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Abstract

In this paper we show how to find a closed form solution for third order dif-
ference operators in terms of solutions of second order operators. This work is
an extension of previous results on finding closed form solutions of recurrence
equations and a counterpart to existing results on differential equations. As moti-
vation and application for this work, we discuss the problemof proving positivity
of sequences given merely in terms of their defining recurrence relation. The main
advantage of the present approach to earlier methods attacking the same problem
is that our algorithm provides human-readable and verifiable, i.e., certified proofs.

1 Introduction

This paper presents an extension of the algorithmsolver [3, 4, 6] that returns closed
form solutions for second order linear difference equations to third order linear dif-
ference equations. The solutions that we are looking for arein terms of (finite) sums
of squares. This is motivated by applying the algorithm for proving inequalities on
special functions, i.e., on expressions that may be defined in terms of linear difference
equations with polynomial coefficients. Conjectures aboutpositivity of special func-
tions inequalities arise in many applications in mathematics and science. Proving them
usually requires profound knowledge on relations between these special functions. It
is well known that there exist many algorithms for proving and finding special function
identities [30, 8, 20, 17]. For automated proving of specialfunctions inequalities only
few approaches exist. Gerhold and Kauers [12, 15] introduced a method that is based
on Cylindrical Algebraic Decomposition (CAD). This methodhas been proven to work
well on many non-trivial examples [13, 21], but even though correctness is easy to be
seen, termination cannot be guaranteed, hence it is not an algorithm in the strict sense.
A first attempt to clarify the latter issue has been made in [16]. One of the features of
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proofs of special functions identities is that they usuallycome with a certificate, i.e.,
some easy to check identity that verifies the proof. The CAD-based approach can not
hope to have a similar certificate in the near future. The method presented here is a
first step toward human readable proofs of special functionsinequalities, although ad-
mittedly a representation in terms of sums of squares with positive coefficients is not
expected to exist for any given input. Besides this application, the results presented are
of independent interest as they provide difference case counterparts to results obtained
for the differential case [22, 28].

First we review the available results in the differential case. Letk be a differential
field andLd ∈ k[∂], ∂ = d/dx be a linear homogeneous third order differential opera-
tor. Singer [22] characterizes when solutions ofLd can be written in terms of solutions
of a second order operator in̄k[∂]. Van Hoeij [28] handles the similar problem when
the coefficients of the second order operator are restrictedto k and shows that it will be
either of the following cases.

Case 1Ld is the symmetric square of a second order operatorKd ∈ k[∂]

Case 2Ld is gauge equivalent to a symmetric square of a second order operatorKd ∈
k[∂]

The definitions of symmetric products and gauge equivalenceare recalled in sections 2.3
and 2.4 below. The algorithm given in [28] returns a second order differential operator,
Kd ∈ k[d/dx], and a gauge transformation ink[∂] that sends solutions of the symmet-
ric squares ofKd to solutions ofLd for Case 2.

In the differential case, the symmetric square ofLd has order 5 if and only if we
are in Case 1. In this case, there is a simple formula that givesKd. Case 2 is equivalent
to the symmetric square ofLd having order 6 and a first order right-hand side factor
in k[∂] as well as a certain conic ofLd([22, Equation 4.2.1]) having a non-zero solution
in k. Since fork = C(x) this conic is solvable overC(x), the last condition becomes
trivial in this case. The algorithm given in [28] in the first step checks the order of the
symmetric square ofLd to distinguish the cases.

The difference case behaves differently; here we denote byD = C(x)[τ ] the ring
of linear difference operators, whereτ denotes the shift operator. Example 2.15 shows
that the cases can not be distinguished according to the order of the symmetric squares
when the coefficients are inC(x). To set up a counterpart theorem for difference equa-
tions, this example shows that we need one more transformation than that in the differ-
ential case. Furthermore in Case 1, the algorithm for findingthe second order operator
is more complicated than in the differential case.

Summarizing, the ideas used in the differential case can notbe carried over imme-
diately to the difference case. Furthermore our aim is to have a closed form solution
of the given input. Hence, if a factorization is found that isnot solvable, this fails to
satisfy our goal. Thus we build on the ideas of the algorithmsolver [3, 4, 6]. Here
we say that a function is in closed form if it is a linear combination of elementary
functions, special functions or hypergeometric functionsoverC(x). For instance the
modified Bessel function of the first kind is a closed form solution of the second order
operatorLb := zτ2 − (2x+ 2)τ + x+ z.
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The algorithmsolverreturns closed form solutions for second order linear differ-
ence operators. The main idea ofsolver is to map the given operatorL1 to an oper-
atorL2 of which a solution is known. This transformation is a bijective map, called
GT-transformation, that sends solutions ofL1 to solutions ofL2. If a closed form solu-
tion to one of the operators is known, then by means of this transformation the solution
of the second operator can be constructed. For this purpose atable with second order
operators including parameters together with characteristic data (local data) has been
constructed. This local data can be computed for the given operator, the corresponding
equivalent operator is found by table look-up. Then by comparing parameters of the lo-
cal data the GT-transformation can be constructed. The characteristic data is described
in Section 3. To cover the extension described here the tablehas been extended so that
we can give closed form solutions of certain third order linear difference operators.

2 Preliminary

In this section we introduce notations used in this paper andrecall some known facts [4,
6, 20, 26] about difference operators. Additionally Cases 1and 2 above are carried over
to the difference case for algebraic extensions in Theorem 2.18 below.

2.1 Ring of difference oprators

Let D := C(x)[τ ] be the ring of linear difference operators with coefficientsin C(x),
whereτ is the shift operator acting onx by τ(x) = x+1. ThenD is a noncommutative
ring where

τ · τ i−1 = τ i for i ∈ N, τ · f = τ(f)τ for f ∈ C(x).

ForL = ad(x)τ
d + · · ·+ a1(x)τ + a0(x) ∈ D with ad 6= 0, we say thatL has orderd

and writeord(L) = d. If furthermorea0 6= 0 thenL is said to be anormaloperator. In
this paper we will assume all operators to be normal.

The adjoint operator ofL is defined byL∗ =
∑d

i=0 ad−i(x + i)τ i. SupposeL =
M ·N for someM,N ∈ D. ThenL∗ = (M ·N)∗ = (τd1 ·N∗ · τ−d1) ·M∗, where
d1 = ord(M) and thus right-hand side factors ofL correspond to left-hand side factors
of L∗. We say that a third order operatorL is irreducible inD if both L andL∗ have
no first order right-hand side factor inD.

A second order operatorK = b2τ
2 + b1τ + b0 ∈ D is called afull operator if

b2b1b0 6= 0. Thus, ifK is a normal but not full operator, thenb1 = 0.

2.2 Ring of sequences

Let CN := {f | f : N → C}. Then an elementv ∈ CN corresponds to a sequence
v := (v(1), v(2), v(3), . . .). C is embedded inCN as a subring via constant sequences.
Supposev1, v2 ∈ CN, then we define

v1 + v2 := (v1(1) + v2(1), v1(2) + v2(2), . . .)

v1v2 := (v1(1)v2(1), v1(2)v2(2), . . .).
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With the above termwise addition and multiplication,CN forms aC-algebra. We define
the action ofτ onCN by τ(v) := (v(2), v(3), v(4), . . .).

Let S := CN/∼ wheres1 ∼ s2 if there existsN ∈ N such that, for alli > N ,
s1(i) = s2(i). Then it is easy to verify thats is a unit inS, i.e. s is invertible inS, if
and only ifs ∈ S has only finitely many zeros. Iff ∈ C(x), then the image off in
S and the action ofτ onS are well defined. This way we can embedC(x) to S and
call s ∈ S rational if there existg(x) ∈ C(x) andN ∈ N such thatg(i) = s(i) for all
i ≥ N . S[τ ] forms a ring of difference operators andD is embedded inS[τ ].

We sayL(v) = 0 for v ∈ S, L = ad(x)τ
d + · · ·+ a0(x) ∈ S[τ ] if there isn0 ∈ N

such that

ad(i)v(i + d) + ad−1(i)v(i+ d− 1) + · · ·+ a0(i)v(i) = 0 for all i ≥ n0.

Definition 2.1. h ∈ S is called hypergeometric ifr = τ(h)/h ∈ S \ {0} is rational
andr is called the certificate ofh.

If h ∈ S is hypergeometric then(τ − r)(h) = 0 wherer is the certificate ofh. We
defineV (L) := {u ∈ S | L(u) = 0}.

Theorem 2.2. [20, Theorem 8.2.1]dimC(V (L)) = ord(L) for a normal difference
operatorL ∈ D.

Thus for a normal operatorL ∈ D, V (L) forms aC-vector space with a basis
{vi ∈ S | 1 ≤ i ≤ ord(L)}.

2.3 Term equivalence

Definition 2.3. The symmetric product,MsN , of operatorsM andN ∈ D is an
order-minimal and monic operator such thatµν ∈ V (MsN) for all µ ∈ V (M) and
ν ∈ V (N).

There is a simple formula if one of the operators has order1. LetL = ad(x)τ
d +

· · ·+ · · ·+ a1(x)τ + a0(x) ∈ D andr(x) ∈ C(x). Then

Ls(τ − r(x)) =

d
∑

i=0

biτ
i, wherebd(x) = ad(x) and

bi(x) = ai(x)
d−1
∏

j=i

τ j(r(x)) for i = 0, . . . , d− 1.

(1)

Thus,(τ − a(x))s(τ − b(x)) = τ − a(x)b(x) for anya(x), b(x) ∈ C(x).
SupposeL ∈ D and s ∈ S. Then the above formula gives an operatorL̃ =

Ls(τ − s) ∈ S[τ ] such thatV (L̃) = {hu | L(u) = 0} whereh ∈ S is a solution of
τ − s. If Ls(τ − s) ∈ D then it is easy to see thats is rational.

Definition 2.4. L1, L2 ∈ D are said to be term equivalent if there existsT = τ−r ∈ D
such thatV (L2) = V (L1s(τ − r)), denoted byL1 ∼t L2. Such a T is called the term
transformation fromL1 toL2.
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If L1 andL2 are term equivalent andτ−r is the term transformation thenV (L2) =
{hv | h ∈ V (τ − r), v ∈ V (L1)}. SupposeL1 and a term transformationT are given,
thenL2 can be obtained by (1).

2.4 Gauge equivalence

LetL1, L2 ∈ D be two given operators, where a closed form solutionu of L1 is known.
If furthermore an operatorG ∈ D can be determined sucht thatG(u) is solution ofL2,
then a closed form solution ofL2 can be written as a linear combination of shifts ofu
overC(x). Such a transformationG is called a gauge transformation andL1 andL2

are said to be gauge equivalent if such a transformation exists.

Definition 2.5. Let L1, L2 ∈ D have the same order.G ∈ D is called agauge
transformationfromL1 toL2 iff G : V (L1) → V (L2) is a bijection.

Note thatG is not required to be a normal operator.
Suppose we are given a gauge transformationG whereord(G) ≥ ord(L1). Then

there existQ, Ĝ ∈ D with ord(Ĝ) < ord(L1) such thatG = QL1+Ĝ. The remainder
Ĝ is also a gauge transformation that acts in the same way asG on V (L1). Hence,
w.l.o.g., we may assume thatord(G) < ord(L1).

Let GCRD(L,M) denote the greatest common right divisor ofL,M ∈ D. Since
G is a bijection, any non zero solutionu of L1 does not map to zero byG. Thus,L1 and
G have no nontrivial common right hand factor, i.e.GCRD(L1, G) = 1. Using the
extended Euclidean algorithm̃G, L̃1 ∈ D can be determined such thatG̃G+L̃1L1 = 1.
ThenG̃G is the identity onV (L1) andG̃ is an inverse ofG that sendsV (L2) → V (L1)
bijectively.

Definition 2.6. Two operatorsL1 andL2 with the same order are called gauge equiv-
alent if there exists a gauge transformationG : V (L1) → V (L2) and we use the
notationL1 ∼g L2.

SupposeL1 ∼g L2 where the gauge transformation fromL1 toL2 is a single term
operator,c(x)τn for n < ord(L1). Thenτn · L1 · τ−n is term equivalent toL2 where
the term transformation fromτn · L1 · τ−n toL2 is τ − c(x+1)

c(x) .

2.4.1 How to compute the gauge transformation

SupposeL1 andL2 are gauge equivalent andG is a gauge transformation fromL1 to
L2. Then there is an operatorH ∈ D, ord(H) < ord(L2) such thatH · L1 = L2 ·G.

The algorithm that was used to find the gauge transformation in [4, 6, 29] works as
follows:

1. For given operatorsL1 andL2, we set up the ansatzG :=
∑ord(L1)−1

i=0 ci(x)τ
i,

where theci(x) are undetermined coefficients.

2. Right divideL2 · G by L1 and set the remainder to zero. This way we obtain a
systemA of difference equations for the unknown coefficientsci(x).
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3. Compute the rational solutions of the systemA to determine the values for
theci(x).

This algorithm was efficient for second order operators, butfor operators of order
three and higher, computing a solution of the systemA, we get at Step 2, is very costly.
Hence in the current implementation we use the new algorithmHOM to compute the
gauge transformations that give the set of homomorphismsHomD(V (L1), V (L2))
in D sendingV (L1) to V (L2) for anyL1, L2 ∈ D. This means in particular that
we can drop the condition on the orders,ord(L1) = ord(L2).

In short, the algorithm HOM works as follows: ForL =
∑d

i=0 ai(x)τ
i ∈ D,

ad(x) = 1, we define the∨-adjoint operatorL∨ :=
∑d

i=0 ad−i(x+i−1)τ i. Then there
is a one to one correspondence betweenHom(L1, L2) and rational (invariant under the
difference Galois group) elements ofV (L∨

1 )⊗ V (L2). We define a spaceM(L∨
1 , L2)

that is isomorphic toV (L∨
1 ) ⊗ V (L2). Then rational elements ofM(L∨

1 , L2) corre-
spond bijectively to elements ofHom(L1, L2). Thus, we compute rational elements of
M(L∨

1 , L2). This is done by working directly withL∨
1 andL2, and we avoid comput-

ing large operators such as the symmetric product ofL∨
1 andL2 (whose solution space

is a homomorphic image ofM(L∨
1 , L2).)

Note that ifL1 andL2 are of the same order, then HOM returns exactly the gauge
transformations. The algorithm HOM is available athttp://www.risc.jku.at/people/ycha/Hom.txt

and more details can be found in [5]. This is joint work of Yongjae Cha and Mark van
Hoeij.

2.5 GT-equivalence

Definition 2.7. Suppose there is a gauge transformationG and a term transformation
T = τ − r(x) such that the composition ofG andT ,G◦T , mapsV (L1) to V (L2), i.e.
G : V (L1s(τ − r(x)) → V (L2). ThenL1 andL2 are called GT-equivalent, denoted
byL1 ∼gt L2, and the composition ofG andT is refered to as the GT-transformation
fromL1 toL2.

Suppose there is a mapGT which is a multiple composition of gauge transforma-
tions and term transformations. Then [19, Theorem 3.3.] shows that we can find a
gauge transformationG and a term transformationT such thatGT (V (L1)) = G ◦
T (V (L1)).

2.5.1 How to compute the GT-Transformation

Definition 2.8. LetC be a subfield ofC andr(x) = cp1(x)
e1 · · · pj(x)ej ∈ C(x), for

someei ∈ Z, monic irreducible inpi(x) ∈ C[x], and letsi ∈ C equal the sum of the
roots ofpi(x).

r(x) is said to be inshift normal formif − deg(pi(x)) < Re(si) 6 0, for i =
1, . . . , j. We denote bySNF(r(x)) the shift normalized form ofr(x), which is obtained
by replacing eachpi(x) bypi(x + ki) for someki ∈ Z such thatpi(x + ki) is in shift
normal form.
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SNF(r(x)) is unique up to the choice ofC. In the algorithm given in Section 5
we assumeC = Q. ForL = ad(x)τ

d + · · · + a0(x) ∈ D, we denote bydet(L) the
determinant of the companion matrix ofL, which is(−1)da0(x)/ad(x).

Theorem 2.9. [3, Theorem 2.3.9] SupposeL1 ∼gt L2 for L1, L2 ∈ C(x)[τ ] where
C is a subfield ofC. Then there exists a gauge transformationG ∈ C(x)[τ ] from
L1 ⊗ (τ − r(x)) to L2 for somer(x) ∈ C(x) where

r(x)d = SNF(det(L2)/ det(L1)), ord(L1) = d.

The original statement of the above theorem usesC = C, but the same proof works
for any subfieldC of C.

Suppose we know thatL1 ∼gt L2 for L1, L2 ∈ Q(x)[τ ] and we want to find
the GT-transformation. By the above theorem there existsr(x) ∈ Q(x) such that
SNF(det(L2)/ det(L1)) = r(x)d whered = ord(L1). Whend is evenL1s(τ−r(x))
orL1s(τ + r(x)) can be gauge equivalent toL2. Thus the algorithm Hom will return
a non-empty set for either of the two. Furthermore, whend is odd,L1s(τ − r(x)) is
gauge equivalent toL2.

2.6 Symmetric powers of operators

Given an operatorL ∈ D that annihilates a functionu, then in order to obtain an
operatorM ∈ D that annihilatesu2 we need the symmetric square ofL. In this section
we state some facts about these operators.

By Lsm we denote themth symmetric power ofL, i.e.,we defineLs1 = L and
Lsm = LsLs(m−1). K is called a symmetric square root ofL if L = Ks2.

SupposeKd is a differential operator of order 2 then it is known that theorder of
Lsm
d is m+ 1 [22, Lemma 3.2, (b)]. However the following lemma shows thatthis is

not true for difference operators.

Lemma 2.10. [29, Lemma 3] LetK = a2(x)τ
2 + a1(x)τ + a0(x) ∈ D. Then

1. if a1(x) 6= 0 then

Ks2 = b3(x)τ
3 + b2(x)τ

2 + b1(x)τ + b0(x),

where

b3(x) = a1(x)a2(x + 1)2a2(x)

b2(x) = a1(x+ 1)a2(x)(a0(x+ 1)a2(x)− a1(x+ 1)a1(x))

b1(x) = a0(x+ 1)a1(x)(a1(x+ 1)a1(x)− a0(x+ 1)a2(x))

b0(x) = −a1(x+ 1)a0(x+ 1)a0(x)
2.

2. if a1(x) = 0 thenKs2 = a2(x)
2τ2 − a0(x)

2.

The formulas above give order-minimal operators for both cases.
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If a full operatorK = a2(x)τ
2 + a1(x)τ + a0(x) is a symmetric square root of a

third order operatorL, then alsoK = a2(x)τ
2−a1(x)τ+a0(x) is a symmetric square

root ofL. If u is a solution ofK, then(−1)xu is a solution ofK. We sayK andK
are conjugates ifK ∼t K where the term transformation isτ + 1.

Solutions of an equation of type 2 are called Liouvillian solutions [4, 14, 29]. Sup-
poseu1 is a solution ofK = a2(x)τ

2 − a0(x) then{u1, u2}, whereu2 = (−1)xu1,
forms a basis ofV (K) andu2

1 = u2
2. Also, it is easy to verify that for arbitrary or-

dersm it holds thatKsm = a2(x)
mτ2 + (−1)m+1a0(x)

m with a similar proof to the
one of Lemma 2.10.

Definition 2.11. A second order operatorK is called a unity free operator if the solu-
tion space ofK does not admit a basis{v1, v2} such thatvn1 = vn2 for somen ∈ N.

Let K =
(

x2 + x
)

τ2 +
(

2 x+ x2
)

τ + x2 + 3 x+ 2. Then a basis of the solution
space ofK is {xwx

1 , xw
x
2} wherew1 andw2 are solutions ofz2 + z + 1 in C. Since

(xwx
1 )

3 = (xwx
2 )

3 = x3 for x ∈ N, K is not a unity free operator.

Lemma 2.12. If K ∈ D is an irreducible second order operator then it is a unity free
operator.

Proof. We prove this by contraposition. SupposeK ∈ D is not a unity free operator.
Then we may assumeK is monic andV (K) admits a basis{v1, v2} such thatvn1 = vn2
for somen ∈ Z. Let n0 ∈ Z>0 be the smallest integer that satisfiesvn0

1 = vn0

2 , then
we may assumev1 = (ua

n0
)xf, v2 = (ub

n0
)xf for somef ∈ S whereun0

denotes
n0th root of unity andn0, a, b are pairwise relatively prime. ThusK = (τ2 − (ua

n0
+

ub
n0
)τ + ua

n0
ub
n0
)s(τ − r) wherer = τ(f)/f . SinceK is an element inD and by

equation (1),r is in C(x) and this impliesK is reducible in D.

Lemma 2.13. If v ∈ S, v 6= 0 satisfies a full second order operatorK = b2(x)τ
2 +

b1(x)τ + b0(x) ∈ D thenv is not a zero divisor inS.

Proof. We will prove thatv has only finitely many zeros. SinceK(v) = 0 there is
n0 ∈ N such that

b2(x)v(x + 2) + b1(x)v(x + 1) + b0(x)v(x) = 0 (2)

andbi(x) has no poles or roots for allx ≥ n0, i = 1, 2. Supposev(n1) = v(n1+1) = 0
for somen1 ≥ n0. Then by (2),v(x) = 0 for all x ≥ n1 and this contradicts thatv 6= 0.
Supposev(n2) = 0, v(n2 + 1) 6= 0 for somen2 ≥ n0. Then again by (2),v(x) 6= 0
for all x ≥ n2 + 1. Thusv(x) 6= 0 for x large enough and hencev is a unit.

Theorem 2.14. If L = Ksm for some irreducible full second order operatorK ∈ D
thenord(L) = m+ 1

Proof. Let {v1, v2} be a basis ofV (K). We will show that then{vi1vm−i
2 | i =

0..m} are linearly independent. Suppose there existci in C, not all zero such that
cmvm1 + cm−1v

m−1
1 v2 + · · ·+ c0v

m
2 = 0.

By Lemma 2.13,v2 is not a unit and sinceK is irreducible operator, by Lemma 2.12,
vn1 /v

n
2 6= 1 for anyn ∈ N. Letz := v1/v2 ∈ S andf(y) := cmym+cm−1y

m−1+· · ·+
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c0 thenf(z) = 0, i.e. f(z(x)) = 0 for all x ∈ N. Thus,z(x) ∈ {c ∈ C | f(c) = 0}
for all x ∈ N andv1 = zv2. Supposez is not a constant sequence. SinceK is an
irreducible full operator inD, it contradicts thatv1 is a solution ofK. Supposez is a
constant sequence. Then it contradicts thatv1 arev2 linearly independent.

In the differential case it holds that if the symmetric square of a third order dif-
ferential operatorLd ∈ C(x)[∂] has order 5, thenLd = Ks2

d for some second order
operatorKd ∈ C(x)[∂]. However, the following example shows that this does not hold
in the difference case.

Example 2.15.LetE := (x+1)τ3+(−28x3−4x4−36−84x−73x2)τ2+(−69x−
77x3−18−104x2−4x5−28x4)τ +x4+5x3+8x2+4x ∈ D. Thenord(Es2) = 5.
A solution ofE is xIx(1)

2 whereIx(z) denotes the modified Bessel function of the
first kind. Then the symmetric square roots ofE areK1 = τ2 + (2 + 2x)

√
x+ 1τ −

√

x(x+ 1) andK2 = τ2 − (2 + 2x)
√
x+ 1τ −

√

x(x+ 1), which are not inD. A
solution ofK1 andK2 are

√
xIx(1) and−√

xIx(1), respectively.
Let B := zτ2 − (2x + 2)τ + x + z. Then a solution ofB is Ix(z). ThenE =

Ks2
1 ∼t B

s2, butB andK1 are not gauge equivalent inD, i.e, there is no operator
in D that sendsV (B) to V (K1). Since

√
x is not a solution of any shift operator in

D, [11, Theorem 5.2]and [7, Lemma A.2],K1 is not a symmetric product ofB and a
difference operator inD.

In the differential case, supposeLd ∼t Ks2
d , i.e, the solution ofLd can be ob-

tained by multiplying a hyperexponential termh to the solutions ofKs2
d . Let{u1, u2}

be a basis of the solution space ofKd, thenLd admits a basis of the solution space
{gu2

1, gu1u2, gu
2
2}. However, ifg is hyperexponential then

√
g is also hyperexponen-

tial. Thus,Ld = K̃s2 for K̃ ∈ C(x)[δ] such thatK̃ = Ks(∂− 1
2
g′

g ) whereg′ = d
dxh.

However ifh is a hypergeometric term,
√
h is not guaranteed to be a solution of an op-

erator inD.

Definition 2.16. An irreducible operatorL is said to besolvable in terms of second
order inD if it is GT-equivalent toK1sK2 · · ·sKd where theKi’s are irreducible
and full second order operators inD.

We need the following Lemma to prove Theorem 2.18.

Lemma 2.17. LetK1,K2 ∈ D be full second order operators. Iford(K1sK2) = 3
then we can choose a basis{v1, v2} of V (K1), and a basis{w1, w2} of V (K2), such
thatv1w2 = v2w1.

Proof. Let {v1, v2} be a basis ofV (L1) and{w1, w2} be a basis ofV (L2). Since
ord(K1sK2) = 3, theC-vector space generated by{v1w1, v1w2, v2w1, v2w2} has
dimension 3. Then there existsa1, a2, a3 ∈ C, which are not all zero, such that

v1w2 = a1v1w1 + a2v2w1 + a3v2w2.

Supposea1 = a2 = 0 anda3 6= 0 then it contradicts thatv1 and v2 are linearly
independent. Likewise, ifa2 = a3 = 0 anda1 6= 0 then it contradicts thatw1 and
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w2 are linearly independent. Ifa1 = a3 = 0 anda2 6= 0 then we have the desired
form. So, the remaining cases are either only one of the coefficientsa1, a2, a3 is zero,
or all a1, a2, a3 are non-zero. Here, we will prove the case whena2 is the only zero
coefficient. Let{w̃1, w̃2} be another basis ofV (L2) such that

(

w̃1

w̃2

)

=

(

0 a3
−a1 1

)(

w1

w2

)

Then for{w̃1, w̃2} we havev1w̃2 = v2w̃1 as claimed.

Theorem 2.18. LetL be an operator of order 3, irreducible and solvable in terms of
second order inD. ThenL ∼gt K

s2 for some irreducible full second order operator
K ∈ D and furthermore

(a) L ∼t K
s2 thenord(Ls2) = 5.

(b) if the gauge transformation ofL ∼gt Ks2 is not a single term operator then
ord(Ls2) = 6.

Proof. Let L be a third order, irreducible operator that is solvable in terms of second
order inD. Then by definition (and the restriction of the order), thereexist two ir-
reducible full second order operatorsK1,K2 ∈ D such thatL ∼gt K1sK2. By
Lemma 2.17, a suitable basis{v1, v2} for K1, and a suitable basis{w1, w2} for K2

can be chosen, such thatv1w2 = v2w1. Let h = w1/v1 = w2/v2, thenh ∈ S and
w1 = hv1, andw2 = hv2. Since{w1, w2} is a basis for an operator inD, h is hyperge-
ometric and this implies thatK1 ∼t K2 with term transformationτ − r, wherer is the
certificate of the hypergeometric termh. Summarizing, by Lemma 2.10,L ∼gt K

s2

for some full operatorK ∈ D.
(a) Let{v1, v2} be a basis ofV (K) andτ−r be the term transformation fromKs2

toL andh be a solution ofτ − r. Then{hv21 , hv1v2, hv22} forms a basis ofL and thus
ord(Ls2) = 5 by Lemma 2.14.

(b) Let {v1, v2} be a basis ofV (K). Then{G(hv21), G(hv1v2), G(hv22)} forms a
basis ofV (L), whereG = c2(x)τ

2+c1(x)τ+c0(x) ∈ D is a non single term operator
andh is a hypergeometric term. ThenG(hv21)G(hv22) 6= G(hv1v2)

2 and this implies
ord(Ls2) = 6.

SupposeLd is a differential operator of order 3 andLd = Ks2
d for some second

order differential operatorKd. Then it is well known that there exists a formula to
construct thisKd, see [22, Lemma 3.4]. The case where only gauge-equivalenceholds,
i.e.,Ld ∼g Ks2

d , is more interesting. In [28] third order operators are treated with a
focus on determining bothKd and a gauge transformation.

It is possible to implement a similar algorithm for difference equations which re-
turns the second order operatorK to which the givenL can be reduced to and a gauge
transformation. However, in the difference case, in order to give a closed form solution
of K other algorithms need to be applied or a table look-up. Also,even if we are in
case (a), findingK is not as simple as in the differential case, in particular ifthere
is a parameter included in the input. Morever to distinguishthe cases, the symmetric
square of a third order operator needs to be computed which can become costly if many
parameters are involved.
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3 Local data

The local data that we are using are the valuation growths at finite singularities inC/Z
and generalized exponents at the point of infinity. This datais invariant under GT
transformations. In this section, we review the definition and an invariance property
(Theorem 3.6, Theorem 3.14) of local data from [3, 4, 6, 27]. We omit proofs in this
paper.

3.1 Finite singularities

Valuation growth was first introduced in [27] and an algorithm to compute it was given
in the same paper. LetL = adτ

d + · · · + a0τ
0 ∈ D. After multiplying L from

the left by a suitable element ofC(x), we may assume that theai are inC[x] and
gcd(a0, . . . , ad) = 1. Thenq ∈ C is called aproblem pointof L if q is a root of the
polynomiala0(x)ad(x − d) andp ∈ C/Z is called afinite singularityof L if L has
a problem point inp (i.e. p = q + Z for some problem pointq). Let p ∈ C/Z. For
a, b ∈ p ⊂ C we saya > b iff a− b is a positive integer.

Letε be a new indeterminant, i.e., transcendental overC. We defineLε :=
∑d

i=0 ai(x+
ε)τ i which is obtained by substitutingx with x+ ε in L. The mapL 7→ Lε defines an
embedding (as non-commutative rings) ofC(x)[τ ] in C(x, ε)[τ ]. Hence, ifL = MN ,
thenLε = MεNε.

Definition 3.1. Leta ∈ C(ǫ) andC[[ǫ]] be the ring of formal power series overC in ǫ.
Theε-valuationvε(a) of a at ε = 0 is the element ofZ∪∞ defined as follows: ifa 6= 0
thenvε(a) is the largest integerm ∈ Z such thata/εm ∈ C[[ε]], andvε(0) = ∞.

We define anord(L) dimensionalC(ε)-vector space

Vp(Lε) := {ũ : p → C(ε) | Lε(ũ) = 0}.

Let ql be the smallest root ofa0(x)ad(x − d) in p, soql is the smallest problem point
in p. Likewise we defineqr to be the largest root ofa0(x)ad(x − d) in p. If p is not a
singularity, that is, ifa0 andad have no roots inp, then choose two arbitrary elements
in p and defineql, qr to be those two elements.

Definition 3.2. For non-zeroũ ∈ Vp(Lε) and fora, b ∈ C if b = a + d − 1, where
d = ord(Lε), we define thebox-valuation

vab (ũ) = min{vε(ũ(m))|m = a, a+ 1, . . . , b}.

Lemma 3.3. With ql, qr chosen as above, we have

vq−d
q−1(ũ) = vql−d

ql−1(ũ) for all q ∈ {ql − 1, ql − 2, ql − 3, . . .},

vq+1
q+d(ũ) = vqr+1

qr+d(ũ) for all q ∈ {qr + 1, qr + 2, qr + 3, . . .}
.

We definevε,l(ũ) asvql−d
ql−1(ũ) which, by Lemma 3.3, equals the box valuation of

any box on the left ofql. Likewise we definevε,r(ũ) asvqr+1
qr+d(ũ).

11



Definition 3.4. Define thevaluation growthof non-zerõu ∈ Vp(Lε) as

gp,ε(ũ) = vε,r(ũ)− vε,l(ũ) ∈ Z.

Define theset of valuation growthsofL at p as

gp(L) = {gp,ε(ũ) | ũ ∈ Vp(Lε), ũ 6= 0} ⊂ Z.

If L is a first operator operator thengp(L) has only one element.

Definition 3.5. LetL be a difference operator andp ∈ C/Z be a finite singularity of
L. If gp(L) has more than one element thenp is called anessential singularity.

The algorithm given in [27] determines the set

{gp(L) | p is an essential singularity ofL}.

Theorem 3.6. [4, Theorem 1] IfL1 andL2 are gauge equivalent then

max(gp(L1)) = max(gp(L2)) and min(gp(L1)) = min(gp(L2))

for all p ∈ C/Z.

The following lemma is an immediate consequence of Definition 3.4.

Lemma 3.7. For eachp ∈ C/Z,

max(gp(L
s2) = 2max(gp(L)) and min(gp(L

s2) = 2min(gp(L)).

The above theorem only gives invariance under gauge equivalence. To have invari-
ance under GT-equivalence, we need to define one more set. SupposeL1 ∼gt L2, then
L1s(τ − r(x)) ∼g L2 for somer(x) ∈ C(x). Then

max(gp(L2)) = max(gp(L1)) + d and min(gp(L2)) = min(gp(L1)) + d

where{d} = gp(τ−r(x)), d ∈ Z. Sodp(L) = max(gp(L))−min(gp(L)) is invariant
under GT-equivalence. Thus, for a difference operatorL ∈, we define a set of ordered
pairs

ValG := {(p, dp(L)) ∈ C/Z × Z≥0 | p is an essential singularity ofL}.

3.2 Singularity at infinity

LetK := C((t)), x = 1/t be the field of formal Laurent series andKr = C((t1/r)) for
r ∈ N. We define the valuation fora ∈ K as the smallest power ofa whose coefficient
is non-zero and denote it byv(a). This definition can be extended tôD = K[τ ] =
K[∆], where∆ := τ − 1 denotes the forward difference, by setting

v(L) = min{v(ai) + i | L = a0 + · · ·+ ad∆
d}

for any operatorL ∈ D̂.
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Lemma 3.8. LetL ∈ K[τ ]. There exists a polynomialP such that for everyn ∈ Z we
have

L(tn) = P (n)tn+v(L) + · · · (3)

where the dots refer to terms of valuation> n+ v(L).

Definition 3.9. IndL(n), the indicial polynomialof L, is the polynomialP (n) in
Lemma 3.8(3).

Lemma 9.2 in [6] states that ifN ∈ Z is a root ofIndL(n) then there isu ∈ K

such thatL(u) = 0 andv(u) = N . However, there is no one-to-one correspondence
between solutions ofL in K and integer roots ofIndL(n). For this matter, we introduce
the ringK[l], wherel is a solution ofτ(l)− l = t, see [18] for existence ofl. We extend
valuation onK to K[l] by: for a = a1t

d + · · · ∈ K[l], ai ∈ C[l], d ∈ Z, anda1 6= 0,
we letv(a) = d. With this notion we obtain the following theorem which is equivalent
to [3, Theorem 3.2.10] and [26, Lemma 6.1].

Theorem 3.10.p ∈ Z is a solution ofIndL(n) if and only ifL has a solutionu ∈ K[l]
with v(u) = p.

An immediate consequence of the above theorem is the following corollary.

Corollary 3.11. If p1 andp2 ∈ Z are the solutions of the indicial equations ofL1 and
L2, respectively, thenp1 + p2 is a solution of the indicial equation ofL1sL2.

Define the action ofτ onKr as:

τ(t
1

r ) = t
1

r (1 + t)−
1

r

= t
1

r (1 − 1

1!

1

r
t+

1

2!

1

r
(
1

r
+ 1)t2

− 1

3!

1

r
(
1

r
+ 1)(

1

r
+ 2)t3 + · · · ) ∈ Kr.

(4)

Since we have defined the action ofτ onKr, we can now apply the formula for the
term symmetric product in (1) toKr[τ ]. Let Er andG̃r be the following subset and
subgroup, respectively, ofK∗

r :

Er =

{

a ∈ K∗
r | a = ctv(1 +

r
∑

i=1

ait
i/r), ai ∈ C, c ∈ C∗, v ∈ 1

rZ

}

,

G̃r =

{

a ∈ K∗
r | a = 1 +

∞
∑

i=r+1

ait
i/r , ai ∈ C

}

.

NowEr is a set of representatives forK∗
r/G̃r. The composition of the natural maps

K∗
r → K∗

r/G̃r → Er defines a natural map

Trunc : K∗
r → Er.

Let

Gr = {a ∈ K∗
r | a = 1 +

m

r
t+

∞
∑

i=r+1

ait
i/r , ai ∈ C, m ∈ Z}.
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Definition 3.12. Let r ∈ N then fora, b ∈ Er, we saya is r-equivalent tob, a ∼r b,
whena/b ∈ Gr.

Note thata ∼r b if and only if ar ≡ br mod 1
rZ with ar as in the definition ofEr,

ai = bi for i < r, andc, v matching as well.

Definition 3.13. Let g ∈ Er for somer ∈ N. We say thatg is a generalized exponent
of L with multiplicity m if and only if zero is a root ofIndL̃(n) with multiplicity m
whereL̃ = Ls(τ − 1

g ). We denote byGenExp(L) the set of generalized exponents
ofL.

SupposeL = τ − r(x) ∈ D thenGenExp(L) = {Trunc(r(t))}.

Theorem 3.14. If two operatorsL1 andL2 are gauge equivalent then for eachg1 ∈
GenExp(L1) there is ag2 ∈ GenExp(L2) such thatg2 is equivalent tog1.

This theorem has been proven first in [6]. An alternative proof can be found in [3].

Theorem 3.15.SupposeL,L′ ∈ D then

GenExp(LsL′) = {Trunc(gg′) | g ∈ GenExp(L), g′ ∈ GenExp(L′)}

Proof. LsL′s(τ − 1
gg′

) = Ls(τ − 1
g )sL′s(τ − 1

g′
) and since 0 is a solution of

Ls(τ− 1
g ) andLs(τ− 1

g′
), 0 is also a solution of the indicial equation ofLsL′s(τ−

1
Trunc(gg′) ) by Lemma 3.11

Likewise for the valuation growth, we need to define one more set to have invari-
ance for GT-equivalence. SupposeL1s(τ − r(x)) ∼g L2 for somer(x) ∈ C(x).
Then

GenExp(L2) = {grg | g ∈ GenExp(L1), {gr} = GenExp(τ − r(x))}.

Thus we define the following set,

Gquo(L) := {Trunc(gi/gj) | gi 6= gj, gi, gj ∈ GenExp(L)}

and thenGquo(L1) = Gquo(L2) if L1 ∼gt L2.

4 Table of base equations

In [3, 6], we have formed a table of base equations of order 2, call it TB, as follows;

• collect equations with known solution from [1, 2].

• for any closed form expression that shows up often in the literature, generate a
base equation with existing algorithms [8, 17].
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For the algorithm given in Section 5, we have computed symmetric squares of each base
equation in TB yielding an entry in TB2 of a base equations of third orders. Moreover
we have generated further base equations as follows:

Supposeu(x) is a solution of an operatorL =
∑d

i=0 ai(x)τ
i. Thenu(x/m) is a

solution of the operator

L(m) =

d
∑

i=0

ai(x/m)τmi. (5)

As input for our algorithm we accept only operators of order three and the above equa-
tion may be of higher order. One way of obtaining the base equation foru(x/m) in this
case is usingL(m) when it is a multiple of an operatorM ∈ D for whichM(u(x/m)) =
0. SinceL(m) as constructed above is not guaranteed to be the minimial order operator
we computeHom(L(m), L(m)). If the algorithm HOM returns the identity map this
means thatL(m) is in fact order-minimal. These cases are neglected and we useL(m)

as a base equation only if HOM returns a non-trivial map.

For instance for the squared hypergeometric function in thetable below,2F1

[

−x/2+a, x/2+b
c ; z

]2

,

an annihilating operatorL(2) can be obtained starting from an operatorL(1) annihilat-

ing 2F1

[

−x+a, x+b
c ; z

]2

using (5). Then the order-minimality ofL(2) is checked with

the algorithm HOM. In this case HOM returns a non-identity map and hence we save
L(2) in the table.

If ctvf ∈ GenExp(L), thenzcTrunc(g
v
mf) ∈ GenExp(L(m)), wherezc is a

root of zm = c andgvm ∈ GenExp(τm − ( x
m )v). Thus, we can detect whether an

input operator may have a solutionu(x/m) if a base equation foru(x) is in our table.
However, it is more efficient to compute the base equation forsmall values ofm.

4.1 Example of base equations

Here we list a small part of the table which is needed in Section 5 and 7. In the fol-
lowing table they are listed under (a) a solution (b) the correspondingGquo, and (c) the
ValG. The full table can be found athttp://www.risc.jku.at/people/ycha/TB2.txt.

1. (a) 2F1

[

−x/2+a, x/2+b
c ; z

]2

(b)
{

−1,−
(

2 z − 1± 2
√
z2 − z

)2
,±(2 z − 1± 2

√
z2 − z)

}

(c) {(−2b, 2), (2a, 2), (2a− 2c, 2), (2c− 2b, 2)}

2. (a) Px(z)
2 (Legendre polynomials squared)

(b)
{

−1 + 2 z2 ± 2
√
−z2 + z4,

(

−1 + 2 z2 ± 2
√
−z2 + z4

)−1
, −1+2 z2∓2

√
−z2+z4

−1+2 z2±2
√
−z2+z4

}

(c) {(0, 4)}

3. (a) Hx(z)
2 (Hermite polynomials squared)

(b)
{

−1±
√
−2 z2T + z2T 2, 1± 2

√
−2 z2T − 4 z2T 2

}

(c) {(0, 2)}
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5 Algorithm

The basic structure of the algorithm is the same that was given in [3]. Here we use
an extended table of base equations and a more efficient algorithm for computing the
gauge transformation, as mentioned in Section 2.4.1.

SupposeL is the input operator with local data

Gquo(L) = {a, a, b, b, c, c}, ValG(L) = {(0, 4)}

for a, b, c ∈ C. By comparing the corresponding data in TB2, we can find that local
data ofL matches with the data of (2) in Section 4.1. LetLlgd be the operator of which
Px(z)

2 is a solution. To compute the parameterz, we comparea with each entry of
Gquo(Llgd) and compute the set of candidates of possible values forz which is,







±1

2

√

2 a±
√
2 a2 + a3 + a

a
, ±1

2

a+ 1√
a







.

Substitutingz by each of the values of the above set, a set of equationscdd2 is ob-
tained. It remains to cheek for each of the equations incdd2 whether there is a GT-
transformation toL and if so then we return the closed form solution by applying the
GT-transformation toPx(z)

2.

Algorithm solver2
Input : A third order normal operatorLI ∈ Q[x, τ ].
Output : Either at least one closed form solution ofL in the form ofc0(x)u(x)2 +
c1(x)u(x+ 1)2 + c2(x)u(x+ 2)2 whereci(x) are hypergeometric terms andu(x)2 is
a solution in TB2 or otherwise the empty set.

1. cdd1 := {}, GQ := Gquo(LI), V G := ValG(LI) .

2. Find the base equations in TB2 by comparingGQ andV G with the correspond-
ing data in the table.

(a) if there is no match then return ‘Not solvable within the Table’.

(b) if there is a matching equationLc, cdd1 := cdd1 ∪ {Lc}.

3. For eachLc ∈ cdd1, compute candidate values for the parameters usingGQ and
V G.

4. Construct a setcdd2 by substituting parameters by the values determined in
Step.3

5. For eachLp ∈ cdd2 check if there exists a GT-Transformation fromLp toLI .

(a) if there is a GT-transformation then applyGT to the known solution ofLc

and return the solution.

(b) if there is no GT-transformation found return ‘Not solvable within the Ta-
ble’.
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6 Improvement

A similar approach can be applied to higher order operators that are solvable in terms
of order two. SupposeL4 is a fourth order operator that is solvable in terms of order
two in D. ThenL4 is equal or gauge equivalent to eitherKs3

1 or K1sK2 for some
second order operatorsK1,K2 ∈ D with nonvanishing coefficients. The candidates
for Ki can be detected analogously using Theorem 3.15.

Concerning the applications to proving positivity of special functions inequalities
it has to be noted that representations in terms of finite linear combination of squares
with non-negative coefficients need not exist on the full range of validity of a given
inequality, as can be seen below. Further investigations ofthe applicability of this
approach as well as an implementation of the above mentionedextension to higher
order recurrences are ongoing work.

7 Applications

Our main motivation to extend finding closed form solutions of difference equations in
terms of symmetric products is to develop an algorithmic approach for proving special
functions inequalities. Existing symbolic methods [12, 15, 16] are based on using
Cylindrical Algebraic Decomposition (CAD) which in several examples has proven to
be an effective way for proving positivity of sequences thatare given only in terms of
their defining sequences. However, it is sometimes unsatisfiable to have a proof that
only comes with “True” without any certificate. Some classical proofs of inequalities
are using rewriting of the given expression as linear combination of easy to verify
positive objects such as sums of squares. The present work tries to make this approach
algorithmic. Certainly it will not provide answers for any special functions inequality,
but it is a first step in a new direction of automatic inequality proving. Below we give
two examples, one for each of the cases distinguished above,of classical problems that
can be solved fully or at least partially using the presentedalgorithm. Note that all
of these identities stated can be proven easily using existing algorithms for symbolic
summation. The novelty is the automatic discovery of certain closed form expressions
for sequences that are given only in terms of their defining recurrence relation. In this
sense it is comparable to the above mentioned algorithms based on CAD.

7.1 Clausen’s formula

Proofs of special function inequalities often depend on a variety of classical techniques
such as argument transformations, integral representations of hypergeometric series
and many more. For instance in the proof of the Askey-Gasper inequality [2],which
played a key role in the proof of the Bieberbach conjecture byde Branges [9], Clausen’s
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formula

3F2

[−x, x+ α+ 1, α+1
2

α+ 1, α+2
2

; z

]

(6)

= 2F1

[− 1
2x,

1
2x+ 1

2 (α + 1)
α
2 + 1

; z

]2

entered at a central point. Zeilberger [10] has shown how this identity can be proven
using symbolic summation. By means of the algorithm presented here, Clausen’s for-
mula can be discovered entirely automatic.

The hypergeometric function in (6) satisfies a third order recurrence that is given
by the operatorL3 and is too large to be displayed here. It can however be found easily
common symbolic summation algorithms [30, 8, 17]. This difference operator is the
input for our procedure and we start by determining the localdata given by

Gquo(L3) =

{

−
(

2 z − 1± 2
√

z2 − z
)2

,−2 z + 1± 2
√

z2 − z

}

,

ValG(L3) = {(0, 2), (−α, 2)} .

A table look-up shows that this local data is compatible with1 in Section 4.1. Com-
paring local data and solving the system modZ the following candidates fora, b andc
can be found:

a ∈ {0, 12}, b ∈ { 1
2α,

1
2α+ 1

2}, c ∈ { 1
2α+ 1, 1

2α+ 3
2}.

There is no term transformation for these operators and an application of HOM shows
that we obtain a constant map ifa = 0, b = 1

2α+ 1
2 andc = 1

2α+ 1.

7.2 Turán inequality for Hermite polynomials

The positivity of Turán determinants has been proven for many different families of or-
thogonal polynomials. The first Turán inequality was formulated for Legendre polyno-
mials [25] and Szegö [23] has given four different proofs ofthis inequality. Szwarc [24]
has provided a more general approach for proving Turán typeinequalities based on the
mere knowledge of the recurrence coefficients satisfied by the given sequence. Ger-
hold and Kauers [13] have proven and improved this type of inequalities using their
CAD-based method. The approach presented here does not givea full proof for Turán
type inequalities, however it gives a representation of thegiven determinant in sums
of squares derived from the third order annihilating operator of the determinant. In
the case of Hermite polynomials this yields a representation that gives positivity in the
limit for n tending to infinity.

Turán’s inequality for Hermite polynomialsHx(z) reads as follows:

∆x(z) = Hx+1(z)
2 −Hx(z)Hx+2(z) ≥ 0, n ≥ 0, z ∈ R.
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Then an annihilating operator of∆x(z) isLh := τ3+(2x+2−4z2)τ2−4(x+2)(x−
2z2 + 4)τ − 8(1 + x)(x + 2)2 and the local data of this operator is

Gquo(Lh) =
{

−1±
√

−2 z2t
1

2 +
(

z2 ± 1
)

t, 1± 2
√

−2 z2t
1

2 − 4 z2t
}

,

ValG(Lh) = {(0, 2)} .

−1 ±
√
−2 z2t

1

2 +
(

z2 ± 1
)

t are elements inGquo(Lh) and these are equivalent

to−1±
√
−2 z2t

1

2 + z2t under∼2, see Definition 3.12 for∼2. Thus the local data of
Lh correspond to those of the third entry of the table given in Section 4.1.

Using the algorithm described above a gauge transformationcan be found that ap-
plied toHx(z)

2 yields the following equivalent formulation

∆x(z) =
1
2H

2
x+1(z) + 2(x+ 1− z2)Hx(z)

2 + 2x2H2
x−1(x).

This representation gives the positivity of Turán’s inequality for

z ∈ [−
√
x+ 1,

√
x+ 1 ], x ≥ 0.
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