
Experience with Architecture-Centered Software Project Planning

Daniel J. Paulish
Robert L. Nord

Dilip Soni
Siemens Corporate Research, Inc.

Princeton, NJ 08540 USA

Abstract I*

This position paper describes our experiences with
architecture-centered project planning for a software
development project. A software architecture design
document was the primary input to the top-down and
bottom-up planning processes, and a software
development plan was the primary output. The
software development plan was used by each member
of the development team to generate their personal
schedules.

Keywords: Software architecture, estimation, project
planning, high-level design..

1 Introduction

In 1995, staff members from Siemens Corporate
Research (SCR) were asked to take responsibility for a
Siemens software development project. Management
responsible for the project wanted us to design a
software architecture for the product and determine
how much time and resources were required to
complete the software development and to bring the
product to market.

It is well known that effort and schedule estimates
given in the very early stages of development can be

very inaccurate [l]. ‘We believe that schedule and
resource estimates produced in the absence of a high-
level architecture design have minimal value.
Milestone dates planned in the absence of a design
would likely be missed. That is why we decided to
first complete the design of the architecture. When the
design was complete, we created a project plan,
schedule, and resource projections, all of which were
dependent upon the’ software architecture of the
product.

2 Approach

Architecture-Centered Software Project Planning
(ACSPP) is applied early in the software development
process, after the system requirements design is
complete. Management often desires early estimates
of the time and effort required to develop a new
software product. In some cases these estimates may
be required to determine whether or not the
development project should be undertaken. Business
and product planning are often based upon very early
estimates, that are often very inaccurate. For example,
according to [l], actual effort expended can be 1.5
times the cost estimates given after requirements
specifications are complete. Actual effort expended
can be 4 times the estimates given at the beginning of
the project, before any feasibility analysis is done.

Permission to make digital/hard copies of all or part of this material for
personal or classroom urn is granted without fee provided that the copies
are not made or distributed for pmtit or commercial advantage, the copy-
right notice, the titie of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise-,
to republish, to post on servera or to redistribute to lists, requires specific
permission and/or fee.
SIGSOFT 96 Workshop, San Francisoo CA USA
Q 1996 ACM O-89791-867-3/96/10 ..$3.50

126

The approach for ACSPP is illustrated in Figure 1,
A small design team initiated the high-level design of
the software architecture. In parallel, we initiated top-
down schedule planning using preliminary lines of
code estimates as inputs to the Cocomo Model [l].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F243327.243625&domain=pdf&date_stamp=1996-10-14

High-Level
Design

Bottom-Up
Estimates

Software
. Project
Schedule

+ Development
I Plan (SDP)

Top-Down Release
Schedule a. Plans

I Personal
Schedules *

Figure 1. Architecture-Centered Software Project Planning (ACSPP).

The high-level design and the top-down Schedule were
used as inputs for planning software releases. The
high-level design was also an input to the bottom-up
estimation method where the team members estimated
the size and effort for the software components. We
reviewed and compared these estimates with the
estimates used in the top-down schedule, and used
them to generate a project schedule. The schedule,
along with the resource assignments and organization,
became part of the Software Development Plan (SDP).
Based on the SDP, each team member developed their
personal schedules.

2.1 High-Level Design

We designed and documented the software
architecture for the product within a High-Level
Design Document(HL,DD). The software architecture
was documented using description techniques
developed at SCR [2]. These techniques document the
architecture design using four architecture
perspectives (Figure 2).

ft
Source Code

Figure 2. Four Perspectives of SW Architecture.

We explained the software architecture to the
project team members through in-depth discussions.
This was au iterative process that helped team
members understand the high-level design and helped
us to improve it.

A one page layer diagram was generated as part of
the software architecture. JAn example layer diagram is
illustrated in Figure 3 [2]: Modules within a layer can
communicate with each other. Modules may only
communicate with modules in the same or adjacent
layers.

The architecture layer diagram provided stability
and a point of reference for many aspects of the
project, including technical coordination, assessment
of alternative implementations, and project planning
and scheduling.

2.2 Top-Down SchedGe
/

In parallel with the architecture design, we initiated
some investigations into top-down schedule and effort
estimation using expected lines of code estimates for
each subsystem. We validated the lines of code
estimates by comparing the expected total lines of
code for this project withother similar (competitive)
products. Thes? estimates were used as inputs to
Cocomo Model calculations, which provided outputs
of effort, schedule duration for major phases of
development, and resource profile loading for various
types of development skills.

127

1 Data Acquisition, Report Generator, etc. I

1 Locxjna Service, Clock Service, Database Manager, Display Manaqer 1

1 File Management Service I

Real-time Operating System

1 Device Service Modules Interrupt Service Modules I

Figure 3. Architecture Layer Diagram.

2.3 Bottom-Up Estimates

When all of the roughly 130 components were
defined, each team member did a “paper design” for
their assigned components, documenting the
subcomponents and dependencies. The time allocated
to the paper design was limited to four hours per
component. Each team member used the paper design
to estimate each component’s size, complexity, and
coding effort. We reviewed these estimates, compared
them with the topdown Cocomo Model estimates,
and used them as inputs to create a project schedule.

This process helped team members understand the
high-level design at a greater level of detail and
provide more accurate estimates about the size and
complexity of the components.

2.4 Release Plans

The topdown schedule specified three engineering
releases before the final product release. We described
the product features incorporated in each of these
releases in a Feature Release Specification (IRS)
document, which was completed with consultation
from Marketing and Service. In a separate Component
Release Specification (CRS) document, we described
the component functionality necessary to implement
required features in each of the engineering releases.
In some cases, a component had multiple engineering
releases, each supporting partial functionality.
Responsibilities for these component releases were
assigned to team members who later used these
documents to create their own personal schedules.

We identified a software integration strategy for
the components and the features that they
implemented by partitioning them into three internal
engineering releases. The component effort estimates
were then reviewed along with the desired availability
of the features within an engineering release. From
that, we assigned the component developments to a
time schedule and identified resources to design, code,
and unit test each component. We also mapped the
architecture into a development organization plan
corresponding to the subsystems and components, and
assigned at least one person to be responsible for each
software component identified in the architecture.

2.5 Project Schedule

We used the top-down schedule, the bottom-up
estimates, FRS, and CRS to develop a schedule
skeleton for the project such that each of the internal
engineering releases could be designed, coded, unit
tested, integrated, and system tested. We divided each
component’s development into subtasks according to
development phases (detailed design, coding, unit
testing, and bug fixing) for each of its releases. We
distributed each component’s development within the
schedule skeleton depending on the total estimated
effort, the resources available, and the FRS and CRS.
For example, the design and coding tasks for a large
component would start early even though its features
were not needed until later. It was sometimes
necessary to modify the FRS and CRS in order to fit
the component development subtasks within the
schedule skeleton using the available resources.

128

The subtasks for each component, and their
integration dependencies were incorporated in the
project schedule. We had “high-confidence” in the
resulting project schedule, in that the actual release
date would be within 1520% of the time estimated.

2.6 Software Development Plan

The software development plan (SDP) was a short
document which included the schedules, engineering
release definitions, staffing requirements,
subcontractor utilization, project organization, cost
estimates, development tools and procedures, task
assignments, and hardware platform. It referred to the
software development process, high-level design
document (HLDD), feature release specification
(IRS), and component release specification (CRS).
The SDP summarized when, how, and with whom the
software product would be developed. The SDP
contained a description of the organizational structure
for the project and a description of the roles of the
team members.

2.7 Personal Schedules

The completed SDP, including the project schedule,
was received by eachteam member to create their own
detailed personal schedules. We used the inputs from
the personal schedules to provide more detail to and
update the project schedule which was then frozen as a
baseline schedule. Since the tasks identified in the
project schedule were consistent with the detailed
activities identified by the team members, they had
good ownership of the schedule by this time. The
personal schedules were monitored weekly and the
project schedule was updated every two weeks.

3 Conclusions and Lessons Learned

We have described our limited experience with
planning a software development project using the
software architecture.

We found that a well defined architecture was
essential for the entire project planning effort. It was
equally essential for the architecture to be well
understood by the team members in order to get a
much better grasp of what was necessary to implement
the software product. We spent a lot of time and effort
in communicating and reviewing the high-level design
with all the team members, and improving the
architecture description.

We found the architecture layer diagram to be a
very valuable tool for the development team. Such a
summary picture of all the major software components
and their relationships provided stability and a point of
reference for many aspects of the project. It gave the
team and management an overview of what needed to
be developed in order to implement the product. It was
helpful for deciding if components from other
products could be reused to implement the new
product, and for planning and visualizing the internal
releases and integration steps.

The four-hour paper design served two objectives:
a more detailed understanding of the architecture and
more accurate estimates. These then became the basis
for the project work packages leading to a bottom-up
creation of the project schedule.

Using both top-down and bottom-up approaches to
estimation helped increase team members’ confidence
in and ownership of the resulting project schedule.

References

1 Boehm, B. W. (1981), Sofhvare Engineering
Economics, Prentice-Hall, Englewood Cliffs,
NJ.

2 Soni, D., Nord, R. L., and Hofmeister, C.
(1995), “Software Architecture in Industrial
Applications”, Proc. of the 17th International
Conference on Sofrware Engineer&, Seattle,
WA.

129

