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ABSTRACT
Location-based services have been enduring a fast development for
almost fifteen years. Due to the lack of proper privacy protec-
tion, especially in the early stage of the development, an enormous
amount of user request records have been collected. This exposes
potential threats to users’ privacy as new contextual information
can be extracted from such records. In this paper, we study query
dependency which can be derived from users’ request history, and
investigate its impact on users’ query privacy.

To achieve our goal, we present an approach to compute the
probability for a user to issue a query, by taking into account both
user’s query dependency and observed requests. We propose new
metrics incorporating query dependency for query privacy, and adapt
spatial generalisation algorithms in the literature to generate re-
quests satisfying users’ privacy requirements expressed in the new
metrics. Through experiments, we evaluate the impact of query de-
pendency on query privacy and show that our proposed metrics and
algorithms are effective and efficient for practical applications.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy

Keywords
Location based services, dependency, query privacy, anonymity,
metrics, generalisation algorithms

1. INTRODUCTION
Location-based services (LBSs) are services customised accord-

ing to users’ locations. In the last fifteen years, LBSs have endured
a great growth, especially after GPS-enabled devices such as smart-
phones became popular. A location-based request contains the is-
suer’s location and a query – the type of information of interest,
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e.g., where the nearest Chinese restaurants are. In spite of the great
convenience brought to users’ daily life, LBSs also lead to users’
privacy concerns when they send LBS requests. In the literature,
two major privacy concerns in LBSs have been studied – location
privacy and query privacy [13] in terms of the types of sensitive in-
formation. The former is related to the disclosure of exact locations
while query privacy, the focus of our paper, concerns the disclosure
of queries.

The basic idea to protect users’ query privacy in LBSs is to break
the link between user identities and requests [3]. However, in the
context of LBSs, removing or replacing identities with pseudonyms
has been proved insufficient. With contextual information such
as address books, users can still be identified as queries are usu-
ally made from fixed locations such as home or offices. In this
case, users’ spatial and temporal information can serve as quasi-
identifiers. Anonymisation techniques from other research areas
such as sensitive data release [13] are thus introduced, including
k-anonymity and its different extensions (e.g., `-diversity and t-
closeness [18, 19]). Locations or time are replaced with regions
or periods so that a certain number of users share the same quasi-
identifier with the real issuer. The calculation of the regions or
periods is termed as generalisation or cloaking. Since in practice
LBS providers are usually required to offer immediate responses,
throughout the paper, temporal generalisation is out of the scope.
A request is called generalised if the location is generalised and the
user identity is removed.

When the adversary has access to more contextual information,
new privacy risks will emerge. For instance, “outlier” attacks are
found on existing generalisation algorithms when their implemen-
tation is made public [21]. Privacy in LBSs related to context
revealing has been recognised as context-aware privacy [22] and
many types of contextual information have been studied in the lit-
erature. For example, Mascetti et al. [4] propose the concept of
historical k-anonymity which protects against attacks where the ad-
versary can learn a trace of requests issued by the same user.

Our motivations. The first generation of commercial LBSs were
launched after the E911 mandate in 1996. From then on, LBSs have
evolved from simple single-target finder to diverse, proactive and
multi-target services [2]. However, user privacy did not receive fair
treatments from the very beginning. This enables LBS providers
to accumulate a large amount of users’ historical requests. What
makes the situation worse is the shift of LBS providers from tele-
com operators (who were viewed as trusted entities) to open busi-
nesses such as Google Latitude, Foursquare, and MyTracks. This
increases the risk of potential misuse of the accumulated records.
In this paper, we investigate what the adversary can obtain from
users’ historical requests and how to protect users against potential
privacy attacks.



Users tend to have preference in arranging their daily activi-
ties [12]. This leads to a repetitive pattern in their requests, e.g.,
dependency between queries. For instance, a user often posts a
check-in of a coffee house after lunch. The fact that users’ frequent
queries are usually restricted to a small set makes the extraction of
query dependency easier and more precise. Users’ query depen-
dency can be abused and becomes a potential risk to users’ query
privacy. We illustrate this by a simple example. Bob issues a re-
quest about the nearest night clubs in a 2-anonymous region with
Alice being the other user. Suppose the adversary has also learnt
that Alice just issued a query about the nearest clinics and Bob
queried about bars. As it is not common to ask clubs after clinics
compared to bars, the adversary can infer that Bob is more prob-
able to issue the request about night clubs. In this example, even
if Alice and Bob share a similar profile, the dependency between
queries obviously breaks 2-anonymity for all users in the region
who are supposed to be equally likely to issue the request. As far
as we know, we are the first to explore query dependency for pri-
vacy protection in LBSs.

Our contributions. In this paper, we accomplish two tasks – to
show the impact of query dependency on users’ query privacy and
to design new privacy protection mechanisms. For the first task,
we model a user’s query dependency as a Markov chain and pro-
pose a simple method to derive it from the request history (Sect. 4).
Then we present an approach from the perspective of the adversary
to refine his view on possible issuers based on query dependency
(Sect. 5). Our approach also makes use of users’ observed requests,
a type of dynamic contextual information that keeps changing. For
the second task, we propose new query privacy metrics (Sect. 6),
which allow users to express their privacy requirements and, more
importantly, can take into account query dependency. We then
adapt spatial generalisation algorithms in the literature to handle
user privacy requirements by designing a method to update users’
real-time proabibilities of issuing a query (Sect. 7). Through ex-
periments, we show that when the adversary can explore query de-
pendency, query privacy should be carefully addressed and our pro-
posed protection is both effective and efficient in practice (Sect. 8).

2. RELATED WORK
k-anonymity & query privacy. The concept of k-anonymity [25]
was originally proposed in the field of database privacy and then
introduced for privacy protection in LBSs by Gruteser and Grun-
wald [13]. Because of its simplicity, k-anonymity has been widely
studied in the last decades. For instance, Tan et al. [31] define infor-
mation leakage to quantify location information revealed in spatial
cloaking. Xue et al. [32] introduce location diversity to ensure that
generalised regions contain at least ` semantic locations. Kalnis
et al. propose a novel cloaking – Hilbert cloak which is the first
proved method enforcing reciprocity [17]. However, deeper under-
standing of k-anonymity reveals its drawbacks in preserving loca-
tion privacy. Shokri et al. [30] evaluate k-anonymity in different
scenarios in terms of the adversary’s background knowledge. They
conclude that spatial cloaking (e.g., k-anonymity) is only effective
for protecting query privacy but not location privacy.

Context-aware privacy analysis. It has been recognised that the
effectiveness of spatial cloaking can be compromised when the ad-
versary has access to additional contextual information, e.g., user
profiles which have many interpretations in the literature. Shokri
et al. [29] use mobility patterns and propose a probabilistic frame-
work to learn users’ whereabouts from anonymised and generalised
traces. Personal information (e.g., gender, job, salary) is usually
available on the Internet, e.g., online social networks such as Face-

book and LinkedIn, and can serve as user profiles as well. Shin et
al. [27, 28] propose metrics based on k-anonymity by restricting
levels of similarity among users in generalised regions in terms of
their profiles. Chen and Pang [7] use the same information but ob-
tain probability distributions over users for issuing queries, which
allows them to measure query privacy in several new ways.

The contextual information (e.g., mobility pattern, user informa-
tion) explored in the above papers does not change during their
analysis and thus can be considered as static. Whereas, in practice,
contexts can be dynamic as well, e.g., users’ whereabouts and ob-
served requests. In the literature, two types of requests have been
studied – associated requests [4, 3, 8] and recurrent requests [23].

Requests are associated once they are recognised as issued by
a same (anonymous) user, which can be achieved for example by
multi-target tracking techniques [14] or probabilistic reasoning [29].
In this case, the intersection of all requests’ anonymity set helps
the adversary reduce the number of possible issuers. To handle
such privacy threats, Bettini et al. [4, 3] introduce historical k-
anonymity, which is then extended for continuous LBSs by Dewri
et al. [8]. Historical k-anonymity aims to guarantee that associated
requests share at least k fixed users in the generalised regions.

Requests are recurrent when they are issued at the same time.
For the recurrent requests containing the same query, if they are
also from the same region, the protection of spatial cloaking, e.g.,
k-anonymity, is degraded for query privacy. For instance, in the
extreme case, when all users in a region send an identical query,
no user has query privacy. Riboni et al. [23] identify the threat
and make use of t-closeness to guarantee that the distance between
the distribution over the queries from an issuer’s generalised region
and that of the whole region is below a threshold. Dewri et al. [9]
consider a scenario in continuous LBSs which have both associated
and recurrent requests . The adversary only learns the regions and
time of requests issued by an anonymous user. When recurrent re-
quests are considered, Dewri et al. propose m-invariance to ensure
that in addition to k fixed users in the generalised regions, at least
m fixed queries are generated from each region.

A short discussion. Associated requests are not always available.
Uncertainty of the linkability between requests is inevitable in re-
ality and should be carefully handled. Moreover, the previous re-
search considers queries in historical requests as independent, and
ignores users’ issuing patterns over queries. Last but not least, we
believe both static and dynamic contexts should be taken into ac-
count in the analysis of users’ privacy in LBSs.

Our work differs from the related papers from the following per-
spectives: (i) we take into account dependency between successive
queries in our privacy analysis; (ii) we infer a user’s next query
by his probability to issue the query calculated based his observed
requests; (iii) we do not assume that a trace of requests are recog-
nised, which makes our work more realistic.

3. PRELIMINARIES
In this section, we first present our formal framework in Sect. 3.1

and then define the adversary model in Sect. 3.2.

3.1 Formal framework
Let U be the set of all users, who are in fact the potential issuers

of LBS requests. We useL to denote the set of all possible positions
where a user can issue a request. The accuracy of any position
` ∈ L is determined by the positioning devices used. We represent
time as a totally ordered discrete set T , whose granularity, e.g.,
minutes or seconds, is decided by LBS providers. The function
whereis : U × T → L gives the exact position of a user at a



given time. Thus, for any time t ∈ T , users’ spatial distribution
is dist = {〈u,whereis(u, t)〉 | u ∈ U}. Let R ⊆ 2L be the set
of all regions with any size that could be included in generalised
requests. WithQ being the set of supported queries, an LBS request
is in the form of 〈u, `, t, q〉 ∈ U ×L×T ×Q. The corresponding
generalised request has the form of 〈r, t, q〉, obtained by the request
generalisation function f : U × L × T × Q → R × T × Q – it
removes the issuer’s identity and replaces the exact location with
a region r ∈ R. We use function req to obtain the query of a
(generalised) request (i.e., req(〈u, `, t, q〉)=q and req(〈r, t, q〉)=q).

For each user u, we use a sequence to denote the requests that
he has issued, i.e., Hu = (〈u, `1, t1, q1〉, . . . , 〈u, `n, tn, qn〉) with
ti < ti+1 for all i ∈ {1, . . . , n−1} and Hu(i) is the ith request
in Hu. We call this sequence user request history, whose length is
denoted as len(Hu).

After observing a generalised request at time t, the adversary
adds it to a sequence, i.e., Ot = (〈r1, t1, q1〉, . . . , 〈rm, tm, qm〉)
(ti<ti+1 for all i∈{1, . . . ,m−1} and tm<t). For the sake of sim-
plicity, we do not consider recurrent queries, i.e., those elements in
Ot with the same time-stamps. Furthermore, for each request in
Ot, the adversary calculates its anonymity set, i.e., all those users
located in the generalised region. Thus, for each user, the adversary
can maintain a sequence of generalised requests, whose anonymity
sets contain this user as an element. We call this sequence an ob-
served request trace and denote the one for user u up to time t as
Ou,t. It is obvious that with time passing, a user’s observed request
trace keeps growing. The length of Ou,t is denoted as len(Ou,t).
The difference betweenHu andOu,t is that the adversary is certain
about the issuer of each request in Hu but uncertain about the is-
suers of the requests in Ou,t. Tab. 1 summarises relevant notations
used in this paper.

Table 1: Notations

Notations Description
Q the set of supported queries
U the set of users
L the set of positions
R the set of regions
T the set of time granules

〈u, `, t, q〉 a query q issued by user u at position ` at time t
〈r, t, q〉 a generalised request by the anonymiser
Ou,t user u’s observed request trace up to time t
Hu user u’s request history
Vu user u’s prior vector
Du user u’s dependency matrix

pu(qi |qj) the probability of user u issuing qi after qj
pu(qi) the priori probability of user u issuing qi

p(u | 〈r, t, q〉) the probability of user u issuing the generalised
query 〈r, t, q〉

dist user spatial distribution at time t
u`(r, t) the set of users located in region r at time t

req(〈r, t, q〉) the query of request 〈r, t, q〉

3.2 Adversary model
Privacy attacks and countermeasures should be categorised ac-

cording to the model and aims of the adversary [3]. For query pri-
vacy, the aim of the adversary is to associate issuers to their queries.
We use the following assumptions to define our adversary model.

Assumption 1. The adversary knows users’ spatial distribution
dist at any time t and the spatial generalisation algorithms. This
is now a common assumption used in the literature and it makes a

strong adversary which allows us to analyse users’ query privacy
in the worst case situations. We have this assumption based on the
observation that uses may publish their positions in applications
or issue requests at some known places , e.g., home/offices. The
availability of dist enables the adversary to obtain the set of users
located in any region r at time t, which is denoted as u`(r, t). This
assumption can be relaxed by introducing unidentified users whose
positions are not part of the adversary’s knowledge [3].

Assumption 2. As we have mentioned, LBS providers have col-
lected users’ request history. For each user u, we assume that the
adversary has a user u’s request history Hu for a sufficiently long
period. Furthermore, the adversary maintains the up-to-date ob-
served request trace Ou,t of every user u. For the sake of simplic-
ity, we assume that Hu is complete, namely there do not exist any
requests that are issued by u during the period but are not included
in Hu. To handle incomplete Hu, we can use the approaches such
as Gibbs sampling [24] to reconstruct the missing queries similarly
to fill missing locations in mobility traces [29].

4. DERIVING QUERY DEPENDENCY
In this section, we present an approach to derive dependency be-

tween queries for a user from his request history. Query depen-
dency can be used to predict a user’s next query based on past
queries that he has issued before. There also exists a special sit-
uation when a user has no past queries or the past queries have
little impact on his future queries. In this case, we need to consider
users’ a priori preference on issuing queries. Both of these two
types of information are calculated once and remains unchanged,
and thus are classified as static.

4.1 Query dependency
We model query dependency with the assumption that the query

that a user will issue next can only be affected by the last query that
the user has issued (i.e., the Markov property). For a pair of queries
qi and qj , the dependency of query qj on qi is denoted as the con-
ditional probability pu(qj |qi). In other words, it is the probability
for user u to issue query qj after having issued query qi (without
issuing any other queries in between). The query dependency in-
formation of user u can thus be expressed as a dependency matrix
– Du of size|Q|×|Q|and Duij = pu(qj |qi).

To find dependent queries, we need to identify the successive re-
quests. Intuitively, two requests are successive if there are no other
requests between them in the request history. This simply means
thatHu(i+1) is the successive query ofHu(i) for all i< len(Hu).
All the occurrence of query qj depending on qi can be captured by
the set of pairs of successive requests Ci,j = {(Hu(k),Hu(k+1)) |
req(Hu(k)) = qi ∧ req(Hu(k+1)) = qj , 0 < k < len(Hu)}.
Given a request history Hu, the adversary can derive for a user u
the dependency between any pair of queries using the sets Ci,j of
successive requests. Furthermore, in this paper we make use of
Lidstone’s or additive smoothing [20] to ensure that there is no de-
pendency of degree zero for qj on qi due to no occurrence of the
pair (qi, qj) in the request history.

Formally, let λ be the smoothing parameter which is usually set
to 1. The dependency pu(qj |qi) is calculated as follows:

pu(qj |qi) =
|Ci,j |+λ∑

qk∈Q
|Ci,k |+ |Q| ·λ

.

4.2 A priori preference
There are many cases that a query does not depend on its past

queries. For example, users may issue an LBS query for the first



time or accidentally for an emergent need. In such cases, the best
the adversary can do is to apply users’ a priori preference to find
possible issuers of the query.

We model the a priori preference of a user u as a distribution
over the set of queries denoted as Vu. The distribution indicates
the probability of the user to issue a query. For query qi ∈ Q,
Vui = pu(qi) and

∑
qi∈Q pu(qi)=1.

There are many sources of information reflecting users’ a pri-
ori preference. Users’ personal information such as hobbies and
occupation have been discussed and shown effective in assessing
users’ preference [27, 28, 7]. Moreover, a user’s request history
also reflects his preference. Thus, we estimate a user’s a priori
preference (i.e., Vu) by combining his request history (Hu) and his
personal information. For users’ personal information, we apply
the approach of Chen and Pang [7] where weights are assigned to
different types of information as well as their values according to
their correlation to a query. Let Pu be user u’s personal informa-
tion. The preference of user u for query qi with respect to Pu is
denoted as pu(qi |Pu). Moreover, let pu(qi |Hu) be the likelihood
for user u to issue qi based on his request history, we can use the
frequency of the occurrence of the query in the request history to
estimate pu(qi |Hu):

pu(qi |Hu) =
|{Hu(k) |req(Hu(k)) = qi}|

len(Hu)
.

The two distributions evaluate a user’s a priori preference on
next queries from two different perspectives. An agreement be-
tween them is needed. This is equivalent to aggregate expert prob-
ability judgements [5]. We use linear opinion pool aggregation
which is empirically effective and has been widely applied in prac-
tice [1]. By assigning a weight to each distribution, i.e., wP and
wH with wP + wH = 1, we can calculate pu(qi) as follows:

pu(qi) = wP · pu(qi |Pu) + wH · pu(qi |Hu).

Remark. The way we model users’ query dependency and a priori
preference has some restrictions. For instance, we do not consider
the influence of other factors such as time – usually a user’s be-
haviours in weekdays are different from weekends. Our approach
can be extended by distinguishing the request history at different
time periods. We have also assumed that a query is only dependent
on its immediate previous query. This restriction can be lifted by
considering, e.g., the last k historical queries. However, deriving
such dependency fromHu might not be as efficient and accurate as
the derivation of Du.

5. QUERY PRIVACY ANALYSIS
In this section, we present an analysis of the possible issuers of

a given generalised request from the adversary’s point of view by
considering both static contexts (query dependency and a priori
preference) and dynamic contexts (observed request traces). We
use a posterior probability distribution over users to represent the
results of the analysis. Recall that the trace of observed generalised
requests up to time t is denoted by Ot. For a generalised request
〈r, t, q〉 and a user u, the corresponding posterior probability dis-
tributions is defined as p(u | 〈r, t, q〉,Ot). Since the static contexts
do not change during the analysis, we do not include them in the
definition explicitly. Through the Bayesian rule we have:

p(u | 〈r, t, q〉,Ot) =
p(〈r, t, q〉 |u,Ot)
p(〈r, t, q〉,Ot)

=
p(〈r, t, q〉 |u,Ot) · p(u |Ot) · p(Ot)∑
u′ p(〈r, t, q〉 |u′,Ot) · p(u′ |Ot) · p(Ot)

.

There are three new distributions. The distribution p(Ot) measures
the probability of generating the observed request trace Ot. It is
difficult to evaluate its value. Whereas, since it appears in both the
numerator and the denominator, we can eliminate it from the for-
mula. The distribution p(u |Ot) is the probability of user u to issue
a request at time t based on the observed requests. As we have no
information about the distribution, it is assumed to uniform accord-
ing to the principle of maximum entropy [15, 16], which leads to
p(u|Ot) = p(u′|Ot) (∀u′ ∈ U ). Thus, the posterior distribution
can be simplified as:

p(u | 〈r, t, q〉,Ot) =
p(〈r, t, q〉 |u,Ot)∑

u′∈U p(〈r, t, q〉 |u′,Ot)
(1)

The probability p(〈r, t, q〉 | u,Ot) indicates the probability for
the user u to issue the generalised request 〈r, t, q〉 in terms of his
observed request trace. As a generalised algorithm (see Sect. 7) al-
ways outputs a request with a region including the issuer, only the
users located in the region may have issued the request. Thus, for
any user u′ out of region r at time t, we have p(〈r, t, q〉 |u′,Ot) =
0 for any q ∈ Q. Furthermore, because of the independence be-
tween users with regard to issuing requests, other users’ request
history has no influence on the next query of the user. Thus we
have p(〈r, t, q〉 |u,Ot) = p(〈r, t, q〉 |u,Ou,t) for u ∈ U .

The size of Ou,t is a key factor determining the accuracy and
the complexity of the calculation of p(〈r, t, q〉 | u,Ou,t). Recall
that Ou,t consists of all the observed requests that may be issued
by user u up to time t. Intuitively, the longer Ou,t is, more com-
putational overhead is required for getting p(u | 〈r, t, q〉,Ot). It
is impractical to consider the complete Ou,t during the calcula-
tion. Instead, we fix a history window which consists of the latest
n observed requests of user u (i.e., n≤ len(Ou,t)). Therefore, our
problem can be reformulated as to compute pn(u | 〈r, t, q〉,Ot),
indicating the distribution is based on last n observed requests.

Figure 1: A history window of n observed requests.

In Fig. 1, we show an example of a history window. It has n ob-
served requests, 〈ri1 , ti1 , qi1〉, . . . , 〈rin , tin , qin〉with tij > tij−1

(j > 1). Let `qj(Ou,t) be the jth latest observed request in Ou,t,
whose query is req(`qj(Ou,t)) = qij . In the following discussion,
we simply write `qj if Ou,t is clear from the context. It is obvious
that `q1 is the latest observed request of user u.

Once pn(u | 〈r, t, q〉,Ot) is calculated, it is then added into the
adversary’s knowledge. Therefore, for a past request 〈r′, t′, q′〉 in
Ou,t (t′<t), the adversary has the probability p(u | 〈r′, t′, q′〉,O′t).
In the sequel, we simply denote it as p(u | 〈r′, t′, q′〉) in cases
without any confusion.

The key to calculate the distribution is to determine the user’s
latest request. Whereas, it is uncertain which is his latest one in the
history window. To handle this uncertainty, we distinguish three
cases which are depicted in Fig. 2.

1. User u has issued both the last request in the history window
(i.e., `q1, see Fig. 2a) and the current request (i.e., 〈r, t, q〉).
Considering query dependence, the probability of this case is

pu(u |`q1) · pu(q |qi1).

2. User u has issued the current request 〈r, t, q〉 and his latest
request is `qm (1 < m ≤ n) (see Fig. 2b). The proba-
bility of `qm being the latest request is the production of



(a) The latest request is `q1.

(b) The latest request is `qm(m ∈ (1, n]).

(c) The latest request is not in the history window.

Figure 2: The three cases.

the probability that the last m − 1 requests are not issued
by u and the probability that u has issued `qm, i.e., p(u |
`qm) ·

∏m−1
j=1 (1 − p(u | `qj)). Considering query depen-

dence, the probability of this case is

pu(q |qim) · p(u |`qm) ·
m−1∏
j=1

(1− p(u |`qj)).

3. User u did not issue any request in the history window (see
Fig. 2c). In this case, we suppose that the user issued the cur-
rent request according to his a priori preference, i.e., pu(q).
Based on the probability that the user’s latest request is out-
side of the history window as

∏n
j=1(1 − p(u | `qj)), the

probability of this case is

pu(q) ·
n∏
j=1

(1− p(u |`qj)).

We sum up the above three probabilities to compute the probability
for user u in region r at time t to issue q when a history window of
size n is considered:

pn(〈r, t, q〉 |u,Ou,t) = (2)
p(u |`q1) · pu(q |req(`q1))

+
n∑

m=2

p(u |`qm) · pu(q |req(`qm)) ·
m−1∏
j=1

(1− p(u |`qj))

+ pu(q) ·
n∏
j=1

(1− p(u |`qj)).

We use the following example with n = 2 to show the calculation.

EXAMPLE 1. Suppose the last two requests are 〈r′′, t′′, q′′〉 and
〈r′, t′, q′〉 with t′′<t′<t in Ou,t. Let 〈r, t, q〉 be an observed re-
quest. Then for user u, the probability that he issues the request is
computed as follows:

p2(〈r, t, q〉 |u,Ou,t) =

pu(q |q′) · p(u | 〈r′, t′, q′〉)
+
(
1− p(u | 〈r′, t′, q′〉)

)
· p(u | 〈r′′, t′′, q′′〉) · pu(q |q′′)

+
(
1− p(u | 〈r′, t′, q′〉)

)
·
(
1− p(u | 〈r′′, t′′, q′′〉)

)
· pu(q).

It is clear that the calculation of Eq. 2 combines the static con-
textual information, i.e., users’ a priori preference on queries and

the dependency between queries, with the dynamic contextual in-
formation, i.e., observed request traces.

6. MEASURING QUERY PRIVACY
To protect users’ query privacy, we follow the principle that users

should be able to express their privacy requirements as it is unlikely
to have absolute privacy in the context of spatial anonymisation.
In this paper, we consider users’ query privacy well-preserved if
the spatial generalisation algorithms can generate regions meeting
their privacy requirements. The calculation of the probability dis-
tribution over users in Sect. 5 provides us a way to measure query
privacy through the uncertainty of the adversary. A number of met-
rics for query privacy are proposed in [7] where it is assumed that
the adversary has access to users’ profiles. In this paper, we extend
two of them, i.e., k-ABS and β-EBA, by taking query dependence
into account. The other metrics can be extended similarly.

Query dependent k-ABS. Intuitively, this requirement is satisfied
if at least k users are grouped together in the generalised region and
they have close posterior probabilities to issue the given request.
Let ‖ p1, p2 ‖ be the distance between two probabilities p1 and p2,
and ε be the maximum distance allowed between users’ posterior
probabilities. Recall that f is the request generalisation function.
Given a history window of size n, the metric query-dependent k-
ABS can be defined as follows:

DEFINITION 1. Let 〈u,whereis(u, t), t, q〉 be a request of u
and 〈r, t, q〉 be the corresponding generalised request. The issuer
u is query dependent k-approximate beyond suspicious if

|{u′ ∈ u`(r, t) |‖ pn(u | 〈r, t, q〉,Ot), pn(u′ | 〈r, t, q〉,Ot) ‖< ε
∧ f(〈u′,whereis(u′, t), t, q〉) = 〈r, t, q〉} |≥ k

Query dependent β-EBA. This metric utilises the notion of en-
tropy from information theory to measure the uncertainty of the
adversary about the issuer of a request. Let variable U denote the
issuer of request 〈r, t, q〉 and n be the size of the history window.
When query dependency is considered as part of the adversary’s
knowledge, the adversary’s uncertainty of the issuer of 〈r, t, q〉 can
be measured by the following entropy:

Hn(U | 〈r, t, q〉) =−
∑

u′∈u`(r,t)

pn(u′ | 〈r, t, q〉,Ot)·

log pn(u′ | 〈r, t, q〉,Ot).

Thus, we can define query-dependent β-EBA as follows:

DEFINITION 2. Let β > 0, 〈u,whereis(u, t), t, q〉 ∈ Q be a
request and 〈r, t, q〉 the corresponding generalised request. The
issuer u is query-dependent β-entropy based anonymous if for all
u′ ∈ u`(r, t),

Hn(U | 〈r, t, q〉) ≥ β ∧ f(〈u′,whereis(u′, t), t, q〉) = 〈r, t, q〉.

Remark. When users use these metrics to express their privacy re-
quirements, at least three elements should be provided – a metric,
the parameter values of the chosen metric, and the history win-
dow’s size. However, in practice it is difficult and cumbersome for
a user to give exact values to these elements, as this requires them
to understand the meaning of each parameter and the corresponding
implication on privacy protection. To avoid this situation it is better
to provide a list of privacy levels, e.g., from low to very high. Each
level corresponds to a setting of privacy parameters. For example,
a user’s privacy requirement can be represented as 〈kABS, high〉,
which is then transformed into 〈kABS, (0.05, 10), 5〉. This ensures
that whenever a request is successfully generalised, the region has



10 users with similar posterior probabilities to the issuer’s, after
taking into account the last 5 observed requests. Furthermore, the
distance between two such users’ posterior probabilities is bounded
by 0.05. In practice, the transformation can be made automatic and
embedded in the request generalisation process.

7. AN GENERALISATION ALGORITHM
In this section, we focus on the spatial generalisation procedures,

which can generate regions satisfying users’ privacy requirements
expressed in the metrics as defined in Sect. 6.

Basically, there are two ways to implement generalisation algo-
rithms – centralised and distributed. A centralised structure relies
on a trusted agent, the anonymiser, to collect users’ requests and
anonymise them before sending them to the LBS servers, while
in a distributed implementation users cooperate with each other to
construct a generalised region [10, 26]. The centralised framework
is easy to implement and well-studied in the literature while the
distributed framework requires more communication between col-
laborators and security analysis, e.g., with respect to insiders, is
not well studied. Because of its simplicity and efficiency, we de-
cide to choose the centralised framework although the trust in the
anonymiser is needed. In this centralised structure, users send their
positions to the anonymiser, who will generalise a request accord-
ing to the issuer’s privacy requirement.

The two algorithms kABS and uniformDP proposed in [7] pro-
tect users’ query privacy against the adversary which has users’ a
priori preference on queries as part of his knowledge. The main
idea is to compute an anonymity set of users based on the posterior
probability of each user to issue the given request. This method-
ology is generic but the algorithms are designed specially for user
profiles, which do not change over time. Whereas, due to query de-
pendency, we need to handle users’ observed request traces, which
change over time. We start with a brief introduction to the algo-
rithms in [7] and then show how to handle observed request traces.

kABS & uniformDP. The former copes with requirements in terms
of k-ABS while the later is a uniform algorithm for the other met-
rics proposed in [7]. Both algorithms take users’ real-time spatial
distribution and (static) user a priori preferences as inputs and out-
put a generalised region (if possible). Algorithm kABS first calls
a clustering algorithm, i.e., K-means, to cluster users with similar
profiles, and then uses existing k-anonymity generalisation algo-
rithms to calculate regions. On the other hand, uniformDP itera-
tively splits a region into two sub-regions until it is not possible to
have a partition such that both of the sub-regions satisfy the issuer’s
privacy requirement.

Our algorithm. If a request 〈r, t, q〉 of user u satisfies query-
dependent k-ABS, the region r must contain at least another k-
1 users with posterior probabilities close to pn(u | 〈r, t, q〉,Ot).
From Eq. 1, we can see that such users (e.g., u′) also have close
probabilities to issue the request in terms of their observed requests
(i.e., pn(〈r, t, q〉 | u′,Ot)). Thus, we can apply the idea of the al-
gorithm kABS to find a region with at least k users with similar
probability with respects to observed requests.

There are two extensions needed to adapt kABS. First, the prob-
ability pn(〈r, t, q〉 | u′,Ot) is related to the generalised request,
which seems not available before the generalisation. However, an
interesting feature of the calculation in Eq. 2 is that for user u, given
a time t, for any two regions r and r′ such that whereis(u, t) ∈
r ∩ r′, we have pn(〈r, t, q〉 |u,Ot) = pn(〈r′, t, q〉 |u,Ot). So we
can obtain the probability before generalising the request by com-
puting pn(〈rori , t, q〉 |u,Ot) where rori is the whole initial region.
Second, since observed request traces are part of the computation of

users’ posterior probabilities, the probability pn(〈rori , t, q〉 |u,Ot)
for all u ∈ U has to be updated for any received request. This re-
quires the algorithm to maintain users’ status, including their ob-
served request traces (i.e., Ou,t) and the corresponding posterior
probabilities (i.e., p(u | 〈r, t, q〉) from the view of the adversary.

Algorithm 1 An algorithm for spatial generalisation.

1: FUNCTION: QD-AreaGen
2: INPUT: 〈u,whereis(u, t), t, q〉, dis(t),Ot, Ru
3: OUTPUT: A region r that satisfies k-ABS
4:
5: R′u = transformReq(Ru);
6: n = getWindowSize(R′u);
7: M = ∅;
8: for u′ ∈ u`(rori, t) do
9: calculate pn(〈rori, t, q〉 |u′,Ot);

10: M =M∪ {〈pn(〈rori, t, q〉 |u′,Ot), u′〉};
11: end for
12:
13: if getMetric(Ru) = kABS then
14: (ε, k) = getRequirement(R′u);
15: r = kABS(u, dis(t),M, ε, k);
16: else if getMetric(Ru) = EBA then
17: β = getRequirement(R′u);
18: r = uniformDP(u, dis(t),M, β);
19: end if
20:
21: if r 6= ∅ then
22: for u′ ∈ u`(r, t) do
23: Ou′,t = Ou′,t ∪ {〈r, t, q〉};
24: p(u′ | 〈r, t, q〉) = pn(u′ | 〈r, t, q〉,Ot);
25: end for
26: end if
27: return r

In order to find a region satisfying query-dependent β-EBA, we
apply the same idea of area splitting – we adapt uniformDP by
giving the probabilities pn(〈rori , t, q〉 | u′,Ot) (u′ ∈ U) as in-
put instead of users’ a priori preference. Similar to the algorithm
designed for query-dependent k-ABS, users’ status (i.e., observed
request traces and the corresponding posterior probabilities) needs
to be dynamically updated.

We use Alg. 1 to describe the our spatial generalisation algo-
rithm when query dependency is considered. The algorithm takes
a request 〈u,whereis(u, t), t, q〉 as input and outputs a region r
satisfying the requirement Ru based on users’ whereabouts dis(t)
and observed requests Ot. The user’s privacy requirement Ru is
first transformed into R′u by function transformReq(Ru) (line 5)
based on a mapping table so R′u consists of an exact parameter
setting that will be used in the generalisation. For requirements us-
ing k-ABS and β-EBA, R′u is of the form of 〈kABS, (ε, k), n〉 and
〈EBA, β, n〉, respectively. Function getWindowSize(R′u) returns
the size of the history window in R′u and getMetric(R′u) gives
the type of metric used. Recall that rori is the whole initial region
under our consideration. For the reason discussed above, the prob-
abilities pn(〈rori , t, q〉 |u′,Ot) (u′ ∈ U ) is calculated (line 9) and
the results are stored in setM.

If query-dependent k-ABS is used, then we call function kABS
with a distance parameter (i.e., ε) and an anonymity degree (i.e., k),
which can be extracted from R′u (line 14). As our implementation
of kABS uses the clustering algorithm K-means, we use ε to esti-
mate the number of clusters (i.e., K). If the privacy requirement is
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Figure 3: Impact of query dependency and the number of active users on ∆p.

expressed using other metrics, e.g., query dependent β-EBA, uni-
formDP is called (line 18).

If a valid region is found, then for each user located in it, we
need to update his status (line 22-25). First, his observed request
sequence is updated (line 23) as they are considered as possible
issuers after the generalised request is issued. Second, each user’s
posterior probability being the issuer is assigned (line 24) which
will be used for future requests (line 9).

Note that it is time-consuming to update users’ probabilities to
issue the request in terms of their observed requests before general-
ising each request, because it considers all users in the whole area.
During implementation, we observe that in each generalisation pro-
cess, only a small fraction of users are concerned. Thus, for each
request, we first calculate a smaller region (e.g., with 100 users)
containing the issuer by k-anonymity generalisation algorithms and
then execute Alg. 1 on this region. In this way, the computational
overhead can be largely reduced.

8. EXPERIMENTAL RESULTS
We conduct experiments to evaluate our work from two aspects.

First, we compare issuers’ posterior probabilities with vs. without
adding query dependency to the adversary’s knowledge. In this
way, we illustrate the privacy risks caused by request history and
extracted query dependency. Second, we implement and test our
algorithm presented in Sect. 7 on a sample dataset to show the ef-
fectiveness of our new privacy metrics (see Sect. 6).

To conduct the experiments, we first construct a mobility dataset
using the moving object generator [6]. This dataset consists of the
positions of 38, 500 users travelling in a period with 50 discrete
time points. This dataset contains users’ spatial distributions. Sec-
ond, we construct the dataset of users’ requests. For a number of
active users who would issue requests in the period, we simulate
a trace of requests for each active user according to his query de-
pendency matrix and a priori preference on queries. Specifically,
we assume 6 types of queries for users to choose from. This makes
users’ a priori preference around 17% on average. As our purpose
is to evaluate the privacy risk caused by query dependency and the
effectiveness of the algorithm, we assume query dependency matrix
available and generate it by a random procedure. Users’ a priori
preference is assessed in a similar way.

Throughout our experiments, we use one mobility dataset but
generate many request datasets with different number of active users

so as to evaluate its influence on query privacy. Our simulation is
implemented with Java and run on a Linux laptop with 2.67 Ghz
Intel Core (TM) and 4GB memory.

Impact of query dependency on users’ posterior probabilities.
To measure the privacy risk caused by query dependency, we com-
pare users’ posterior probabilities in two attack scenarios when k-
anonymity spatial generalisation is used. In one scenario, the ad-
versary only learns users’ a priori preference while in the other,
users’ query dependency is added.

Let ppf (u | 〈r, t, q〉) be the issuer’s posterior probability when
only user u’s a priori preference is considered. We use ∆p to
measure the changes of the posterior probability after query de-
pendency is added, which is defined as follows:

∆p =
|ppf (u | 〈r, t, q〉)− pn(u | 〈r, t, q〉,Ot) |

ppf (u | 〈r, t, q〉) .

Fig. 3 shows how ∆p changes according to (1) different values
of history window size n, (2) different strengths of query depen-
dency and (3) the number of active users in the LBS. The results
are obtained by a simulation with 8, 000 requests. We divide re-
quests into clusters according to the query dependency of the is-
suers when sending the requests by an interval of 0.05, and use
dep = 0.05x (1 ≤ x ≤ 20) to denote the maximum query de-
pendency allowed in the clusters. For example, if dep = 0.15, the
issuer of any request in the cluster has a dependency between 0.1
and 0.15. Fig. 3a depicts the average ∆p of generalised requests
in clusters satisfying k-anonymity with k = 10 and with 2.6% of
the users being active. Based on the results, we have three obser-
vations. First of all, larger history windows lead to big changes in
users’ posterior probabilities. In our simulation, the average value
of ∆p increases by 53% and 24% when n grows from 1 to 2 and
from 2 to 3, respectively (see Fig. 3a). Second, the average value
of ∆p increases when query dependency of two successive queries
gets stronger (see Fig. 3a). The curves reach their lowest points
when dep is about 0.15. This is due to the fact that users’ aver-
age a priori preference on each type of queries (pu(qi)) is around
17%. The little difference between pu(qi | qi−1) and pu(qi) elim-
inates the influence of query dependency. Third, ∆p decreases
when there are more active users issuing LBS requests, but the
influence becomes smaller with larger history windows. Fig. 3b
shows that the average ∆p decreases by 30%, 24% and 19% for
n = 1, 2, 3, respectively, when the percentage of active users in-
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Figure 4: Impact of history window size n.

creases from 2.5% to 7.5%. This is because more active users in
the LBS lead to more observed requests added into users’ observed
request traces and mixed with users’ real requests, while bigger his-
tory windows have larger chances to include users’ real requests. In
general, from Fig. 3, we can conclude that exploring query depen-
dency does greatly decrease the adversary’s uncertainty about the
real issuers.

Effectiveness of the new privacy metrics. Through experiments,
we discuss the features of privacy metrics in terms of (1) area of the
generalised regions and (2) issuers’ posterior probabilities. We set
the percentage of active users to 2.6% and only use the first 1, 000
requests after 8, 000 requests have been observed. Each number
shown in the following discussion is an average of the 1, 000 sam-
ples. To compare the two metrics presented in Sect. 6, we define
a normalised value norm: norm=k for query-dependent k-ABS,
while norm=2β for query-dependent β-EBA.

From the above discussion, we know that users can have better
their query privacy with larger history windows. Fig. 4 shows how
issuers’ posterior probabilities and the area of generalised regions
change according to the normalised value norm and the history
window size n. Note that when n= 0, the generalisation algorithm
only considers users’ a priori preference.

For query-dependent k-ABS, issuers’ posterior probabilities are
about 1

k
as the generalised regions have at least k users with simi-

lar posterior probabilities. However, after taking a closer look, we

can find that a larger n leads to a larger distance to 1
k

. This is
because larger history windows make the issuers’ posterior proba-
bilities more different from the others, which in turn makes it more
difficult to find users with similar posterior probabilities. This also
explains why the corresponding generalised regions become larger
with larger history windows as shown in Fig. 4b.

For query-dependent β-EBA, issuers’ posterior probabilities can
remain almost unchanged in some segments of the curves. The pro-
jection of the middle point of such a segment on axis norm has an
logarithm of integer, such as 16 and 32 (see in Fig. 4c). Similar
to query-dependent k-ABS, larger history windows increase the is-
suers’ posterior probabilities, which leads to smaller entropy. This
can be seen from Fig. 4d where the generalised regions of larger n
double their sizes earlier than the regions of smaller n.

We can also observe from Fig. 4 that for the same value of norm ,
although the metric β-EBA cannot always ensure issuers’ posterior
probabilities as close to 1

k
as k-ABS (see Fig. 4a and Fig. 4c), the

corresponding area of generalised regions is about ten times smaller
(see Fig. 4b and Fig. 4d). Since bigger regions lead to worse quality
of service, this indicates that a balance between privacy protection
and quality of services needs to be considered in practice.

The protection of issuers’ privacy varies with issuers’ query de-
pendency. Fig. 5 plots posterior probabilities and average area of
generalised regions for issuers with different levels of query depen-
dency. The results are collected with the history window size n=3.
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Figure 5: Impact of dependency p(qi |qi−1).

Our general observation is that issuers with larger dependencies
have bigger posterior probabilities and larger generalised regions.

Tab. 2 summarises the corresponding average increases (in per-
centage) for issuers with high (≥ 0.45) and medium (0.25− 0.45)
dependencies, when compared with those with low dependencies
(≤ 0.25). The table shows that posterior probabilities of the is-
suers, when β-EBA is used, are more sensitive to the degree of
dependency (43.1% increase for high-level dependency), while the
generalised regions are more sensitive to dependency (62.9% in-
crease for high-level dependency) when k-ABS is used.

Table 2: Increases in posterior probabilities and average area of
generalised regions.

k-ABS β-EBA
medium high medium high

Posterior Prob. 2.1% 9.5% 11.1% 43.1%
Avg Area 21.3% 62.9% 23.3% 30.1%

Performance of the proposed generalisation algorithm. In Fig. 6,
we present the performance of Alg. 1 when dealing with query-
dependent privacy metrics (k-ABS and β-EBA). For the sake of
comparison, we also show in Fig. 6 the performance of the original
algorithms (k-ABS-ori and β-EBA-ori) in [7]. The computation
time recorded is the average time per request based on executions
with the same 100 requests.

As discussed in Sect. 7, it is necessary to update the status of each
user, i.e., their observed request traces and the corresponding pos-
terior probabilities. This is time-consuming, especially when the
initial region is huge and contains a large number of users. In our
implementation, we reduce the computation overhead by restricting
the size of initial regions. The number of users located in an initial
region is fixed as ten times as many as what users require for. For
instance, for k-ABS, if k=10, then we first call k-anonymity gen-
eralisation algorithm to get an initial region with 100 users. As the
generalisation algorithm is deterministic, which means for any user
in a generalised region, it always returns the same region. Thus,
our new algorithm Alg. 1 does not suffer from the “outlier" prob-
lem identified in the literature [21].

From Fig. 6, we can see that the computation time increases as
norm gets bigger. This is because the algorithm has to consider
larger initial regions and more users are involved in the calculation
of dependency-based posterior probabilities. For β-EBA, about
20ms are needed when norm=50, while k-ABS requires more time
(around 35ms) as the K-means clustering algorithm is executed
first to find similar users. When compared to the original algo-
rithms, the computation time of Alg. 1 increases by about two times
for β-EBA and about four times for k-ABS when norm=50.

There are several ways to improve the efficiency of our imple-
mentation. For instance, we can use better data structures to main
users’ status. For practical applications, we can expect that with
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a powerful anonymiser our algorithm is efficient enough to handle
concurrent requests and gives real-time responses to the users.

9. DISCUSSION AND CONCLUSION
In this paper, we have identified a new type of contextual in-

formation query dependency which has not been studied for query
privacy in LBSs. To show its impact on users’ query privacy, we
presented an analysis, where the adversary explores query depen-
dency to effectively reduce his uncertainty about the real issuers of
requests. The analysis also makes use of observed request traces –
a dynamic context. To protect query privacy against such an analy-
sis, we first proposed new privacy metrics for users to express their
privacy requirements precisely. Then we designed a new spatial
generalisation algorithm to compute regions meeting users’ privacy
requirements. Through experiments, we have shown (1) enabling
the adversary to have access users’ query dependency does impose
risk on query privacy; (2) the proposed metrics is effective to pro-
tect users’ query privacy and (3) the generalisation algorithm is ef-
ficient for practical applications.

In this paper, we modelled query dependency with the Markov
property, and ignored other influencing factors. For instance, the
time interval between queries can also be explored by the adver-
sary to further refine his view on possible issuers of an observed re-
quest. Regular transition time between two places has been studied
in spatial and temporal databases as an important pattern in mod-
elling users’ mobility profiles [11]. We can expect to find similar
patterns of the time intervals between LBS requests. Such tempo-
ral patterns can be considered as another support to predict users’
behaviour, especially for issuing future requests. Furthermore, it is
also useful to determine an appropriate size of history windows as
the influence of past queries decreases as time passes.
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