
Automated Analysis of Dependent Feature Models

Reimar Schröter, Thomas Thüm, Norbert Siegmund, Gunter Saake
∗

University of Magdeburg
Magdeburg, Germany

ABSTRACT
Feature models specify valid combinations of features in soft-
ware product lines. With dependent feature models (DFMs),
we apply separation of concerns to feature models for two
main benefits. First, we can modularize feature models into
parts relevant to groups of stakeholders. Second, we are able
to model dependencies between different software product
lines in a multi-product-line scenario. To ensure consistency
and correctness of DFMs, we have to apply analyses, such
as dead-feature detection. We discuss why DFMs challenge
the detection of inconsistencies, present how to reuse exist-
ing analyses for DFMs, and propose new analyses to sup-
plement existing ones. We apply automated analyses in five
steps and evaluate the approach using DFMs specified in
VELVET by our prototype VeAnalyzer.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering

General Terms
Design, Verification

1. INTRODUCTION
A software product line (SPL) is a set of similar programs

(products) developed using a common code base [7]. Fea-
tures describe prominent or distinctive user-visible aspects
of these different programs [9]. To describe valid combina-
tions of features (i.e., products), we can use feature mod-
els to define relationships and constraints among the fea-
tures [2]. However, when constraints are not properly used,
feature models can become inconsistent. Automated analy-
sis can be used to detect inconsistencies, such as dead fea-
tures which are included in no product, or a void feature
model which represents no products [3].

∗This work is partially funded by DFG grant SA 465/34-2,
and BMBF grant 01IM10002B.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
VaMoS ’13, January 23 - 25 2013, Pisa, Italy
Copyright 2013 ACM 978-1-4503-1541-8/13/01 ...$15.00.

Log
Sync
Sort

<<uses>>

Protocol
Crypt
Debug

Recv
SendMailClient

List Merge
Quick

alternative

or

optional

mandatory

Figure 1: Feature models of a List and a MailClient.

There are two reasons to modularize feature models. First,
feature models in industry tend to get very large (e.g., up
to 11 000 features [15]) and stakeholders may only be ex-
perts for certain parts of a feature model. Separating fea-
ture models is a powerful technique to deal with a grow-
ing complexity. Second, with an increasing development of
SPLs in recent years, products of an SPL are used not only
stand-alone, but also within products of other SPLs. A sim-
ple approach to reuse an SPL is to configure and derive a
valid product, which can be used in other SPLs. However,
this approach is insufficient when different products of the
same SPL are needed depending on the configuration of the
reusing SPL. The second scenario are multi software prod-
uct lines (MPLs), which are arbitrary compositions of inter-
dependent SPLs [11]. For example, we can create an MPL
MailClient that needs different configurations of SPL List,
such as a sorted list to store mails and a synchronized list
to log errors (see Figure 1).

Separation of complex feature models and the reuse of ex-
isting ones results in two application scenarios for dependent
feature models (DFMs); we define DFMs as follows:

Definition 1 (Dependent feature model): A dependent fea-
ture model is an extension of a feature model that permits
any feature modeling construct of a given feature model-
ing notation (e.g., or-group, alternative-group, optional fea-
tures, mandatory features, constraints), but may also con-
tains references or dependencies to other (dependent) feature
models.

Related to our definition, feature models are also DFMs.
Additionally, DFMs can contain references or dependencies
to other DFMs. For example, the modeling languages TVL
and VELVET support such complex model descriptions that
we call DFMs [6, 12].

DFMs challenge existing techniques for inconsistency de-
tection. Analyzing each DFM in isolation (separate analyses
of feature models List & MailClient) is often not applica-
ble because these models may have dependencies to other
DFMs. To overcome this problem, we propose means to
analyze DFMs. Specifically, we make the following contri-

butions: we (1) present challenges by DFMs that complicate
the application of existing analyses, (2) introduce a five-step
approach to address these challenges, (3) propose a trans-
formation of DFMs into a feature model to enable reuse of
existing analyses, and (4) introduce new analyses for DFMs.

2. DEPENDENT FEATURE MODELS
In Figure 2, we present a UML diagram illustrating the

dependencies between SPL MailClient and SPL List [13].
SPL MailClient uses two different products (i.e., instances)
of SPL List (SyncList & SortList). We use VELVET — a
feature modeling and configuration language that supports
separation of concerns [12] — to define DFMs. Our results
are not specific to VELVET and can be applied to other
feature modeling notations.

In Listing 1-(a), we use SPL List to illustrate how to
use VELVET. An SPL is described by a concept, in which
optional features of an SPL are defined with keyword fea-

ture. The additional keyword mandatory can be used to de-
fine obligatory features. Furthermore, we define alternative-
groups with keyword oneof, such as features Merge and
Quick, and an or-group with keyword someof. We use key-
word constraint to define cross-tree constraints between
features with logical operators && (conjunction), || (dis-
junction), ! (negation), -> (implication), and <-> (bicon-
ditional) [12].

VELVET is inspired by object-oriented programming lan-
guages allowing us to use mechanisms of aggregation and in-
heritance to compose DFMs. Although VELVET supports
superimposition as another composition mechanism, we fo-
cus on inheritance and aggregation for brevity.

Inheritance of feature models is a mechanism, in which
the inherited feature model contains all features and con-
straints of the super feature model plus additional features
and constraints. For example, DFM SyncList (cf. Figure 2
& Listing 1-(b)) can be defined as all features and constraints
of feature model List and a further constraint that reduces
the number of possible products in the DFM SyncList (see
Listing 1-(b)). Thüm et al. call this reduction of possible
products a specialization [16]. But inheritance even permits
to add features to the existing ones and thus to produce
more products, which is called generalization [16]. However,
VELVET also allows us to add features and constraints si-
multaneously, which often results in an arbitrary edit.

In VELVET, aggregation allows us to use feature mod-
els in another feature model. We define aggregation with
a concept and instance name. This specific characteristic
of DFMs gives us the opportunity to define constraints re-
lated to this specific instance without an influence to other
instances of the same concept. For example, we use the
concepts SyncList, SortList and the identifiers mailList,
errList as instances in the DFM MailClient (see Listing 1-
(c)). Furthermore, we add constraint mailList.Sort.Merge
to specify that instance mailList uses algorithm merge sort.

Challenges. The expressiveness by the use of mechanisms
such as inheritance and aggregation of DFMs results in the
following challenges related to automated analysis.

C1: We cannot directly apply state-of-the-art operations
for automated analysis, because of separation of concerns in
DFMs. For example, the complete model of the MailClient

is separated over different (fragments of) feature models.
The single concepts cannot be analyzed separately, because

List
<<SPL>>

SortList
<<SPL>>MailClient

<<SPL>> SyncList
<<SPL>>

Figure 2: Dependencies between different SPLs [13].

1 concept L i s t { (a) Feature model
2 feature Sync ;
3 feature Sort {
4 oneof { feature Merge ;
5 feature Quick ; } }
6 feature Log ; }

1 concept SyncList : L i s t { (b) Inheritance
2 constraint L i s t . Sync ; /∗ Spec i a l i z a t i on ∗/ }
3 concept So r tL i s t : L i s t {
4 constraint L i s t . Sort ;
5 feature L i s t . Sort . Bubble ; /∗General . ∗/ }

1 concept Mai lCl i ent { (c) Aggregation
2 So r tL i s t ma i lL i s t ;
3 constraint mai lL i s t . Sort . Merge ;
4 SyncList e r r L i s t ; /∗ . . . ∗/ }

Listing 1: Definition of DFM in VELVET.

not all definitions are included in one concept such that there
can be reference errors (e.g., features are referenced that not
exist in this concept). For example, if we analyze the DFM
SortList, only one constraint is defined in the correspond-
ing concept.

C2: VELVET includes different composition mechanisms,
such as inheritance and aggregation, which must be cor-
rectly combined to analyze DFMs. Thus, the challenge is to
express the semantics of different composition mechanisms
(e.g., instances can only be specialized, whereas inheritance
provides arbitrary edits of based models) to transform DFMs
into a representation that can be analyzed.

C3: Due to the separated definitions of DFMs in different
concepts, we face further syntactical problems. For example,
we must check whether features and constraints are correctly
defined, such as whether feature Sort exists in the concept
of SortList or List. This is more complex as in standard
feature models, because the referenced features may be de-
fined in any other DFM that is referenced.

3. THE FIVE-STEP APPROACH
In Figure 3, we present our five-step approach for auto-

mated analysis of DFMs. Our concept bases on a two-step
approach in which (1) the feature model is transformed to
a logical format and (2) a solver is used to perform analyses
(e.g., satisfiability solver) [3]. Using VELVET’s analogy to
object-oriented programming, we can consider our steps as
(S1) source code parsing, (S2) type checking, (S3) compi-
lation, and (S4 & S5) execution. Here, we describe steps
S1-S4 and focus on analyses of step S5 in Section 4.

Step S1: Model Parsing. For the translation of feature
models into propositional formulas, a tool has to parse a
textual representation of feature models. Parsing in context
of DFMs means that we detect errors, which are related to an
incorrect usage of the grammar (in our case, the VELVET
grammar). For example, in VELVET it is not allowed to
define a mandatory feature in an alternative-group, because
all siblings would be dead features. Hence, we may detect
dead features simply by checking whether a concept is valid
according to the VELVET grammar.

Contrary to the initial version of VELVET [12], we pro-

S1:AModelParsing

S2:ASyntacticalAChecks

S3:AModelATranslation

S4:ASatisfiabilityACheck

S5:AFurtherAAnalyses

Figure 3: Five-step approach of automated analyses.

pose to restrict the grammar to allow not more than one
group of sub-features. Otherwise by the use of inheritance,
we cannot automatically decide in which group the feature
should be added. For example, if we define another group
next to the alternative-group of feature Sort (see Listing 1-
(a)), we are not able to decide automatically which group is
extended by feature Bubble (see Listing 1-(b)).

Step S2: Syntactical Checks. Similar to type checking for
object-oriented languages, we must check the correctness of
feature references. Here, we present some examples.

We cannot detect missing or wrong references with parsers
and, thus, we must check whether referenced features (e.g.,
a feature in a constraint) are declared. In Listing 1-(b), we
define concept SyncList and inherit the features and con-
straints of SPL List (see Listing 1-(a)). As result, we must
investigate concept SyncList whether feature Sync exists
and if not, continue in the inheritance hierarchy to check
whether SPL List contains feature Sync.

Step S1 is not sufficient to detect mandatory features, be-
cause a mandatory feature may be added to a group defined
in another concept. For example, if we define a new feature
in an inherited concept (see feature Bubble, Listing 1-(b)),
it is not sufficient anymore to parse only a single feature
model to check for the keyword mandatory.

Step S3: Model Translation. If we analyze a DFM with
existing analysis operations for feature models, we need a
single propositional formula that represents all features and
dependencies of each part of the DFM. To this end, we merge
the dependent VELVET concepts into one feature model
by considering the specific composition mechanisms (e.g.,
inheritance & aggregation). Afterwards, we translate the
composed feature model into one propositional formula.

When composing two DFMs with inheritance, we use the
base concept as starting point. Next, we add all new defi-
nitions (e.g., features & constraints) to this existing feature
model and rename the root feature to the concept name of
the inherited concept. In Figure 4, we present the transfor-
mation of DFM SortList, which consists of two concepts
(SortList & List) that are connected via inheritance. On
top, we show the feature model of SPL List from which
DFM SortList inherits all features and constraints. Af-
terwards, we add all features that are defined in concept
SortList and add the additional cross-tree constraints.

We transform DFMs with aggregation as follows. If an
instance is defined, we use the type of the instance (the con-
cept), rename the root to the instance name and transform
the instance root to a mandatory sub-feature of the feature
in which the instance is defined. Renaming of the root fea-
ture is important because several instances of the same type
may occur below the same feature. For example, we present
the transformation of DFM MailClient with two instances
of type List in Figure 4. We integrate the complete feature

A
gg

re
ga

ti
on

Crypt
Protocol

Debug
MailClient

constraint<mailList.Sort.Merge;

Crypt
Protocol

Debug

errList
mailList

Merge
QuickMailClient

Sync
Sort
Log

Recv
SendMailClient

<<SPL>>

SyncList
<<SPL>>

SortList
<<SPL>>

Bubble

Merge

Quick

Sync

Sort

List

Merge

Quick

Sync

Log

Sort

SortList

Bubble

constraint<List.Sort;SortList
<<SPL>>

List
<<SPL>> Log

In
he

ri
ta

nc
e

Figure 4: Transformation of DFMs in VELVET.

model of each instance (DFM of SortList and SynList,
which is composed by inheritance based on List), rename
the root feature to the instance identifier (mailList & er-

rList), and connect these roots as mandatory to feature
MailClient.

Step S4: Satisfiability Check. We separate the check for
void feature models from other analyses, because we argue
that this analysis represents a precondition for the follow-
ing analyses. The reason is that by applying the void feature
model analysis first, we can detect inconsistencies of the fea-
ture model at an early stage such that we can cancel further
analysis and save unnecessary computations. The analysis
of dead features is one example in which the satisfiability
check is a precondition that can save computation effort be-
cause a void feature model has only dead features. Hence,
instead of performing a dead-feature analysis per feature,
we perform the satisfiability analysis and abort the analysis
process if the feature model is void.

4. ANALYSIS OF DFMS
Next, we present analyses that can be executed based on

propositional formulas and investigate whether these analy-
ses produce correct results in the context of DFMs.

Dependent-dead feature. A feature is called dead feature
if it is not included in any product of an SPL [3]. When
determining dead features of the DFM ExtList (see List-
ing 2), which was translated to one feature model (Step S3),
we get features Quick and Bubble as dead features. However,
related to the definition of an anomaly, this seems contra-
dictory. In feature model List exists no dead feature and in
ExtList, we purposefully selected feature Merge so that fea-
ture Quick is not a real anomaly but a desired configuration
decision (i.e., for a DFM we may have bind some variabil-
ity of another DFM). To overcome this contradiction, we
propose the following definition:

Definition 2 (Dependent-dead feature): A feature is a depen-
dent-dead feature, if it is not included in any product of that
DFM, in which it is declared.

If we use the new definition of dependent-dead features

1 concept ExtList : L i s t {
2 feature L i s t . Sort . Bubble ; //added to group
3 constraint L i s t . Sort . Merge ; }

Listing 2: DFM ExtList.

related to DFM ExtList, we observe that only feature Bub-

ble is a dependent-dead feature. This is our desired result
because feature Bubble is defined in concept ExtList and
should be at least selectable in this concept, but this feature
can neither be used in feature model List nor in ExtList

and is thus an inconsistency.

Dependent-false-optional feature. A false-optional fea-
ture is a feature that is part of each SPL’s product, al-
though it is not designed as mandatory [3]. We want to
detect only those features as false-optional features that are
actual anomalies. If we determine false-optional features
of ExtList, we get the false-optional features Merge and
Sort as result. However, considering the constraints in List-
ing 2, we purposefully want to reduce the number of prod-
ucts so that these features are not considered as an anomaly.
We conclude that also this definition must be adapted. We
obtain the desired result (an empty set of dependent-false-
optional features) by the use of the following definition:

Definition 3 (Dependent-false-optional feature): A feature is
a dependent-false-optional feature, if it is not designed as
mandatory, but is part of all products of the DFM in which
the feature is defined.

Core features and core instances. Benavides et al. con-
sider core features as the most important features that must
be implemented first because they are included in every
product [3]. When we determine core features of DFM
ExtList, we yield features ExtList, Sort, and Merge as a
result. By contrast, in feature model List exists only the
core feature List.

Instead of analyzing the whole DFM in one step, we can
take advantage of the known structure of the DFM by ana-
lyzing the feature model in a stepwise manner. For example,
we compute that features Merge and Sort are new core fea-
tures of concept ExtList, whereas feature List (resp. feature
ExtList) was already a core feature in the inherited concept.
Thus, we can check the impact of the newly defined elements
in extensions of feature models using inheritance.

We observed that the number of core features can be large.
However, sometimes we may want to know only the set of
instances that are included in all products of a DFM, which
represents a subset of the complete set of core features. For
example, the analysis whether instances mailList and er-

rList are instances that are included in all products of the
MPL MailClient could be sufficient for a user. Thus, we
propose a new analysis to calculate core instances (both in-
stances are core instances in our example):

Definition 4 (Core instance): An instance of a DFM is a core
instance if the root feature is a core feature of the DFM.

Number of products and variability of instances. An-
other commonly used analysis calculates the number of valid
products [3]. With it, we can get an impression about the
complexity of feature models and the set of possible prod-
ucts. For example, if we determine number of products of
DFM ExtList, we get four possible products as result. Sim-
ilar to the previous analysis, we can use relations between

AccessNode
<<SPL>>

SensorNode
<<SPL>>

DataNode
<<SPL>>

SNW-Node
<<SPL>>

SQLite
<<SPL>>

BerkeleyDB
<<SPL>>

SensorNetwork
<<SPL>>

Figure 5: Relationships of sensor networks [11].

DFM ExtList and other DFMs (e.g., List) to determine
that, in this example, inheritance reduces the number of
products from twelve to four products of ExtList. By com-
paring these results, we can detect possible errors.

Additionally, if a user defines an instance, it can be useful
to know how many products are represented by this instance
after the configuration in DFMs. Instance mailList repre-
sents four possible configurations, and thus, mailList is not
fully specialized and can be configured by a user. This is not
desired in all scenarios and, thus, it is important to know
the variability of instances.

To determine number of products related to an instance, it
is not sufficient to use the type of an instance as input model
for the analysis number of products. Because, this analy-
sis neglect possible configurations in a DFM which must be
considered. For example, the number of products of DFM
SortList is twelve whereas the number of remaining con-
figuration options of the instance in the DFM mailList is
four. We propose the following algorithm to compute the
latter number. We investigate all features of the instance
mailList related to the complete DFM MailClient. For
that reason, we use the complete DFM as propositional for-
mula and remove all features, which are not sub-features of
the instance mailList. Afterwards, the propositional for-
mula includes only features of instance mailList with all
constraints that were defined in the complete DFM of MPL
MailClient. Thüm et al. presented an algorithm to remove
features from a propositional formula, which we can use in
our scenario [17]. Afterwards, we determine the number of
products of this new feature model (i.e., the represented in-
stance with defined constraints of the MailClient). As a
result, we compute four possible products.

5. EXPERIENCES WITH VEANALYZER
We developed the prototype VeAnalyzer,1 a command line

tool for automated analysis of DFMs specified in VELVET.
We used VeAnalyzer to analyze the DFM SensorNetwork

(see Figure 5), which consists of multiple real-world feature
models (SQLite & BerkeleyDB) and simulates a sensor net-
work. In detail, we used each DFM as input for VeAna-
lyzer and compared the results with our manual investiga-
tion. Syntactical errors caused by a new VELVET-grammar
version were detected and could be repaired (step S1 & S2).
Afterwards, the DFMs were transformed to a propositional
formula and the analyses were executed (see Table 1).

In detail, we determined the number of features and all
instances of the complete DFMs to give an impression about
the DFM complexity. Furthermore, column satisfiable illus-
trates that all DFMs passed the satisfiability check (step S4),
which is the basis for all subsequent analyses (step S5). Us-
ing our proposed analyses to detect anomalies, we identi-
fied that no dependent-dead features and dependent-false-

1http://wwwiti.cs.uni-magdeburg.de/iti_db/
research/MultiPLe/modeling.htm

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/MultiPLe/modeling.htm
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/MultiPLe/modeling.htm

DFM f i sat ddf dfof cf cfi ci

SQLite 86 0 X 0 0 8 0
BerkeleyDB 14 0 X 0 0 1 0
SnwNode 127 2 X 0 0 3 0
SensorNode 131 2 X 0 0 4 1 0
AccessNode 128 2 X 0 0 15 12 0
DataNode 128 2 X 0 0 16 13 1
SensorNetwork 393 9 X 0 0 20 2

Legend: f – features, i – instances, sat – satisfiable, ddf –
dependent-dead feature, dfof – dependent-false-optional
feature, cf – core feature, cfi – new core feature through

inheritance, ci – core instance

Table 1: Results of VeAnalyzer.

optional features exist. Furthermore, we determined core
features in the complete DFM, whereas the next column
gives an impression of the inheritance effects. For exam-
ple, DFM DataNode consists of 16 core features whereas 13
features are new core features of concept DataNode. In addi-
tion, instance SQLite exists in each product of DataNode and
thus, is a core instance. We conclude that 8 of the new 13
core features of DataNode are features of this core instance.

Additionally to the sensor-network example, we created
unit tests to check whether our analyses and steps are cor-
rect. In detail, we created DFMs with dependent-dead fea-
tures, dependent-false-optional features, and core instances
to analyze them with VeAnalyzer. Once again, we compared
the results of VeAnalyzer with our manual investigation and
verified the correctness of the analyses.

6. RELATED WORK
This paper is based on the work of Rosenmüller et al. who

introduced VELVET [12]. Here, we intend to complement
the modeling techniques by automated analyses for DFMs.
By contrast, our results are not specific to VELVET and can
be applied to other feature modeling languages, such as the
text-based feature modeling language TVL [6].

Besides these languages, which allows us to modularize
feature models, several work exists about composing fea-
ture models [1, 5]. Similar to the composition mechanisms
of VELVET, rules are defined to combine or merge feature
models. For example, Acher et al. introduced special oper-
ators, such as insert and merge, that allow us to combine
feature models similar to VELVET [1]. Boskovic et al. use
aspect-oriented techniques to define parts of feature models
that can be combined via composition rules [5]. These rules
provides the possibility to apply automated analysis.

The separation of feature models in smaller ones is only
one solution to manage complexity of feature models. By
contrast, also views on parts of large feature models can be
used to treat the complexity [8, 10, 14]. Configurations in
such views related to different concerns of one feature model
must be merged by specific rules and checked for consistency.
Similar to this work, analyses are important to check for
correctness of the composition of these specific concerns.

The use of a satisfiability solver with propositional formu-
las is not the best solution for all analysis operations, for
example, we can determine the number of products by the
use of BDDs more efficiently [4]. Our five-step approach and
the proposed analysis operations are not specific to satisfia-
bility solvers and can easily be used with other solvers.

7. CONCLUSIONS
Automated analyses are crucial to check the correctness

of feature models. DFMs are an extension of feature mod-
els and yield new requirements that prohibit direct applica-
tion of state-of-the-art analyses. To overcome this problem,
we propose a five-step approach that allows us to analyze
DFMs. Moreover, we introduce special analyses for DFMs,
such as dependent-dead features, dependent-false-optional
features, core instances, and instance variability.

We presented the prototype VeAnalyzer that supports our
results. In future work, we want to integrate further analy-
sis operations into VeAnalyzer, include further composition
techniques of DFMs, and show how to apply our five-step
approach to other modeling languages.

8. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. B. France. Composing

Feature Models. In SLE, page 62–81. Springer, 2009.
[2] D. Batory. Feature Models, Grammars, and Propositional

Formulas. In SPLC, page 7–20. Springer, 2005.
[3] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated

Analysis of Feature Models 20 Years Later: A Literature
Review. Information Systems, 35(6):615–636, 2010.

[4] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A
First Step Towards a Framework for the Automated Analysis
of Feature Models. In SPLC, page 39–47. IEEE, 2006.

[5] M. Boskovic, G. Mussbacher, E. Bagheri, D. Amyot, D. Ga-
sevic, and M. Hatala. Aspect-Oriented Feature Models. In
MoDELS, page 110–124. Springer, 2010.

[6] Q. Boucher, A. Classen, P. Faber, and P. Heymans. Intro-
ducing TVL, a Text-Based Feature Modelling Language. In
VaMoS, page 159–162. University of Duisburg-Essen, 2010.

[7] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. ACM/Addison-
Wesley, 2000.

[8] A. Hubaux, P. Heymans, P.-Y. Schobbens, and D. Derid-
der. Towards Multi-View Feature-Based Configuration. In
REFSQ, page 106–112. Springer, 2010.

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, 1990.

[10] M. Mannion, J. Savolainen, and T. Asikainen. Viewpoint-
Oriented Variability Modeling. In COMPSAC, page 67–72.
IEEE, 2009.

[11] M. Rosenmüller and N. Siegmund. Automating the Config-
uration of Multi Software Product Lines. In VaMoS, page
123–130. University of Duisburg-Essen, 2010.

[12] M. Rosenmüller, N. Siegmund, T. Thüm, and G. Saake.
Multi-Dimensional Variability Modeling. In VaMoS, page
11–22. ACM, 2011.

[13] M. Rosenmüller, N. Siegmund, S. S. ur Rahman, and
C. Kästner. Modeling Dependent Software Product Lines.
In McGPLE, page 13–18. University of Passau, 2008.

[14] J. Schroeter, M. Lochau, and T. Winkelmann. Multi-
Perspectives on Feature Models. In MoDELS, page 252–268.
Springer, 2012.

[15] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sin-
cero. Configuration Coverage in the Analysis of Large-Scale
System Software. In PLOS, page 2:1–2:5. ACM, 2011.

[16] T. Thüm, D. Batory, and C. Kästner. Reasoning about Edits
to Feature Models. In ICSE, page 254–264. IEEE, 2009.

[17] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund. Ab-
stract Features in Feature Modeling. In SPLC, page 191–
200. IEEE, 2011.

	Introduction
	Dependent Feature Models
	The Five-Step Approach
	Analysis of DFMS
	Experiences with VeAnalyzer
	Related Work
	Conclusions
	References

