
Software Architecture-A Rational Metamodel 

Philippe Kruchten 
Rational Software Corp. 
240-107 11 Cambie Road 

Vancouver, B.C., V6X 3G5 
Canada 

pkruchten@rational.com 

Abstract 

The purpose of this position paper is to define the terminology 
used at Rational to speak about software architecture and to put 
in perspective the various concepts involved. 

Introduction 

It seems fashionable lately to claim that software architecture 
is a concept too complex or too vague to be defined. However 
this position does not help the practitioners who have to take a 
stand, even a modest one, in their daily work. Especially in a 
consulting practice, the software architect brought in to help 
can rarely wave her hands in the void, exhibit 25 different- 
although slightly overlapping-definitions, pull out a mathe- 
matical model full of Greek letters (“Let an architecture be 
defined as the tuple {A, Y, &2, . . . ) where A is the set of . ..“). or 
bring on the table an evolving prototype of yet another 
language, understood by only a handful of initiates. 

And even if the following definitions are incomplete, 
imperfect, or unsatisfactory, they have allowed us in the last 
few years to make some progress in capturing and 
communicating the architecture of software-intensive systems. 

This model has formed the basis of software architecture 
practice at Rational. Although it is the current step on which 
we stand, it is by no means an end, and we continue to exploit 
what researchers may bring to this field to incorporate it and 
evolve it, while still making it practical and understandable. 

Software Architecture Description 

The main focus is sofnvare architecture. However software 
architecture is a concept hard to define precisely, and therefore 
the only thing we can really speak and reason about is an 

Permission to make dieital/bard cooies of all or uart of this material for 
personal or classroom&e is granted without fee provided tbat the copies 
are not made or distributed for profit or commercial advantage, the copy- 
right notice, tbe title of the publication and ita date appear;and notice is 
given that copyright is by permission of the ACM, Inc. To copy otherwise, 
to republish, to post on servers or to redistribute to lists, requires specitic 
pe&ission and/& fee. 
SIGSOFT 96 Workshop, San Francisco CA USA 
o 1996 ACM O-89791-867-3/96/10 ..%3.50 

architecture which has been articulated in a software 
architecture description. 

Views 

We have chosen to represent software architecture by multiple 
architectural views. Each architectural view addresses some 
specific set of concerns, of use by some specific stakeholders. 
[5, 71 

The views capture the major structural design decisions by 
showing how the software architecture is decomposed into 
components, how components are connected by connectors to 
produce usefulforms 141. These design choices must be tied to 
the requirements: functional, non functional or other 
constraints. But in turn these choices put further constraints on 
the requirements and on future design decisions at a lower level 
PI. 

We often start from a typical set of views, called the 4+1 
view model [5], which comprises: 
l A logical view, where the decomposition is expressed in 

terms of objects, classes, class categories, and where the 
connectors are inheritance, association, containment, etc. 

. Aprocess view where the components are processes and 
threads, the connectors are inter-process communication 
and synchronization mechanisms. 

l An implementation view, where the components are the 
modules, the subsystem, and where the major connectors 
are compilation/construction dependencies. 

l A deployment view which describes the various processors 
(physical nodes), their interconnections (bus, LANs, 
WANs) and the mapping of processes and threads (logical 
nodes) onto this topology. 

. a use case view which describes the system as complete 
sets of transactions from the point of view of external 
actors, and puts the architecture into its context. [8] 

Additional views can be envisaged to express different 
special concerns: user-interface view, security view, data view, 
etc. [3] or conversely, some views may be omitted for simple 
systems. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F243327.243334&domain=pdf&date_stamp=1996-10-14


Software Software 
Architecture Architects 

architecture 
Architecture I 

Design Process 

/ has / I Architecture 
Desnrintinn I I 

Logical view 
I 

A Process I 

/isa/ I Implemen- I 

Architect ural IT 
view 

tation view 

I Deployment I 

1 - view I 

Use case 
view I 

con&ah& ----- ’ 

Architectural 
Pattern 

Connection 
depicts 

I Architectural 
Blueprint I 

Process 

The architecfure design process (or architecting process) is the 
process whose main outcome is the architecture description, 
and the main actors are the sofhvare architects. This process is 
one of the process elements of the Objectory process [8]. 

Patterns, framework, style, etc. 

Architectural patterns are ready-made forms which solve 
recurring architectural problems [2]. An architectural 
framework or an architectural infrastructure (middleware) are 
sets of components based on which a specific architecture can 
be constructed. Many of the major architectural difficulties 
have been resolved in the framework or in the infrastructure, 
usually for a specific domain. 

A software architecture, or an architectural view, may have 
an attribute called architectural style, which reduces the set of 
possible forms to choose from, and imposes a certain degree of 
uniformity to the architecture [6]. The style may be defined by a 

set of patterns. For a given system, some of the style can bc 
captured as part of the architectural description in an 
architecture style guide. 

Blueprints 

The graphical depiction of an architectural view is called an 
architectural blueprint. For the various views described above, 
the blueprints are composed of the UML diagrams [I]: 
. logical view: class diagrams, sequence diagrams and 

collaboration diagrams 

l process view: class diagrams and collaboration diagrams 
encompassing processes 

. implementation view: component diagrams 

. deployment view: deployment diagrams 

. use case view: use case diagrams and associated 
collaboration diagrams 

6 



and the accompanying documentation templates in Rational 
Rose and SODA. 

Software architecture in context 

Software architecture is related to system architecture in many 
ways that are beyond the scope of this memo, but it is expected 
that most of the decoupling is done via the platform view. 

Finally, through its representation, the software 
architecture relates the user’s needs to the system to be built. 

Conclusion 

This set of definitions have allowed us to do some progress in 
capturing, communicating and discussing software architecture, 
over a wide range of real-life projects all around the world. The 
concepts and techniques they cover may not be breaking any 
new ground, but they have been used on numerous real-life 
projects. 

We are working to evolve this model, taking the best of 
what the research can bring forward, and trying new concepts 
on real projects. Some of our current efforts focus on better 
capturing the architecting process and its integration with 
other software life-cycle processes [S]. 

Themodel we present here is seems relatively in line with 
the directions taken by the newly formed IEEE Working group 
on system architecture [lo]. 

Acknowledgements 

I would like to thank my friends and colleagues at Rational who 
helped bring this view to life along several internal workshops 
and tried the ideas, and to Patrik Jonsson, Ivar Jacobson, 
Walker Royce, Grady Booth, and Tom Merenyi who helped me 
with this paper. 

References. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Grady Booth. Ivar Jacobson and James Rumbaugh, Unified 
Modeling Language, version 0.8, White paper, Rational 
Software Corp., Santa Clara, Ca., 1995, (and Addendum 
0.9, 1996.) 
Frank Buschmann, R6gine Meunier, Hans Rohnert, Peter 
Sommerlad, and Michael Stal, Pattern-Oriented Softwure 
Architecture - A System of Patterns, Wiley and Sons, 
1996. 
David Emery, Richard Hilliard, and Timothy Rice, 
“Experiences Applying a Practical Architectural Method,” 
Alfred Strohmeier (ed.), Reliable Software Technologies- 
Ada-Europe’96 proceedings, Montreux, June 10-14, 1996, 
LNCS #1088, 1996, Springer-Verlag, pp.471-484 
Dewayne E. Perry and Alexander L. Wolf, “Foundations for 
the Study of Software Architecture,” ACM Software 
Engineering Notes, 17 (4), Oct. 1992, pp.40-52 
Philippe Kruchten, ‘“Ihe 4+1 View Model of Architecture,” 
IEEE Software, 12 (6), November 1995, IEEE, pp.42-50. 
Mary Shaw and David Garlan, Sofrware Architecture- 
Perspectives on an Emerging Discipline, Prentice-Hall, 
Upper Saddle River, NJ, 1996, 242~. 
Dilip Soni, Robert L. Nord, Liang Hsu, and Paul J. 
Drongowski, “Many Faces of Software Architecture,’ 
David A. Lamb and Sandra Cracker (eds.), Proc. of 
workshop on studies in software design, Baltimore, May 
1993, Springer Verlag. 
Objectoty -User Guide and Reference Manual, version 
4.0, Rational Software Corp., Santa Clara, Ca., 1996. 
Alan Burns and Andrew M. Lister, “A Framework for 
Building Dependable Systems,” The Computer Journal, 34 
(2), April 1991, pp.173-181 
W. Ellis; et. al, ‘Towards a recommended practice for 
architectural description,” To be presented at the lEl?E 
ICECCS’96 conference, Mont&l, QC, October 1996. 


