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The Steiner tree problem is one of the most fundamental NP-hard problems: given a weighted

undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals.
In a sequence of papers, the approximation ratio for this problem was improved from 2 to 1.55
[Robins,Zelikovsky-’05]. All these algorithms are purely combinatorial. A long-standing open

problem is whether there is an LP relaxation of Steiner tree with integrality gap smaller than 2
[Vazirani,Rajagopalan-’99].

In this paper we present an LP-based approximation algorithm for Steiner tree with an im-
proved approximation factor. Our algorithm is based on a, seemingly novel, iterative randomized

rounding technique. We consider an LP relaxation of the problem, which is based on the notion
of directed components. We sample one component with probability proportional to the value of
the associated variable in a fractional solution: the sampled component is contracted and the LP

is updated consequently. We iterate this process until all terminals are connected. Our algorithm
delivers a solution of cost at most ln(4) + ε < 1.39 times the cost of an optimal Steiner tree. The
algorithm can be derandomized using the method of limited independence.

As a byproduct of our analysis, we show that the integrality gap of our LP is at most 1.55,

hence answering the mentioned open question.

Categories and Subject Descriptors: F.2.2 [Computations on discrete structures]: Non-
numerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, linear programming relaxations,

network design, randomized algorithms

1. INTRODUCTION

Given an undirected n-node graph G = (V,E), with edge costs (or weights) c : E →
Q+, and a subset of nodes R ⊆ V (terminals), the Steiner tree problem asks for
a tree S spanning the terminals, of minimum cost c(S) :=

∑

e∈S c(e). Note that
S might contain some other nodes, besides the terminals (Steiner nodes). Steiner
tree is one of the classic and most fundamental problems in Computer Science and

1A preliminary version of this paper appeared in STOC’10 [Byrka et al. 2010]. Emails: J. Byrka
jby@ii.uni.wroc.pl, F. Grandoni fabrizio@idsia.ch (partially supported by ERC Starting

Grant NEWNET 279352), T. Rothvoß rothvoss@math.mit.edu, L. Sanità lsanita@uwaterloo.ca.
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Operations Research, with great theoretical and practical relevance. This problem
emerges in a number of contexts, such as the design of VLSI, optical and wireless
communication systems, as well as transportation and distribution networks (see,
e.g., [Hwang et al. 1992]).
The Steiner tree problem appears already in the list of NP-hard problems in

the book by Garey and Johnson [1979]. In fact, it is NP-hard to find solutions of
cost less than 96

95 times the optimal cost [Bern and Plassmann 1989; Chleb́ık and
Chleb́ıková 2008]. Hence, the best one can hope for is an approximation algorithm
with a small but constant approximation guarantee. Recall that an α-approximation
algorithm for a minimization problem is a polynomial time algorithm that produces
solutions which are guaranteed to have cost at most α times the optimum value.
Without loss of generality, we can replace the input graph by its metric closure2.

A terminal spanning tree is a Steiner tree without Steiner nodes: such a tree always
exists in the metric closure of the graph. It is well-known that a minimum-cost
terminal spanning tree is a 2-approximation for the Steiner tree problem [Gilbert
and Pollak 1968; Vazirani 2001].
A sequence of improved approximation algorithms appeared in the literature

[Karpinski and Zelikovsky 1997; Prömel and Steger 2000; Zelikovsky 1993], culmi-

nating with the famous 1 + ln(3)
2 + ε < 1.55 approximation algorithm by Robins

and Zelikovsky [2005]. (Here ε > 0 is an arbitrarily small constant). All these
improvements are based on the notion of k-restricted Steiner tree, which is defined
as follows. A component is a tree whose leaves coincide with a subset of terminals.
A k-restricted Steiner tree S is a collection of components, with at most k termi-
nals each (k-components), whose union induces a Steiner tree. The cost of S is
the total cost of its components, counting duplicated edges with their multiplicity
(see [Borchers and Du 1997] for more details). The k-Steiner ratio ρk ≥ 1 is the
supremum of the ratio between the cost optk of the optimal k-restricted Steiner tree
and the cost opt of the optimal (unrestricted) Steiner tree. The following result by
Borchers and Du [1997] shows that, in order to have a good approximation, it is
sufficient to consider k-restricted Steiner trees for a large enough, constant k.

Theorem 1. [Borchers and Du 1997] Let r and s be the non-negative integers
satisfying k = 2r + s and s < 2r. Then

ρk =
(r + 1)2r + s

r2r + s
≤ 1 +

1

⌊log2 k⌋
.

The mentioned approximation algorithms exploit the notion of k-component
within a local-search framework. They start with a minimum-cost terminal span-
ning tree (which is 2-approximate), and iteratively improve it. At each iteration,
they add to the current solution a k-component, chosen according to some greedy
strategy, and remove redundant edges. The process is iterated until no further
improvement is achievable. Different algorithms use different greedy criteria.

Despite the efforts of many researchers in the last 10 years, the above framework
did not provide any further improvement after [Robins and Zelikovsky 2000; 2005].

2The metric closure of a weighted graph is a complete weighted graph on the same node set, with

weights given by shortest path distances with respect to original weights.
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This motivated our search for alternative methods. One standard approach is to
exploit a proper LP relaxation (see, e.g., [Goemans and Myung 1993] for a list of LP
relaxations of Steiner tree). A natural formulation for the problem is the undirected
cut formulation (see [Goemans and Williamson 1995; Vazirani 2001]). Here we
have a variable for each edge of the graph and a constraint for each cut separating
the set of terminals. Each constraint forces a solution to pick at least one edge
crossing the corresponding cut. Considering the LP relaxation of this formulation,
2-approximation algorithms can be obtained either using primal-dual schemes (see
[Goemans and Williamson 1995]) or iterative rounding (see [Jain 2001]). However,
this relaxation has an integrality gap of 2 already in the spanning tree case, i.e.,
when R = V (see example 22.10 in [Vazirani 2001]).
Another well-studied, but more promising, LP is the bidirected cut relaxation

[Chakrabarty et al. 2008; Edmonds 1967; Rajagopalan and Vazirani 1999]. Let us
fix an arbitrary terminal r (root). Replace each edge {u, v} by two directed edges
(u, v) and (v, u) of cost c({u, v}). For a given cut U ⊆ V , define δ+(U) = {(u, v) ∈
E | u ∈ U, v /∈ U} as the set of edges leaving U . The mentioned relaxation is

min
∑

e∈E

c(e)ze (BCR)

s.t.
∑

e∈δ+(U)

ze ≥ 1, ∀U ⊆ V \ {r} : U ∩R 6= ∅;

ze ≥ 0, ∀e ∈ E.

We can consider the value ze as the capacity which we are going to install on the
directed edge e. The LP can then be interpreted as computing the minimum-cost
capacities that support a flow of 1 from each terminal to the root. In a seminal
work, Edmonds [1967] showed that BCR is integral in the spanning tree case.

Theorem 2. [Edmonds 1967] For R = V , the polyhedron of BCR is integral.

The best-known lower bound on the integrality gap of BCR is 8/7 [Könemann
et al. 2011; Vazirani 2001]. The best-known upper bound is 2, though BCR is
believed to have a smaller integrality gap than the undirected cut relaxation [Ra-
jagopalan and Vazirani 1999]. Chakrabarty et al. [2008] report that the structure
of the dual to BCR is highly asymmetric, which complicates a primal-dual ap-
proach. Moreover, iterative rounding based on picking a single edge cannot yield
good approximations, as was pointed out in [Rajagopalan and Vazirani 1999].
Finding a better-than-2 LP relaxation of the Steiner tree problem is a long-

standing open problem [Chakrabarty et al. 2008; Rajagopalan and Vazirani 1999].
We remark that good LP-bounds, besides potentially leading to better approxima-
tion algorithms for Steiner tree, might have a much wider impact. This is because
Steiner tree appears as a building block in several other problems, and the best
approximation algorithms for some of those problems are LP-based. Strong LPs
are also important in the design of (practically) efficient and accurate heuristics.

1.1 Our Results and Techniques

The mayor contribution of this paper lies in introducing novel linear programming
techniques for the Steiner tree problem, along with a continuous sampling and
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(a)

r

(b)

Fig. 1. (a) A Steiner tree S, where rectangles denote terminals and circles represent Steiner nodes.
(b) Edges of S are directed towards a root r. The directed components of S are depicted with
different colors.

re-optimization approach that appears to be new in the field of approximation
algorithms in general. The main result of this paper is as follows.

Theorem 3. For any constant ε > 0, there is a polynomial-time (ln(4) + ε)-
approximation algorithm for the Steiner tree problem.

This can be improved to 73/60+ ε in the well-studied special case of quasi-bipartite
graphs (where non-terminal nodes are pairwise not adjacent).
Our algorithm is based on the following directed-component cut relaxation for

the Steiner tree problem (a similar relaxation is considered in [Polzin and Vahdati-
Daneshmand 2003]). Consider any subset of terminals R′ ⊆ R, and any r′ ∈ R′. Let
C be the minimum-cost Steiner tree on terminals R′, with edges directed towards
r′ (directed component). For a given directed component C, we let c(C) be its cost,
and sink(C) be its unique sink terminal (i.e. the only terminal that can be reached
from all other terminals in C). We call the remaining terminals sources(C) :=
V (C)∩R \ {sink(C)}. The set of components obtained this way is denoted by Cn.
We say that a directed component C ∈ Cn crosses a set U ⊆ R if C has at least
one source in U and the sink outside. By δ+

Cn
(U) we denote the set of directed

components crossing U . Furthermore, we choose an arbitrary terminal r as a root.
Our LP relaxation is then:

min
∑

C∈Cn

c(C)xC (DCR)

s.t.
∑

C∈δ+
Cn

(U)

xC ≥ 1, ∀U ⊆ R \ {r}, U 6= ∅;

xC ≥ 0, ∀C ∈ Cn.

DCR is trivially a relaxation of the Steiner tree problem. In fact, one can direct the
edges of the optimal Steiner tree S∗ towards terminal r, and split the edge set of S∗

at interior terminals. This yields a set of directed components C ⊆ Cn (see Figure
1). Observe that any C ∈ C must be an optimal Steiner tree on terminals R∩V (C).
Consequently, setting xC = 1 for any C ∈ C, and the remaining variables to zero,
provides a feasible solution to DCR of cost

∑

C∈C
c(C) = c(S∗) = opt.

Unfortunately the cardinality of Cn is exponential. However, we will see that, for
any constant ε > 0, one can compute a (1 + ε)-approximate fractional solution to
DCR in polynomial time. This is achieved by restricting Cn to the directed com-
ponents Ck that contain at most a (big) constant number k of terminals (directed

Journal of the ACM, Vol. ?, No. ?, ? 20?.
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k-components).
We combine our LP with a (to the best of our knowledge) novel iterative random-

ized rounding technique. We solve the LP (approximately), sample one component
C with probability proportional to its value xC in the near-optimal fractional solu-
tion x, contract C into its sink node sink(C), and reoptimize the LP. We iterate this
process until only one terminal remains, i.e., until all terminals are connected by
the sampled components. A fairly simple analysis provides a 3/2 + ε bound on the
approximation ratio. With a refined analysis, we improve this bound to ln(4) + ε.
Our algorithm can be derandomized.
We remark that our algorithm combines features of randomized rounding (where

typically variables are rounded randomly, but simultaneously) and iterative round-
ing (where variables are rounded iteratively, but deterministically). We believe that
our iterative randomized rounding technique will also find other applications, and
is henceforth of independent interest.
The key insight in our analysis is to quantify the expected reduction of the cost of

the optimal Steiner tree in each iteration. To show this, we exploit a novel Bridge
Lemma, relating the cost of terminal spanning trees with the cost of fractional
solutions to DCR. The proof of the lemma is based on Theorem 2 [Edmonds 1967].
In our opinion, our analysis of the reduction in the cost of the optimal Steiner tree
in each iteration using the Bridge Lemma is simpler (or at least more intuitive)
than the analogous results in [Robins and Zelikovsky 2005].
As an easy consequence of our analysis, we obtain that the integrality gap of

DCR is at most 1+ ln(2) < 1.694, hence answering the mentioned open problem in
[Chakrabarty et al. 2008; Rajagopalan and Vazirani 1999]. Combining our Bridge
Lemma with the algorithm and analysis by Robins and Zelikovsky [2005], we obtain
the following improved result.

Theorem 4. For any ε > 0, there is an algorithm for the Steiner tree problem

which computes a solution of cost at most 1+ ln(3)
2 + ε times the cost of the optimal

fractional solution to DCR. The running time of the algorithm is polynomial for
constant ε.

The above theorem immediately implies a 1 + ln(3)/2 < 1.55 upper bound on the
integrality gap of DCR, by letting ε tend to zero (the running time is irrelevant
with that respect). As mentioned before, integrality gap results of this type often
provide new insights into variants and generalizations of the original problem. We
expect that this will be the case with the above theorem as well, since Steiner tree
appears as a building block in many other problems.
We also show that the integrality gap of DCR and BCR are at least 8/7 > 1.142

and 36/31 > 1.161, respectively.

1.2 Related Work

A sign of importance of the Steiner tree problem is that it appears either as a
subproblem or as a special case of many other problems in network design. A
(certainly incomplete) list contains Steiner forest [Agrawal et al. 1995; Goemans
and Williamson 1995], prize-collecting Steiner tree [Archer et al. 2009; Goemans
and Williamson 1995], virtual private network [Eisenbrand and Grandoni 2005;
Eisenbrand et al. 2007; Grandoni, Rothvoß, and Sanità 2011; Gupta et al. 2001],
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single-sink rent-or-buy [Eisenbrand et al. 2010; Grandoni, Rothvoß, and Sanità
2011; Gupta et al. 2007; Jothi and Raghavachari 2009], connected facility location
[Eisenbrand et al. 2010; Grandoni and Rothvoß 2011; Swamy and Kumar 2004], and
single-sink buy-at-bulk [Grandoni and Italiano 2006; Gupta et al. 2007; Grandoni,
Rothvoß, and Sanità 2011; Talwar 2002].
Both the previously cited primal-dual and iterative rounding approximation tech-

niques apply to a more general class of problems. In particular, the iterative
rounding technique introduced by Jain [2001] provides a 2-approximation for the
Steiner network problem, and the primal-dual framework developed by Goemans
and Williamson [1995] gives the same approximation factor for a large class of
constrained forest problems.
Regarding the integrality gap of LP relaxations of the Steiner tree problem, upper

bounds better than 2 are known only for special graph classes. For example, BCR
has an integrality gap smaller than 2 on quasi-bipartite graphs, where non-terminal
nodes induce an independent set. For such graphs Rajagopalan and Vazirani [1999]
(see also [Rizzi 2003]) gave an upper bound of 3/2 on the gap. This was recently
improved to 4/3 by Chakrabarty, Devanur and Vazirani [2008]. Still, for this class
of graphs the lower bound of 8/7 holds [Könemann et al. 2011; Vazirani 2001].
Könemann, Pritchard and Tan [2011] showed that for a different LP formulation,
which is stronger than BCR, the integrality gap is upper-bounded by 2b+1

b+1 , where b
is the maximum number of Steiner nodes in full components. All the mentioned LPs
can be solved in polynomial time, while we solve DCR only approximately: from
a technical point of view, we indeed solve exactly a relaxation of the k-restricted
Steiner tree problem. Under additional constraints, Steiner tree admits better ap-
proximations. In particular, a PTAS can be obtained by the technique of Arora
[1998] if the nodes are points in a fixed-dimension Euclidean space, and using the
algorithm of Borradaile, Kenyon-Mathieu and Klein [2009] for planar graphs.
After the circulation of a preliminary version of our results, Chakrabarty, Köne-

mann, and Pritchard [Chakrabarty et al. 2010a] proved an integrality gap of√
3 < 1.74 for a different (but equivalent) LP-relaxation, using a different approach.

1.3 Organization

The rest of this paper is organized as follows. In Section 2 we give some definitions
and basic results. In Section 3 we show how to approximate DCR and prove our
Bridge Lemma. In Section 4 we present a simple expected (1.5 + ε)-approximation
for the problem. This result is improved to ln(4) + ε in Section 5. The special
case of quasi-bipartite graphs is considered in Section 5.1. We derandomize our
algorithm in Section 6. Finally, in Section 7 we discuss the integrality gap of DCR,
and compare DCR with BCR.

2. PRELIMINARIES

We use Opt to denote the optimal integral solution, and opt = c(Opt). The cost
of an optimal solution to DCR (for the input instance) is termed optf . We will
consider algorithms consisting of a sequence of iterations, each one considering
different subproblems. We will use superscript to denote the considered iteration
t. For example, opttf denotes the cost of an optimal fractional solution at the
beginning of iteration t.

Journal of the ACM, Vol. ?, No. ?, ? 20?.
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For a given (directed or undirected) component C, R(C) := R ∩ V (C) is the
set of its terminals. Recall that DCR has an exponential number of variables and
constraints. For this reason, our algorithms will consider approximate solutions to
DCR with a polynomial-size support. Therefore, it is notationally convenient to
represent a solution to DCR as a pair (x,C), where C ⊆ Cn is a subset of directed
components and x = {xC}C∈C denotes the values that are associated to each such
component. (Other variables are assumed to have value zero).

Let T be a minimum-cost terminal spanning tree. It is a well-known fact that
c(T ) ≤ 2 · opt (see e.g. Theorem 3.3 in [Vazirani 2001]). Extending the standard
proof, this bound also holds w.r.t. our LP relaxation.

Lemma 5. c(T ) ≤ 2 · optf .
Proof. Let (x,C) be an optimal fractional solution to DCR. For each component

C ∈ C, obtain an undirected TSP tour on R(C) of cost at most 2c(C), remove one
edge of the tour, and direct the remaining edges towards sink(C). Install capacity
xC cumulatively on the directed edges of the resulting arborescence. This induces
a fractional solution to DCR of cost at most 2 · optf , with the property that only
components with 2 terminals and without Steiner nodes are used. This also provides
a feasible fractional solution to BCR of the same cost. Since BCR without Steiner
nodes is integral by Theorem 2, the claim follows.

Let R′ be a subset of k terminals. Consider a given Steiner tree S, with edge
weights c, containing the terminals R′. The weight function c associated to S, if not
specified, will be clear from the context. Let us collapse the terminals R′ into one
node, and call G′ the resulting (possibly, multi-)graph. Let S′ ⊆ S be a minimum
spanning tree of G′. Observe that S′ will contain all the edges of S but k − 1
edges, since collapsing R′ decreases the number of nodes in S by k− 1. We call the
latter edges the bridges of S w.r.t. R′, and denote them by BrS(R

′)3. Intuitively,
if we imagine to add zero cost dummy edges between the terminals R′, BrS(R

′)
is a maximum-cost subset of edges that we could remove from S and still have a
connected spanning subgraph. In other terms,

BrS(R
′) = argmax

{

c(B) | B ⊆ S, S\B ∪
(
R′

2

)
connects V (S)

}

.

Let us abbreviate brS(R
′) := c(BrS(R

′)). For a (directed or undirected) compo-
nent C ′, we use BrS(C

′) and brS(C
′) as shortcuts for BrS(R(C ′)) and brS(R(C ′)),

respectively.
In the analysis, it is often convenient to turn a given Steiner tree S into a rooted,

possibly non-complete, binary tree as follows (see also [Karpinski and Zelikovsky
1997]). First, we append a dummy node v′ to each non-leaf terminal v with a
dummy edge of cost zero, and we replace v with v′ in the set of terminals. Note
that now terminals coincide with the leaves of the tree. Second, for any internal
node v of degree d ≥ 4, we replace v with a path v1, . . . , vd−2 of dummy nodes and
dummy edges of cost zero. Node v1 and vd−2 inherit two neighbors of v and all the
other vi one neighbor of v, so that each original neighbor of v is adjacent to exactly
one node vi. Third, we contract nodes of degree 2. Finally, we split an arbitrary

3As usual, we break ties according to edge indexes.
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edge by introducing a dummy root node v. We assign the cost of the original edge
to one of the two resulting edges, and weight zero to the other edge. It is not hard
to show that the resulting tree has height at most |R| − 1. Given this reduction, it
is easy to prove the following standard result.

Lemma 6. For any Steiner tree S on terminals R, brS(R) ≥ 1
2c(S).

Proof. Turn S into a rooted binary tree as described above. For each Steiner
node of S, mark the most expensive edge of the two edges going to its children.
Let B ⊆ S be the set of marked edges. Observe that c(B) ≥ 1

2c(S). Furthermore,
after contracting R, one can remove B while keeping S connected. (This is because
there exists a path not intersecting B from each internal node to some leaf). From
the definition of bridges it follows that brS(R) ≥ c(B) ≥ 1

2c(S).

Throughout this paper, we sometimes identify a subgraph G′ with its set of edges
E(G′).

3. A DIRECTED-COMPONENT CUT RELAXATION

In this section we show how to solve DCR approximately (Section 3.1), and prove
our Bridge Lemma (Section 3.2).

3.1 Approximating DCR

We next show how to compute a (1 + ε)-approximate solution to DCR, for any
given constant ε > 0, in polynomial time. This is achieved in two steps. First of
all, we introduce a relaxation k-DCR of the k-restricted Steiner tree problem. This
relaxation can be solved exactly in polynomial time for any constant value of the
parameter k (Lemma 8). Then we show that the optimal solutions to k-DCR and
DCR are close for large-enough k (Lemma 7).
Let Ck ⊆ Cn denote the set of directed components with at most k terminals,

and let δ+
Ck

(U) := δ+
Cn

(U) ∩ Ck. By the same arguments as for the unrestricted
case, the following is a relaxation of the k-restricted Steiner tree problem:

min
∑

C∈Ck

c(C)xC (k-DCR)

s.t.
∑

C∈δ+
Ck

(U)

xC ≥ 1, ∀U ⊆ R \ {r}, U 6= ∅;

xC ≥ 0, ∀C ∈ Ck.

Let optf,k be the value of the optimal fractional solution to k-DCR. Trivially,
optf,k ≥ optf since any feasible solution to k-DCR is also feasible for DCR. We can
exploit the result by Borchers and Du [1997] to show that optf,k is indeed close to
optf for large k.

Lemma 7. optf,k ≤ ρk · optf .
Proof. Let (x,C) be an optimal fractional solution for DCR. We show how to

construct a solution (x′,C′) to k-DCR with the claimed property. For any compo-
nent C ∈ C, we can apply Theorem 1 to obtain a list of undirected components
C1, . . . , Cℓ such that: (a)

⋃ℓ
i=1 Ci connects the terminals in C, (b) any Ci contains

at most k terminals, and (c)
∑ℓ

i=1 c(Ci) ≤ ρk · c(C). Next, we direct the edges of

Journal of the ACM, Vol. ?, No. ?, ? 20?.



Steiner Tree Approximation via Iterative Randomized Rounding · 9

all Ci’s consistently towards sink(C) and increase the value of x′
Ci

by xC for each
Ci. The resulting solution (x′,C′) satisfies the claim.

It remains to solve k-DCR for k = O(1). For any fixed k, in polynomial time one
can consider any subset R′ ⊆ R of at most k terminals, and compute an optimal
Steiner tree Z on R′4. By considering each r′ ∈ R′, and directing the edges of Z
towards r′, one obtains all the directed components on terminals R′. Consequently,
|Ck| = O(knk) and the k-components can be listed in polynomial time.

Lemma 8. The optimal solution to k-DCR can be computed in polynomial time
for any constant k.

Proof. We define a directed auxiliary graph G′ = (V ′, E′), on node set V ′ = R∪
{vC | C ∈ Ck}. For every component C, insert edges (u, vC) for any u ∈ sources(C),
and one edge eC = (vC , sink(C)). We observe that k-DCR is equivalent to a non-
simultaneous multicommodity flow problem, where any terminal in R sends one
unit of flow to the root and edges eC have cost c(C).
More precisely k-DCR is equivalent to the following compact LP:

min
∑

C∈Ck

c(C)xC

s.t.
∑

e∈δ+(v)

fs(e)−
∑

e∈δ−(v)

fs(e) =







1 if v = s;

−1 if v = r;

0 if v ∈ V \ {r, s},
∀s ∈ R \ {r};

fs(eC) ≤ xC , ∀s ∈ R \ {r}, C ∈ Ck;
fs(e), xC ≥ 0, ∀s ∈ R \ {r}, e ∈ E′, C ∈ Ck.

Here fs(e) denotes the flow that terminal s sends across edge e and the capacity on
edge eC is xC = maxs∈R\{r} fs(eC). An optimal solution of the latter LP can be
computed in polynomial time, see e.g. [Khachiyan 1979; Grötschel et al. 1981]5.

Putting everything together, we obtain the desired approximate solution to DCR.

Lemma 9. For any fixed ε > 0, a (1 + ε)-approximate solution (x,C) to DCR
can be computed in polynomial time.

Proof. It is sufficient to solve k-DCR for k := 2⌈1/ε⌉ with the algorithm from
Lemma 8. Observe that ρk ≤ 1 + ε (see again Theorem 1). The claim follows from
Lemma 7.

3.2 The Bridge Lemma

We next prove our Bridge Lemma, which is the heart of our analysis. This lemma
relates the cost of any terminal spanning tree to the cost of any fractional solution
to DCR via the notion of bridges, and its proof is based on Edmonds’ Theorem
(Theorem 2).

4We recall that, given k terminals, the dynamic-programming algorithm by Dreyfus and Wagner
[1972] computes an optimal Steiner tree among them in O(3kn+ 2kn2 + n3) worst-case time. A
faster parameterized algorithm can be found in [Mölle et al. 2006].
5Note that this LP can even be solved in strongly-polynomial time using the Frank-Tardos algo-

rithm [Frank and Tardos 1987]
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Fig. 2. Steiner tree S is drawn in black. Terminals of R′ are gray shaded. Bold black edges

indicate BrS(R
′) = {b1, . . . , b4}. The corresponding edges e1, . . . , e4 of Y are drawn in gray and

labeled with w(ei). Note that w(ei) = c(bi). Observe also that b3 is the unique bridge on the
cycle contained in S ∪ {e3}.

A key ingredient in the proof of our lemma is the construction of a proper weighted
terminal spanning tree Y . Consider a Steiner tree S on terminals R. We define a
bridge weight function w : R×R → Q+ as follows: For any terminal pair u, v ∈ R,
the quantity w(u, v) is the maximum cost of any edge in the unique u-v path in
S. Recall that BrS(R

′) is the set of bridges of S with respect to terminals R′, and
brS(R

′) denotes its cost.
Intuitively, we use the function w to answer the question: If we contract a com-

ponent containing terminals R′, what is the cost of edges that we can delete from
S? For example if R′ = {u, v} contains only two terminals, then after contract-
ing {u, v}, we could delete the most costliest edge on the created cycle in S, i.e.
brS({u, v}) = w(u, v). The situation becomes slightly more complicated if |R′| > 2,
so we deal with it in the following lemma.

Lemma 10. Let S be any Steiner tree on terminals R, and w : R × R → Q+ be
the associated bridge weight function. For any subset R′ ⊆ R of terminals, there is
a tree Y ⊆ R′ ×R′ such that

(a) Y spans R′.
(b) w(Y ) = brS(R

′).
(c) For any {u, v} ∈ Y , the u-v path in S contains exactly one edge from BrS(R

′).

Proof. Let BrS(R
′) = {b1, b2, . . . , bk−1} be the set of bridges. Observe that

S \ BrS(R
′) is a forest of trees F1, . . . , Fk, where each Fi contains exactly one

terminal ri ∈ R′. Each bridge bi connects exactly two trees Fi′ and Fi′′ . For each
bi, we add edge ei = {ri′ , ri′′} to Y . Observe that Y contains k nodes and k − 1
edges. Assume by contradiction that Y contains a cycle, say e1, e2, . . . , eg. Replace
each ei = {ri′ , ri′′} with Fi′ ∪ Fi′′ ∪ {bi}: the resulting graph is a cyclic subgraph
of S, a contradiction. Hence Y is a spanning tree on R′.
The path Pi between ri′ and ri′′ contains bi and no other bridge. Hence bi is a

maximum-cost edge on Pi, and w(ei) = c(bi) (see Figure 2). The claim follows.

The last lemma accounted for the cost reduction, when contracting a single com-
ponent spanning terminals R′. Now, we select and contract a component at random
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from a fractional solution x. We will show next, that the expected cost of the edges

that we can remove from a tree T is at least c(T )∑
C xC

(interestingly, this only holds,

if T is a terminal spanning tree).

Lemma 11. [Bridge Lemma] Let T be a terminal spanning tree and (x,C) be a
feasible solution to DCR. Then

c(T ) ≤
∑

C∈C

xC · brT (C).

Proof. For every component C ∈ C, we construct a spanning tree YC on R(C)
with weight w(YC) = brT (C) according to Lemma 10. Then we direct the edges
of YC towards sink(C). Let us install cumulatively capacity xC on the (directed)
edges of YC , for each C ∈ C. This way we obtain a directed capacity reservation
y : R × R → Q+, with y(u, v) :=

∑

YC∋(u,v) xC . The directed tree YC supports

at least the same flow as component C with respect to R(C). It then follows that
y supports one unit of flow from each terminal to the root. In other terms, y is
a feasible fractional solution to BCR. By Edmonds’ Theorem (Theorem 2), BCR
is integral when no Steiner node is used. As a consequence there is an (integral)
terminal spanning tree F that is not more costly than the fractional solution y, i.e.,
w(F ) ≤∑e∈R×R w(e)y(e).
Recall that w(u, v), for u, v ∈ R, is the maximum cost of any edge of the unique

cycle in T ∪{u, v}. It follows from the classic cycle rule for minimum spanning tree
computation that6 w(F ) ≥ c(T ). Altogether

∑

C∈C

xCbrT (C) =
∑

C∈C

xCw(YC) =
∑

e∈R×R

w(e)y(e) ≥ w(F ) ≥ c(T ).

4. ITERATIVE RANDOMIZED ROUNDING

In this section we present our approximation algorithm for Steiner tree. To highlight
the novel ideas of the approximation technique more than the approximation factor
itself, we present a simplified analysis providing a weaker 3/2 + ε approximation
factor (which is already an improvement on the previous best 1.55 approximation).
The more complex analysis leading to ln(4) + ε is postponed to Section 5.
The approximation algorithm for Steiner tree is described in Figure 3. In Step

(1a) we use the algorithm from Lemma 9. Recall that the cardinality of Ct is
upperbounded by a value M which, for any fixed ε > 0, is bounded by a polynomial
in n. Contracting a component Ct means collapsing all its terminals into its sink
sink(Ct), which inherits all the edges incident to Ct (in case of parallel edges, we
only keep the cheapest one). We let Optt denote the optimal Steiner tree at the
beginning of iteration t, and let optt be its cost. By opttf we denote the cost of the
optimal fractional solution at the beginning of iteration t.

6Consider the multi-graph T ∪ F , with edge weights d(e) = c(e) for e ∈ T and d(e) = w(e) for
e ∈ F . A minimum spanning tree of this multi-graph can be obtained by removing edges one

by one according to the cycle-rule until no cycle is left. Let us apply this algorithm by taking
any residual edge f = uv ∈ F , and considering the cycle Cf given by f plus the path between
u and v in T . Each time f can be removed since, by definition of w(f) = d(f), f is the most
expensive edge in Cf . Hence T is a minimum spanning tree. Since F is a spanning tree as well,

c(T ) = d(T ) ≤ d(F ) = w(F ).
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(1) For t = 1, 2, . . .
(1a) Compute a (1+ ε

2
)-approximate solution (xt,Ct) to DCR (w.r.t. the current instance).

(1b) Sample one component Ct, where Ct = C with probability xt
C/

∑
C′∈Ct xt

C′ . Contract
Ct into its sink.

(1c) If a single terminal remains, return
⋃t

i=1 C
i.

Fig. 3. A (ln(4) + ε)-approximation algorithm for Steiner tree.

Observe that
∑

C∈Ct xt
C ≤ M , and this quantity might vary over the iterations

t (in fact, [Chakrabarty et al. 2010a] show that the cardinality of the support of
any basic solution is even bounded by |R|). In order to simplify the approximation
factor analysis, we consider a dummy algorithm which is the same as the original
one, where we replace DCR with the following modified LP. We introduce a dummy
component C̄ formed by the root only (hence of cost zero), and we add the following
equation to our LP:

∑

C∈Ct

xt
C = M.

Observe that the new LP has the same optimal value as before, hence any claim
on the integrality gap of the new LP also holds for the original one. Intuitively,
the dummy algorithm behaves like the original one except for some idle iterations
where the dummy component is sampled. By a simple coupling argument7, all
the expected properties of the output are the same in the original and dummy
algorithm. In particular, any bound on the approximation factor of the dummy
algorithm also holds for the original one. Let us remark that, with respect to the
running time analysis, one should consider the original algorithm only8.

The expected cost of the produced solution is:

∑

t≥1

E[c(Ct)] ≤
∑

t≥1

∑

C∈Ct

E
[xt

C

M
c(C)

]

≤ 1 + ε
2

M

∑

t≥1

E[opttf ] ≤
1 + ε

2

M

∑

t≥1

E[optt]

(1)
Thus, in order to obtain a good approximation guarantee, it suffices to provide a
good bound on E[optt].

4.1 A first bound

The Bridge Lemma shows that given a terminal spanning tree and contracting
a random component from any feasible fractional solution, one can remove a 1

M
fraction (in terms of cost) of the edges and still obtain a terminal spanning tree. In
other words, the cost of the minimum terminal spanning tree decreases by a factor
(1 − 1

M ) per iteration in expectation. This implies an upper bound on opttf via

Lemma 5 (while later bounds will hold for optt only). The bound on opttf implies

7The coupling works as follows: for any input sequence I of random bits for the original algorithm,

consider the subsequence I′ obtained from I by discarding random bits used in idle iterations.
Observe that I′ is a sequence of random bits. We run the dummy algorithm using I′ as random
bit sequence. This way, the two algorithms output exactly the same solution deterministically.
8It is possible to show that the dummy algorithm runs in expected polynomial time, but this is

not crucial since the original algorithm needs at most |R| iterations.
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the first non-trivial bounds on the approximation guarantee of our algorithm (due
to the fact that opttf ≤ optt) and on the integrality gap of our LP.

Lemma 12. E[opttf ] ≤
(
1− 1

M

)t−1 · 2optf .

Proof. Let T t be the minimum-cost terminal spanning tree at the beginning of
iteration t. By Lemma 5, c(T 1) ≤ 2optf . For any iteration t > 1, the reduction in
the cost of T t w.r.t. T t−1 is at least brT t−1(Ct). Therefore, conditioning over T t−1,

E[c(T t)] ≤ c(T t−1)− E[brT t−1(Ct−1)]

= c(T t−1)− 1

M

∑

C∈Ct−1

xt−1
C · brT t−1(C)

Bridge Lem 11

≤
(

1− 1

M

)

· c(T t−1).

By induction on the conditioned expectations,

E[opttf ] ≤ E[c(T t)] ≤
(

1− 1

M

)t−1

· 2optf .

Observe that the bound from Lemma 12 improves over the trivial bound opttf ≤
optf only for t > M · ln(2). Nevertheless it suffices to prove the following result.

Theorem 13. For any fixed ε > 0, there is a randomized polynomial-time al-
gorithm which computes a solution to the Steiner tree problem of expected cost at
most (1 + ln(2) + ε) · optf .

Proof. Assume without loss of generality that M · ln(2) is integral. Combin-
ing (1) with Lemma 12, the expected approximation factor is

E

[∑

t≥1 c(C
t)

optf

]

≤ 1 + ε/2

M

∑

t≥1

E

[

opttf
optf

]

≤ 1 + ε/2

M

∑

t≥1

min

{

1, 2

(

1− 1

M

)t−1
}

≤ 1 + ε/2

M



M · ln(2) +
∑

t≥M ·ln(2)+1

2

(

1− 1

M

)t−1




≤
(

1 +
ε

2

)
(

ln(2) + 2

(

1− 1

M

)M ·ln(2)
)

≤
(

1 +
ε

2

)(

ln(2) + 2e− ln(2)
)

≤ 1 + ln(2) + ε.

Above we used the equation
∑

t≥t0
xt = xt0

1−x for 0 < x < 1 and the inequality
(1− 1/x)x ≤ 1/e for x ≥ 1.

Observe that Theorem 13 implies that the integrality gap of DCR is at most 1 +
ln(2) < 1.694. In Section 7 we will refine this bound on the gap to 1+ln(3)/2 < 1.55.
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4.2 A second bound

In order to further improve the approximation guarantee we show that, in each
iteration, the cost optt of the optimal (integral) Steiner tree of the current instance
decreases by a factor (1 − 1

2M ) in expectation. We remark that it is not known
whether this bound holds also for opttf . Also in this case the proof relies crucially
on the Bridge Lemma.

Lemma 14. Let S be any Steiner tree and (x,C) be a feasible solution to DCR.
Sample a component C ∈ C such that C = C ′ with probability xC′/M . Then there
is a subgraph S′ ⊆ S such that S′ ∪ C spans R and

E[c(S′)] ≤
(

1− 1

2M

)

· c(S).

Proof. It suffices to prove that E[brS(C)] ≥ 1
2M c(S). Turn S into a rooted

binary tree with the usual procedure. Then, for any Steiner node in S, choose the
cheapest edge going to one of its children. The set H ⊆ S of such selected edges
has cost c(H) ≤ 1

2c(S). Furthermore any Steiner node is connected to one terminal
using edges of H. Consider the terminal spanning tree T that emerges from S by
contracting H. By the Bridge Lemma 11,

E[brT (C)] =
1

M

∑

C′∈C

xC′ · brT (C ′) ≥ 1

M
c(T ).

Note that for any set of edges B ⊆ T and any component C the following holds:
If (T\B) ∪ C connects R, then also (S\B) ∪ C connects9 R. This implies that
brS(C) ≥ brT (C). Altogether:

E[brS(C)] ≥ E[brT (C)] ≥ 1

M
c(T ) =

1

M
(c(S)− c(H)) ≥ 1

2M
c(S).

Iterating Lemma 14 yields the following corollary.

Corollary 15. For every t ≥ 1,

E[optt] ≤
(

1− 1

2M

)t−1

· opt.

We now have all the ingredients to show a (3/2 + ε)-approximation factor.

Theorem 16. For any ε > 0, there is a polynomial-time randomized approxi-
mation algorithm for Steiner tree with expected approximation ratio 3/2 + ε.

Proof. Assume without loss of generality that M · ln(4) is integral. Combining

9Using that for any edge e ∈ T between terminals u, v ∈ R, there exists a path from u to v in S,

which uses only edge e plus some edges in H.
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(1) with Lemma 12 and Corollary 15, the expected approximation factor is:

E

[∑

t≥1 c(C
t)

opt

]

≤ 1 + ε/2

M

∑

t≥1

E

[
optt

opt

]

≤ 1 + ε/2

M

∑

t≥1

min

{

2

(

1− 1

M

)t−1

,

(

1− 1

2M

)t−1
}

≤ 1 + ε/2

M





M ·ln(4)
∑

t=1

(

1− 1

2M

)t−1

+
∑

t≥M ·ln(4)+1

2

(

1− 1

M

)t−1




=
(

1 +
ε

2

)

·
(

2− 2 ·
(

1− 1

2M

)M ·ln(4)

+ 2

(

1− 1

M

)M ·ln(4)
)

≤
(

1 +
ε

2

)

·
(

2− 2 · e− ln(4)/2 + 2e− ln(4)
)

≤ 3/2 + ε.

Above we exploited the equation
∑t0

t=1 x
t−1 = 1−xt0

1−x for 0 < x < 1. We also used

the fact that (1 − 1
y )

ln(4)y − (1 − 1
2y )

ln(4)y is an increasing function of y > 1, and

that limy→∞(1− 1
y )

y = 1
e .

5. A REFINED ANALYSIS

In this section we present a refined (ln(4)+ ε) approximation bound for our Steiner
tree algorithm.
We first give a high-level description of our analysis. Let S∗ := Opt be the

optimal Steiner tree for the original instance (in particular, c(S∗) = opt). Each
time we sample a component Ct, we will delete a proper subset of edges from
S∗. Consider the sequence S∗ = S1 ⊇ S2 ⊇ . . . of subgraphs of S∗ which are
obtained this way. We will guarantee that at any iteration t, the edge set St plus
the previously sampled components yields a subgraph that connects all terminals.
Furthermore, we will prove that a fixed edge e ∈ S∗ is deleted after an expected
number of at most ln(4)·M iterations. This immediately implies the approximation
factor of ln(4) + ε.
In order to track which edges can be safely deleted from S∗, we will construct an

artificial terminal spanning tree W (the witness tree) and assign a random subset
W (e) of edges of W to each edge e ∈ S∗ (the witnesses of e). At each iteration,
when component Ct is sampled, we mark a proper random subset BrW (Ct) of edges
of W ; we will later define our choice of subset BrW (Ct). As soon as all the edges
of W (e) are marked, edge e is deleted from S∗. Summarizing, we consider the
following random process:

For t = 1, 2, . . ., sample one component Ct from (xt,Ct) and mark the
edges in BrW (Ct). Delete an edge e from S∗ as soon as all edges in
W (e) are marked.

The subgraph St is formed by the edges of S∗ which are not yet deleted at the
beginning of iteration t.
Our choice of BrW (Ct) will guarantee that, deterministically, the unmarked edges

W ′ plus the sampled components connect all the terminals. Our choice of W (e)
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3 1 1 2 1 3 1 2

2
e0

1 2 1

1 1

f0

f1 (a) (b)

Fig. 4. (a) Optimal Steiner tree S∗ in black, where bold edges indicate the chosen edges B̃, and the
associated terminal spanning tree W in gray. Edges e in S∗ are labeled with |W (e)|. For example
W (e0) = {f0, f1}. (b) Marked edges in W at a given iteration t are drawn dotted; the non-deleted
edges in S∗ (i.e., edges of St) are drawn in black. Non-marked edges of W and non-deleted edges

of S∗ support the same connectivity on R.

will ensure that, deterministically, if W ′ plus the sampled components connect all
the terminals, then the sampled components plus the undeleted edges St = {e ∈
S∗ | W (e) ∩ W ′ 6= ∅} do the same. Hence the St’s have the claimed connectivity
properties. The analysis then reduces to show that all the edges in W (e) are marked
within a small enough number of iterations (in expectation).
We next define W , W (·), and BrW (·). Turn S∗ into a rooted binary tree with the

usual procedure. Recall that the height of the binary tree is at most |R| − 1. For
each Steiner node, choose uniformly at random one of the two edges to its children.
Let B̃ denote the chosen edges. Clearly Pr[e ∈ B̃] = 1

2 for any e ∈ S∗. Let Puv ⊆ S∗

be the unique u-v path in S∗. The witness tree is

W :=
{

{u, v} ∈
(
R
2

)
| |Puv ∩ B̃| = 1

}

.

As in the arguments of Lemma 10, W is a terminal spanning tree. For each edge
e ∈ S∗, define

W (e) := {{u, v} ∈ W | e ∈ Puv}.
See Figure 4(a) for an illustration. As we will see, W (e) is small in expectation. It
remains to define BrW (·). For a given component C ∈ C, let the set of candidate
bridges BW (C) be

BW (C) := {B ⊆ W | |B| = |R(C)| − 1, (W\B) ∪ C connects V (W )}.
Intuitively, BW (C) is the family of bridge sets of W with respect to C that one
obtains for varying cost functions. The set BrW (Ct) is chosen randomly in BW (C),
according to a proper probability distribution wC : BW (C) → [0, 1], which will be
described in the following. Observe that BrW (C) ∈ BW (C). The intuitive reason
for using a random element of BW (C) rather than BrW (C) is that we wish to mark
the edges of W in a more uniform way. This, in combination with the small size of
W (e), guarantees that edges are deleted quickly enough.
The next lemma shows that the undeleted edges plus the sampled components

connect the terminals.
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Lemma 17. The graph St ∪⋃t−1
t′=1 C

t′ spans R.

Proof. Let W ′ ⊆ W be the set of edges which are not yet marked at the
beginning of iteration t (see also Figure 4(b)). By the definition of BW (C) and

since BrW (C) ∈ BW (C), W ′ ∪⋃t−1
t′=1 C

t′ spans R. Consider any edge {u, v} ∈ W ′.
Then {u, v} ∈ W (e) for all e ∈ Puv. Hence no edge on Puv is deleted. Therefore u
and v are also connected in St. The claim follows.

Note that 1 ≤ |W (e)| ≤ |R| − 1. Observe also that |W (e)| = 1 if e ∈ B̃. Indeed,
the expected cardinality of W (e) is small also for the remaining edges.

Lemma 18. For any edge e ∈ S∗ at level ke ≤ |R| − 1 (edges incident to the root
are at level one), one has

Pr[|W (e)| = q] =







1/2q if 1 ≤ q < ke;

2/2q if q = ke;

0 otherwise.

Proof. Consider the path v0, v1, . . . , vke
from e towards the root. In particular,

e = {v0, v1}. If (vq−1, vq) is the first edge from B̃ on this path, then |W (e)| = q.
This is because, for each node vj , j ∈ {1, . . . , ke}, there is one distinct path Puv,
with {u, v} ∈ W and having vj as its top node, that contains e (see also Figure

4(a)). This event happens with probability 1/2q. If there is no edge from B̃ on the
path v0, v1, . . . , vke

, |W (e)| = ke by a similar argument. The latter event happens
with probability 1/2ke . The claim follows.

Next lemma proves the existence of random variables BrW (·) such that each edge
of W is marked at each iteration with probability at least 1/M . Its proof is based
on a combination of Farkas’ Lemma with our Bridge Lemma.

Lemma 19. There is a choice of the random variables BrW (·) such that each
edge e ∈ W is marked with probability at least 1/M at each iteration.

Proof. Consider any given iteration. Let (x,C) be the corresponding solution to
DCR, and C∗ be the sampled component in that iteration. In particular, C∗ = C
with probability xC/M = xC/

∑

C′∈C
xC′ . In this iteration we mark the edges

BrW (C∗), where Pr[BrW (C∗) = B] = wC∗(B) for any B ∈ BW (C∗). We will show
that there is a choice of the wC ’s, C ∈ C, such that

∑

(C,B):B∈BW (C),e∈B

xC · wC(B) ≥ 1, ∀e ∈ W.

This implies the claim since

Pr[e ∈ BrW (C∗)] =
∑

(C,B):B∈BW (C),e∈B

xC

M
· wC(B) ≥ 1

M
.

Suppose by contradiction that such probability distributions wC do not exist.
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Then the following linear system has no solution10:
∑

B∈BW (C)

wC(B) ≤ 1, ∀C ∈ C;

∑

(C,B):B∈BW (C),e∈B

xC · wC(B) ≥ 1, ∀e ∈ W ;

wC(B) ≥ 0, ∀C ∈ C, ∀B ∈ BW (C).

Farkas’ Lemma11 yields that there is a vector (y, c) ≥ 0 with

(a) yC ≥∑e∈B cexC , ∀C ∈ C, ∀B ∈ BW (C);

(b)
∑

C∈C
yC <

∑

e∈W ce.

Let us interpret c as an edge cost function. In particular, c(W ) :=
∑

e∈W ce and
brW (C) is the cost of the bridges of W with respect to component C and this cost
function. One has

yC
(a)

≥ xC ·max{c(B) | B ∈ BW (C)} = xC · brW (C).

Then
∑

C∈C

xC · brW (C) ≤
∑

C∈C

yC
(b)
<
∑

e∈W

ce = c(W ),

which contradicts the Bridge Lemma 11.

We next show that, for small |W (e)|, all the edges of W (e) are marked (and
hence e is deleted) within a small number of iterations. A handwaving argument
works as follows. Let |W (e)| = q. Similarly to the Coupon Collector problem (see
e.g. [Mitzenmacher and Upfal 2005]), it takes in expectation M

q iterations until the

first edge is marked, then M
q−1 iterations to hit the second one and so forth. Finally

all edges are marked after an expected number of M · ( 1q + 1
q−1 + . . .+1) = Hq ·M

iterations. (Here Hq :=
∑q

i=1
1
i denotes the q-th harmonic number). However, this

argument does not reflect the fact that a set BrW (Ct) might contain several edges
from W (e). A more careful argument incorporates this complication.
For W̃ ⊆ W , let X(W̃ ) denote the first iteration when all the edges in W̃ are

marked. Observe that St = {e ∈ S∗ | X(W (e)) ≥ t}.
Lemma 20. Let W̃ ⊆ W . Then the expected number of iterations until all edges

in W̃ are marked satisfies

E[X(W̃ )] ≤ H|W̃ | ·M.

Proof. Let q = |W̃ |. By mq we denote the best possible upper bound on the

expected number of iterations until all edges of W̃ are marked (over all feasible
probability distributions). We will prove that mq ≤ Hq ·M by induction on q.

10We can replace the “=” constraint with “≤” without affecting feasibility since all coefficients of
wC(B) are non-negative.
11∃x ≥ 0 : Ax ≤ b ∨̇ ∃z ≥ 0 : zTA ≥ 0, zT b < 0.
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For q = 1, the only edge in W̃ is marked with probability at least 1
M at each

iteration, hence m1 ≤ M . Next, let q > 1 and consider the first iteration. Suppose
that λi is the probability that at least i many edges are marked in this iteration.
Since the expected number of marked edges must be at least q · 1

M in the first
iteration, this distribution has to satisfy

∑q
i=1 λi ≥ q

M . Note that λ0 = 1 and
λq+1 = 0. For notational convenience, let m0 := 0.

If we condition on the event that i ∈ {0, . . . , q} edges are marked in the first
iteration, we need in expectation at most mq−i more iterations until the remaining
q − i edges are marked. Hence we obtain the following bound:

mq ≤ 1 +

q
∑

i=0

Pr
[
exactly i edges marked
at the first iteration

]
·mq−i

inductive
hypothesis

≤ 1 +M ·
q
∑

i=1

(λi − λi+1)Hq−i + (1− λ1)mq

= 1 +M ·
q
∑

i=1

λi · (Hq−i −Hq−i+1)
︸ ︷︷ ︸

≤−1/q

+λ1HqM + (1− λ1)mq

≤ 1− 1

q
M ·

q
∑

i=1

λi

︸ ︷︷ ︸

≥q/M

+λ1HqM + (1− λ1)mq

≤ λ1HqM + (1− λ1)mq.

From λ1 > 0 we obtain mq ≤ Hq ·M . The claim follows.

Now we have all the ingredients to prove the expected (ln(4) + ε) approximation
factor.

Theorem 21. For any constant ε > 0, there is a polynomial-time randomized
approximation algorithm for the Steiner tree problem with expected approximation
ratio ln(4) + ε.

Proof. For an edge e ∈ S∗, we define D(e) = max{t | e ∈ St} as the iteration
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in which e is deleted. One has12

E[D(e)] =

ke∑

q=1

Pr[|W (e)| = q] · E[D(e) | |W (e)| = q]

Lem 20
≤

ke∑

q=1

Pr[|W (e)| = q] ·Hq ·M

Lem 18
=

ke−1∑

q=1

(1

2

)q

·Hq ·M +
2

2ke
·Hke

·M

≤
∑

q≥1

(1

2

)q

·Hq ·M

= M ·
∑

q≥1

1

q

∑

i≥0

(1

2

)q+i

= M ·
∑

q≥1

1

q

(1

2

)q−1

= ln(4) ·M.

The expected cost of the approximate solution satisfies

E
[∑

t≥1

c(Ct)
]

≤
∑

t≥1

1 + ε/2

M
E
[
opttf

]

≤ 1 + ε/2

M

∑

t≥1

E
[
c(St)

]

=
1 + ε/2

M

∑

e∈S∗

E[D(e)] · c(e) ≤ (ln(4) + ε) · opt.

The claim follows.

5.1 A ( 7360 + ε)-Approximation for Quasi-Bipartite Graphs

In this section we consider the special case of quasi-bipartite graphs. Recall that we
call a graph G = (V,E) quasi-bipartite if no pair of non-terminal nodes u, v ∈ V \R
is connected by an edge. In other words, the edge sets is a union of stars (with a
Steiner node as center and terminals as leaves) which only share common terminals
(plus edges running directly between terminals). We show that our algorithm has
an approximation ratio of at most 73

60 + ε < 1.217 (for ε small enough). This
improves over the previously best known factor of 1.28 in [Robins and Zelikovsky
2005]. Note that Gröpl et al. [2002] show the bound of 73

60 for the more restricted
case of uniform quasi-bipartite graphs, where all edges incident to a non-terminal
node have the same cost. For this class the integrality gap of the hypergraphic LP
relaxation by Chakrabarty et al. [2010a] can also be bounded by 73

60 .

12Lin(z) :=
∑

q≥1
zq

qn
is known as the polylogarithm or Jonquière’s function. It is well-known that

Li1(z) = ln( 1
1−z

), from which we obtain in the final equation:
∑

q≥1
1
q
( 1
2
)q−1 = 2

∑
q≥1

1
q
( 1
2
)q =

2 ln( 1
1−1/2

) = ln(4).
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Let S∗ be an optimal Steiner tree, and let Z1, . . . , Zℓ be its (undirected) compo-
nents. Since the input graph (and hence S∗) is quasi-bipartite, each Zi (unless it
consists of a single edge) must be a star with a single Steiner node as center and
terminals as leaves. In fact otherwise there would be two adjacent internal (and
hence non-terminal) nodes in Zi. We can improve the approximation guarantee by
choosing the witness tree W in a more economical way, exploiting the structure of
S∗. For each i = 1, . . . , ℓ, we add to the chosen edges B̃ all the edges of Zi but one
edge chosen uniformly at random. Again for u, v ∈ R, let Puv be the unique u-v
path in S∗. We let

W := {{u, v} ∈
(
R
2

)
| |Puv ∩ B̃| = 1}.

Observe that W will in fact be a terminal spanning tree. The analysis is now much
simpler.

Theorem 22. For any constant ε > 0, there is a polynomial-time randomized
approximation algorithm for the Steiner tree problem on quasi-bipartite graphs with
expected approximation ratio 73

60 + ε.

Proof. We still consider the algorithm in Figure 3. For an edge e ∈ S∗, we
define D(e) = max{t | e ∈ St} as the iteration in which e is deleted. Let k be the
number of terminals in the star Zi that contains e. With probability 1

k one has
|W (e)| = k − 1, and otherwise |W (e)| = 1. Hence, by Lemma 20,

E[D(e)] ≤ 1

k
·Hk−1 ·M +

(

1− 1

k

)

·H1 ·M =
(1

k
·Hk−1 +

k − 1

k

)

·M ≤ 73

60
·M.

In the last inequality we used the fact13 that 1
k ·Hk−1+

k−1
k is maximized for k = 5.

The claim follows along the same line as in Theorem 21.

6. DERANDOMIZATION

In this section, we show how to derandomize the result from Section 5 using the
method of limited independence (see, e.g., [Alon and Spencer 2008]). This way, we
prove Theorem 3.
We start (Section 6.1) by presenting an alternative, phase-based algorithm, which

updates the LP only a constant number of times (the phases). Then we show
(Section 6.2) how to sample components in each phase with a logarithmic number
of random bits.

6.1 A Phase-Based Randomized Algorithm

Consider the algorithm from Figure 5. The basic idea behind the algorithm is
grouping iterations into phases. In each phase, we keep the LP unchanged. The
details on how to sample components in each phase are given later.

We may assume that the computed DCR solution (xs,Cs) is well-rounded, i.e.,

• |Cs| = m for a prime number m,

• xs
C = 1

N for all C ∈ Cs and N ≥ 1 is bounded by a polynomial in n.

13To see that, let f(k) := 1
k
·Hk−1 + k−1

k
. The difference f(k + 1)− f(k) =

2−Hk−1

k(k+1)
is positive

for k ≤ 4 and negative for k ≥ 5.
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(1) For phase s = 1, 2, . . . , 1/ε2

(1a) Compute a (1 + ε)-approximate well-rounded solution (xs,Cs) to DCR (w.r.t. the
current instance).

(1b) Sample φs components Cs,1, . . . , Cs,φs
from Cs according to xs, and contract them.

(2) Compute a minimum-cost terminal spanning tree T in the remaining instance.

(3) Output T ∪
⋃1/ε2

s=1

⋃φs

i=1 C
s,i.

Fig. 5. Phase-based sampling algorithm

This can be achieved as follows: One computes a (1 + ε
2 )-approximate solution

(x,C). Say h = |C|. Then we round up all entries in x to the nearest multiple of
1
N for N := 8h/ε and term the obtained solution x′. Using the generous estimate
c(C) ≤ 2optf (following from Lemma 5) we obtain, for ε ≤ 1,

∑

C∈C

x′
C · c(C) ≤

(

1 +
ε

2

)

·
(

optf +
∑

C∈C

ε

8h
c(C)

)

≤ (1 + ε)optf .

Next, replace a component C by x′
C · N many copies. Let m′ be the number of

obtained components (counted with multiplicities). Then we can compute a prime
number m ∈ [m′, 2m′] (see e.g. [Niven et al. 1991]) and add m − m′ dummy
components C containing only the root, each one with x′

C := 1
N . This yields a

feasible well-rounded solution as desired. We furthermore assume14 that m ≥ N/ε2

and 1/ε is integer.
For W̃ ⊆ W , let X̄(W̃ ) denote the first phase when all edges in W̃ are marked.

Analogously, D̄(e) is the phase when all the edges in W (e) are marked. For nota-
tional convenience, we interpret Step (2) as a final phase when all the edges of W
are marked (so that X̄(W̃ ) and D̄(e) are well defined). The next lemma is a simple
adaptation of Lemma 20.

Lemma 23. Let W̃ ⊆ W . Suppose each edge is marked at each phase with prob-
ability at least p ∈ (0, 1]. Then the expected number of phases until all edges in W̃
are marked satisfies

E[X̄(W̃ )] ≤ H|W̃ | ·
1

p
.

Proof. By a simple coupling argument15, we can assume that the number of
phases is unbounded. The claim follows along the same line as the proof of Lemma
20, replacing the notion of iteration with the notion of phase and the probability
1/M with p.

We next bound the approximation factor of the algorithm for a generic sampling
procedure (satisfying some properties).

14If 1T x = m
N

= O(1) and |C| = O(1) for C ∈ C, then the number of terminals would be bounded
by a constant – in this case an optimum solution can be computed in polynomial time.
15The coupling works as follows. Let A be the original algorithm and B be the modified one (with
an unbounded number of phases). We run the two algorithms with the same input sequence I of
random bits. For any edge e, if e is marked by B within a given phase t, then deterministically
e is marked by A as well within the same phase. Hence, PrA[X̄(W̃ ) ≤ t] ≥ PrB[X̄(W̃ ) ≤ t]. We

can conclude that EA[X̄(W̃ )] =
∑

t≥1 PrA[X̄(W̃ ) ≥ t] ≤
∑

t≥1 PrB[X̄(W̃ ) ≥ t] = EB[X̄(W̃ )].
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Lemma 24. Suppose that Step (1b) satisfies the following two properties:

(a) Each component C is sampled with probability at most α · xs
C

(b) Each edge e in the witness tree is marked with probability at least β.

Then the approximation factor of the algorithm in Figure 5 is at most ln(4)·( (1+ε)α
β +

2ε2

β ).

Proof. As in the proof of Theorem 21, one has

E[D̄(e)] =

ke∑

q=1

Pr[|W (e)| = q] · E[D̄(e) | |W (e)| = q]

Lem 18+23
≤

∑

q≥1

(1

2

)q

·Hq ·
1

β
= ln(4) · 1

β
. (2)

Let opts be the cost of an optimal Steiner tree at the beginning of phase s. The
expected cost of the sampled components satisfies

E
[ 1/ε2
∑

s=1

φs∑

i=1

c(Cs,i)
]

≤
1/ε2
∑

s=1

∑

C∈Cs

E[α · xs
C · c(C)]

≤ α(1 + ε) ·
1/ε2
∑

s=1

E[opts]

≤ α(1 + ε)
∑

e∈S∗

E[D̄(e)] · c(e)
(2)

≤ ln(4) · α(1 + ε)

β
opt.

Let S′ := {e ∈ S∗ | D̄(e) > 1/ε2} be a feasible Steiner tree at the end of the last
phase. By Markov’s inequality and (2),

Pr[D̄(e) > 1/ε2] ≤ ln(4)
ε2

β
.

Therefore E[c(S′)] ≤ ln(4) ε
2

β · opt. The minimum-cost terminal spanning tree is at

most twice that expensive, hence E[c(T )] ≤ 2 ln(4) ε
2

β · opt. The claim follows.

Lemma 24 suggests an alternative way to implement the algorithm from Section 5.
Consider the following natural implementation of Step (1b):

(Independent Phase Sampling)
Sample φs = ε ·M components Cs,1, . . . , Cs,φs

independently (with rep-
etitions), where Cs,i = C ∈ Cs with probability xs

C/M .

The Independent Phase Sampling samples a component C with a probability
of at most φs · 1

M ·xs
C = ε ·xs

C . On the other hand, the probability that edge e ∈ W
is marked is essentially lower bounded by ε. Inspecting Lemma 24, we see that
α ≈ β ≈ ε, which gives the following corollary.

Corollary 25. The algorithm from Figure 5 which implements Step (1b) with
the Independent Phase Sampling is (ln(4) +O(ε))-approximate in expectation.
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This provides a 1.39-approximation algorithm that needs to solve just a constant
(rather than polynomial) number of LPs. In particular, its running time might
be competitive with the better-than-2 approximation algorithms in the literature.
But a drawback of the Independent Phase Sampling implementation is that it
needs too many (namely polynomially many) random bits: hence it is not easy to
derandomize. For this reason we introduce a more complex sampling procedure in
the next subsection.

6.2 A Dependent Sampling Procedure

We next describe an alternative implementation of Step (1b), which still guarantees
α ≈ β ≈ ε, and requires only O(log n) random bits. We focus on a specific phase
s and an edge e ∈ W . Let (x,C) := (xs,Cs). We renumber the components such
that C = (C0, . . . , Cm−1), and we let xj := xCj

= 1
N .

(Dependent Phase Sampling)
(i) Choose A ∈ {0, . . . ,m − 1} and B ∈ {1, . . . ,m − 1} uniformly and

independently at random.
(ii) Select Cj with j ∈ J := {A+ i ·B mod m | i = 1, . . . , ⌊ ε

Nm⌋}.
Observe that Step (i) requires only O(logm) random bits. Since m = nO(1), this
number of bits is O(log n).
We will show that: (1) any component Cj is sampled with probability no more

than αxj , α := ε and (2) edge e is marked with probability at least β := ε(1− 2ε).
The first claim is easy to show.

Lemma 26. Implementing Step (1b) with the Dependent Phase Sampling,
each component Cj is sampled with probability at most ε · xj.

Proof. For any component Cj , Pr[j ∈ J ] = 1
m · ⌊ ε

Nm⌋ ≤ ε
N = ε · xj .

Showing claim (2) is more involved.

Lemma 27. Implementing Step (1b) with the Dependent Phase Sampling,
each edge e ∈ W is marked with probability at least ε(1− 2ε).

Proof. Let wCj
be the probability distribution for component Cj as in Lemma 19.

Recall that Pr[BrW (Cj) = B] = wCj
(B) and

δ :=

m−1∑

j=0

xj

∑

B∈BW (Cj):e∈B

wCj
(B) ≥ 1.

Let yj :=
∑

B∈BW (Cj):e∈B wCj
(B) denote the probability that e is marked, given

that Cj is sampled. Since xj = 1
N , we have

∑m−1
j=0 yj = δN . There lies no harm

in assuming that δ = 1, since the probability that e is marked is increasing in the
yj ’s.
Let Ej be the event that Cj is sampled and e ∈ BrW (Cj). It is sufficient to show

that Pr[
⋃m−1

j=0 Ej ] ≥ ε(1 − 2ε). The crucial insight is to obtain a lower bound on
Pr[Ej ] and an upper bound on Pr[Ej ∩ Ej′ ] for j 6= j′. First of all, we have

Pr[Ej ] = yj · Pr[j ∈ J ] = yj ·
⌊εm

N

⌋

· 1

m
≥ ε(1− ε)

yj
N

, (3)
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using that εm
N ≥ 1

ε by assumption. Secondly, let j, j′ ∈ {0, . . . ,m − 1} be distinct
component indices. Then j, j′ ∈ J if and only if the system

j ≡m A+Bi (4)

j′ ≡m A+Bi′

has a solution i, i′. But since Zm is a field, for any distinct pair i, i′ ∈ {1, . . . , ⌊ εm
N ⌋},

there is precisely one pair (A,B) ∈ {0, . . . ,m − 1} × {1, . . . ,m − 1} satisfying (4).
Hence

Pr[Ej ∩ Ej′ ] ≤ yj · yj′ ·
⌊εm

N

⌋

·
(⌊εm

N

⌋

− 1
)

· 1

m · (m− 1)
≤ yj · yj′ ·

ε2

N2
. (5)

By the inclusion-exclusion principle (see, e.g., Corollary A.2 in [Arora and Barak
2009]),

Pr
[m−1⋃

j=0

Ej

]

≥
m−1∑

j=0

Pr[Ej ]−
m−1∑

j=0

∑

j′ 6=j

Pr[Ej ∩ Ej′ ]

(3)+(5)

≥
m−1∑

j=0

ε(1− ε)
yj
N

− ε2

N2

m−1∑

j=0

yj

︸ ︷︷ ︸

=N

·
∑

j′ 6=j

yj′

︸ ︷︷ ︸

≤N

≥ ε(1− ε)− ε2 = ε(1− 2ε),

which proves the claim.

A deterministic (ln(4) + ε)-approximation algorithm easily follows.

Proof of Theorem 3. Consider the algorithm from Figure 5 which imple-
ments Step (1b) with the Dependent Phase Sampling. This algorithm can
be derandomized by considering all the possible outcomes of random variables A
and B in each phase, which are at most m2/ε2 . The claim on the approximation
follows from Lemmas 24, 26, and 27.

We can similarly derandomize the result for quasi-bipartite graphs.

Theorem 28. For any constant ε > 0, there is a deterministic polynomial-time
algorithm for the Steiner tree problem on quasi-bipartite graphs with approximation
ratio 73

60 + ε.

Proof. Consider the same algorithm as in Theorem 3. Lemmas 23, 26, and 27
still hold. Under the same assumptions as in Lemma 24, and by the different choice
of the witness tree W in this case, we now have

E[D̄(e)] ≤ 1

k
·Hk−1 ·

1

β
+
(

1− 1

k

)

·H1 ·
1

β
=
(1

k
·Hk−1 +

k − 1

k

)

· 1
β

≤ 73

60
· 1
β
.

Then the expected cost of the sampled components satisfies E[
∑

s,i c(C
s,i)] ≤

73
60

α(1+ε)
β · opt. Similarly, the expected cost of the final spanning tree satisfies

E[c(T )] ≤ 2 · 73
60

ε2

β · opt. Altogether, the approximation factor from Lemma 24

now reduces to 73
60 · ( (1+ε)α

β + 2ε2

β ). The claim follows along the same line as in
Theorem 3.
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7. INTEGRALITY GAP

In this section we upper bound (Section 7.1) and lower bound (Section 7.2) the
integrality gap of DCR. Furthermore, we compare DCR with BCR (Section 7.3).

7.1 An Upper Bound

Note that, despite the fact that our analysis is based on an LP relaxation of the
problem, it does not imply a ln(4) (nor even a 1.5) upper bound on the integrality
gap of the studied LP. It only provides a 1 + ln(2) upper bound, as shown in
Theorem 13 (by letting ε tend to zero). This is because the LP changes during
the iterations of the algorithm, and its solution is only bounded with respect to the
initial optimal integral solution. In this section we prove that our LP has integrality
gap at most 1 + ln(3)/2 < 1.55. Before proceeding with our (fairly technical)
argument, let us remark that, after the conference version of this paper appeared,
a shorter and perhaps more elegant proof (still based on the Bridge Lemma) of the
same claim was given in [Chakrabarty et al. 2010b].
In order to prove the 1.55 upper bound on the integrality gap of DCR, claimed

in Theorem 4, we consider the algorithm R&Z by Robins and Zelikovsky [2005].
We show that this algorithm produces solutions of cost bounded with respect to
the optimal fractional solutions to k-DCR (and hence of DCR). This is achieved
by combining the original analysis in [Robins and Zelikovsky 2005] with our new
Bridge Lemma 11. This approach was, to some extent, inspired by an argument
in [Charikar and Guha 2005] in the context of facility location. We leave it as
an interesting open problem to prove a ln(4) (or even 1.5) upper bound on the
integrality gap of DCR (if possible). This might involve the development of a
fractional version of Lemma 14.
Algorithm R&Z works as follows. It constructs a sequence T 0, T 1, . . . , Tµ of ter-

minal spanning trees, where T 0 is a minimum-cost terminal spanning tree in the
original graph. At iteration t we are given a tree T t and a cost function ct on the
edges of the tree (initially c0 ≡ c). The algorithm considers any candidate compo-
nent C with at least 2 and at most k terminals (k-component). Let T t[C] denote
the minimum spanning tree of the graph T t∪C, where the edges e ∈ C have weight
0 and the edges f ∈ T t weight ct(f). The subset of edges in T t but not in T t[C]
are denoted by BrT t(C). In fact, BrT t(C) is the set of bridges of T t with respect
to R(C) and the above weight function. For a given component C, we denote as
Loss(C) the minimum-cost subforest of C with the property that there is a path
between each Steiner node in C and some terminal in R(C). In the terminology
from Section 3, Loss(C) is the complement of the set of bridges of the subtree C
after contracting R(C). We let loss(C) = c(Loss(C)).

It is convenient to define the following quantities:

gaint(C) = brT t(C)− c(C) and sgaint(C) = gaint(C) + loss(C).

The algorithm selects the component Ct+1 which maximizes gaint(C)/loss(C). If
this quantity is non-positive, the algorithm halts. Otherwise, it considers the graph
T t ∪ Ct+1, and contracts Loss(Ct+1). The tree T t+1 is a minimum-cost terminal
spanning tree in the resulting graph. In case that parallel edges are created this
way, the algorithm only keeps the cheapest of such edges. This way we obtain the
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cost function ct+1 on the edges of T t+1.
Let Apxk be the approximate solution computed by the algorithm, and apxk =

c(Apxk). Recall that µ is the index of the final tree in the sequence of computed
trees. The following two lemmas are implicitly given in [Robins and Zelikovsky
2005]: the first one is implied by Equation (4.2), and the second one is contained
in the first chain of inequalities at page 8.

Lemma 29. [Robins and Zelikovsky 2005] For t = 1, 2, . . . , µ, ct(T t) = ct−1(T t−1)−
sgaint−1(Ct).

Lemma 30. [Robins and Zelikovsky 2005] For any ℓ ≤ µ,

apxk ≤
ℓ∑

t=1

loss(Ct) + cℓ(T ℓ).

Recall that optf,k is the cost of the optimal fractional solution to k-DCR. Let (x,C)
be an optimal fractional solution to k-DCR. Define lossf,k :=

∑

C∈C
xC loss(C).

Corollary 31. lossf,k ≤ 1
2optf,k.

Proof. From Lemma 6, for any C ∈ C, loss(C) = c(C)− brC(R(C)) ≤ 1
2c(C).

As a consequence, lossf,k ≤ 1
2

∑

C∈C
xC · c(C) = 1

2optf,k.

Corollary 32. cµ(Tµ) ≤ optf,k.

Proof. Using the fact that gainµ(C) = brTµ(C)− c(C) ≤ 0 for any component
C,

cµ(Tµ)
Bridge Lem 11

≤
∑

C∈C

xCbrTµ(C) ≤
∑

C∈C

xCc(C) = optf,k.

By Corollary 32, and since ct(T t) is a non-increasing function of t, there must be a
value of ℓ ≤ µ such that:

cℓ−1(T ℓ−1) > optf,k ≥ cℓ(T ℓ). (6)

In the following we will bound
∑ℓ

t=1 loss(C
t)+ cℓ(T ℓ). By Lemma 30, this will give

a bound on apxk. Let

gaintf := ct(T t)− optf,k and sgaintf := gaintf + lossf,k.

Lemma 33. For t = 1, 2, . . . , µ, sgaint−1(Ct)
loss(Ct) ≥ sgaint−1

f

lossf,k
.
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Proof. We first note that

gaint−1
f

lossf,k
=

ct−1(T t−1)−∑C∈C
xCc(C)

∑

C∈C
xC loss(C)

Bridge Lem 11

≤
∑

C∈C
xC(brT t−1(C)− c(C))
∑

C∈C
xC loss(C)

=

∑

C∈C
xCgain

t−1(C)
∑

C∈C
xC loss(C)

≤ max
C∈C

{
gaint−1(C)

loss(C)

}

≤ gaint−1(Ct)

loss(Ct)
,

where in the last inequality we used the fact that Ct maximizes gaint−1(C)/loss(C)
over all the k-restricted components C. It follows that

sgaint−1(Ct)

loss(Ct)
= 1 +

gaint−1(Ct)

loss(Ct)
≥ 1 +

gaint−1
f

lossf,k
=

sgaint−1
f

lossf,k
.

We need some more notation. Let sgainℓ−1(Cℓ) = sgain1 + sgain2 such that

sgain1 = cℓ−1(T ℓ−1)− optf,k
(6)
> 0. (7)

We also let loss(Cℓ) = loss1 + loss2 such that

sgainℓ−1(Cℓ)

loss(Cℓ)
=

sgain1

loss1
=

sgain2

loss2
. (8)

Eventually, we define

sgainℓ1f := sgainℓ−1
f − sgain1

(7)
= cℓ−1(T ℓ−1)− optf,k + lossf,k − (cℓ−1(T ℓ−1)− optf,k) = lossf,k. (9)

Lemma 34.
∑ℓ−1

t=1 loss(C
t) + loss1 ≤ lossf,k ln

(
sgain0

f

sgainℓ1
f

)

.

Proof. For every t = 1, 2, . . . , ℓ− 1,

sgaintf = sgaint−1
f − sgaint−1(Ct)

Lem 33
≤ sgaint−1

f

(

1− loss(Ct)

lossf,k

)

.

Furthermore

sgainℓ−1
f

lossf,k

Lem 33
≤ sgainℓ−1(Cℓ)

loss(Cℓ)

(8)
=

sgain1

loss1
,

from which

sgainℓ1f = sgainℓ−1
f − sgain1 ≤ sgainℓ−1

f

(

1− loss1

lossf,k

)

.

Then

sgainℓ1f

sgain0f
≤
(

1− loss1

lossf,k

) ℓ−1∏

t=1

(

1− loss(Ct)

lossf,k

)

.
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Taking the logarithm of both sides and recalling that x ≥ ln(1 + x),

ln

(

sgain0f

sgainℓ1f

)

≥ 1

lossf,k

(
ℓ−1∑

t=1

loss(Ct) + loss1

)

.

We now have all the ingredients to bound the approximation factor of the algo-
rithm with respect to optf,k. Let mst = c(T 0) = c0(T 0). The following theorem
and corollary are straightforward adaptations of analogous results in [Robins and
Zelikovsky 2005].

Theorem 35. apxk ≤ optf,k + lossf,k ln
(

mst−optf,k+lossf,k
lossf,k

)

.

Proof. Since sgaint−1(Ct) ≥ loss(Ct), it follows from (8) that

sgain2 ≥ loss2. (10)

Putting everything together we obtain

apxk
Lem 30
≤

ℓ∑

t=1

loss(Ct) + cℓ(T ℓ)

Lem 29
=

ℓ−1∑

t=1

loss(Ct) + loss(Cℓ) + cℓ−1(T ℓ−1)− sgainℓ−1(Cℓ)

=
ℓ−1∑

t=1

loss(Ct) + loss1 + loss2 + cℓ−1(T ℓ−1)− sgain1 − sgain2

(10)

≤
ℓ−1∑

t=1

loss(Ct) + loss1 + cℓ−1(T ℓ−1)− sgain1

(7)
=

ℓ−1∑

t=1

loss(Ct) + loss1 + optf,k

Lem 34
≤ optf,k + lossf,k ln

(

sgain0f

sgainℓ1f

)

(9)
= optf,k + lossf,k ln

(
mst− optf,k + lossf,k

lossf,k

)

.

Lemma 36. For any constant k ≥ 2, there exists a polynomial-time algorithm
for Steiner tree which computes a solution of cost at most 1+ln(3)/2 times the cost
of the optimal fractional solution to k-DCR.

Proof. A straightforward adaptation of Lemma 5 implies that

mst ≤ 2optf,k.

Combining the inequality above with Theorem 35, we obtain

apxk ≤ optf,k + lossf,k ln

(

1 +
2optf,k − optf,k

lossf,k

)

.
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Fig. 6. Skutella’s graph. Nodes are labeled with their indices in binary representation.

The right-hand side of the inequality above is an increasing function of lossf,k. By
Corollary 31, lossf,k ≤ 1

2optf,k, which implies

apxk ≤ optf,k +
1

2
optf,k ln

(

1 + 2
2optf,k − optf,k

optf,k

)

= optf,k

(

1 +
ln(3)

2

)

.

Theorem 4 follows.

Proof of Theorem 4. From Lemma 7, optf,k ≤ ρk · optf . The claim follows
from Lemma 36 and Theorem 1 by choosing a large-enough k.

7.2 A Lower Bound

The best-known lower bound on the integrality gap of BCR (prior to our work) is
achieved by a family of instances due to Goemans, whose gap tends to 8/7, as well
as a single instance due to Skutella with a gap of precisely 8/7 (see [Könemann
et al. 2011]).

Theorem 37. The integrality gap of DCR is at least 8/7 > 1.142.

Proof. We will use Skutella’s graph [Könemann et al. 2011]. Consider a Set
Cover instance with elements U = {1, . . . , 7} and sets S1, . . . , S7. Let b(i) be a
vector from Z3

2 that is the binary representation of i, for example b(3) = (0, 1, 1).
We define the sets by Sj := {i ∈ U | b(i) · b(j) ≡2 1}. Note that this is exactly
the definition of the instance which yields a Ω(log n) lower bound on the integrality
gap of Set Cover for n = 7 [Vazirani 2001]. The critical property is that for our
particular instance one needs 3 sets to cover all elements, but choosing each set to
an extent of 1/4 gives a fractional Set Cover solution of cost 7/4.
Next we define a graph where each element forms a terminal and each set is a

non-terminal node connected to the root and to the contained elements by unit cost
edges (see Figure 6).
If we direct all the edges upwards, the graph can be decomposed into 7 edge-

disjoint components, each one containing one non-terminal node and the 5 edges
incident into it. On one hand installing 1/4 on each of these components gives a
fractional solution of cost 35/4, while on the other hand at least 3 Steiner nodes
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v1
v2

v3

r

t11 t12 t13 t21 t22 t23 t31 t32 t33

s11 s12 s13 s21 s22 s23 s31 s32 s33

Fig. 7. All edges have cost 1. The unique optimal solution to BCR, of cost 15, installs capacity
1/4 on the central (full) edges and capacity 1/2 on the remaining (dashed and dotted) edges,

always directed upwards. The cheapest solution to DCR has cost 7/4 · 9 = 15.75 (one component
is drawn in bold; install 1

12
capacity units on all 33 symmetric components. Each terminal lies

in 33 · ( 2
3
)2 = 12 such components, thus the solution is feasible. In fact, it must be optimal

since every possible component has #connected terminals
#edges

≥ 7
4
as one can easily check). The overall

capacity reserved on each edge is the same as in the BCR case, excluding the top (dashed) edges,
where the capacity is 3/4. The (integral) optimal Steiner tree has cost 17.

must be included for an integer solution. Consequently opt = 10 and we obtain the
promised gap of 10

35/4 = 8
7 .

7.3 Comparison with BCR

We start by observing that DCR is a relaxation strictly stronger than BCR.

Lemma 38. Let optDCR and optBCR be the optimal fractional solutions to DCR
and BCR, respectively, for a given input instance. Then optDCR ≥ optBCR and
there are examples where strict inequality holds.

Proof. Any feasible solution to DCR can be turned into a feasible solution to
BCR of the same cost. In fact, it is sufficient to split each component into the
corresponding set of edges. This proves the first part of the claim. An example of
strict inequality is given in Figure 7.

Observe that the 1.55 upper bound on the integrality gap of DCR does not imply
the same bound on the integrality gap of BCR. It remains as a challenging open
problem to show whether the integrality gap of BCR is smaller than 2 or not.
The best-known lower bound on the integrality gap of BCR is 8/7 > 1.142 [Köne-

mann et al. 2011; Vazirani 2001]. In particular, the family of instances which pro-
vides this bound is the same as in Section 7.2. We next present an improved lower
bound of 36/31 on the integrality gap of BCR.
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r∗

1 2 3 4 5 6 7

11121314151617 21222324252627 31323334353637 41424344454647 51525354555657 61626364656667 71727374757677

11121314151617 21222324252627 31323334353637 41424344454647 51525354555657 61626364656667 71727374757677

0

1

2

3

Fig. 8. Instance for p = 2. Nodes are labeled with the corresponding vector in abbreviated

notation; all edges have unit costs. The optimal fractional solution consist of installing capacity
1/16 on each edge from level 2 to level 1 and capacity 1/4 otherwise (always directed “upwards”),
thus optf = 72+72/4+7/4 = 63. On the other hand for an integer solution one needs 3+3·7+72 =

73 edges. The gap for this instance is consequently 73
63

≈ 1.158.

Theorem 39. The integrality gap of BCR is at least 36/31 > 1.161.

Proof. The basic idea is generalizing the construction used in Section 7.2. Let
p ∈ N be a parameter. We create a graph with p + 2 levels and unit cost edges.
For i ∈ {1, . . . , p} one has 7i non-terminal nodes on the ith level, each represented
by a vector from U i, where U = {1, . . . , 7}. Furthermore we have a root terminal
on level 0 and 7p terminals on the (p+ 1)th level, represented by vectors from Up.
We connect the root to all nodes in the first level. For i = 1, . . . , p, consider nodes
u = (u1, . . . , ui) ∈ U i on level i and v = (v1, . . . , vi+1) ∈ U i+1 on level i + 1. We
connect u and v by an edge if (u1, . . . , ui−1) = (v1, . . . , vi−1) and b(ui) · b(vi) ≡2 1.
We connect the non-terminal node u ∈ Up on level p with terminal v ∈ Up on level
p+1 in a similar manner, namely if and only if (u1, . . . , up−1) = (v1, . . . , vp−1) and
b(up) · b(vp) ≡2 1. Observe that, for p = 1, we obtain exactly Skutella’s graph. The
graph obtained for p = 2 is depicted in Figure 8.
Let us consider any integer optimal solution, of cost opt, and direct the edges

towards r∗. Each time we have an edge going from a level i downwards to level i+1
we can replace it by an edge to level i− 1 without disconnecting the tree. Observe
that, for i = 0, . . . , p− 1, we need at least 3 · 7i edges between level i and i+ 1 and
that 7p edges are needed between the last two levels. This amount of edges is also
sufficient, thus

opt = 3 · (70 + 71 + . . .+ 7p−1) + 7p =
3

2
· 7p − 1

2
.

Consider now the optimal fractional solution to BCR for the same instance. Let
optpf denote its cost. This solution installs capacity 1/4 on the edges incident to the
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root and to the terminals, and capacity 1/16 on the remaining edges (all directed
upwards). Hence

optpf =
4

4
7p +

4

16
· (71 + 72 + . . .+ 7p) =

31

24
· 7p − 7

24
.

The claim follows since

lim
p→∞

opt

optpf
=

36

31
.
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