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ABSTRACT

Online controlled experiments are at the heart of making
data-driven decisions at a diverse set of companies, including
Amazon, eBay, Facebook, Google, Microsoft, Yahoo, and
Zynga. Small differences in key metrics, on the order of
fractions of a percent, may have very significant business
implications. At Bing it is not uncommon to see experiments
that impact annual revenue by millions of dollars, even tens
of millions of dollars, either positively or negatively. With
thousands of experiments being run annually, improving the
sensitivity of experiments allows for more precise assessment
of value, or equivalently running the experiments on smaller
populations (supporting more experiments) or for shorter
durations (improving the feedback cycle and agility). We
propose an approach (CUPED) that utilizes data from the
pre-experiment period to reduce metric variability and hence
achieve better sensitivity. This technique is applicable to a
wide variety of key business metrics, and it is practical and
easy to implement. The results on Bing’s experimentation
system are very successful: we can reduce variance by about
50%, effectively achieving the same statistical power with
only half of the users, or half the duration.

Categories and Subject Descriptors
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1. INTRODUCTION

A controlled experiment is probably the oldest and the
most widely accepted methodology to establish a causal re-
lationship (Mason et al. 1989; Box et al. 2005; Keppel et al.
1992; Kohavi et al. 2009b; Manzi 2012). Now widely used
and re-discovered by many companies, it is referred to as
a randomized experiment, an A/B test (Wikipedia), a split
test, a weblab (at Amazon), a live traffic experiment (at
Google), a flight (at Microsoft), and a bucket test (at Ya-
hoo!). This paper is focused on online controlled experi-
ments, where experiments are conducted on live traffic to
support data-driven decisions in online businesses, includ-
ing e-business sites like Amazon and eBay, portal sites like
Yahoo and MSN (Kohavi et al. 2009b), search engines like
Microsoft Bing (Kohavi et al. 2012) and Google (Tang et al.
2010b).

Online controlled experiments are critical for businesses.
Small differences in key metrics, on the order of fractions of
a percent, can have very significant business implications.
At Bing it is not uncommon to see experiments that im-
pact annual revenue by millions of dollars, even tens of mil-
lions of dollars, either positively or negatively. We begin
with a motivating example of an online controlled experi-
ment run at MSN (Kohavi et al. 2009a). MSN Real Estate
(http://realestate.msn.com) had six visual design candi-
dates for the “Find a home” widget, as shown in Figure 1.
During the experiment, users were randomly split between
the 6 variants, where the control is the production version
and treatment 1 through 5 are five new designs. The goal
was to increase visits to the linked partner sites through
the widget. Users’ interactions with the widget were instru-
mented and key metrics such as the number of transfers to
partner sites were computed. In this experiment, the win-
ner, treatment 5, increased revenue from transfer fees by
almost 10% compared to the control.

One challenge with any controlled experiment is the abil-
ity to detect the treatment effect when it indeed exists, usu-
ally referred to as “power” or “sensitivity.” Improving sen-
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Figure 1: Widgets tested for MSN Real Estate.

sitivity is particularly important when running online ex-
periments at large scale. A mature online experimentation
platform runs thousands of experiments a year (Kohavi et al.
2012; Manzi 2012). The benefit of any increased sensitivity
is therefore amplified by economies of scale. It might seem
unnecessary to emphasize sensitivity for online experiments
because they tend to have very large sample sizes already
(e.g. millions of users (comScore 2012)) and increasing sam-
ple size is usually the most straightforward way to improve
power. In reality, even with a large amount of traffic, online
experiments cannot always reach enough statistical power.
Google made it very clear that they are not satisfied with
the amount of traffic they have (Tang et al. 2010a, Slide
6) even with over 10 billion searches per month (comScore
2012). There are several reasons for this. First, the treat-
ment effects we would like to detect tend to be very small.
The sensitivity of controlled experiments is inversely propor-
tional to the number of users squared, so whereas a small
site may need 10,000 users to detect a 5% delta, detecting
a 0.5% delta requires 100 times (10 squared) more users,
or one million users. Even a 0.5% change in revenue per
user equates to millions of dollars for large online sites. Sec-
ond, it is crucial to get results fast. One wants to launch
good features early, and more importantly, if the treatment
turns out to have a negative impact on users, we need to
stop it as soon as possible. Third, there are many experi-
ments that have low triggering rates; that is, only a small
fraction of the experiment’s users actually experience the
treatment feature. For example, in an experiment affecting
only recipe-related queries, the majority of the users will not
see the target feature because they didn’t search for recipes
during the experiment. In these cases, the effective sample
size can be small and statistical analysis can suffer from low
statistical power. Finally, in a data-driven culture, there is
always demand to run more experiments to keep up with the
rate of innovation. A good online experimentation platform
should allow many experiments to run together. This also

requires that we make optimal use of large but still limited
traffic.

One way to improve sensitivity is through variance reduc-
tion. Kohavi et al. (2009b) provides examples where we can
achieve a lower variance using a different evaluation metric
or through filtering out users who are not impacted by the
change. Deng et al. (2011) shows how we can use page level
randomization at the design stage to reduce variance of page
level metrics (Chapelle et al. 2012). However, these methods
are limited in their applicability to special cases and we want
a technique that is applicable to any metric as, in practice,
businesses are likely to have a set of Key Performance Indi-
cators (KPIs) that cannot be changed easily. Moreover, the
technique should preferably not be based on any parametric
model because model assumptions tend to be unreliable and
a model that works for one metric does not necessarily work
for another.

In this paper, we propose a technique, called CUPED
(Controlled-experiment Using Pre-Experiment Data), which
adjusts metrics using pre-experiment data for users in the
control and treatment to reduce metric variability.

The key contributions of our work include:

e A theoretically sound and practical method to reduce
variances for online experiments using pre-experiment
data, which greatly increases experiment sensitivity.

e Extensions of approach to non-user metrics and par-
tially missing pre-experiment data.

e Criteria for selecting the best covariates, including the
empirical result that using the same metric from the
pre-experiment typically gives the greatest variance re-
duction.

e Validation of the results on real online experiments run
at Bing, demonstrating a variance reduction of about
50%, equivalent to doubling our traffic or halving the
time we need to run an experiment to get the same
sensitivity.

e Practical guidance on choices important to successful
application of CUPED to real-world online experimen-
tation, including factors like the best length to use for
the pre-experiment period and the use of multiple co-
variates.

2. BACKGROUND AND RELATED WORK

2.1 Analyzing Experiments

Because of its wide applicability, we focus on the case
of the two-sample t-test (Student 1908; Wasserman 2003).
This is the framework most commonly used in online exper-
iment analysis. Suppose we are interested in some metric
Y (e.g. Queries per user). To apply the t-test, we assume
the observed values of the metric for users in the treatment
and control are independent realizations of random variables
Y® and Y(®. The null hypothesis is that Y and V(¢ have
the same mean and the alternative is that they do not. The
t-test is based on the t-statistic:

?(t) - ?(C)
var (?“” - ?“))

; (1)

where A = Y(t) —7(6) is an unbiased estimator for the shift
of the mean and the t-statistic is a normalized version of that
estimator. For online experiments, the sample sizes for both
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control and treatment are at least in thousands, hence the
normality assumption on Y is usually unnecessary because
of the Central Limit Theorem.

Because the samples are independent,

var(A) = var (?(t) — 7(C>) = var (?(t)) + var (7(6)) .

In this framework, the key to variance reduction for the dif-
ference in mean lies in reducing the variance of the means
themselves. As we will see in Section 3, this connects our
problem to techniques used in Monte Carlo sampling to im-
prove estimation of a mean through variance reduction.

At a very high level, our proposal for variance reduction
works as follows. We conduct the experiment as usual but
when analyzing the data, we compute an adjusted or cor-
rected estimate of the delta. That adjusted estimate, A™,
incorporates pre-experiment information, such that

e A" is still an unbiased estimator for the shift in the
means (same as A), and
e A" has a smaller variance than A.
Note that because of the reduced variance, the correspond-
ing t-statistic would be larger for the same expected effect
size. We therefore achieved better sensitivity.

2.2 Linear Models

We begin with a short review of related work. Variance re-
duction has been a longstanding challenge for analyzing ran-
domized experiments. The most popular parametric method
is based on linear modeling (Gelman and Hill 2006). A lin-
ear model for an experiment assumes that the outcome is
a linear combination of a treatment effect coupled with ad-
ditional covariate terms. In particular, suppose Y; is the
outcome metric, Z; is the treatment assignment indicator
and X; is a vector of covariates. The linear model assumes
E(Y;|Zi,Xi) = 00 + 6Z; + 67X,;. Under the assumptions
of the model, linear regression (also called ANCOVA when
covariates are categorical variables) gives a consistent esti-
mator for the average treatment effect and reduces variance.
However, the linear model makes strong assumptions that
are usually not satisfied in practice, i.e., the conditional ex-
pectation of the outcome metric is linear in the treatment
assignment and covariates. In addition, it also requires all
residuals to have a common variance.

2.3 Semi-Parametric Models

To overcome limitations of the linear model, researchers
have developed less restrictive models called semi-parametric
models (Tsiatis 2006), for which Generalized Estimating
Equations (GEE) are used for fitting the model. Comparing
standard linear models with semi-parametric models, Yang
and Tsiatis (2001) showed that linear model (ANCOVA) and
GEE are asymptotically equivalent under the less restric-
tive semi-parametric model and both give more efficient es-
timates for the average treatment effect than the unadjusted
t-test. Leon et al. (2003), Davidian et al. (2005) and Tsiatis
et al. (2008) further refined the work using semi-parametric
statistical theory (Tsiatis 2006) and gave the analytical form
of a class of estimators for the average treatment effect. This
class is complete in the sense that all possible RAL (regular
and asymptotically linear) estimators for the average treat-
ment effect are asymptotically equivalent to one in the class.
The problem left is to find the estimator in the class with
the smallest variance and they provided general guidance.

In this paper, we look at the problem from a different
perspective. By connecting the variance reduction problem
in randomized experiments to a similar problem in Monte
Carlo simulation, we are able to derive a very powerful re-
sult. Instead of diving into abstract Hilbert spaces and func-
tional influence curves, our argument only involves elemen-
tary probability. In particular, we propose to use the data
from the pre-experiment period to reduce metric variability,
which turns out to be very effective and practically applica-
ble.

3. VARIANCE REDUCTION

Variance reduction is a common topic in Monte Carlo sam-
pling, where the goal is usually to estimate a parameter by
repeatedly simulating possible values from the underlying
distribution. In Monte Carlo sampling significant efficiency
gains can be had if we use sampling schemes that reduce the
variance by incorporating prior information. Unlike Monte
Carlo simulations, in the world of online experiments, the
population is dynamic and data arrive gradually as the ex-
periment progresses. We cannot design a sampling scheme
in advance and then collect data accordingly. However, we
will show that because we have pre-experiment data, we can
adapt Monte Carlo variance techniques by applying them
“retrospectively.”

The two Monte Carlo variance reduction techniques we
consider here are stratification and control variates. For
each technique, we review the basic concepts and then show
how it can be adapted to the online experiment setting. We
devote Section 3.3 to discussing the connections between
these two approaches and the implications in practice.

3.1 Stratification

Stratification is a common technique used in Monte Carlo
sampling to achieve variance reduction. In this section, we
show how it can be adapted to achieve the same goal in the
world of online experimentation.

3.1.1 Stratification in Simulation

The basic idea of stratification is to divide the sampling
region into strata, sample within each stratum separately
and then combine results from individual strata together to
give an overall estimate, which usually has a smaller variance
than the estimate without stratification.

Mathematically, we want to estimate E(Y), the expected
value of Y, where Y is the variable of interest. The standard
Monte Carlo approach is to first simulate n independent

samples Y;,7 = 1,...,n, and then use the sample average
Y as the estimator of E(Y). Y is unbiased and var(Y) =
var(Y)/n.

Let’s consider a more strategic sampling scheme. Assume
we can divide the sampling region of Y into K subregions
(strata) with wy the probability that Y falls into the kth
stratum, k = 1,..., K. If we fix the number of points sam-
pled from the kth stratum to be nx = n - wg, we can define
a stratified average to be

K
Ystrat = Zwk?kv (2)
k=1

where Y, is the average within the kth stratum.
The stratified average Ysira: and the standard average Y
have the same expected value but the former gives a smaller
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variance when the means are different across the strata. The
intuition is that the variance of Y can be decomposed into
the within-strata variance and the between-strata variance,
and the latter is removed through stratification. For ex-
ample, the variance of children’s heights in general is large.
However, if we stratify them by their age, we can get a much
smaller variance within each age group. More formally,

where (ux, 07) denote the mean and variance for users in the
kth stratum. More detailed proof can be found in standard
Monte Carlo books (e.g. Asmussen and Glynn (2008)). A
good stratification is the one that aligns well with the un-
derlying clusters in the data. By explicitly identifying these
clusters as strata, we essentially remove the extra variance
introduced by them.

3.1.2 Stratification in Online Experimentation

In the online world, because we collect data as they ar-
rive over time, we are usually unable to sample from strata
formed ahead of time. However, we can still utilize pre-
experiment variables to construct strata after all the data
are collected (for theoretical justification see Asmussen and
Glynn (2008, Page 153)). For example, if Y; is the number
of queries from a user i, a covariate X; could be the browser
that the user used before the experiment started. The strat-
ified average in (2) can then be computed by grouping Y
according to the value of X,

~ K K 1
Ystrat = Z’U}k?k = Zwk J— Z Y;
k=1 k=1 Tk

i X;=k

Using superscripts to denote treatment and control groups,
the stratified delta

K
Astrar = 1?s(ttr)m: - ﬂﬂat = Z Wk (75:) - ?;C))
k=1

enjoys the same variance reduction as the stratified average
in Eq. (2). It is important to note that by using only the
pre-experiment information, the stratification variable X is
independent of the experiment effect. This ensures that the
stratified delta is unbiased.

In practice, we don’t always know the appropriate weights
wy to use. In the context of online experimentation, these
can usually be computed from users not in the experiment.
As we will see in Section 3.3, when we formulate the same
problem in the form of control variates (Section 3.2), we no
longer need to estimate the weights.

3.2 Control Variates

We showed how online experimentation can benefit from
the stratification technique widely used in the simulation
literature. In this section we show how another variance re-
duction technique used in simulation, called control variates,
can also be adopted in online experimentation. In Section
3.2.1, we review control variates in its original form as a
variance reduction technique for simulation. We then show

how the same idea can be applied in the context of online
experimentation in Section 3.2.2.

3.2.1 Control Variates in Simulation

The idea of variance reduction through control variates
stems from the following observation. Assume we can simu-
late another random variable X in addition to Y with known
expectation E(X). In other words, we have independent
pairs of (Y3, X;),i =1,...,n. Define

Yoo =Y — 6X + 0EX, (3)

where 6 is any constant. Y., is an unbiased estimator of
E(Y) since —0E(X) + 0E(X) = 0. The variance of Ye, is

var(Ye,) = var(Y — 6X) = var(Y — 0X)/n

= %(var(Y) + 0°var(X) — 20cov(Y, X)).

~

Note that var(Ye,) is minimized when we choose
0 = cov(Y, X)/var(X) (4)
and with this optimal choice of 0, we have
var(¥.,) = var(V)(1 - p?), (5)

where p = cor(Y, X) is the correlation between Y and X.
Compare (5) to the variance of Y, the variance is reduced by
a factor of p?. The larger p, the better the variance reduc-
tion. The single control variate case can be easily generalized
to include multiple variables.

It is interesting to point out the connection with linear
regression. The optimal 6 turns out to be the ordinary least
square (OLS) solution of regressing (centered) Y on (cen-
tered) X, which gives variance

var(Ye,) = var(Y)(1 — R?),

with R? being the proportion of variance explained coeffi-
cient from the linear regression. It is also possible to use
nonlinear adjustment. i.e., instead of allowing only linear
adjustment as in (3), we can minimize variance in a more
general functional space. Define

Yeo =Y — J(X) + E(f(X)), (6)

and then try to minimize the variance of (6). It can be shown
that the regression function E(Y|X') gives the optimal f(X).

3.2.2 Control Variates in Online Experimentation

Utilizing control variates to reduce variance is a very com-
mon technique. The difficulty of applying it boils down to
finding a control variate X that is highly correlated with Y
and at the same time has known E(X).

Although in general it is not easy to find control variate X
with known E(X®) and E(X(©), a key observation is that
E(X®)—E(X(9) = 0 in the pre-experiment period because
we have not yet introduced any treatment effect. By using
only information from before the launch of the experiment
to construct the control variate, the randomization between
treatment and control ensures that we have EX® = EX ().

Given EX® —EX(©) = 0, it is easy to see the delta

Acy = S}c(j) - i}cg;c) (7)

is an unbiased estimator of § = E(A). Notice how A, does
not depend on the unknown E(X®)) and E(X(9) at all as
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they cancel each other. With the optimal choice of 6 from
Eq (4), we have that A., reduces variance by a factor of p?
compared to A, i.e.

var(Aey) = var(A)(1 — p?).

To achieve a large correlation and hence better variance re-
duction, an obvious approach is to choose X to be the same
as Y, which naturally leads to using the same variable dur-
ing pre-experiment observation window as the control vari-
ate. As we will see in the empirical results in Section 5, this
indeed turns out to be the most effective choice we found
for control variates.

There is a slight subtlety that’s worth pointing out. The
pair (Y, X) may have different distributions in treatment
and control when there is an experiment effect. For A,
to be unbiased, the same # has to be used for both control
and treatment. The simplest way to estimate it is from the
pooled population of control and treatment. The impact on
variance reduction will likely be negligible. In the general
nonlinear control covariates case, we should use the same
functional form in both }?C(Ut) and ?C(UL)

3.3 Connection between Stratification and
Control Variates

We have discussed two techniques that both utilize co-
variates to achieve variance reduction. The stratification ap-
proach uses the covariates to construct strata while the cont-
rol variates approach uses them as regression variables. The
former uses discrete (or discretized) covariates, whereas con-
trol variates seem more naturally to be continuous variables.
It is, however, not surprising that these two approaches are
closely related. In fact, we can show that when the covariate
X is categorical (say, with discrete values 1,..., K) the two
approaches produce identical estimates. Details are included
in Appendix A. The basic idea is to construct an indicator
variable 1 x—; for each stratum and use it as a control variate
with mean being the stratum weight wy. To this end, the
control variates technique is an extension of stratification,
where both continuous and discrete covariates are applica-
ble.

While these two techniques are well connected mathe-
matically, they provide different insights into understanding
why and how to achieve variance reduction. The stratifica-
tion formulation has a nice analogy with mixture models,
where each stratum is one component of the mixture model.
Stratification is equivalent to separating samples according
to their component memberships, effectively removing the
between-component variance and achieving a reduced vari-
ance. A better covariate is hence the one that can better
classify the samples and align with their underlying struc-
ture. On the other hand, the control variates formulation
quantifies the amount of variance reduction as a function of
the correlation between the covariates and the variable it-
self. It is mathematically simpler and more elegant. Clearly,
a better covariate should be the one with larger (absolute)
correlation.

4. CUPED IN PRACTICE

A simple yet effective way to implement CUPED is to
use the same variable from the pre-experiment period as
the covariate. Indeed, this is essentially what we have im-
plemented in practice for Bing’s experimentation system.
However, there are situations when this is not possible or

practical. For example, if we want to measure user reten-
tion rate or conduct an experiment on new users, there are
no pre-experiment data to work with. In fact, in most on-
line experiments, we may not have pre-experiment informa-
tion on all users. An additional challenge is how to use
pre-experiment data for metrics whose analysis unit is not
a user. This section is devoted to address practical chal-
lenges like these using Bing’s experimentation system as a
case study.

4.1 Selecting Covariates

The choice of covariates is critical, as it directly deter-
mines the effectiveness of variance reduction. With the choice
of the right variables we can halve the variance but with
the wrong choice there is little reduction in variance. To
understand which pre-experiment variables worked best we
evaluated a large number of possible pre-experiment vari-
ables. Across a large class of metrics, our results consis-
tently showed that using the same variable from the pre-
experiment period as the covariate tends to give the best
variance reduction. In addition, the lengths of the pre-
experiment and the experiment periods also play a role.
Given the same pre-experiment period, extending the length
of the experiment does not necessarily improve the variance
reduction rate. On the other hand, a longer pre-period tends
to give a higher reduction for the same experiment period.
We discuss more details in the context of an empirical ex-
ample in Section 5.

4.2 Handling Missing Pre-Experiment Data

In online sites, we might not have pre-experiment data
on all users in the experiment. This can occur because
some users are visiting for the first time, or users simply
do not visit the site frequently enough to appear during the
pre-experiment period. In addition, users are identified by
cookies, which are unreliable and can “churn” (i.e. change
due to users clearing their cookies).

This poses a challenge for using the pre-experiment infor-
mation to construct covariates. For users who are in the
experiment but not in the pre-experiment period, the corre-
sponding covariates are not well-defined. One way to address
this is to define another covariate that indicates whether or
not a user appeared in the pre-experiment period. With this
additional binary covariate, we can set the missing covari-
ate values to be any constant we like. Intuitively, this is
equivalent to first splitting users into two strata: those that
appeared in the pre-experiment period and those that did
not. Note that for the stratum of users with pre-experiment
data, their pre-experiment covariates are well-defined so fur-
ther variance reduction based on these covariates is possible.
In addition, the stratification by presence in the pre-period
is a further source of variance reduction.

4.3 Beyond Pre-Experiment Data

So far we only considered reducing metrics variability based
on covariates constructed using the pre-experiment data.
This is not only because using the same variable from the
pre-period tends to give the best variance reduction, but also
because the pre-experiment information is guaranteed to be
independent of the experiment’s effect, which is crucial to
avoid biased results.

It is probably easier to demonstrate this mathematically
with the control variates formulation. In Eq. (7), the delta
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A, is computed assuming E(X®) = E(X(©). If there is
truly a difference between control and treatment in terms of
X and this equality does not hold, A, will be biased. For
example, we know a faster page load-time usually leads to
more clicks on a search page (Kohavi et al. 2009b). If we
use the number of clicks as the covariate in an experiment
that improves page load-time, we will end up underestimat-
ing the experiment impact on the load-time because part of
the improvement is “adjusted away” by the covariate. See
Section 5 for a real example of biased results caused by using
a covariate that violates the requirements described here.

However, this does not mean that covariates based on pre-
experiment data are the only choice. All that is required
is that the covariate X is not affected by the experiment’s
treatment. A natural extension is the class of covariates con-
structed using information gathered at the first time a user
appears in the experiment. For instance, the day-of-week
a user is first observed in the experiment is independent of
the experiment itself. Such covariates can serve as an ad-
ditional powerful source for variance reduction. To further
extend this idea, covariates based on any information estab-
lished before a user actually triggers the experiment feature
are also valid. This can be particularly helpful if the feature
to be evaluated has a low triggering rate.

4.4 Handling Non-User Metrics

As we mentioned in Section 1, in online experiments, users
(cookies) are the common randomization unit. In the discus-
sion thus far, we have assumed that the analysis unit is also
“user.” However, this is not always the case. For example,
we may want to compute click-through-rate (CTR) as the
total number of clicks divided by the total number of pages.
The analysis unit here is a “page” instead of a “user.” Vari-
ance estimation itself is harder when there is a mismatch
between the analysis unit and the experiment unit. The
most common solution is to use the delta method to pro-
duce correct estimate of variance that takes into account the
correlation of pages from the same user (Deng et al. 2011;
Tang et al. 2010b; Kohavi et al. 2009b). To achieve vari-
ance reduction for these non-user level metrics, we need to
combine the delta method and our variance reduction tech-
niques together. The details are provided in Appendix B.
In fact, not only can the metric of interest (e.g. CTR) be at
page level, we can have page-level covariates as well. This
opens the door to a larger class of covariates that are based
on features specific to a page that may be not specific to a
user, e.g. time stamp on a page-view.

5. EMPIRICAL RESULTS

In this section, we share empirical results that show the ef-
fectiveness of CUPED for Microsoft Bing’s experimentation
system. First we show how CUPED can greatly improve the
sensitivity for a real experiment run at Bing. Next we look
deeper into a 3-week A/A test, which is a controlled exper-
iment where treatment is identical to control and hence the
treatment effect is known to be 0. Using an A/A experiment
we can examine important decisions that can have a large
impact of the success of variance reduction for real-world on-
line experimentation. Finally, we show how biased estimates
arise if we go past the user triggering into the experiment
and choose a covariate inappropriately.

5.1 Slowdown Experiment in Bing

To show the impact of CUPED in a real experiment we
examine an experiment that tested the relationship between
page load-time and user engagement on Bing. Delays, on
the order of hundreds of milliseconds, are known to hurt
user engagement (Kohavi et al. 2009b, Section 6.1.2). In
this experiment, we deliberately delayed the server response
to Bing queries by 250 milliseconds. The experiment first
ran for two weeks on a small fraction of Bing users, and we
observed an impact to click-through-rate (CTR) that was
borderline statistically significant, i.e., the p-value was just
slightly below our threshold of 0.05. To confirm that the
treatment effect on this metric is real and not a false positive,
a much larger experiment was run, which showed that this
was indeed a real effect with a p-value of 2e-13.

We applied CUPED using CTR from the 2-week pre-
period as the covariate. The result is impressive: the delta
was statistically significant from day 1! The top plot of Fig-
ure 2 shows the p-values over time in log scale. The black
horizontal line is the 0.05 significance bar. The vanilla t-
test trends slowly down and by the time the experiment
was stopped in 2 weeks, it barely reached the threshold.
When CUPED is applied, the entire p-value curve is below
the bar. The bottom plot of Figure 2 compares the p-value
curves when CUPED runs on only half the users. Even with
half the users exposed to the experiment, CUPED results in
a more sensitive test, allowing for more non-overlapping ex-
periments to be run. While most experiments are not known
to be negative to the user experience a-priori, it has been
well documented that most experiments are flat or nega-
tive (Kohavi et al. 2009a; Manzi 2012), so being able to run
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Figure 2: Slowdown experiment. Top: p-value. Bot-
tom: p-value when using only half the users for
CUPED.
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experiments with the same statistical power on smaller pop-
ulations of users is very important.

Applying CUPED to other experiments at Bing has re-
sulted in similar increases to statistical power.

5.2 Factors Affecting CUPED Effectiveness

In this section we look at factors that can have a large
impact on the success of using CUPED in practice. The
data we use here are from a 3-week A/A experiment.

5.2.1 Covariates

Figure 3 shows CUPED’s variance reduction rate for the
metric queries-per-user. Two covariates are considered: (1)
entry-day, which is a categorical variable indicating the first
day a user appears in the experiment and (2) queries-per-
user in the 1-week pre-experiment period. Note that the
entry-day is not pre-experiment data, but it satisfies the
condition required in Section 4.3 because the treatment has
no effect on when a user will come for the first time during
the experiment.

©50%-

40% -

ion Ra

30% =

20% -

Variance Reduct

_\
< 2
> >
1 \

|

Cl) 9 10 15
Experiment Length(Days)

~&- Queries~preQueries+EntryDay -8 Queries~EntryDay
CUPED model
-4~ Queries~preQueries

Figure 3: Variance reduction for Queries/UU using
different covariates.

Note that the full experiment ran for 3 weeks, but the
reduction rate is evaluated and plotted as the experiment
accumulates data up until to the full 3 weeks. From the
plot we can see that when only entry-day is used as the
covariate, the variance reduction rate increases as the ex-
periment runs longer and stays at about 9% to 10% after 2
weeks. On the other hand, using only the pre-experiment pe-
riod queries-per-user, variance reduction rate can reach more
than 45%. When we combine the two covariates together,
we only gain an extra 2% to 3% more reduction compared
to the pre-experiment queries-per-user alone. This suggests
that the same metric computed in the pre-experiment pe-
riod is a better single covariate. That is intuitive since the
same metric in the experiment and pre-experiment periods
should naturally have high correlation. The fact that when
combining two covariates together the marginal variance re-
duction is small means most correlation between entry-day
and queries-per-user can be “explained away” by the pre-
experiment queries-per-user. More precisely, the partial cor-
relation between entry-day and queries-per-user given pre-
experiment queries-per-user is low.

5.2.2 Lengths of Experiment and Pre-Experiment

In addition to the effect of covariates, Figure 3 also pro-
vides insights on the impact of the experiment length. An

interesting observation is that the variance reduction rate for
the pre-experiment covariate (green/triangle) is not mono-
tonically increasing as the experiment duration increases. It
reaches the maximum at about 2 weeks and then starts to
slowly decrease. To help understand the underlying reasons
for this trend, we plot 4 variations of this curve with pre-
period length varying from 3 days to 2 weeks. As shown
in Figure 4, we see that a longer pre-period gives a higher
variance reduction rate.
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Figure 4: Impact of pre-experiment period length.

The trends in Figure 3 and 4 together reveal two conflict-
ing factors that impact the effectiveness of CUPED.

e (Correlation. The higher the correlation, the better
the variance reduction. When we increase the pre-
experiment period length or increase the experiment
duration, the correlation increases for “cumulative” met-
rics such as queries-per-user. This is because the longer
the period, the higher the signal-to-noise ratio.

e (Coverage. Coverage is the percentage of users in the
experiment that also appeared in the pre-experiment
period. Coverage is determined by:

— FExperiment Duration. As the experiment dura-
tion increases, coverage decreases. The reason is
that frequent visitors are seen early in the exper-
iment and users seen later in the experiment are
often new or “churned” users. The result is that as
coverage decreases, the rate of variance reduction
goes down.

— Pre-period Duration. Increasing the pre-period
length increases coverage because we have a bet-
ter chance of matching an experiment user in the
pre-period.

When pre-experiment period was chosen to be 2 weeks, the
variance reduction rate is about 50% for a large range of
experiment durations.

5.2.3 Metric of Interest

Besides the choice of covariates and the lengths of ex-
periment and pre-experiment, CUPED effectiveness varies
from metric to metric, depending on the correlation between
the metric and its pre-experiment counterpart. We applied
CUPED on a few metrics, such as clicks-per-user and visits-
per-user. CUPED performed well on all these metrics with
similar variance reduction curves as in Figure 3. One no-
table exception is revenue-per-user, where CUPED reduced
the variance by less than 5% due to the low correlation of
revenue-per-user between the pre-experiment and the exper-
iment periods. We also applied CUPED on a few page level
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metrics (see the discussion in Section 4.4). Figure 5 shows
the reduction rate for click-through-rate (CTR), using 2-
week pre-experiment CTR as the CUPED covariate. Figure
6 plots the correlation curve between the two periods. Both
the variance reduction rate and the correlation are similar
to those of queries-per-user.
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Figure 5: Variance reduction rate for CTR.
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Figure 6: Correlation between the metrics of inter-
est and their covariates within the matched users.

5.3 Warning on Using Post-Triggering Data

In Section 4, we mentioned that to guarantee unbiased re-
sults, any covariate X has to satisfy the condition E(X(t)) =
E(X(?). We illustrate this point in Figure 7. The data is
from another Bing experiment, where queries-per-user in-
creased statistically significantly. If we were to look for
a metric with high correlation to queries-per-user, there is
actually a much better candidate than the pre-experiment
queries-per-user: the “in-experiment” Distinct Queries-per-
user (DQ-per-user). DQ is defined as query counts for a
user after consecutive duplicated queries are removed. As
a result, DQ is extremely highly correlated with queries-
per-user. Seemingly, DQ-per-user as covariate sounds like
a good idea. However, Figure 7 shows that the CUPED
estimates Acyprp are negative and the confidence inter-
vals are almost always below 0 (Note how narrow the confi-
dence intervals are. DQ-per-user indeed reduced variance a
lot!). This suggests the queries-per-user difference between
the treatment and control is negative with 95% confidence, a
result that is directionally opposite of the known effect. The
contradiction is only apparent because DQ-per-user does not

satisfy E(X ) = E(X(®). In fact, since we know treatment
has larger queries-per-user, it has larger DQ-per-user too.
By (7), CUPED estimate A., can be interpreted as the in-
experiment delta for the metric of interest “corrected” by
the delta for the covariate. In this case the covariate delta
is also positive, driving down the CUPED estimate below 0.
This example illustrates the pitfall when extending CUPED
beyond using pre-experiment (or pre-triggering) data.
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Figure 7: Example where results are directionally
incorrect when covariates violate the pre-triggering
requirement.

6. CONCLUSIONS

Increasing the sensitivity of online experiments allows for
more precise assessment of value, or equivalently running the
experiments on smaller populations (supporting more non-
overlapping experiments) or for shorter durations (improv-
ing the feedback cycle and agility). We introduced CUPED,
a new technique for increasing the sensitivity of controlled
experiments by utilizing pre-experiment data. CUPED is
currently live in Bing’s online experimentation system. Three
important recent experiments showed variance reductions of
45%, 52% and 49% with one week of experiment and one
week of pre-experiment data. This reassures that CUPED
can indeed help us effectively achieve the same statistical
power with about only half the users, or half the duration.

CUPED is widely applicable to organizations running on-
line experimentation systems because of its simplicity, abil-
ity to be added easily to existing systems, and its support
for metrics commonly used in online businesses. Based on
our experience applying CUPED at Bing, we can make the
following recommendations for others interested in applying
CUPED to their online experiments:

e Variance reduction works best for metrics where the
distribution varies significantly across the user pop-
ulation. Omne common class of such metrics where
the value is very different for light and heavy users.
Queries-per-user is a paradigmatic example of such a
metric.

e Using the metric measured in the pre-period as the co-
variate typically provides the best variance reduction.

e Using a pre-experiment period of 1-2 weeks works well
for variance reduction. Too short a period will lead
to poor matching, whereas too long a period will re-
duce correlation with the outcome metric during the
experiment period.

e Never use covariates that could be affected by the
treatment, as this could bias the results. We have
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shown an example where directionally opposite con-

clusions could results if this requirement is violated.
While CUPED significantly improves the sensitivity of on-
line experiments, we would like to explore improvements:

o Optimized Covariate Selection. Extend CUPED to op-
timize the selection of covariates, both for particular
metrics and for particular types of experiments (e.g., a
backend experiment might use data center as a covari-
ate). We also plan to study the theory and practice to
optimize selection of multiple covariates from a large
library of potential covariate variables.

e Incorporating Covariate Information into Assignment.
Rather than adjusting the data after the experiment
completes, if we can make randomization aware of co-
variates we can potentially improve the sensitivity of
our experiments even more as well as allocating traffic
more efficiently to experiments.
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APPENDIX

A. CONTROL VARIATES AS AN EXTEN-
SION OF STRATIFICATION

Here we show that when the covariates are categorical,
stratification and control variates produce identical results.

For clarity and simplicity, we assume X is binary with
values 1 and 0. Let w = E(X). The two estimates are

},}strat = U)Y1 + (1 — w)?o,
?CU =Y -6X + éw,

where Y| denotes the average of Y in the {X = 1} stratum
and § = cov(Y, X)/var(X) = Y1 — Y. Plugging in the
expression for 0, we have

1/>cv = ?— (?1 —?0)74— (?1 — Yo)w

=(1-X)Yo+YoX+ (Y1 -Yo)w
w?l + (1 — w)?o - i;straty

where the second equality follows from the fact that ¥ =
XV1 4 (1— X)Vo.

To prove for the case with K > 2, we construct K — 1
indicator variables as control variates. With the observation
that the coefficients 0, = Y i 770, the proof follows the same

steps as the binary case outlined above.

B. GENERALIZATION TO OTHER ANAL-
YSIS UNIT

As we mentioned in Section 4, to achieve variance reduc-
tion for non-user level metrics, we need to incorporate delta
method. The formulation we lay out in Section 3 makes it
easy to achieve this, as we will see below.

We use CTR as an example and derive for the control
variates formulation since it’s more general.

Let n be the number of users (non-random). Denote Y; ;
the number of clicks on user i’s jth page-view during the
experiment and Xj;x the number of clicks on user 7’s kth
page-view during the pre-experiment period. Let N; and
M; be the numbers of page-views from user i during the
experiment and pre-experiment respectively. The estimate
for CTR in Eq. (3) using X;,; as the control variate becomes

}7 N Zm’ Yij Zi,k Xi,
- Zm] 1 sz 1
_ Zz Y—inL _ 921 X

Zi Ni

-0

L OR(X)

it
S, + OE(X;,5),

where Yj . = > Vi ; is the total number of clicks from user
7. Similar notation applies to X; .
Following the same derivation as in Section 3.2.1, we know

var(Ye,) is minimized at
0 = cov (LtiH‘ 72’ Xiy /var 721 Xit
icov(z_wﬁ_“l z_ﬂxﬂ_ug)

Y N X M X M
:cov(——’uyiz,——ﬂx2 )/Var(——'ux2 )
“N UN  HM Mg Hnr Har
(8)

where the second equality follows from using Taylor ex-
pansion to linearize the ratios and ¥ = L3 Yi . with
ny = IE(?) (similarly for ux, un and par).

Because the user is the randomization unit and user level
observations are i.i.d., we have

Vi (V. N, X, M) = N(u, ),

following a multivariate normal distribution with mean vec-
tor o and covariance matrix ¥ easily estimated from the
i.i.d. samples.

It is now straight forward to estimate 0 in Eq. 8 using

0= (B7%8:2)/ (B3 £B2),

where 81 = (1/pn, —py /iy, 0,0)" and
B2 =(0,0,1/pnr, —px/pis)T are the coefficients in Eq. 8.
Note that in the example above, both the metric of inter-
est (CTR) and the covariate metric are at page-view level.
We can easily see that the derivation works generally for var-
ious combinations. The metric can be at user level while the
covariate can be at page-view level, etc. This opens door to
a whole new class of covariates which are based on features
specific to a page not to a user. Finally, it is easy to see that
the case with multiple control variates follow similarly.



