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Abstract

Information explosion across the Internet and elsewhere of-

fersaccess toanincreasing number of document collections.

In order for users to effectively access these collections, in-

formation retrieval (IR) systems must provide coordinated,

concurrent, and distributed access. In this paper, we de-

scribe a fully functional distributed IR system based on the

Inquery unified IR system. To refine this prototype, we

implement a flexible simulation model that analyzes per-

formance issues given a wide variety of system parameters

and configurations. We present aseries ofexperiments that

measure response time, system utilization, and identify bot-

tlenecks. We vary numerous system parameters, such as

the number of users, text collections, terms per query, and

workload to ireneralize our results for other distributed IR

systems. Based on our initial results, we recommend simple

changes to the prototype and evaluate the changes using the

simulator. Because of the significant resource demands of in-

formation retrieval, it is not difficult to generate workloads

that overwhelm system resources regardless of the architec-

ture. However under some realistic workloads. we demon-

strate system organizations for which response’ time grace-

fully degrades as the workload increases and performance

scales with the number of processors. This scalable architec-

ture includes a surprisingly small number of brokers through

which a large number of clients and servers communicate.

1 Introduction

The increasing numbers of large, unstructured text collec-

tions require full-text information retrieval (IR) systems in

order for users to access them effectively. Current systems

typically only allow users to connect to a single database

either locally or perhaps on another machine. A distributed

IR system should be able to provide multiple users with con-

current, efficient access to multiple text collections located

on remote sites. Since the documents in unstructured text

collections are independent, IR systems are ideal applicw

tions to distribute across a network of workstations.- ‘How-

ever! the high resource demands of IR systems limit their

performance, especially as the number of users, as well as

the size and number of text collections increase. Distributed

computing offers a solution to these problems. Systems
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F@re 1: Our Dh-ibuted Information Retrieval System

based on distributed architectures use resources more effi-

ciently and in parallel by spreading work across a network

of workstations.

The focus of this paper is to design appropriate dis-

tributed information retrieval architectures by analyzing the

performance of potential systems under a variety of work-

loads. We begin with a prototype implementation of a

distributed information retrieval system using Inquery; an

inference network, full-text information retrieval model[4].

Our system adopts a variation of the client-server paradigm

that consists of clients connected to Inquery server retrieval

engines through a connection server, a central administra-

tion broker, as illustrated in F@re 1. In the original In-

query system (not distributed), clients specify an Inquery

server, connect to it, interact with it, and finally disconnect.

In the distributed system, clients search multiple databases

simultaneously. To build our prototype, we made the fewest

possible changes to the underlying software. We therefore

began with a single connection server which maintains a list

of available collections and their locations and brokers all of

the clients’ retrieval requests and Inquery server responses.

We describe this distributed system in detail in Section 2.

We measure the system and use it to drive a simulator in

which we can easily move and replicate functionality to in-

vestigate alternative architectures for our distributed sys-

tem. Section 3 presents this simulation model.

The simulation model is parameterized by system fea-

tures such as the number of users and text collections, aver-

age query length, 1/0 and CPU demands, network latency,

and the time to merge results from different IR servers.
This model allows us to investi@.e systems that vary from

our implementation. We measure system response time,
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throughput, and resource utilization for a variety of con-

figurations. During our investigation we identify potential

bottlenecks and study the effects of various architectures and

parameters. Ourgoed istouse resources efficiently bymax-

imizing parallelism and ensuring scalability. We also main-

tain the effectiveness, in terms of recall and precision [3], of

a stand-alone IR system.

The results show that the implemented system performs

well for srqall configurations when the Inquery servers pro-

cess queries quickly. However, as the size of the system in-

creases, bottlenecks begin to degrade performance. We show

ihat we can alleviate some of the bottlenecks by adding ad-

ditional brokers to manage the clients and Inquery servers.

Section 7 compares our work to previous work and Section 8

summarizes our results.

2 A Distributed Information Retrieval System

This section describes the implementation of our distributed

IR system. It describes the functionality and interaction

between the clients, the connection server, and the Inquery

servers in terms of the IR commands issued by the clients.

2.1 Clients

The clients are lightweight processes that provide a user

interface to the retrieval system. Clients initiate all the

work in the system by sending commands to the correc-

tion server, as illustrated in F@re 1. Clients first connect

to the connection server. A client can request a list of COL

lections from the connection server or remember those it

used previously. Clients specify a list of text collections to

search with each IR command. The clients can issue the

entire range of IR commands, but in this paper, we focus on

query, summary, and document commands.

Query commands consists of a set of words or phrases

(terms) and a set of collection identifiers on which to per-

form the queries. Query responses consist of a list of n

document identifiers ranked by belief values that estimate

the probabllit y that the document satisfies the information

need.

Summary commands consist of a set of document iden-

tifiers and their collection identifiers. Summary responses

include the document title and the first few sentences of

the document.

Document commands consist of a document and collec-

tion identifier. The response includes the complete text of

the document.

A client issues a command and waits for the connection

server to return the results before it issues another com-

mand. Users issue queries and document commands. A

client automatically issues the fist summary command when

it receives a query response. A client issues additional sum-

mary commands at the user’s request.

2.2 Connection Server

The clients and Inquery servers communicate via the con-

nection server. The connection server is also a lightweight

process that keeps track of all the Inquery servers, outstand-

ing client requests, and organizes responses from Inquery

servers. The connection server continuously checks for in-

coming messages from clients and Inquery servers. The con-

nection server handles out standing requests from multiple

clients. We briefly describe the processing that the correc-

tion server performs to handle each request below.

Inquery servers add themselves to the system by send-

ing a message to the connection server. Clients send their

commands to the connection server which forwards them

to the appropriate Inquery servers. The connection server

maintains a queue of outstanding requests for each of the

Inquery servers as illustrated in F@we 1. If an Inquery

server is currently processing another command, the con-

nection server inserts the command onto a queue. When

the connection server receives an outstanding response from

an Inquery server, it forwards the next command on the

corresponding queue to the Inquery server.

The connection server maintains intermediate responses

from the Inquery servers until it receives all the responses.

It then sends the final result to the appropriate client. For a

summary command, the connection server simply orders the

list of responses in the same order as the request. For a query

command, each Inquery server sends its top n responses back

to the connection server. The connection server maintains

a sorted list of the overall top n entries until all the In-

query servers respond. The connection server merges new

results with the existing sorted list. We assume the rela-

tive rankings between documents in independent collections

are comparable, but this assumption is clearly tenuous. For

example, one collection may be irrelevant to a particular

query, but if the user includes it, the overall response may

still include its top ranked responses. Other research is in-

vestigating techniques to automatically select appropriate

collections with respect to specific queries [5, 14].

The connection server does not maintain intermediate

results for document retrieval commands; it simply forwards

a document as soon as the Inquery server sends it.

2.3 Inquery Servers

The Inquery server uses the Inquery retrieval engine to pro-

vide IR services. The Inquery system is a probabilistic re-

trieval model that is based upon a Bayesian inference net-

work [4]. Inquery accepts natural language or structured

queries. For query operations, the system outputs a list

of documents ranked by relevance. Internally, the system

stores the text collections as an inverted file. Previous work

demonstrates that Inquery is an effective retrieval system

for large, full-text databases [3].

3 Simulation Model

In this section, we present a simulation model for exploring

distributed IR system architectures. Simulation techniques

provide an effective and flexible platform for analyzing large

and complex distributed systems. We can quickly change

the system configuration, run experiments, and analyze re-

sults without making numerous changes to large amounts

of code. Furthermore, simulation models allow us to easily

define very large systems and examine their performance in

a controlled environment.

To implement the simulator, we use YACSIM, a process

oriented discrete event simulation language [10]. YACSIM

contains a set of data structures and librarv routines that

manage user created processes and resources. Its process

orient ed nature enables the structure of the simulator to

closely reflect the actual system.

Our simulation model is simple, yet contains enough de-

tails to accurately represent the important features of the

system. We model the basic architecture and fimctional-

it y described in Section 2 and illustrated in F@re 1. The

model is driven by empirical measurements obtained from

our prototype.

A user cordigures a simulation by defining the architec-

ture of the distributed information retrieval system using a
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simple command language. A configuration file cent ains the

commands that the simulator reads at start-up time.

3.1 S ysterm Measurements

To accurately model an IR system, we analyzed the dis-

tributed Inquery system and measured the resources used

for each operation. We focused on CPU, disk, and net-

work resources. The simulation does not model memory

and cache effects. Empirical measurements rather than an

analytical model drive the activities performed in the sim-

ulator. The simulator is driven by the following measure-

ments: query evaluation time, document /summary retrieval

time, connection server time, network latency, and time to

merge results. We obtained measurements of the prototype

system using Inquery version 2.1 running on a DECsystem-

5000/240 (MIPS R3000 clocked at 40 MHz) workstation run-

ning Ultrix V4.2A (Rev. 47) with 64 MB of memory and 300

MB of swap space.

We examined several different text collections and query

sets to obtain system measurements. We examined TIP-

STER 1, a large heterogeneous collection of full-text articles

and abstracts [8], a database containing the Congressional

Record for the 103rd Congress [6], and a small collection of

abstracts from the Communications of the ACM ~71.

The simulator uses a simple, yet ac&rate modei ~o repre-

sent query evaluation time. We found that evaluation time

is very strongly related to the number of terms in the query

and the frequency of each of the terms. On the TIPSTER 1

query set, the correlation between query length and query

evaluation time is .96. The correlation is .95 for query term

frequency. We used the TIPSTER 1 collection to measure

the evaluation time for terms of different frequencies. The

time to evaluate a single term ranges from 0.5 seconds for

a term that appears only once to 17 seconds for a term

that appears 554,658 times (the maximum term frequency

in TIPSTER 1). We divide the evaluation time into CPU

and disk access time. The simulator computes the evalua-

tion time for a query by adding the evaluation times of the

individual terms in the query.

The simulator represents the document retrieval time for

an Inquery server as a constant value. We used the TIP-

STER 1 collection to measure the the amount of time it

takes the Inquery system to return documents of different

sizes. The document sizes range from 0.24 KB to 12 KB.

We found that the retrieval time is highly variable and does

not correlate to the size of the document. The value that

the simulator uses is 0.31 seconds which is the average doc-

ument retrieval time for 2000 randomly selected documents

from the TIPSTER 1 collection. We divide the evaluation

time into CPU and disk access time. The simulator uses the

document retrieval time to compute the summary informa-

tion retrieval time. Inquery retrieves a complete document

to obtain the summary information, but it only returns the

summary part.

The connection server time consists of two values; the

time to access the connection server and the time to merge

results. The simulator uses a constant value to represent the

connection server processing time wbieh we obtained from

measuring the actual connection server. The value is 0.1

seconds. The time to merge query results depends upon the

number of answers that an Inquery server returns. A list

with 1000 results takes 17.9 milliseconds.

We represent network time as the sender overhead, re-

ceiver overhead, and network latency. The sender and re-

ceiver overhead is the CPU processing time for adding and

removing a message from the network. The network latency

Parameter Values

Clients c 1483264128256

Inquery Servers IS 1483264128

Terms per Query TPQ 2 12 27
neg. binomial dist.

Query Term Freq. QTF ;;. ‘“w
High

dist. from queries Skew Skew

Answers Returned AR 100 1000
constant values

Think Time/Summary TTS 15 30 90
normal dist.

:$::;lT’’:t@oc’’rn=nt TTD 30 60 180

Documents Retrieved DR
1-5 8-12 15-20

ramze of values

Summary Operations so
1-5 8-12 15-20

range of values

Table 1: Experiment Parameters

is the amount of time the message spends on the network

itself. These times depend upon the size of the message and

the bandwidth of the network. We obtained the sender and

receiver overhead times by measuring messages sent between

two DECsystem-5000 workstations connected by a 10Mbps

Ethernet.

3.2 Validation

We validated the simulator against the actual implementa-

tion using a configuration consisting of single client, Inquery

server, and connection server. We placed each of the com-

ponents on a separate host. We used the query sets and text

collections from TIPSTER 1 and the Congressional Record.

We found that our simulator runs within +10% of the ac-

tual system. The simulator tends to overestimate evaluation

times for small queries and underestimate evaluation times

for large queries. In general, the simulator follows the same

trend as the actual system; larger queries take longer to

evaluate.

3.3 Experiment Parameters

Based on our measurements and our system architecture,

we parameterized the simulator as summarized in Table 1.

Table 1 presents the parameters, their values, and abbrevi-

ations for our experiments. Below, we briefly describe each

parameter.

Number of Clients/Inquery Servers (C/IS). We ex-

periment with both small and large system configurations.

Measuring the effect of increasing the number of clients

and Inquery servers provides insight into identifying bot-

tlenecks and understanding system utilization and scala-

bility.

Terms per Query (TPQ). We use three different aver-

age query lengths in our experiments obtained from actual

query sets as described in Section 3.1. We use a negative

binomial distribution that matches the observed distribu-

tion of query lengths from our query sets.

Distribution of Terms in Queries (QTF). Researchers

do not agree on a commonly accepted distribution for term

frequencies in queries [15]. We examined our query sets

to determine an appropriate distribution. The query term

frequency distributions for the query sets are similar but

the distributions are complex and do not closely match a

mathematical function. In our experiments we use the dis-

tribution of query term frequencies from the TIPSTER 1

112



query set. We call this our observed query term frequency

distribution. We also use a distribution that is skewed to-

wards terms that occur less frequently and a distribution

that is skewed towards terms that occur more frequently.

Number of Documents that Match Query (AR).

The IR system returns a sorted list of matching documents

to the clients. The number of documents returned affects

network traffic and processing by the connection servers.

TKlnk Time (TT). In the simulated workload, clients

“think” after receiving summary information and docu-

ments. This value accounts for the time, in seconds, that

users use to look at the results of their requests. Think

time can be large in comparison to the time the system

takes to perform requests. Since we do not have statistics

that represent actual user think times we use a range of

values. Further reducing think time and adding clients

have similar effects on performance in this system.

Document Retrieval/Summary Information

(DR/SO). We vary the number of summary and docu-

ment retrieval operations after each query. The entries

in Table 1 represent a range of values from which the

simulator randomly chooses values. A single summary

information operation retrieves entries for 15 documents.

The simulator generates different document lengths from

a distribution that matches the distribution of document

lengths in the TIPSTER 1 collection. The summary and

document size determine the time to send it across the

net work.

We discuss these parameters and our reasons for choosing

specific values in greater depth in a technical report [2].

Unless otherwise stated, the clients, connection server,

and Inquery servers operate as described in Section 2. We

allocate each of the basic components in the distributed svs-.
tern to its own host. Each host contains its own processor,

memory$ and secondary storage. A local area network with

a bandwidth of 10Mbps connects the machines. Each of the

Inquery servers maintains a 1 Gigabyte database (except

in the fist experiment in Section 4.1 where a single 1 GB

database is distributed).

3.4 Workload

The workload consists of the the basic retrieval operations

described in Section 2: query evaluation, obtaining sum-

mary information, and document retrieval. The simulator

does not model more complicated functions such as relevance

feedback. In the simula;or, clients repeatedly perform the

following transaction sequence: evaluate a query, obtain

summa~ information of top ranking documents, think, re-

trieve documents, think.

The simulator only models natural language queries and

does not perform structured query operations such as phrase

and proximity operators. The simulator varies the specific

operations for each client and during each sequence. For

example, the model generates new queries and retrieves dif-

ferent documents for each iteration.

3.4.1 Simulation Output

For each simulation configuration of parameters, we mea-

sure the system performance in terms of average query re-

sponse time, summary response time, document response

time, connection server utilization, queue lengths, network

utilization, Inquery server utilization, etc. Due to space

constraints ~ we only present graphs of the results for aver-

age Inquery eerver utilization, connection server utilization,

and response time for a tmrwction sequence. For each se-

ries of graphs, we display the corresponding values of the

parameters listed in Table 1. We refer the interested reader

to our technical report for more results [2].

4 Experiments and Results

In this section, we present the results from four sets of ex-

periment. Two of the experiments use the prototype ar-

chitecture that we implemented. In the first experiment,

we study the effect of equally distributing a single database

among each of the Inquery servers. In the second, each of

the Inquery servers maintains a different database and the

clients broadcast queries to a subset of the available data-

bases.

For small, realistic queries, we demonstrate several ar-

chitectures that scale with the number of processors and

degrade gracefully as the number clients (work) increases.

Our results illustrate that the system can achieve good per-

formance under varying conditions if we can maintain a bal-

ance between connection server and Inquery server utiliza-

tion. However, we see that system performance deteriorates

rapidly when either the connection server or Inquery servers

become over utilized.

We then investigate several changes to the basic architec-

ture to eliminate bottlenecks at the connection server. To

introduce more parallelism, we first add connection servers.

We test configurations using two and four connection servers

and find this is sufficient to relieve the connection server bot-

tleneck. We also test moving the response merging from the

connection server to the clients, but this change does not

improve performance because the increased number of mes-

sages the connection server must send is just as costly as

merging short lists.

4.1 Distributing a Single Text Collection

In this section, we examine the performance of the system

when we divide a single 1 GB text collection among all the

Inquery Servers. The size of the text collection managed by

each Inquery server depends upon the number of Inquery

servers. For example in a system with 64 Inquery servers,

each collection is 16 MB. This architecture models a dis-

tributed system that maintains a single large database, but

exploits parallelism by operating independently on each por-

tion. In this configuration, the total amount of work done

by the system for each client is tixed. Each client connects

to all the Inquery servers.

4.1.1 Discussion of Results

In F@.wes 2-7, we present and compare the average transac-

tion time, connection server utilization. and Inauerv server. .
utilization for small queries and large queries. In all figures,

we display the number of clients, 1 to 256, on the x-axis. In

F@res 2 and 5, we display the number of seconds on the

y-axis. In F@u-es 3, 4, 6, and 7, we display the percent of

process utilization time on the y-axis.

Small Queries (TPQ=2)

F@.we 2 illustrates that for up to 8 Inquery servers, adding

Inquery servers improves the average transaction time (In

this experiment, 1 Inquery server and 128 have the same per-

formance). Going from 1 to 8 Inquery servers improves per-

formance for 256 clients by a factor of 4.66. However, when

the system contains more that 8 Inquery servers, the perfor-

mance degrades because the connection server becomes over

utilized.

The performance improvement is due to a couple of fac-

tors. First, as we increase Inquery servers, the size of each
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Distributing a Single Text Collection
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database decreases which improves query evaluation time.

For example, the system is able to search two 500 MB data-

bases in parallel quicker than searching a single 1 GB data-

base. More detailed measurements reveal that some of the

improvement stems from increased parallelism during sum-

mary retrieval. Recall that a single summary information

operation retrieves 15 documents. A system with one In-

query server contains all the documents on the same ma-

chine. However, in a system with multiple Inquery servers

the documents are distributed among the available Inquery

servers. The 15 summary entries may reside on different In-

query servers resulting in a parallel access of the summary

information. In the best case, each of the 15 entries are

located on different Inquery servers.

As F@re 2 shows, the system achieves the best perfor-

mance with 8 Inquery servers. The average transaction se-

quence time degrades very slowly as we increase the number

of clients. For example, for 8 Inquery servers as we increase

the number of clients from by a factor of 64 (from 1 to 64),

system response time degrades by a factor of 1.35. However,

the jump between 1 and 256 clients degrades performance

by a less acceptable factor of 4. With this configuration, the

system achieves a good balance between connection server

and Inquery server utilization for 8 Inquery servers.

The performance degradation for 32 or more Inquery

servers occurs because the connection server becomes a bot-

tleneck. We see in Figure 3 that the comection server uti-

lization is very high for 32 to 128 Inquery servers. When the

utilization exceeds 85~0 the connection server does not pro-

cess messages as quickly as the clients and Inquery servers

send them. For example, the connection server’s incoming

queue length for utilization values greater than 85~0 exceeds

20 messages. Our results indicate that the connection server

effectively processes up to 8 requests per second. After this

threshold, the connection server becomes over utilized.

The bottleneck in the connection server explains the low

utilization of the Inquery servers (Figure 4). The Inquery

servers remain idle when the connection server is too busy

to forward outstanding requests.

Large Queries (TPQ=27)

For large queries, the performance of 4 to 128 Inquery servers

is very similar and degrades rapidly as the number of clients

increases. However, F&-ue 5 shows small improvements

between 4 and 64 Inquery servers. Performance deterio-

rates when a single database is distributed over 128 Inquery

servers. For 128 Inquery servers, extremely high utilization

of the connection server and the Inquery servers causes this

severe degradation.

In comparison with the results for small queries (Fig-

ure 2), the system response time does not scale well as the

number of clients increases. For large queries, the Inquery

servers quickly become a bottleneck. As the number of

clients increases, the system places greater demands on the

Inquery servers which in turn increases in the average trans-

action time. Contrast this result with short queries where

the Inquery server is only highly utilized when the entire

database resides on a single Inquery server. On a cor@u-

ration with 8 Inquery servers, query evaluation using large

queries takes 9 times longer than using small queries.

The system only achieves scalable performance when the

utilization of the connection server and the Inquery servers

remains below 80y0.

4.2 Multiple Text Collections

In this section, we measure the performance of the dis-

tributed IR system that maintains multiple text collections.

In this configuration, each client selects a random subset of

the available collections to search for the duration of a sim-

ulation. On average, a client therefore searches half of the

available collections. Thus. the workload increases both as

a function of the number of Inquery servers and the num-

ber of clients. This workload mimics the scenario when the

connection server is able to automatically select an appro-

priate subset of the available collections to search. It also is

accurate when the user is given a selection of databases and

then chooses some subset to search.

4.2.1 Discussion of Results

F&yres 8–13 present and contrast average transaction time,

connection server utilization, and Inquery server utilization

for small queries (F@res 8-10) and large queries (F&mes

11–13). For the scaled workload, we see that query size

has an even more dramatic impact on system performance.

Two different effects are evident in these graphs. In Fig-

ures 8-10, degradations occur when the connection server

becomes highly utilized. In contrast, F@res 11-13 illus-

trate the more dramatic effect on performance when the

Inquery servers are the bottleneck.

Small Queries (TPQ=2)

F@we 8 illustrates that until we reach 32 Inquery servers,

the average transaction time improves as the number of In-

query servers, and therefore the workload increases. When

the number of Inquery servers doubles, a client potentially

searches twice as much information. However, for more than

64 Inquery servers, the average transaction time decreases.

Again, our more detailed measurements reveal that the per-

formance improvement is due to increased parallelism during

the summary commands (see Small Queries ixn Section 4.1.1).

In Figure 9, we see a large increase in connection server

utilization as the size of the distributed system grows. At

the same time, F@re 10 shows the Inquery server utilization

decreases as we add Inquery servers. It is apparent that as

the system size increases the connection server becomes a

bottleneck causing Performance to demade. We confirmed
“.

this result by measuring the size of the message queue for

the connection server. We found that the queue is empty

for 1, 4, and 8 Inquery servers. For 64 and 128 Inquery

servers, the queue length becomes very long and approaches

90 entries when the system contains 128 clients.

Large Queries (TPQ=27)

Fhzure 11 illustrates that the Performance of the distributed

system does not scale for large queries. The average trans-

action time almost doubles as the number of number of In-

query servers doubles. The reason for the poor performance

is that the Inauerv servers cause a bottleneck in the svstem

(see Figure 13j. The time in the Inquery servers accou&s for

the majority of the transaction time. Note that these values

represent the average utilization over all Inquery servers.

Since each client connects to a subset of the available In-

query servers, it is difficult to reach 100’% utilization.

In F@ue 12, we see that utilization in the connection

server is very low. Since query evaluation dominates pro-

cessing time, the connection server remains idle most of the

time.

4.3 Multiple Connection Servers

In the experiments in Sections 4.1 and 4.2, the system scales

for small queries up to a certain point; if we add too many

Inquery servers, the performance degrades. As we previ-

ously mentioned, the problem is that the connection server
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becomes a bottleneck. To relieve this bottleneck we ana-

lyze the performance of a system with 2 and 4 connection

servers. Adding additional connection servers reduces the

average utilization of each connection server, and improves

performance for small queries.

In this system, the clients divide evenly among the con-

nection servers and each connection server maintains a link

to all the Inquery servers. In the basic architecture, the con-

nection server maintains a queue of outstanding requests for

each of the Inquery servers. If an Inquery server is busy,

the connection server adds the request to the queue. In the

multiple connection server system, the connection server im-

mediately forwards requests to the Inquery servers. Each of

the Inquery servers instead maintains its own queue of out-

standing requests. Moving the queues to the Inquery servers

does not significantly effect performance.

The workload in this system is the same as in Section 4.2:

each Inquery server contains a 1 GB database and the work-

load scales with the number of clients and Inquery servers.

4.3.1 Two Connection Servers

F@re 14 shows the average transaction sequence time for

a system with two connection servers. In this test, we used

small queries. Compare these results to those in F@re 8

(all of the y-axes for average transaction times are on the

same scale). As with the 1 connection server architecture,

the best performance occurs with 32 Inquery servers.

We see that the system performs better as the number of

clients and Inquery servers increases. For combinations of 1

to 8 clients and Inquery servers, there is not a significant dif-

ference in performance. However, for all other combinations,

we see that there is an improvement in performance. We get

a speedup of 1.94 over the single connection server model for

the configuration using 256 clients and 128 Inquery servers.

4.3.2 Four Connection Servers

Figure 15 shows the average transaction sequence time for

a system with four connection servers. Again, for this test,

we used small queries. The additional connection servers

provide even greater improvements in performance for the

larger configurations. We see that the best performance oc-

curs for 32, 64, and 128 Inquery servers. This result is quite

different from F@re 8 in which the performance begins to

degrade after 32 Inquery servers. The most interesting effect

of adding four connection servers is that the system scales

very well for large configurations. We see this effect in Fig-

ure 15 where the average transaction response time of 32 to

128 Inquery servers remains nearly the same for all client

cordlgurations.

Discussion

Adding additional connection servers improves performance

in large systems when users evaluate small queries. In the

single connection server architecture, the connection server

quickly becomes saturated with requests limiting perfor-

mance. Adding connection servers distributes this work and

improves performance. However, when the Inquery servers

are the bottleneck in the system, as in Figure 11 with large

queries, additional cormcction servers do not improve per-

formance.

5 Moving Functionality

Another way to reduce the amount of processing that occurs

in the connection server is to move the merging functionality

to the clients. Currently, the connection server is responsi-

ble for collecting and merging intermediate results before

sending the final answer to the client. We test this archi-

tecture using workloads that cause high contention for the

connection server. We configured the simulation to match

the experiments in Section 4.2 (Figures 8-10). Our results

show that moving the merging functionality does not im-

prove the average transaction sequence time. The reason

is that the connection server sends more messages to the

client. The extra processing for sending more messages is

approximately the same as for merging smd lists.

6 Future Work

For large queries or extremely high workloads, the Inquery

servers do not provide reasonable response times. To allevi-

ate this problem, we can hope to follow the technology curve

to get some improvements in performance. Processors are

getting faster and the underlying information retrieval tech-

nology is likely to get quicker as well. Other, more imme-

diate solutions we will investigate are replicating the collec-

tions, shared-memory multiprocessing, and multithreaded

servers. Replication will require additional functionality in

the connection server to coordinate and load balance access.

Based on our small query results, our architecture should be

able to achieve good performance with this solution. Using

a multiprocessor instead should provide parallel access with-

out paying the resource costs of replication. However, the

high 1/0 demands of information retrieval may overwhelm

a shared-memory multiprocessor. We are investigating mul-

tithreading for the connection servers and Inquery servers.

7 Related Work

Our research combines and extends previous work in dis-

tributed IR since we model and analyze a complete system

architecture. Although others have examined some of the

issues, no one has considered the entire system under a va-

riety of realistic conditions. We experiment with very large

text collections; up to 128 GB of data. Prim work has not

examined such large systems. We also base our distributed

system on a proven, effective retrieved engine.

Burkowski reports on a simulation study which measures

the retrieval performance of a distributed IR system [1]. The

experiments explore two strategies for distributing a fixed

worldoad across a small number number of servers. This

work is the most closelv related to our work. but differs.
in several wavs. He assumes a worst case workload where

each user bro~dcasts queries to all servers without any think

time. We experiment with larger distributed configurations,

we vary the number of clients, and use a more realistic user

workload.

Other researchers have investigated various data parti-

tioning schemes for distributed IR systems [12, 13, 11, 9].

We address this issue in the experiments in Section 4.1. Al-.
though we only consider one partitioning scheme, we im-

prove upon their results in several ways. Our experiments

include results for both small and large configurations. Pre-

vious research has investigated only small configurations.

Also. we use an existine retrieval model that has m-oven to

be v~ry effective. We investigate changes to the’ architec-

ture that do not involve changes to the underlying retrieval

model. Several of the partitioning schemes mentioned in the

previous work require changes to the retrieval model which

possibly affects retrieval effectiveness.

8 Summary

To keep pace with the increasing amounts of online informa-

tion, the performance of information retrieval systems must

improve. In this paper, we present an implementation of a
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distributed IR system to achieve coordinated, concurrent,

and scalable access. We develop a flexible simulation model

to examine the performance of the prototype using a wide

variety of parameter, workloade, and configuration. We

present results that measure eystem response time, utiliza-

tion, and identify bottlenecks.

Our results show that our architecture provides scalable

performance when clients enter small queries. Small queries

are a realietic workload, eince several studies of exieting IR

eystems demonstrate that ueers tend to use emall queries [6].

By adding a small number of connection servere to coor-

dinate a large number of clients and Inquery servers the

eyetem can maintain ecalable performance at higher work-

loads. When the system bottleneck is the Inquery server,

as for large queries, it is more difficult to achieve reason-

able performance. Based on the performance of the Inquery

servers for short queries, we believe our future work will

show that replicating text collections will mitigate much of

the competition for the Inquery servers.
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