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ABSTRACT 
Parametric yield estimation is one of the most critical-yet-
challenging tasks for designing and verifying nanoscale analog 
and mixed-signal circuits. In this paper, we propose a novel 
Bayesian model fusion (BMF) technique for efficient parametric 
yield estimation. Our key idea is to borrow the simulation data 
from an early stage (e.g., schematic-level simulation) to 
efficiently estimate the performance distributions at a late stage 
(e.g., post-layout simulation). BMF statistically models the 
correlation between early-stage and late-stage performance 
distributions by Bayesian inference. In addition, a convex 
optimization is formulated to solve the unknown late-stage 
performance distributions both accurately and robustly. Several 
circuit examples designed in a commercial 32 nm CMOS process 
demonstrate that the proposed BMF technique achieves up to 
3.75× runtime speedup over the traditional kernel estimation 
method. 
 
1. INTRODUCTION 

The aggressive scaling of integrated circuit (IC) technologies 
has brought about large-scale process variations that substantially 
impact the performance metrics of nanoscale analog and mixed-
signal (AMS) circuits [1]-[3]. Parametric yield becomes an 
important metric that must be carefully optimized by AMS 
designers in order to produce reliable silicon chips after the 
manufacturing process. For this reason, accurately modeling and 
estimating parametric yield of AMS circuits has been considered 
as a critical task within the AMS design flow. Once the parametric 
yield of a given AMS circuit is known, it can be further used to 
guide circuit optimization for yield enhancement [4]-[10]. 

During the past two decades, a large number of techniques 
have been proposed for parametric yield estimation. These 
traditional approaches can be classified into two broad categories: 
(i) Monte Carlo approaches [11], [16], [20], and (ii) performance 
modeling approaches [12]-[13], [17]. The Monte Carlo methods 
first generate a number of random samples based on the statistics 
of process variations. Next, they estimate the probability 
distribution of the performance of interest (e.g., delay, gain, etc) 
based on these random samples. On the other hand, the 
performance modeling approaches first approximate the 
performance of interest as an analytical (i.e., either linear or 
nonlinear) function of device-level variations (e.g., ΔVTH, ΔTOX, 
etc). Once such a performance model is available, the 
performance distribution can be estimated by several numerical 

algorithms such as moment matching [12]. 
These traditional techniques for parametric yield estimation 

have been successfully applied to a large number of practical 
applications. However, with the continuous scaling of IC 
technologies, today’s AMS circuits become increasingly complex, 
as circuit designers have adopted a number of non-traditional 
methodologies (e.g., multi-mode operation, adaptive self-healing, 
etc) to address the design challenges associated with technology 
scaling (e.g., reduced voltage headroom, increased process 
variation, etc). These recent trends of AMS circuits have brought 
up new challenges and opportunities for parametric yield 
estimation and suggested an immediate need to re-visit this area. 

On one hand, simulating today’s complex AMS circuits is 
extremely expensive due to their large sizes. For an industrial 
AMS design such as phase-locked loop or high-speed I/O link, 
one single transistor-level simulation may take a few days or even 
a few weeks to finish. In this case, it would be computationally 
inefficient, if not impossible, to apply the traditional yield 
estimation techniques, as they often require collecting 100~1000 
simulation samples to accurately estimate the performance 
distribution of interest. The open question here is how to develop 
new algorithms and methodologies to appropriately address this 
complexity issue. 
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                  (a)                                              (b) 
Figure 1.  (a) Today’s AMS design flow typically involves 
multiple stages. (b) A specific application example of Bayesian 
model fusion (BMF) is shown to borrow schematic-level 
simulation data to efficiently estimate post-layout performance 
distribution. 

On the other hand, in order to reliably design complex AMS 
circuits, it becomes necessary for circuit designers to follow a 
hierarchical design flow that involves multiple stages, as shown in 
Figure 1(a). At each stage, the circuit is simulated to create 
simulation data to verify all performance metrics, before moving 
to the next design stage. Since these simulation data collected 
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from multiple design stages come from the same circuit, they are 
expected to be strongly correlated. Hence, it is possible to borrow 
the simulation samples from an early stage to reduce the number 
of required simulation runs for parametric yield estimation at a 
late stage. In other words, the multi-stage AMS design flow 
creates a completely new opportunity that has not been explored 
by the traditional yield estimation methods. 

In this paper, we propose a novel technique, referred to as 
Bayesian model fusion (BMF), to estimate the AMS performance 
distribution by using a small number of simulation samples. 
Starting from the early-stage performance distribution that is 
estimated from a set of early-stage simulation samples, BMF first 
extracts a model template to capture the performance distribution 
and statistically encodes it as our prior knowledge. Next, the 
aforementioned model template is further calibrated by applying 
Bayesian inference to very few late-stage simulation samples to 
accurately estimate the late-stage performance distribution. From 
this point of view, by fusing the early-stage and late-stage 
performance distributions through Bayesian inference, the 
computational cost for late-stage parametric yield estimation can 
be substantially reduced. Figure 1(b) shows a specific application 
example of our proposed BMF method where the schematic-level 
simulation data are used to help to estimate the post-layout 
performance distribution. As will be demonstrated by several 
circuit examples in Section 5, BMF achieves up to 3.75× runtime 
speedup compared to the traditional kernel estimation technique. 

The remainder of this paper is organized as follows. In 
Section 2 we develop the mathematical formulation for the 
proposed distribution estimation problem, and then derive the 
BMF algorithm in Section 3. Several implementation details are 
further discussed in Section 4. The efficiency of BMF is 
demonstrated by several circuit examples in Section 5. Finally, we 
conclude in Section 6. 
 
2. MATHEMATICAL FORMULATION 

Without loss of generality, we consider a given performance 
of interest g (e.g., delay of a digital buffer, gain of an analog 
amplifier, etc). Due to process variations, the value of g is not 
deterministic. Instead, it must be statistically modeled as a random 
variable that is described by its probability density function pdf(g). 
In this paper, we use different symbols pdfE(g) and pdfL(g) to 
distinguish the early-stage (e.g., schematic-level) and late-stage 
(e.g., post-layout) performance distributions. Our goal is to 
accurately and efficiently estimate the late-stage performance 
distribution pdfL(g) based on the early-stage distribution pdfE(g) 
and a small number of late-stage simulation samples. To this end, 
we approximate the one-dimensional probability density functions 
pdfE(g) and pdfL(g) as the linear combinations of a set of basis 
functions 
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where {bn(g); n = 1, 2, …, N} contains the basis functions that are 
applied, {αE,n; n = 1, 2, …, N} and {αL,n; n = 1, 2, …, N} contain 
the coefficients associated with the basis functions, and N 
represents the total number of these basis functions. 

There are two important clarifications that should be made 
regarding the approximations in (1)-(2). First, we assume that the 
probability density functions pdfE(g) and pdfL(g) are defined over 

the interval 
3 [ ]MAXMIN ggg ,∈ . (3) 
In general, gMIN and gMAX can be −∞ and +∞, respectively. Namely, 
the performance value g may not be bounded. However, in most 
practical applications, we can approximately set [gMIN, gMAX] as a 
finite interval. For example, consider the case where g follows a 
Gaussian distribution and, hence, is unbounded. In this example, 
we can approximately set gMIN = μg − ζ⋅σg and gMAX = μg + ζ⋅σg 
where μg and σg are the mean and standard deviation of the 
random variable g and ζ is a positive constant. As long as ζ is 
sufficiently large (e.g., ζ = 4-5), the major portion of the 
distribution falls inside the interval [gMIN, gMAX] and, hence, the 
approximation error is negligible. 

Second, there are multiple possible choices to select the basis 
functions {bn(g); n = 1, 2, …, N} (e.g., orthogonal polynomials 
[14], wavelet basis functions [19], Fourier basis functions [15], 
etc). For our numerical examples in Section 5, we will use DCT 
(discrete cosine transform) basis functions [19] to model the 
probability distributions of several circuit performance metrics. 
However, it should be noted that the BMF framework developed 
in this paper is generally applicable to other basis functions as 
well. 

Given the probability density functions pdfE(g) and pdfL(g) in 
(1)-(2) over the interval [gMIN, gMAX], the cumulative density 
functions cdfE(g) and cdfL(g) are simply equal to their integrals 
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where Bn(g) denotes the integral of bn(g) 
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For a given set of basis functions {bn(g); n = 1, 2, …, N}, it is 
straightforward to verify that the performance distributions pdfE(g) 
and pdfL(g) are uniquely determined by the coefficients {αE,n; n = 
1, 2, …, N} and {αL,n; n = 1, 2, …, N}. Hence, we need to 
accurately solve the late-stage coefficients {αL,n; n = 1, 2, …, N} 
in order to estimate the late-stage performance distribution pdfL(g). 

Unlike the traditional yield estimation techniques that 
completely ignore the correlation between the early-stage 
performance distribution pdfE(g) and the late-stage performance 
distribution pdfL(g), our proposed BMF method fully exploits such 
correlation information to reduce the number of required 
simulation samples at the late stage. As such, the computational 
cost of late-stage yield estimation can be substantially reduced. In 
the following section, we will derive the proposed BMF algorithm 
in detail. 
 
3. BAYESIAN MODEL FUSION 

Our proposed BMF framework contains two core components: 
(i) statistically encoding the prior knowledge learned from the 
early-stage performance distribution pdfE(g), and (ii) applying 
maximum-a-posteriori (MAP) estimation to determine the late-
stage performance distribution pdfL(g) through Bayesian inference. 
In this section, we describe the mathematical details of the BMF 
algorithm and highlight its novelty. 
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3.1 Prior Knowledge Definition 
The key idea of BMF is to borrow the early-stage 

performance distribution pdfE(g) to define our prior knowledge for 
the late-stage performance distribution pdfL(g). On one hand, 
since pdfE(g) and pdfL(g) represent the probability distributions of 
the same performance metric for the same circuit, we expect that 
these distribution functions are similar. In other words, the 
difference between the coefficients {αE,n; n = 1, 2, …, N} and 
{αL,n; n = 1, 2, …, N} is small. On the other hand, the late-stage 
distribution pdfL(g) is not exactly identical to the early-stage 
distribution pdfE(g). Note that pdfE(g) and pdfL(g) may be different, 
because the late-stage simulation often involves more detailed 
circuit models than the early-stage simulation. For instance, the 
post-layout simulation of an AMS circuit includes the device and 
interconnect parasitics that are not available during the schematic-
level simulation of the same circuit. 

To account for the uncertainties associated with the late-stage 
coefficients {αL,n; n = 1, 2, …, N}, we statistically model them as 
random variables with the following distributions 
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where pdf(αL,n) represents a Gaussian distribution with the mean 
value αE,n and the standard deviation λ⋅|αE,n|. In (7), λ denotes a 
positive parameter that controls the variance of the distribution. 
The appropriate value of λ can be determined by the cross 
validation method discussed in Section 4.2. 

The probability density function pdf(αL,n) in (7) is referred to 
as the prior distribution [20] for the late-stage coefficient αL,n. It 
has a two-fold meaning. First, the Gaussian distribution pdf(αL,n) 
is maximized at its mean value αL,n = αE,n, implying that the early-
stage coefficient αE,n and the late-stage coefficient αL,n are likely 
to be similar. In other words, since the Gaussian distribution 
pdf(αL,n) exponentially decays with (αL,n − αE,n)2, it is unlikely to 
observe a late-stage coefficient αL,n that is extremely different 
from the early-stage coefficient αE,n. 

Second, the standard deviation of the prior distribution 
pdf(αL,n) is proportional to |αE,n|. It means that the absolute 
difference between the late-stage coefficient αL,n and the early-
stage coefficient αE,n can be large (or small), if the magnitude of 
the coefficient αE,n is large (or small). Restating in words, each 
late-stage coefficient αL,n has been provided with a relatively 
equal opportunity to differ from the corresponding early-stage 
coefficient αE,n. 

To completely define the prior distribution, we further assume 
that the late-stage coefficients {αL,n; n = 1, 2, …, N} are mutually 
independent. Hence, their joint probability density function is 
represented as 
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where det(•) denotes the determinant of a matrix and αL ∈ RN is a 
vector containing all late-stage coefficients 
9 [ ]TNLLLL ,2,1, ααα=α . (9) 
The mean vector μαL ∈ RN and the covariance matrix ΣαL ∈ RN×N 
are 
10 [ ]TNEEEL ,2,1, ααα=αμ  (10) 
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where diag(•) represents a diagonal matrix. The independence 
assumption in (8)-(11) simply implies that we do not know the 
correlation information between the late-stage coefficients {αL,n; n 
= 1, 2, …, N} as a prior. However, the correlation between {αL,n; n 
= 1, 2, …, N} will be taken into account by our proposed BMF 
algorithm through two different avenues: (i) when we legalize the 
prior distribution in (8) to guarantee that pdfL(g) in (2) is a valid 
probability density function, and (ii) when we calculate the 
posterior distribution of {αL,n; n = 1, 2, …, N} once the late-stage 
simulation samples are available. In what follows, we will discuss 
these two topics (i.e., prior distribution legalization and posterior 
distribution calculation) in Section 3.2 and 3.3 respectively. 
 
3.2 Prior Distribution Legalization 

The purpose of prior distribution legalization is to add 
additional constraints to appropriately model the uncertainties for 
the late-stage coefficients {αL,n; n = 1, 2, …, N}. Remember that 
the prior distribution in (8) assumes that all coefficients {αL,n; n = 
1, 2, …, N} are mutually independent and each coefficient follows 
a Gaussian distribution. Since these Gaussian distributions 
associated with {αL,n; n = 1, 2, …, N} are not bounded, our 
definition of prior distribution in (8) allows a coefficient αL,n to 
take any value ranging from −∞ to +∞. However, a large number 
of these values are not valid, because the probability density 
function pdfL(g), determined by the coefficients {αL,n; n = 1, 2, …, 
N} in (2), must satisfy the following two properties. 

Property 1: For a probability density function pdfL(g) defined 
over the interval [gMIN, gMAX], the following integral must equal 1 
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Property 2: For a probability density function pdfL(g) defined 
over the interval [gMIN, gMAX], it must be non-negative at any g ∈ 
[gMIN, gMAX] 
13 [ ] ( ) 0:, ≥∈∀ gpdfggg LMAXMIN . (13) 

Eq. (12) requires that the linear combination of all late-stage 
coefficients {αL,n; n = 1, 2, …, N} must be equal to the constant 1. 
It, in turn, implies that the coefficients {αL,n; n = 1, 2, …, N} 
cannot be considered as independent random variables. Instead, 
we must appropriately model the correlation information between 
{αL,n; n = 1, 2, …, N} such that Eq. (12) holds. 

Towards this goal, we define a set of new coefficients {βL,n; n 
= 1, 2, …, N} by the following linear transformation 
14 L

T
L αPβ ⋅=  (14) 

where βL ∈ RN is a column vector containing all variables {βL,n; n 
= 1, 2, …, N} 
15 [ ]TNLLLL ,2,1, βββ=β  (15) 

and P ∈ RN×N is the transformation matrix containing N column 
vectors {Pn; n = 1, 2, …, N} 
16 [ ]NPPPP 21= . (16) 
Based on (8) and (14), it is easy to verify that the new coefficients 
{βL,n; n = 1, 2, …, N} follow a joint Gaussian distribution [16] 

17 ( )
( ) ( )
( ) ( )L

N

LLL
T

LL

Lpdf
β

βββ

Σ

μβΣμβ
β

det2

2
1exp 1

⋅

⎥⎦
⎤

⎢⎣
⎡ −⋅⋅−⋅−

=

−

π
 (17) 

629



 

where the mean vector μβL ∈ RN and the covariance matrix ΣβL ∈ 
RN×N are 
18 L

T
L αβ μPμ ⋅=  (18) 

19 PΣPΣ αβ ⋅⋅= L
T

L . (19) 
In general, the coefficients {βL,n; n = 1, 2, …, N} are correlated 
after the linear transformation, as shown by the covariance matrix 
ΣβL in (19). 

In this paper, the transformation matrix P in (16) is selected to 
meet the following two criteria. First, the N vectors {Pn; n = 1, 
2, …, N} should be linearly independent so that the matrix P is 
invertible 
20 L

T
L βPα ⋅= − . (20) 

Second, we set the Nth column vector PN as 
21 ( ) ( ) ( )[ ]TMAXNMAXMAXN gBgBgB 21=P . (21) 
Hence, the equality constraint in (12) becomes 
22 1, =⋅= L

T
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Namely, βL,N must be equal to 1 in order to guarantee that the 
probability density function pdfL(g) is valid. 

Eq. (22) leads to a two-fold consequence. First, since the 
value of βL,N is determined, we do not need to consider it as a 
problem unknown any more. Second, but more importantly, since 
βL,N is correlated to {βL,n; n = 1, 2, …, N−1}, knowing βL,N = 1 will 
change the probability distribution for {βL,n; n = 1, 2, …, N−1} 
(i.e., our prior knowledge about these coefficients). The influence 
of βL,N on {βL,n; n = 1, 2, …, N−1} can be mathematically 
expressed by the following conditional probability density 
function 
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where βL\N denotes the vector βL with the Nth element βL,N 
removed. Given the joint Gaussian distribution in (17)-(19), it can 
be proven that the conditional distribution pdf(βL\N | βL,N) remains 
Gaussian [20] 
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where the mean vector μβL\N ∈ RN−1 and the covariance matrix 
ΣβL\N ∈ R(N−1)×(N−1) are [20] 
25 ( )NLNNLNNLNLNL μ ,~,

1 ~~,~,\ 1 βββββ ΔΔμμ −⋅⋅−= −  (25) 

26 1 ~~,\
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In (25)-(26), μβL,Ñ ∈ RN−1, μβL,N ∈ R, ΔβL,ÑÑ ∈ R(N−1)×(N−1) and 
ΔβL,ÑN ∈ R(N−1) are defined as the following sub-matrices 
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The conditional probability density function pdf(βL\N | βL,N) in 
(24)-(27) specifies the prior distribution of the coefficients {βL,n; n 
= 1, 2, …, N−1} that are guaranteed to satisfy the linear constraint 
in (12). 

On the other hand, we need to further consider the inequality 
constraint in (13). Given the probability density function in (2), 
the linear transformation in (14) and the fact βL,N = 1 shown in 
(22), it is straightforward to represent the inequality constraint in 

(13) as a function of {βL,n; n = 1, 2, …, N−1} 
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Note that Eq. (28) must be satisfied for any g ∈ [gMIN, gMAX] (i.e., 
an infinite number of possible values of g). In practice, we can 
define a set of one-dimensional grid points {gGRID,m; m = 1, 2, …, 
M} within the interval [gMIN, gMAX] and then force (28) to hold at 
these grid points 
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Equivalently, Eq. (29) can be re-written in the matrix form 
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As long as the step size of these grid points is sufficiently small, 
the linear constraint in (30) provides a good approximation of the 
original constraint in (28). 

In summary, based on the linear transformation in (14), Eq. 
(24) and (30) define the legalized prior distribution for the 
coefficients {βL,n; n = 1, 2, …, N−1} such that the constraints in 
(12)-(13) are guaranteed to hold. In the next sub-section, we will 
further combine the prior distribution with the late-stage 
simulation samples to optimally estimate the late-stage 
performance distribution pdfL(g). 
 
3.3 Maximum-A-Posteriori Estimation 

Given our prior knowledge defined in (24) and (30), we need 
to further collect a number of late-stage random samples {gRAND,k; 
k = 1, 2, …, K} to accurately estimate the coefficients {βL,n; n = 1, 
2, …, N−1}. These samples can be created by running Monte 
Carlo simulation for a given AMS circuit. Once these simulation 
samples are available, they can tell us additional information 
about the late-stage performance distribution and, hence, help us 
to determine the coefficient values. In this sub-section, we will 
borrow the Bayesian inference theory [20] from the statistics 
community to solve the optimal coefficient values. 

Based on Bayes’ theorem, the uncertainties of the coefficients 
{βL,n; n = 1, 2, …, N−1} after knowing a set of simulation samples 
{gRAND,k; k = 1, 2, …, K} can be mathematically described by the 
following posterior distribution [20] 
32 ( ) ( ) ( )NLRANDNLNLRANDNL pdfpdfpdf \,\\ βgβgβ ⋅∝ β  (32) 

where gRAND ∈ RK is a column vector containing all simulation 
samples 
33 [ ]TKRANDRANDRANDRAND ggg ,2,1,=g . (33) 
In (32), the prior distribution pdf(βL\N | βL,N) is defined by (24). 
The conditional distribution pdf(gRAND | βL\N) is called the 
likelihood function [20]. It measures the probability of observing 
the random samples {gRAND,k; k = 1, 2, …, K} associated with the 
late-stage performance distribution pdfL(g). Since the samples 
{gRAND,k; k = 1, 2, …, K} are generated from K independent Monte 
Carlo runs, the likelihood function can be represented as 
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Substituting (2), (14) and (22) into (34) yields 
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where bRAND,k ∈ RN is a row vector containing all basis function 
values at the kth simulation sample gRAND,k 
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As shown in (35), the likelihood function depends on the 
unknown coefficients {βL,n; n = 1, 2, …, N−1} that we aim to 
solve. These coefficients {βL,n; n = 1, 2, …, N−1} control the 
shape of the probability density function pdfL(g) and, therefore, 
directly influence the likelihood function in (35). 

Even after the simulation samples {gRAND,k; k = 1, 2, …, K} 
are available, the coefficients {βL,n; n = 1, 2, …, N−1} are not 
deterministic. They must be modeled by the probability density 
function pdf(βL\N | gRAND) (i.e., the posterior distribution) in (32). 
Depending on the shape of the distribution pdf(βL\N | gRAND), these 
coefficients {βL,n; n = 1, 2, …, N−1} do not take all possible 
values with equal probability. If the posterior distribution 
pdf(βL\N | gRAND) reaches its maximum value at {β*

L,n; n = 1, 2, …, 
N−1}, the coefficient values {β*

L,n; n = 1, 2, …, N−1} are 
considered as the optimal estimation, since these coefficient 
values are most likely to occur. Such a method is referred to as 
maximum-a-posteriori (MAP) estimation in the literature [20]. 

The aforementioned MAP estimation can be mathematically 
formulated as an optimization problem 
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In (37), the constraint is added to guarantee that the resulting 
coefficients are legalized, as shown in (30). Substituting (24) and 
(35) into (37) and taking the logarithm for the merit function, we 
get 
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Studying (38) reveals two important observations. First, the 
merit function is the summation of a concave quadratic function 
and a number of concave logarithmic functions. Hence, the merit 
function is concave. Second, the constraint function is simply 
linear, implying that the constraint set is convex. For these 
reasons, the optimization in (38) is a convex programming 
problem and can be solved both efficiently (i.e., with low 
computational cost) and robustly (i.e., with guaranteed global 
optimum) by several numerical algorithms such as the interior 
point method [18]. Once the coefficients {βL,n; n = 1, 2, …, N−1} 
are found from (38), the coefficients {αL,n; n = 1, 2, …, N} in (20) 
and, consequently, the late-stage performance distribution pdfL(g) 
in (2) can be easily determined. 
 

3.4 Summary 
Algorithm 1 summarizes the major steps of the proposed BMF 

method. Note that Algorithm 1 requires knowing the value of λ to 
define the prior distribution in (8)-(11). In practice, the 
appropriate value of λ can be determined by applying a cross 
validation method. These implementation details will be further 
discussed in Section 4. 

Algorithm 1: Bayesian Model Fusion (BMF) 
1. Start from a set of basis functions {bn(g); n = 1, 2, …, N}, the 

early-stage coefficients {αE,n; n = 1, 2, …, N}, the late-stage 
simulation samples {gRAND,k; k = 1, 2, …, K}, and a given 
value of λ. 

2. Calculate the mean vector μαL and the covariance matrix ΣαL 
by using (10)-(11). 

3. Construct the linear transformation in (14) based on the 
criteria specified in (20)-(21). 

4. Calculate the mean vector μβL and the covariance matrix ΣβL 
by using (18)-(19). 

5. Calculate the mean vector μβL\N and the covariance matrix 
ΣβL\N by using (25)-(27). 

6. Construct the matrix BGRID in (31) and the vectors {bRAND,k; k 
= 1,2,…,K} in (36). 

7. Solve the convex optimization problem in (38) to determine 
the solution βL\N. 

8. Calculate the coefficients {αL,n; n = 1, 2, …, N} by using (20). 
9. Determine the late-stage performance distribution functions 

pdfL(g) in (2) and cdfL(g) in (5). 
 
4. IMPLEMENTATION DETAILS 

The proposed BMF framework is made practically efficient 
by carefully tuning the Bayesian methodology to address a 
number of implementation issues. In this sub-section, we describe 
these implementation details, including (i) performance shift, and 
(ii) cross validation. 
 
4.1 Performance Shift 

As described in Section 3, one important assumption of BMF 
is that the early-stage and late-stage performance distributions, 
pdfE(g) and pdfL(g), are similar. In many practical applications, 
this assumption may not directly hold. For example, comparing 
the schematic-level and post-layout simulation results of an AMS 
circuit, we often notice that the nominal performance values are 
not matched and, hence, the corresponding performance 
distributions are significantly shifted due to device and 
interconnect parasitics. In this case, the early-stage and late-stage 
performance distributions are substantially different. Directly 
applying BMF to estimate the late-stage distribution pdfL(g) is 
unlikely to be accurate. 

PDF

g

pdfL(g)

gL,NOMgE,NOM

pdfE(g)

 
Figure 2.  The early-stage and late-stage performance distributions 
pdfE(g) and pdfL(g) are shifted by the nominal performance values 
gE,NOM and gL,NOM respectively, before the proposed BMF method 
is applied. 

To address this issue of performance shift, we propose to first 
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calculate the nominal performance values gE,NOM and gL,NOM by 
running one early-stage simulation and one late-stage simulation 
respectively. In practice, these nominal simulations are often 
performed by AMS designers, before they start to run statistical 
analysis to estimate the performance distributions. Once gE,NOM 
and gL,NOM are known, we shift the early-stage and late-stage 
performance distributions pdfE(g) and pdfL(g) by gE,NOM and 
gL,NOM respectively. As such, the shifted performance distributions 
are similar and the proposed BMF method becomes applicable. 
Figure 2 shows a simple example of the aforementioned 
performance shift for illustration purpose. 
 
4.2 Cross Validation 

To make the proposed BMF method of practical utility, we 
must appropriately determine the parameter λ that is used to 
define the prior distribution pdf(αL) in (8)-(11). Note that the value 
of λ controls the confidence of our prior knowledge. If λ is small, 
the variance of the prior distribution pdf(αL) is small, implying 
that the early-stage coefficients {αE,n; n = 1, 2, …, N} closely 
approximate the late-stage coefficients {αL,n; n = 1, 2, …, N}. 
Otherwise, if λ is large, the variance of the prior distribution 
pdf(αL) is large and it is unlikely for the early-stage and late-stage 
coefficients to be similar. In practice, it is non-trivial to 
quantitatively determine the confidence (i.e., the value of λ) in 
advance. Instead, a smart algorithm must be used to automatically 
find the optimal λ based on a small number of late-stage 
simulation samples. 

Towards this goal, we propose to repeatedly run the BMF 
flow with different values of λ to estimate the late-stage 
performance distribution and monitor the estimation accuracy. 
Note that the accuracy is expected to vary as λ varies. The optimal 
λ is determined by identifying the maximum accuracy being 
achieved and the corresponding λ value. 

Run 1

Run 2

Run 3

Run 4

Four groups of data

For coefficient 
estimation (white)

For likelihood 
estimation (grey)

 
Figure 3.  A simple four-fold cross validation example is shown 
for illustration purpose. 

To assess the estimation accuracy for a given λ value, we 
adopt the idea of cross validation from the statistics community 
[20]. Given a set of late-stage simulation samples, a Q-fold cross 
validation partitions the entire data set into Q groups and 
repeatedly runs the BMF algorithm (i.e., Algorithm 1) for Q times. 
At each run, Q − 1 groups of simulation samples, referred to as 
the training set, are used to solve the late-stage coefficients {αL,n; 
n = 1, 2, …, N} and estimate the late-stage performance 
distribution pdfL(g). The remaining group of simulation samples, 
referred to as the testing set, is used to assess the estimation 
accuracy based on the likelihood function in (34). If the estimated 
pdfL(g) is accurate, the likelihood function should be large. 
Namely, the probability of observing the simulation samples in 
the testing set should be large. Different groups should be selected 
as the testing set for different runs. As such, each run results in a 
likelihood value that is measured from a unique group of 
simulation samples. In addition, since the training set and the 

testing set are separate in each run, over-fitting can be easily 
detected. Figure 3 shows a simple example for four-fold cross 
validation. More details about cross validation can be found in 
[20]. 
 
5. NUMERICAL EXAMPLES 

In this section, several circuit examples designed in a 
commercial 32 nm CMOS process are used to demonstrate the 
efficiency of the proposed BMF method. For testing and 
comparison purposes, two different techniques are implemented to 
estimate the late-stage performance distributions: (i) the 
traditional kernel estimation method based on Gaussian kernel 
with optimal bandwidth [20], and (ii) the proposed BMF 
algorithm based on DCT (discrete cosine transform) basis 
functions [19]. In our experiments, CVX [21] is used to solve the 
convex programming problem in (38). All numerical experiments 
are run on a 2.9 GHz Linux server with 4 GB memory. 
 
5.1 Ring Oscillator 

 
Figure 4.  A simplified circuit schematic is shown for a ring 
oscillator (RO) designed in a commercial 32 nm CMOS process. 
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                             (a)                                                (b) 
Figure 5.  Histograms of RO power are shown for (a) schematic-
level and (b) post-layout simulation data. 
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                             (a)                                                (b) 
Figure 6.  Histograms of RO frequency are shown for (a) 
schematic-level and (b) post-layout simulation data. 
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                             (a)                                                (b) 
Figure 7.  Histograms of RO phase noise are shown for (a) 
schematic-level and (b) post-layout simulation data. 
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Shown in Figure 4 is the simplified circuit schematic of a ring 
oscillator (RO) designed in a commercial 32 nm CMOS process. 
We consider three performance metrics: power, frequency and 
phase noise. In this example, 4000 random samples are generated 
by both schematic-level and post-layout simulations. The runtime 
to generate a single schematic-level simulation sample is 5.32 
seconds, and it is 45.43 seconds for post-layout simulation. 
Figure 5-Figure 7 show the histograms for different performance 
metrics estimated by all simulation samples. Note that the mean 
values of the schematic-level and post-layout distributions are 
often substantially different. 

Figure 8(a)-Figure 10(a) plot the cumulative distribution 
functions estimated from 40 post-layout simulation samples by 
different methods. Here, the exact distributions are calculated 
from all 4000 simulation samples and they are used to compare 
the estimation accuracy. Given the same number of post-layout 
simulation samples, BMF achieves superior accuracy over the 
traditional kernel estimation in this example. 
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                             (a)                                                (b) 
Figure 8.  (a) Cumulative distribution functions of RO power are 
estimated by 40 post-layout simulation samples. (b) Estimation 
error of RO power distribution is shown for different methods. 
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                             (a)                                                (b) 
Figure 9.  (a) Cumulative distribution functions of RO frequency 
are estimated by 40 post-layout simulation samples. (b) 
Estimation error of RO frequency distribution is shown for 
different methods. 
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                             (a)                                                (b) 
Figure 10.  (a) Cumulative distribution functions of RO phase 
noise are estimated by 40 post-layout simulation samples. (b) 
Estimation error of RO phase noise distribution is shown for 
different methods. 

Figure 8(b)-Figure 10(b) further quantitatively show the 
estimation error for different methods. Here, the estimation error 
is calculated for the cumulative distribution functions 
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where cdfL(g) and cdf̃L(g) denote the exact and estimated 
cumulative distribution functions respectively. Note that the 
traditional kernel estimation requires up to 3.75× more simulation 
samples than BMF to achieve the same accuracy. In other words, 
BMF achieves up to 3.75× runtime speedup over kernel 
estimation in this example. For instance, BMF reduces the total 
post-layout simulation time from 1.89 hours (150 samples) to 
30.29 minutes (40 samples) when estimating the RO frequency 
distribution, as shown in Figure 9(b). Once the simulation samples 
are available, running the BMF algorithm (i.e., Algorithm 1) only 
takes a few seconds and, hence, its computational time is 
negligible. 
 
5.2 SRAM Read Path 

Cell array

Sense amp

WL

Out  
Figure 11.  A simplified circuit schematic is shown for an SRAM 
read path designed in a commercial 32 nm CMOS process. 
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                             (a)                                                (b) 
Figure 12.  Histograms of SRAM read path delay are shown for (a) 
schematic-level and (b) post-layout simulation data. 

Figure 11 shows the simplified circuit schematic of an SRAM 
read path designed in a commercial 32 nm CMOS process. In this 
example, we are interested in the read path delay from the word 
line (WL) to the sense amplifier output (Out). For testing and 
comparison purpose, 1000 random samples are generated by both 
schematic-level and post-layout simulations. The runtime to 
generate a single schematic-level simulation sample is 26.44 
seconds, and it is 104.58 seconds for post-layout simulation. 
Figure 12 shows the histograms for both schematic-level and post-
layout performance distributions estimated from all 1000 
simulation samples. 

Figure 13(a) plots the cumulative distribution functions 
estimated from 40 post-layout simulation samples by different 
methods. Similar to the previous RO example, BMF offers 
superior accuracy over the traditional kernel estimation. 
Figure 13(b) further shows the log-likelihood value (normalized) 
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estimated by cross validation for different values of λ. It can be 
seen that the likelihood function reaches its maximum at a 
particular λ (i.e., the optimal λ value). 
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                             (a)                                                (b) 
Figure 13.  (a) Cumulative distribution functions of SRAM read 
path delay are estimated by 40 post-layout simulation samples. (b) 
Log-likelihood value (normalized) is shown as a function of λ. 
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                             (a)                                                (b) 
Figure 14.  (a) Estimation error of SRAM read path delay 
distribution is shown for different methods. (b) Estimation error of 
worst-case SRAM read path delay is shown for different methods. 

Figure 14(a) shows the estimation error for the cumulative 
distribution functions and Figure 14(b) shows the relative error for 
the estimated worst-case delay. Here, the worst-case delay is 
defined as the 95% point of the corresponding cumulative 
distribution function. Studying both plots reveals that BMF 
achieves up to 3× runtime speedup over kernel estimation in this 
example. It reduces the total post-layout simulation time from 
3.49 hours (120 samples) to 1.16 hours (40 samples). 
 
6. CONCLUSIONS 

In this paper, a novel BMF technique is proposed to 
efficiently estimate the performance distributions of analog and 
mixed-signal circuits. BMF borrows the simulation data from an 
early stage to predict the performance distributions at a late stage. 
In other words, it aims to reduce the number of required late-stage 
simulation runs by fusing the early-stage and late-stage 
performance distributions through Bayesian inference. Several 
circuit examples designed in a commercial 32 nm CMOS process 
demonstrate that the proposed BMF technique achieves up to 
3.75× runtime speedup over the traditional kernel estimation 
method. Finally, it is important to mention that even though BMF 
is proposed for pre-silicon parametric yield estimation in this 
paper, it can be further extended to estimate the performance 
distributions based on post-silicon measurement data. The 
possible applications of BMF for AMS post-silicon validation will 
be studied in our future research. 
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