
Structuring Interfaces

Alexander Ran and Jianli Xu
alexander.ran I jianli.xu@research.nokia.com

Nokia Research Center, Software Technology Laboratory
I P.O.Box 45,002ll Helsinki, Finland

Abstract

Software components are often described by interfaces
organised as sets of externally visible elements, such as signatures
of callable functions and procedures, or types of messages and
signals accepted by the component. While it is a common practice
to construct larger components by composing smaller ones and
abstracting their function, interfaces of composite, higher-level
components are still described as sets of function signatures or
message types. This situation indicates a granularity mismatch
between the level of abstraction of components and their
interfaces. We believe that just as components are structured as
compositions of lower level components, interfaces must be
structured as compositions of lower level interfaces. In this paper
we present an approach to structuring and describing interfaces of
large software components. We model interfaces as collections of
interface objects that have state and may exhibit non-trivial
behaviour. We also compose basic interface elements such as
functions signatures and event types into composite elements that
we call interactions. Interactions correspond to meaningful, from
the component user point of view, services provided by interface
objects.

1. Introduction

Software components are often described by interfaces
organised as sets of externally visible elements, such as signatures
of callable functions and procedures, or types of messages and
signals accepted by the component. While it is a common practice
to construct larger components by composing smaller ones and
abstracting their function, interface elements are usually not
structured or abstracted but are just propagated as such through
component aggregation hierarchies. Interfaces of composite,
higher-level components are still described as sets of function
signatures or message types. Thus higher level components of
even a small system may include several hundreds of interface
elements. Situation may get significantly worse with large
software systems. For example in a telephone switch hierarchical
component groupings may span four levels. Components on the
lowest level of the hierarchy typically include dozen elements in
their interfaces. Since only components are grouped and
abstracted, interfaces between composite components still contain
lists of messages and events. You can estimate that if only five to
ten components are composed on each level, on the higher levels
of this composition hierarchy components may have thousands of
elements in their ‘interface”. This situation indicates a granularity
mismatch between the level of abstraction of components and
their interfaces. We believe that just as components are structured
as compositions of lower level components, interfaces must be
structured as compositions of lower level interfaces.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on sezvera or to redistribute to lists, requires specific
permission and/or fee.
SIGSOFT 96 Workshop, San Francisco CA USA
Q 1996 ACM o-89791-867-3/96/10 ..%3.50

Most interface description languages view interface elements
as stateless entities with no behaviour. These languages can
describe only static, structural properties of interface elements,
and treat interface elements as unrelated, independent entities. We
model interfaces as collections of interface objects that have state
and may exhibit non-trivial behaviour. Thus our interface
structuring approach also allows to describe dynamic properties
of interfaces, valid interaction patterns, as well as context
information relevant for understanding and controlling the
interaction. We also compose basic interface elements such as
functions signatures and event types into composite elements that
we call interactions. Interactions correspond to meaningful, from
the component user point of view, services provided by interface
objects.

Our main emphasis was on effective techniques for
structuring interfaces similar to the techniques used for software
components. Since our experience is based on structuring
interfaces of existing software the steps documented in this paper
have a bias towards re-engineering. However we believe that the
same principles are valid in forward engineering and lead to well-
structured interface designs.

We felt it is important to demon\strate our approach with a real
rather than a synthetic example. We used the Windows Telephony
Application Programming Interface (TAPI) [I]. It is complex
enough, but not excessively large for a paper. However since our
approach targets significantly larger systems than TAPI, to
demonstrate certain ideas we had to stretch a bit both the example
and the approach.

The paper has two main parts. The first part describes main
concepts and ideas we use to structure interfaces of large software
components. The second part describes briefly the case study and
includes some useful hints on how to apply the ideas.

2. A model for structuring interfaces

Our model for structuring interfaces is based on threee main
concepts : domains, interface objects, and interactions.

2.1 Domains
Large software components often have interfaces that correspond
to different aspects of system design. For example a component
may provide interfaces for configuration, management, operation,
co-ordination, consistency maintenance, persistency, reliability,
monitoring etc. One may say that a component provides different
categories of services to its clients. These different service
categories are used in different domains of interaction.

Effective approaches to software design are based on
separation of concerns. Interactions of a component in different
domains should be and is often designed separately. However this
separation is often lost at the later stages of design and is rarely
used for structuring interfaces. When software designers use a
component, they usually need to consider at the same time only
one category of services provided by the component. Filtering
important information from unstructured interface descriptions is
often hard. Therefore we partition component interface

39

http://crossmark.crossref.org/dialog/?doi=10.1145%2F243327.243347&domain=pdf&date_stamp=1996-10-14

.-^.A-------
~-~-.-- -~.

descriptions by domains of interaction in which the component
r may participate.

Partitioning interface descriptions by domain hides possible
interactions between domains from the interfaces. One should
analyse these “hidden” interactions carefully in order to ensure
that interface descriptions provide sufficient information for safe
use of the component. Interaction between domains may indicate
that either separation is inappropriate or component
implementation introduced unnecessary cross-domain coupling.

Partitioning interfaces by interaction domain or service
category has several benefits:

Separation of concerns. Oganising interfaces by domain
effectively filters information required by a software designer
when using a component. It is also very effective for the design of
interfaces provided by components.

Reuse. A system may include a number of components that
provide a particular category of services. For example check-
pointing may be required for co-ordinated roll-back, hot restart on
failure, etc. It must be supported by all components whose state
must satisfy some consistency constraints with other components.
Separating check-pointing interface from other activities
performed by a component makes standardisation of this interface
across different components easier. For example design of check-
pointing interface may be reused; a component that requires
check-point interface for co-ordinating roll-back would work with
all components that support standard check-pointing and roll-
back interfaces.

Controlled propagation of change. The rate of change in
different domains is different. While user interface tends to
change continuously, component interfaces to support reliability
may be rather stable. We can bound changes within the
component by partitioning its interfaces by domain.

2.2 Interface Objects
The advantages of separating interface from implementation

are well understood. Implementation of a component can be
changed independently of other components as long as it provides
the same interface. Multiple implementations of an interface may
exist and coexist to provide variability required in the system.
However the common interpretation of component’s interface as a
set of names, understood by the component and visible to other
components, has some weaknesses. Are there any relations
between the interface elements of a component? When several
components are combined to form a composite software
component, what is the relation between interfaces of the
bomposite and the components? What does it mean for two
implementations to support the same interface? It is obvious that
being able to respond to the same set of names is not sufficient.
We know there are groups of related operations provided by
components, relation of order between different operations, state-
dependent availability of operations, etc. Set elements, as an
abstraction, are not well suited to describe such complexity.

One way to address some of these problems is to augment usual
interface descriptions with a formally specified protocol for using
interface elements. PSL is one interesting example [2]. However
many software designers find using formal description techniques
too demanding. Also since availability of component services
depends on the state of the component, a protocol that does not
refer to the state of the component may get rather complex. UniCon
[3] promotes an architectural approach that re-allocates the
complexity of interaction from components to connector objects.
Connector objects may then be used to deal with complexity of
interaction. This re-allocation however requires an unusual partition
of components and shift in design and implementation practices that
may be hard to accomplish in reality. It is also not clear how
composite connectors can be supported and used.

We tried an approach using a slightly different partition of the
component that does not necessarily require a change in the design
and implementation of software components and supports
composition. Rather than viewing interfaces as flat sets of nnmcs
we interpret them as objects in their own right - interface objects.
Interface objects can serve to
l group related services as services provided by one interface

object
l describe conditional availability of interfaces based on the

state of the interface object
. compose higher level interface objects using object

composition techniques
In essence, interface objects open a part of the component
implementation that is relevant for understanding the interactions
of the component and thus serves as precise description of its
interface.

A very well known example of usefulness of interface objects
is provided by iterufors. Lists, sets, arrays, sequences, trees, and
other composite structures must provide iteration service to the
clients to obtain contained elements one at a time. It used to be a
common practice to mix iteration interface with other scrvlccs
provided by the composite structures such as adding or removing
an element. This was problematic in a number of ways, Iteration
service may include several operations such as initialisation of
iteration, iterating, testing iteration state, etc. How can thcsc
operations be separated from other operations supported by n
composite structure? Iteration has state, like for example the
current element of the composite structure; How to separate this
state and its representation from the state and representation of the
composite?

The answer to these questions was found in the form of
iterators. Rather than providing iteration services, a composite
structure can provide iterators. Iterators are interface objects that
group together and encapsulate iteration operations and state.
They can be composed with other interface objects using nil
available object composition techniques to structure the interface.

Consider an application in which a container (a list of names
for example) needs to notify iterating clients when a new clcmcnt
is inserted during an iteration process. On the implementation
level the component that implements the container will have to
add notification and transaction management services. In the
interface objects paradigm the composite interface would bc
composed of iterator, notifier, and transaction manager, rather
than a flat list of all the services provided by the component.

2.3 Interactions
Interfaces are commonly described as sets of elements such as

signatures of callable procedures, or types of messages accepted
by the component. This is probably due to the fact that these are
the elements with which interactions are implemented in the
programming languages. These are indeed the “points of contact”
between different components on the implementation level.
However from the modelling point of view a procedure call or a
message often does not constitute a meaningful unit by itself, but
only as a part of a longer interaction, a scenario, perhaps
involving several components.

Therefore we specify interface of a component as set of
interactions or scenarios that accomplish a meaningful task from
the modelling point of view. Functions, procedures, messages and
events are the simplest kinds of interactions. We call them atomic,
Composite interactions are composed of atomic and composite
interactions. We do not have a well-defined formalism for
composing interactions, but use instead common techniques for
describing data and control flow abstractly with scenarios, object
interaction graphs, message sequence charts, statecharts,
pseudocode, etc.

40

Since interactions are allocated to interface objects that have
state, compo&on of interactions may use this -state to express
conditions for sequencing component interactions. Interactions
may be described by various means. Message sequence charts are
probably the simplest widely used notation that can describe
interactions. MSC however has’ well known limitations, like for
example in describing partial or unspecified o;der of events. For
more complex cases, where SDL was used as an implementation
language, we used SDL process diagrams to specify interactions
in component interfaces. Two components may be connected if
their interfaces include compatible interactions.

3. Structuring TAP1 Interfaces

In this section we-describe a case study in structuring
interfaces. We also include where appropririte -descriptions of
several additional techniques we found useful in our work.

3.1 What is TAPI
The Windows Telephony Application Programming Interface
(TAPI) is an application programming interface st,and&d
promoted by Microsoft and Inte.1 for telephony bd call control
under Windows. Its purpose is to insulate prbgrammers and useb
of telephony application software from the compl&xitieS of thk
underlying telephone network. TAP1 is -a component of
Microsoft’s Windows Open Services Arihitecture (WOSA), and
as such it consists of an API used by application and z!m SPI
(Service Provider Interface). implemented by sep;ice provide&
(makers of hardware). There is a software component that sits
between’API’and SPI, called TAPLDLL. It is shown’ in Figure 1.
TAPI.DLL acts as a “broker” that routes requests and replies-
between applications and the appropriate ‘seniice providers.
TAPLDLL also implements a number -of -TAPI fuiictioni
internally, like Multi-application features, ad+ess translation, etc. 8 /

‘,

Telephony
API

Telephony
SPI

Telephony
Service

Providen
_ -

.- -.

Figure 1. TAP1 within-the WOSA niodel .^.

TAP1 allows applications-to control telephony functions. This
includes su^ch basic functions +s establishing, answering , and
terminating a call. It also includes supplementary functions, such
as hold, transfer, conference, and call park found in PBXs
(Private Branch Exchanges) and gther phone systdmi. The API
also provides access to features that are specific to certain service
providers, with build-in extensibility to .accommodate future
telephony features and networks ti they become available.

For the application programmer, TAP1 abstracts telephony
into just two kinds of devices, line devices and phone devices, By
generalising telephony functions in this way, TAP1 operates
independently of the underlying telephone network and
equipment. It isolates the application from the network
complexity. TAP1 is designed to. be a superset of telephone
network capabilities, allowing all networks to be modelled, like
POTS, ISDN, PBX, cellular, wireless, etc.

. <: ‘_
. .

3.2 Separating Interaction Domains <

TAP1 includes 115 functions and 21 messages. We can
significantly simplify design of TAP1 applications by imposing
structure on TAP1 and its description. First we identify the
domains in which TAP1 operates. TAP1 is not a..large component
and in a sense is domain specific. It could be a part of a larger
component that ,would also address, ‘for example, content
processing- required by telephony @plications. However even
TAP1 may be decomposed into two domains : configuration and
operational (See Fig. 2).

configuration
Domain

- 27 Functions
2 Messages

i,
OperatIonal

Domain

- 88 Functions ~
20 Messages

Fig. 2. P&don of TAP1 by domains of interaction

Conjlguration domain provides the services for creation and
shutdown of connections between TAP1 and applications,
negotiation of API versions, filtering of status messages to be
received, querying device and address capabilities, etc.
Operational domain contains the interfaces used to implement
telephonic applications. Operatibnal iriterfaces provide services
for opening and closing devices, call Ijrocessing, call and device
monitoring, and media control functions, etc.

sL- ‘; ,/
3.3 Finding InterfaceObjects .
How to identify interface objects of a software component? Most
software components play multiple roles. even in the same
interaction domain. Multiple operations, states, and some abstract
behaviour are naturally asiociated with different roles. We use
component role identification as the main guiding piinciple for
identifyinginterfaceobjects. * ’

Roles are a very useful concept for‘ object design. Reenskaug
views objects as synthesis of multiple roles [4]. We structure
interfaces of existing software components by identifying their roles
and representing them as interface objects. Lea provides another
detailed presentation of concepts related to-roles and objects-in [2].
Since we rely on role’s as \he main heuristic-for identifyirig interface
objects we often hse both terms to meti the same.’ ‘-

After we have separate&TAP1 i& two domains, tie ldok for
rolCs played-by TAP1 in each’domain. In the“contiguration domain
TAP1 plays the roles of line ‘devicb manager‘and phone device
manager. They are responsible for the configuiation and
management of devices of two differeint classes. In fhe oberational
domain TAP1 plays the roles of line device, phone device, Ad call.
TAP1 also can be used as a server for assistkd teleph?,ny.service.
Fig. 3 illustrates the result of this decompo&on.

Interface objkcts should noi be coxifused with ‘object-oriented
(re)design of appliczitio’n. When an a$lication is-develop&d using
object-oriented approach’ interface iibjects” may .be directly
represented by implementatiori objects. However, in general this
isnotriecessary. i ‘~’ ., .;

.i !

41

Configur.don Domain

27 Functions
2 Messages

I
0

1

Lint Manager Phone Manager

19 Functions 9 Functions
1 Message 1 Message

- 45 Functions
10 Messages

Phone

- 24 Funclions
5 Messages

0pomtion;ll Domain

88 Functions e Line

20 Messages - 19 Functions
7 Messages

Arristod
-robphony

.sorvor,Ro”tor
5 Functions
1 Message

Fig. 3 Interface Objects of TAP1 in Configuration and
Operational Domains

3.4 Classify Interface Objects
Roles played by different components in a particular domain may
exhibit a significant degree of similarity. In order to localise
information, similarity and variability of roles can be represented
using role classification. TAP1 does not provide a natural
illustration for this step. This is because design of TAP1 does not
provide a mechanism’ to represent specialisations of different
device types, but treats them through an escape interface.
The idea of role classification is simple and is very familiar from
classification hierarchies used in object-oriented design and
programming to factor similarities. Earlier we explained that
iterators are interface objects that represent roles played by
composite structures or container objects. In STL, for example,
iterators form a rich specialisation hierarchy.

3.5 Specifying interactions
Operations provided by roles are not independent of each

other. Often an operation represents only one step necessary to
acquire a meaningful service. This information may be
represented by grouping such operation into services provided by
an interface object. We use meaningful services as the main
source for identification of interactions included in the interface
of an interface object. For example the call interface object
provides service call handog that contains operations
IineHandoffO, lineSetCallPrivilege(), and message
LINE-CALLSTATE, LINE_CALLINFO. The structure of call
hando/f interaction of TAP1 call interface object, may be
described by a message sequence chart that specifies sequencing
of component operations and events. Conditions of access to
component operations can refer to the state of the interface object
thai provides the service. Since we rely on meaningful services to
identify interactions we often use both terms to mean the same.
Fig. 4 Interface of call handoff service as interaction of several
components specified with MSC.

42

Fig. 4. MSC for service call handof/‘

3.6 Classify collaborakors
Roles may provide’different interfaces to different users or

collaborators. Even in the programming languages some basic
mechanisms are used to control visibility of operations. In the
interface definition it is especially important to indicate the
intended user of an interface. Specifying intended users by
identity may be rather ineffective since we try to achicvc
independence between different components. Establishing a axed
classification of possible users for a component is restrictive,
since there is rarely pne classification that is useful in all
situations. Therefore we include in our interface structuring a step
to classify possible collaborators. Such a classification is
extensible and does not peed to be unique.

Each role of TAP1 also provides different interfaces to
different kind of applications. The services available under each
state are not visible to $1 kind of users, some parts of them may
be only visible to specific kinds of users. First we have to classify
different types of TAP1 users by so called collaborator’s roles.
The roles of TAP1 users and the relations among them are shown
in Fig. 5. TAP1 applications can be divided into call users, lint
users and phone users. They can be further classified respectively
into call monitor and call owner, phone monitor and phone
owner, line owner and line monitor.

Fig. 5. Types of TAP1 users

3.7 Visibility of services to collaborator classes
In our example, a call or phone owner is a specialisation of

call or phone monitor. It can access the services that require
owner privilege, and the services accessible by a call or phone
monitor. The situation is different for the line users. A line owner
and a line monitor have their own special services available from

TAPI. The services for a line monitor are not all visible to a line
owner. There is a class of line users with no special’ p&ledges
called “Any”, and a class of line users that combines line monitor
and line owner priviledges. _

3.8 Service availability in different states
Roles (and thus interface objects) may have different states

that affect their capability to engage in different interactions. As
interactions correspond to meaningful services provided by roles;
one may say that service availability depends on the state of the
role. For example the call role has 14 states which affect the
availability of some of its services. For example you can only
send user-user information through a connected call, and you can
answer an inbound call only when it is in offering state. So
through analysing the states of each role, we can further group the
interfaces and describe their availability. Example state
classificationtrees of role cafl and role line aregiven in Figure 6
and 7. The services listed in each state in Figure S-and-6 are only
available when the role is in the coresnondent state. The services
listed in the “Any State” are always available. . ‘-,

I AnYstat~slcoPt I

Call

Figure 6. Grouping the interfaces of role da/l by states and users ’

4. Conclusion

The ideas presented in this paper are based on successful
experiences of re-structuring-and re-describjng interfaces of two
existing telecommunication products of very different size and
complexity. We see the contribution of this paper in provoking
thought and discussion on an important area of architectural
design, that is often ignored. We see our own ideas as an example
of a possible approach, rather than an in-depth analysis of the
field. -. -1

We continue retinement of the discussed-techniques for
structuring and describing interfaces by applying them in new
projects. We are also interested to study the potential of the
design paradigm, based on interface objects and interactions, to
improve reuse and evolution of large software systems.

Figure 6’Grouping the interfaces of role fine by states and users

5.. Acknowledgement

We wish to thank the members of Nokia ARES team Ansii
Karhinen, Juha -Kuusela, Tapio Tallgren, and Juha Tuominenfor
their. help in preparing this“ paper. This work was in part
sponsored by theEuropean Commission.

6. References

111
:

Windows Telephony APJ -- Programmer’s Guide,
Microsoft, 1996.

121 Doug Lea and Jos Marlowe, Interface-Based Protocol
Specification of Open Systems using PSL, SUNY at
Oswego / ’ NY CASE Center, Sun
Laboratories,.Technicai, Report, 1995.

Microsystems

i31 ivl: Shaw et al., Abstractions for Software Architecture
and ,Tools to Support Them, IEEE -Transactions on
Software Engineering, 21(4),.April 1995, pp. 3 14-335.

[4] T. Reenskaug, P. Wold and G.A. Lehne, Working with
Objects - The Ooram Software Engineering, Method,
MANNING Greenwich, 1996.

. . , ,~
. f

: .,-_ I
I,. .

:- .,-

43

