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ABSTRACT
Social influence is the behavioral change of a person because of
the perceived relationship with other people, organizations and so-
ciety in general. Social influence has been a widely accepted phe-
nomenon in social networks for decades. Many applications have
been built based around the implicit notation of social influence
between people, such as marketing, advertisement and recommen-
dations. With the exponential growth of online social network ser-
vices such as Facebook and Twitter, social influence can for the
first time be measured over a large population. In this tutorial, we
survey the research on social influence analysis with a focus on
the computational aspects. First, we introduce how to verify the
existence of social influence in various social networks. Second,
we present computational models for quantifying social influence.
Third, we describe how social influence can help real applications.
In particular, we will focus on opinion leader finding and influence
maximization for viral marketing. Finally, we apply the selected
algorithms of social influence analysis on different social network
data, such as twitter, arnetminer data, weibo, and slashdot forum.
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1. OUTLINE
As social networks have become popular in many domains, more

and more people make decisions based on their interactions from
social networks. For example, people often pick what restaurants
to go to based on recommendations and reviews from Yelp. As the
growth of social networks in all domains, such behaviors of social
influence become more and more prevalent. More and more people
make decisions and changes influenced by their social networks.

In this tutorial, we survey the theories, algorithms and applica-
tions on social influence analysis.

First, we give the definition of social influence and introduce
related concepts such as homophily, conformity, and selection.
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Second, we describe methodologies for verifying the existence
of influence in various social networks. The methods include shuf-
fle test and randomization test. We will give real world examples
to demonstrate how the social influence behaves in different social
networks.

Third, we present models and algorithms for quantitative analy-
sis of social influence, which goes beyond macro-level analysis.
Employing several large social networks (including Twitter and
Weibo) as the examples in our study, we introduce how social influ-
ence affect individual behaviors and change the network structure.

Finally, we survey applications of social influence. In particular,
we introduce opinion leader finding and influence maximization for
viral marketing, which have many important applications in the real
world. In particular, we focus on node-specific statistics for opinion
leader finding. Then we describe structural effects of both edges
and nodes for influence maximization. In addition, we will present
methods for predicting customer behavior and online advertising
through viral marketing.

To conclude, the tutorial has the following outline.

• Preliminaries

– Definition of social influence

– Homophily

– Influence and Selection

– Other related concepts

• Existential Test for Social Influence

• Computational models for Social Influence

– Learning influence probability

– Influence and action dynamics

– Influence and interaction

– Influence maximization models

• Influence Applications

– Opinion leader finding

– Influence maximization for viral marketing
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