
Style-Based Refinement for Software Architecture 

David Garlan 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
garlan@cs.cmu.edu 

Abstract 

A question that frequently arises for architectural design is 
‘When can I implement a design in style S1 using a design in 
style Sz . “’ In this paper I propose a technique for structur- 
ing a solution to this kind of problem using the idea of sub- 
styles. This technique leads to a two-step process in which 
first, useful subsets of a family of architectures are identi- 
fied, and second, refinement rules specific to these subsets 
are established. I will argue that this technique, in combi- 
nation with an unconventional interpretation of refinement, 
clarifies how engineers actually carry out architectural re- 
finement and provides a formal framework for establishing 
the correctness of those methods. 

1 The importance of style-based refinement 

A key issue for architectural design is to understand when a 
system characterized in one style can be substituted for one 
described in another. That is, when can I use an instance of 
style Sl in place of a system already described in style Sz? 
This problem arises in a number of contexts: 

l Representing the internal structure of an archi- 
tectural component (or connector): Often the el- 
ements of an architectural description are implemented 
internally by another, more detailed architecture. In 
some cases the boundary of one element serves to ag- 
gregate and encapsulate certain parts of a complex de- 
scription (i.e., & = Sz). In this case, simple name 
mappings between the internal representation and the 
external may suffice. But more generally, the internal 
representation may involve a change in architectural 
style. For example, I might have a component of a 
pipe-filter architecture that is internally constructed 
using componentry based on procedure-call. 

l Recasting an architectural description in a new 
style: Often a system that is most’ naturally repre- 
sented in one style must be implemented using the fa- 
cilities that are best described in another style. In this 

Permission to make digital/hard copies of all or part of this material for 
personal or classroom use is granted without fee provided that the copies 
are not made or distributed for profit or commercial advantage, the copy- 
rieht notice. the title of the oublication and ita date aDDear, and notice is 
g&en that copyright is by pknission.of the ACM, 6. T6 copy otherwise, 
to republish, to post on servers or to redistribute to lists, requires specific 
permission and/or fee. 
SIGSOFT 96 Workshop, San Francisco CA USA 
0 1996 ACM O-89791-867-3/96/10 ..%3.50 

72 

0 

case, a complete architectural description (not just in- 
dividual elements) must be represented in a new way. 
For example, I might represent an event-based design 
in an object-otiented one, in order to pave the way for 
more direct implementation using an object-oriented 
language. 

Applying tools developed for one style to a sys- 
tem written in another one: Architectural analy- 
sis tools are often written for systems that fit within 
a given style. For example, a timing analyzer may 
apply only to pipe-filter systems, while a transaction 
throughput analyzer might apply only to a certain 
class of repository-oriented systems. However, some- 
times we have a system that is characterized by a style 
that has enough commonality with another that it 
makes sense to apply tools developed for the second 
style. As a simple example, I should be able to ap- 
ply a pipe-filter timing analyzer to an instance of a 
pipeline style (i.e., a linear sequence of filters). 

For any specific instance of the problem it is possible to 
cast the solution in terms of traditional refinement. That 
is, system Xz can be used in place of Xl if we can find a 
suitable “abstraction map” from Xz to X1. This is essen- 
tially the approach taken by Rapide [3]. The events of one 
system are mapped to the events of the other system, and 
then tools check that the resulting behavior of the concrete 
system is consistent with that of the abstract system. (I will 
reexamine this simplistic notion of refinement later.) 

-However, architect&e provides an opportunity to do much 
more. Instead of cornbaring architectural instances we de- 
velop a set of rules between architectural styles. We then 
prove that two systems (in the respective styles) that are re- 
lated by the refinement rules represent a valid refinement re- 
lationship. For example, we might determine that any event- 
based system can be implemented as an object-oriented sys- 
tem if we transform each component so that it calls an 
event dispatcher, and we transform the event connectors to 
a dispatcher-mediated, broadcast connector. This approach 
to refinement can be called style-based refinement. 

Naturally, techniques that apply at the level of styles arc 
much more powerful than techniques that apply to instances. 
This is because the demonstration can be performed once 
for the styles and then reused many times for instances of 
those styles. Moreover, it permits verification to be done by 
specialists in style definition, while allowing regular system 
designers to simply use the results with confidence that they 
will be correct,. Finally, it makes explicit the rules of thumb 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F243327.243607&domain=pdf&date_stamp=1996-10-14


that engineers develop to implement one kind of system ab- 
straction in terms of another. 

2 The problem of style-based refinement 

The problem, however, is that style-based refinement is much 
more diflicult to establish. To have a set of valid rules one 
must show that eueryinstance of one style has a valid refine- 
ment in the other. Since the demonstration of substitutabil- 
ity must range over a possibly infinite collection of systems, 
it involves more general proof techniques. 

One such technique, proposed by Moriconi and his as- 
sociates, is to use a set of compositional refinement pat- 
terns [4]. The patterns determine local transformations for 
parts of an architectural description. The patterns are con- 
structed in such a way that the local transformations com- 
pose and, if applied systematically to a system, will result 
in the construction of a system in another style. 

This approach, when it works, is a good idea. However, 
in general, it may be diEcult to find transformation rules 
that apply to all system instances in a given style. Consider, 
for example the problem of implementing pipe-filter systems 
using a shared variable style. (That is, pipe reads/writes are 
accomplished by reading and writing to shared variables). 
In the presence of cycles, a filter that needs to read more 
than one value before producing its result can cause the 
shared variable system to deadlock. Thus not all pipe-filter 
systems can be implemented by the simple rule of replacing 
pipes with procedure calls to shared variables. On the other 
hand, clearly some pipe-filter systems can. 

In the remainder of this paper I sketch an alternative 
(but complementary) technique that advocates the princi- 
pled use of substyles for dealing these issues of refinement. 
The basic idea is to identify subsets of the systems in a 
given style that are amenable to specialized treatment. This 
approach improves our capabilities for defining style-based 
refinement, because we are freed from the requirement of 
carrying it out on all systems within a given style. I argue 
that this not only provides a solid formal basis for carrying 
out style-based refinement, but corresponds to what engi- 
neers actually do (informally) when then. they implement 
architectural designs. I then elaborate on both these points 
by enumerating the formal and methodological implications. 

3 The use of substyles in refinement 

In practice, systems builders often exploit idiosyncracies of 
a given system to provide efficient implementations. For 
example, a program that uses sets, but requires only sets 
with small numbers of binary values, may use a bit vector. 

For architectures the situation is similar. If I have a 
system that I know is constructed as a linear sequence of fil- 
ters, I can produce a functional implementation that simply 
composes the transformations of the pipeline into a single, 
more efficient function. Thus, as long as one is concerned 
with refinement of architectural instances, it is possible to 
demonstrate that a specialized refinement technique is ap- 
propriate. 

But when we move to styles, this is no longer possible. 
Since we cannot exploit the particular idiosyncracies of a de- 
sign we can’t in general take advantage of these special cases 
and contexts of use. Thus there is an apparent dilemna: 
Style-based refinement is more powerful and generally use- 
ful, but can be applied much less effectively. 

I would argue, however, that a solution can be found by 
applying at the style level the same technique used for in- 
stance refinement: we exploit the idiosyncracies of a subset 
of the systems in a style to produce specialized refinement 
rules for that subset. This involves a two step process. First, 
suitable substyles of the style are identified. A substyle is 
characterized as a collection of additional constraints (be- 
yond those imposed by the style). Second for each substyle, 
we use the additional constraints to define specialized refine- 
ments. 

To take a simple example, we might define a ‘pipeline” 
as a substyle of pipe-filter, by adding the constraint that the 
topology must be linear. For this substyle, we can then de- 
fine a simple refinement rule from that substyle into a func- 
tional composition style (i.e., stream transformations are 
simply composed). A more complex substyle of pipe-filter 
would be, acyclic, “balanced”, l-in-l-out systems. In these 
systems each filter computes one output value for each input 
value that it consumes, and the overall graph is acyclic. For 
this substyle, we can define a simple refinement rule into a 
shared variable style. (For an example of a formal proof of 
a similar result, see [l].) 

Formally, this approach can be characterized by two fimc- 
tions, as illustrated in Figure 1. The first is a partial pro- 
jection function that determines whether a given system 
(labelled Style l), is a member of a specialized substyle 
(labelled Style la). ’ The second function determines the 
refinement relationship between members of the abstract 
(sub)style and members of concrete style (labelled Style 2). 
Formally this is characterized as an abstraction function, 
since there may be many concrete systems that can be used 
to represent the abstract system. Note, however, that both 
functions are surjective: that is, all elements of the substyle 
are handled. 

In terms of engineering practice, we observe that this 
general approach is what engineers typically do. When pre- 
sented with a system that must be implemented in a different 
style, the engineer will typically look for characteristics of 
the proposed system that enable the use of certain standard 
techniques of implementation. The definition of substyles 
simply makes explicit (formally) which constraints must ex- 
ist exist in order to use those techniques safely. Thus the 
approach of defining useful substyles provides a home for 
capturing the understanding of experienced designers. 

4 What is refinement, anyway? 

Until now, we have been’vague about what refinement actu- 
ally means. However, the definition of refinement is a critical 
issue, since it determines the correctness criteria for a set of 
refinement rules (or equivalently, the abstraction map). 

The %&&al” approach is to use the notion of behav- 
ioral substitutability. That is, the concrete representation 
should not produce any externally-observable behavior that 
the abstract representation could not have produced. This 
is essentially the criterion used by Hapide. It is also the 
criterion used by CSP[2]. 

But, as Moriconi and others have argued [4], behavioral 
substitutability may not be strong enough. In general, there 
may be properties other than computational equivalence 
that we wish to preserve in the concrete representation. 

Moriconi proposes that for architectures it is sufficient to 
impose a requirement of L‘conservative extension”. Formally 

‘The function may include renamings, such as “filter” to “stage”. 

73 



Style la 

: ‘. 

Style 1 

Figure 1: Substyles and Refinement 

Style 2 

this means that results not provable about the abstraction 
are considered to be false. In other words, if we don’t ex- 
plicitly include a particular feature, then we are implicitly 
claiming that it does not exist. Thus refinements can only 
elaborate (or restrict) what was already present in the ab- 
straction. The basic idea here is to avoid a situation in 
which an architectural refinement violates the structural in- 
tegrity of the system it is refining-even though it might 
still produce the same computations. 

As a simple example, if we do not include a connector 
between two components in an abstract architecture, then 
we can conclude that they do not interact. Hence, a refine- 
ment could not introduce a connector that caused them to 
interact (within the style of the abstract system). 

We would argue, however, that this restriction is much 
too restrictive. Since architectural descriptions are by their 
nature abstract, we may choose to leave details out of the 
description, because we would like the implementor to bind 
them in a lower-level description. That is, I may use the ab- 
sence of information to delay the binding of certain design 
decisions. In such cases, I certainly don’t want the system 
to preempt that choice for me. Moreover, if I have a tool 
that can automatically generate an implementation from an 
architectural specification, why should I care if the repre- 
sentation style is completely different from the one used in 
the abstract architecture? 

But if “conservative extension” is too strong, and LLclassi- 
cal” refinement is too weak, what is needed? We argue that 
what is at issue here is to capture the notion of ‘relative” 
substitutability. By this we mean that a refinement must 
be substitutable for the system it is refining, urith respect to 
a set of properties of interest. In the case that the prop- 
erty of interest is externally-visible computational behavior, 
then we get classical refinement. However, ive can pick other 
kinds of properties. For example, if an abstract architecture 
is evolvable along certain dimensions (by localizing certain 
design decisions, for example), we may wish our refinement 
to preserve that property. As another example, if we are 
primarily concerned with performance, we might make re- 

finement relative to the target performance of a system: the 
concrete system must perform at least as well as the abstract 

t 

system. 
In short, we claim that there is no single definition of 

refinement. Rather, refinement rules must be explicit about 
what kinds of properties they are preserving in the refined 
design. 

5 Implications 

We believe that the approach outlined above has both formal 
and methodological implications. Formally, it suggests thnt 
a critical issue for refinement is to understand the formal 
relationship between naturally-occurring constraints on the 
use of an architectural style, and the ability to exploit them 
when changing representations. The job then is to provide 
formal guarantees that the constraints of those styles are 
sufficient to guarantee correctness of the refinement rules. 
Furthermore, formalists must be explicit about the rellne- 
ment criteria that are being employed: rather than assume 
a single view of substitutability, they must recognize that 
refinement is relative to the properties of interest for that 
class of system. 

Methodologically, the approach suggests that when ar- 
chitects identify styles, they should also classify substyles 
that will permit natural representations in other common 
styles. Further, as systems designers build understandings 
about practical representation techniques for representing 
one architectural style with another, they should make ex- 
plicit the constraints that they are exploiting to carry out 
that change in representation, as well as the properties that 
they believe are preserved across the change. 

6 Acknowledgements 

The position argued in this paper grew out of numerous dis- 
cussions about refinement with Rob Allen, Mark Moriconi, 
Mary Shaw, and Zhenyu Wang-all of whom I would like to 
thank. 

v-r. 
;;,r 



The research reported here was sponsored by the Wright 
Laboratory, Aeronautical Systems Center, Air Force Ma- 
teriel Command, USAF, and the Advanced Research Projects 
Agency (ARPA) under grant F33615-93-l-1330; by National 
Science Foundation Grant CCR-9109469; and by a grant 
from Siemens Corporate Research. Views and conclusions 
contained in this document are those of the authors and 
should not be interpreted as representing the official poli- 
cies, either expressed or implied, of Wright Laboratory, the 
US Department of Defense, the United States Government, 
the National Science Foundation, or Siemens Corporation. 

References 

[1] Gregory Abowd, Robert Allen, and David Garlan. For- 
malizing style to understand descriptions of software ar- 
chitecture. ACM Transactions on Software Engineering 
and MethodoIogy, October 1995. 

[2] C.A.R. Hoare. Communicating Sequential Processes. 
Prentice Hall, 1985. 

[3] David C Luckham, Lary M. Augustin, John J. Kenney, 
James Veera, Doug Bryan, and Walter Mann. Specifi- 
cation and analysis of system architecture using Rapide. 
IEEE Transactions on Software Engineering, Special Is- 
sue on Software Architecture, 21(4):336-355, April 1995. 

[4] M. Moriconi, X. Qian, and R. kiemenschneider. Cor- 
rect architecture refinement. IEEE Transactions on Soft- 
ware Engineering, Special Issue on Software Architec- 
ture, 21(4):356-372, April 1995. 

75 


