence, we need to define one more sgioSeip ~,: Lo, then
Li®(r — r(x)) ~4 Lo for somer(z) € C(x). Then

max(g,(L2)) = max(g,(L1)) +d and min(g,(L2)) = min(g,(L1)) +d
where{d} = g,(1—r(x)), d € Z. Sod,(L) = max(g,(L)) —min(g,(L)) is invariant
under GT-equivalence. Thus, for a difference operétar, we define a set of ordered

pairs

ValG := {(p,d,(L)) € C/Z x Z>q | p is an essential singularity of.}.

3.2 Singularity at infinity

LetK := C((t)),z = 1/t be the field of formal Laurent series akig = C((t'/")) for
r € N. We define the valuation far € K as the smallest power afwhose coefficient
is non-zero and denote it hy(a). This definition can be extended 0 = K[r] =
K[A], whereA := 7 — 1 denotes the forward difference, by setting

U(L) :min{v(ai)—Fi | L:a0+...+adAd}

for any operatot. € D.
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Lemma 3.8. Let L € K]r]. There exists a polynomidt such that for every. € Z we
have

L(t") = P(n)t"* ) 4 ... (3)
where the dots refer to terms of valuationn + v(L).

Definition 3.9. Indy (n), theindicial polynomialof L, is the polynomialP(n) in
Lemma 3.K3).

Lemma 9.2 in[[B] states that IV € Z is a root ofIndy (n) then there iss € K
such thatZ(u) = 0 andv(u) = N. However, there is no one-to-one correspondence
between solutions df in K and integer roots dihd ;. (n). For this matter, we introduce
the ringK[{], wherel is a solution ofr (1) —I = t, see[[18] for existence éf We extend
valuation onK to K[l] by: fora = a1t? + --- € K[l], a; € C[l], d € Z, anda; # 0,
we letv(a) = d. With this notion we obtain the following theorem which isudgalent
to [3, Theorem 3.2.10] and [26, Lemma 6.1].

Theorem 3.10.p € Z is a solution ofindy, (») if and only if L has a solution: € K[{]
with v(u) = p.

An immediate consequence of the above theorem is the fallpaorollary.

Corollary 3.11. If p; andp, € Z are the solutions of the indicial equationsf and
Lo, respectively, thep; + p» is a solution of the indicial equation df;(©)Ls.

Define the action of onkK, as:

Tty =tr(14+t)"r
1 11 111

_ 2
=t (1—ﬁ;t+5;(;+1)t (4)
11,1 1
— (=4 D)(-+2t3+--) eK,.
3!r(r+ )(T+) +--)€

Since we have defined the actionrobn K., we can now apply the formula for the
term symmetric product i {1) t&,.[r]. Let E,. andG,. be the following subset and
subgroup, respectively, &f*:

E, z{a eEK]|a= ct”(l—i—Zaiti/T),ai €eC,ceCrve %Z},

i=1
oo
G, —{aEK:|a_1—|— Z aiti/r, a; E(C}.
i=r+1

Now E;. is a set of representatives ﬂ&[}i/ér. The composition of the natural maps
K — K¥/G, — E, defines a natural map

Trunc : K — E,.
Let

m = ,
Gr={aeK'|la=1+—t AT a; € C, m e ZY}.
{a la + " —l—i;la a m € Z}
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Definition 3.12. Letr € N then fora,b € E,, we sayu is r-equivalent tah, a ~,. b,
whena/b € G,.

Note thata ~,. bif and only ifa,, = b, mod %Z with a,. as in the definition of,,
a; = b; for i < r, andc, v matching as well.

Definition 3.13. Letg € E, for somer € N. We say thay is ageneralized exponent
of L with multiplicity m if and only if zero is a root ofnd; (n) with multiplicity m

whereL = LE(t — %). We denote byzenExp(L) the set of generalized exponents
of L. ‘

Supposd. = 7 — r(z) € D thenGenExp(L) = {Trunc(r(t))}.

Theorem 3.14. If two operatorsL; and L, are gauge equivalent then for eagh €
GenExp(L;) there is ags € GenExp(L2) such thatys is equivalent tay; .

This theorem has been proven firstlin [6]. An alternative poam be found in[[3].

Theorem 3.15. Supposd., L’ € D then

GenExp(LOL') = {Trunc(gg’) | g € GenExp(L), g’ € GenExp(L')}

Proof. LOL'®(7 — q}]) = LO(T — %)@LI@(T — gi,) and since 0 is a solution of
L®(r—) andLE(7—;), 0 is also a solution of the indicial equation®L'®)(1 —
Trmergey) PY Lemmd 3T O

Likewise for the valuation growth, we need to define one metds have invari-
ance for GT-equivalence. Suppobe®(r — r(x)) ~4 Lo for somer(z) € C(z).
Then

GenExp(L2) = {g:9 | g € GenExp(L1), {gr} = GenExp(r —r(z))}.
Thus we define the following set,
Gquo(L) := {Trunc(gi/g;) | 9: # 9j, 9i>9; € GenExp(L)}

and thequuo(Ll) = unO(LQ) if Ly ~gt Lo.

4 Table of base equations
In [3,[6], we have formed a table of base equations of ordealRitcTB, as follows;
e collect equations with known solution froml [1, 2].

e for any closed form expression that shows up often in thedfitee, generate a
base equation with existing algorithms[[8] 17].

14



For the algorithm given in Sectidm 5, we have computed symo{uares of each base
equation in TB yielding an entry in TB2 of a base equation$otitorders. Moreover
we have generated further base equations as follows:

Supposeu(x) is a solution of an operatdt = Z?:o a;(z)rt. Thenu(z/m) is a

solution of the operator
d

Limy = Y _ ai(z/m)r™". (5)
=0

As input for our algorithm we accept only operators of ordieeé and the above equa-
tion may be of higher order. One way of obtaining the base tiguéor «(x/m) in this
case s usind.(,,,) when itis a multiple of an operatdd € D for which M (u(x/m)) =
0. SinceL,,,y as constructed above is not guaranteed to be the minimiat ogerator
we computelom (L), Ly, ). If the algorithm HOM returns the identity map this
means thaL,,) is in fact order-minimal. These cases are neglected and @& yg
as a base equation only if HOM returns a non-trivial map.

For instance for the squared hypergeometric function inethie below, F; _””/2+‘f:’ 2/24b.

an annihilating operatak ) can be obtained starting from an operator, annihilat-

the algorithm HOM. In this case HOM returns a non-identitypnaad hence we save
L2y in the table.

If ct’f € GenExp(L), thenz Trunc(gy, f) € GenExp(L(y,)), wherez. is a
root of 2™ = candgy, € GenExp(r™ — ()"). Thus, we can detect whether an
input operator may have a solutiafiz /m) if a base equation fax(z) is in our table.
However, it is more efficient to compute the base equatiosriwall values oin.

2
ing o Fy {*”“* o+b, z} using [5). Then the order-minimality df ;) is checked with

4.1 Example of base equations

Here we list a small part of the table which is needed in Se@i@andY. In the fol-
lowing table they are listed under (a) a solution (b) theespondingzquo, and (c) the

2

ValG. The fulltable can be foundattp://www.risc. jku.at/people/ycha/TB2.txt.

1. (a)oF |:—m/2+tz, m/2+b; Z:|2
(b) {—1,— (22— 1:|:2\/m)2,j:(2z—112\/m)}
(c) {(—2b,2),(2a,2),(2a — 2¢,2), (2¢ — 2b,2)}
2. (@) P.(2)? (Legendre polynomials squared)
() {—1+222 2222527, (—1 4222 £ 227+ o) |, Sizma o)
(©) {(0,4)}
3. (a) H.(z)? (Hermite polynomials squared)
(b) {1+ V=222T +22T2,1+£2/-222T — 42°T?}
(©) {(0,2)}
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5 Algorithm

The basic structure of the algorithm is the same that wasgivd3]. Here we use
an extended table of base equations and a more efficienithlgdior computing the
gauge transformation, as mentioned in Sedtion .4.1.

Supposd. is the input operator with local data

Gquo(L) = {a,a,b,b,c,¢}, ValG(L) = {(0,4)}

for a,b,c € C. By comparing the corresponding data in TB2, we can find theall

data ofL matches with the data dfl(2) in Sectionl4.1. ILg}, be the operator of which
P,(z)% is a solution. To compute the parametemwe compare: with each entry of
Gquo(Li4q) and compute the set of candidates of possible valuesdrich is,

il\/Qa:l:\/ZaQ—i—a?’—i-a ila—i—l

2 a T2 Va

Substitutingz by each of the values of the above set, a set of equatidisis ob-
tained. It remains to cheek for each of the equationgiif2 whether there is a GT-
transformation td. and if so then we return the closed form solution by applyhmeg t
GT-transformation taP, (z)2.

Algorithm solver2

Input: A third order normal operatat; € Q[z, 7].

Output: Either at least one closed form solution bfin the form of co(x)u(z)? +
c1(z)u(x +1)% + ca(z)u(x + 2)? wherec; (z) are hypergeometric terms andr)? is
a solution in TB2 or otherwise the empty set.

[

. eddl :={},GQ := Gquo(L;),VG :=ValG(Ly) .

2. Find the base equations in TB2 by compaii#g andV G with the correspond-
ing data in the table.

(a) if there is no match then return ‘Not solvable within treble’.
(b) if there is a matching equatidiy, cdd1 := cdd1 U {L.}.

3. Foreach.. € cddl, compute candidate values for the parameters usigand
VG.

4. Construct a setdd2 by substituting parameters by the values determined in

Sted.B

5. For eachl, € cdd2 check if there exists a GT-Transformation frarp to L;.

(a) if there is a GT-transformation then aph{{” to the known solution of_,.
and return the solution.

(b) if there is no GT-transformation found return ‘Not sdi@within the Ta-
ble’.
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6 Improvement

A similar approach can be applied to higher order operatatsdre solvable in terms
of order two. Supposé, is a fourth order operator that is solvable in terms of order
two in D. ThenL, is equal or gauge equivalent to eithkﬂ,©3 or k1K, for some
second order operatofs;, K> € D with nonvanishing coefficients. The candidates
for K; can be detected analogously using Thedreml 3.15.

Concerning the applications to proving positivity of s@édunctions inequalities
it has to be noted that representations in terms of finitealicembination of squares
with non-negative coefficients need not exist on the fullgeof validity of a given
inequality, as can be seen below. Further investigatiorth@fapplicability of this
approach as well as an implementation of the above mentiertthsion to higher
order recurrences are ongoing work.

7 Applications

Our main motivation to extend finding closed form solutiohdifference equations in
terms of symmetric products is to develop an algorithmiaapph for proving special
functions inequalities. Existing symbolic methods|[12] 18] are based on using
Cylindrical Algebraic Decomposition (CAD) which in seveexamples has proven to
be an effective way for proving positivity of sequences tn&t given only in terms of
their defining sequences. However, it is sometimes unsilsfto have a proof that
only comes with “True” without any certificate. Some claasioroofs of inequalities
are using rewriting of the given expression as linear comtion of easy to verify
positive objects such as sums of squares. The present vieskdrmake this approach
algorithmic. Certainly it will not provide answers for angegial functions inequality,
but it is a first step in a new direction of automatic ineqyaitoving. Below we give
two examples, one for each of the cases distinguished abbekassical problems that
can be solved fully or at least partially using the presemgadrithm. Note that all
of these identities stated can be proven easily using agistigorithms for symbolic
summation. The novelty is the automatic discovery of centéosed form expressions
for sequences that are given only in terms of their definiegm&nce relation. In this
sense it is comparable to the above mentioned algorithnesitas CAD.

7.1 Clausen’s formula

Proofs of special function inequalities often depend onraetaof classical techniques
such as argument transformations, integral representatib hypergeometric series
and many more. For instance in the proof of the Askey-Gasmyuality [2],which

played a key role in the proof of the Bieberbach conjecturédBranges [9], Clausen’s
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formula

—zr,x+a+1,2HL
3 2{ 2 2} (6)

)
a_i_l’O‘TH

1,. 1 1 2
$+1

entered at a central point. Zeilberger|[10] has shown howvittentity can be proven
using symbolic summation. By means of the algorithm presghere, Clausen'’s for-
mula can be discovered entirely automatic.

The hypergeometric function if](6) satisfies a third ordeureence that is given
by the operatol.3 and is too large to be displayed here. It can however be foasite
common symbolic summation algorithms [30/ 8] 17]. Thiseatiince operator is the
input for our procedure and we start by determining the ldet given by

Gquo(L3) = {— (2z—1:|:2 z2—z)2,—2z—|—1:|:2\/z2—z},
ValG(L3) = {(0,2), (-, 2)}.

A table look-up shows that this local data is compatible \#ltim Sectiori 4... Com-
paring local data and solving the system n#the following candidates far, b andc
can be found:

a€{0,3}, be{ja,3a+1}, ce{za+1l,3a+3}

There is no term transformation for these operators and gplicagion of HOM shows
that we obtain a constant mapif=0,b = Ja + % ande = Ja + 1.

7.2 Turan inequality for Hermite polynomials

The positivity of Turan determinants has been proven famyntifferent families of or-
thogonal polynomials. The first Turan inequality was fofated for Legendre polyno-
mials [25] and Szeg® [23] has given four different proofthis inequality. Szwarc [24]
has provided a more general approach for proving Turanitygmgualities based on the
mere knowledge of the recurrence coefficients satisfied eygiben sequence. Ger-
hold and Kauers [13] have proven and improved this type ofuiadities using their
CAD-based method. The approach presented here does nat fyillgroof for Turan
type inequalities, however it gives a representation ofgiven determinant in sums
of squares derived from the third order annihilating opmraf the determinant. In
the case of Hermite polynomials this yields a representdtiat gives positivity in the
limit for n tending to infinity.

Turan’s inequality for Hermite polynomials,. (z) reads as follows:

Ap(2) = Hpy1(2)? — Hp(2)Hypp0(2) >0, n>0, z€R.
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Then an annihilating operator &, (z) is Ly, := 73+ (22 +2 —42%)72 —4(x +2) (v —
222 +4)7 — 8(1 + z)(z + 2)? and the local data of this operator is

Gquo(Ly) = {—1 +/—222t7 (z2 + 1) t,1+2+/-2 2247 — 4z2t} ,
ValG(Ly) = {(0,2)}.

—1+V=2223 + (22 £ 1) t are elements iiquo(Ly,) and these are equivalent
to —1 + /=222t + 22t under~s, see Definitio 3.12 for». Thus the local data of
Ly, correspond to those of the third entry of the table given ictisa[4.].

Using the algorithm described above a gauge transformatiorbe found that ap-
plied to H,(z)? yields the following equivalent formulation

Ay(2) = $HZ () +2(x + 1 — 2*)Hy(2)* + 22°H?_ ().
This representation gives the positivity of Turan’s inalify for

ze€[-Vx+1,Va+1], z>0.
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