
Mining Parameterized Role-Based Policies

Zhongyuan Xu
Department of Computer Science

Stony Brook University, USA
zhoxu@cs.stonybrook.edu

Scott D. Stoller
Department of Computer Science

Stony Brook University, USA
stoller@cs.stonybrook.edu

ABSTRACT
Role-based access control (RBAC) offers significant advan-
tages over lower-level access control policy representations,
such as access control lists (ACLs). However, the effort re-
quired for a large organization to migrate from ACLs to
RBAC can be a significant obstacle to adoption of RBAC.
Role mining algorithms partially automate the construction
of an RBAC policy from an ACL policy and possibly other
information. These algorithms can significantly reduce the
cost of migration to RBAC.

This paper defines a parameterized RBAC (PRBAC) frame-
work in which users and permissions have attributes that are
implicit parameters of roles and can be used in role defini-
tions. Parameterization significantly enhances the scalabil-
ity of RBAC, by allowing much more concise policies. This
paper presents algorithms for mining such policies and re-
ports the results of evaluating the algorithms on case stud-
ies. To the best of our knowledge, these are the first policy
mining algorithms for a PRBAC framework. An evaluation
on three small but non-trivial case studies demonstrates the
effectiveness of our algorithms.

Categories and Subject Descriptors: D.4.6 [Operat-
ing Systems]: Security and Protection—Access Controls;
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords: role mining; role-based access control

1. INTRODUCTION
Role-based access control (RBAC) offers significant ad-

vantages over lower-level access control policy representa-
tions, such as access control lists (ACLs). However, the ef-
fort required for a large organization to migrate from ACLs
to RBAC can be a significant obstacle to adoption of RBAC.
Role mining algorithms partially automate the construction
of an RBAC policy from an ACL policy and possibly other
information, such as user attributes. These algorithms can
significantly reduce the cost of migration to RBAC.

Several versions of the role mining problem have been pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

posed. The most widely studied versions involve finding a
minimum-size RBAC policy consistent with (i.e., equivalent
to) given ACLs. Another important version of the prob-
lem arises when user attribute information is available. In
this case, it is also desirable to maximize interpretability
(also called “semantic meaning”) of role membership with
respect to the attribute information—in other words, to find
roles whose membership can be characterized well using the
attributes—and to minimize as policy size. Similarly, if per-
missions have attributes, interpretability of the set of per-
missions granted to each role can also be taken into account
in an overall policy quality metric.

Allowing roles to have parameters significantly enhances
the scalability of RBAC, by allowing much more concise
policies. Parameterization is especially useful for express-
ing application-layer security policies. For example, consider
a policy for a university. To grant different permissions to
users (e.g., faculty or students) in different classes or depart-
ments, in an RBAC model without parameters, we would
need to create a separate role and corresponding permission
assignment rules for each course or department, leading to a
large and unwieldy policy. In a parameterized RBAC model,
this policy can be expressed using a few policy statements
parameterized by the class identifier or department name.

This paper defines an expressive parameterized RBAC
(PRBAC) framework that supports a simple form of attri-
bute-based access control (ABAC). In our framework, (1)
users and permissions have attributes that are implicit pa-
rameters of roles, (2) the set of users assigned to a role is
specified by an expression over user attributes, and (3) the
set of permissions granted to a role is specified by an expres-
sion over permission attributes. We make role parameters
implicit, rather than explicit, because it makes the frame-
work and algorithms slightly simpler; our approach can eas-
ily be adapted to handle roles with explicit parameters. Ev-
ery user and permission has an “id” attribute containing a
unique name, so specifying the users and permissions asso-
ciated with a role by enumeration, as in traditional RBAC,
is a simple case of (2) and (3), respectively.

The main contribution of this paper is two algorithms for
mining PRBAC policies from ACLs, user attributes, and
permission attributes. To the best of our knowledge, it is the
first policy mining algorithm for any parameterized RBAC
framework or ABAC framework. At a high level, both al-
gorithms work as follows. First, a conventional role min-
ing algorithm is used to generate a set of candidate roles;
attributes and parameterization are not considered in this
step. For a policy like the above example, this step would

produce a separate role granting appropriate permissions to
the chair of each department. Second, the algorithm at-
tempts to form parameterized roles by merging sets of can-
didate roles from the first step; the resulting parameterized
roles are added to the set of candidate roles. Containing the
example, this step would form a parameterized role from the
set of roles containing the chair role for each department.
Third, the algorithm decides which of the candidate roles
generated in the first two steps to include in the final policy.
Inspired by [13], we consider two strategies for this. The
elimination strategy repeatedly removes low-quality roles
from the set of candidate roles, until no more roles can be
removed without losing some of the permissions granted in
the given ACL policy. The selection strategy repeatedly se-
lects the highest-quality candidate role for inclusion in the
PRBAC policy, until all permissions granted in the given
ACL policy are granted by the PRBAC policy. For each of
these two algorithms, we first present a simpler version that
does not consider role hierarchy, and then present a version
that generates hierarchical policies.

To evaluate whether these algorithms can successfully gen-
erate meaningful parameterized roles, we wrote three small
but non-trivial PRBAC policies, generated ACL policies and
attribute data from them, ran our algorithms on the re-
sulting ACL policies and attribute data, and compared the
mined PRBAC policies with the original policies. One of our
algorithms successfully reconstructed the original PRBAC
policies for all three case studies.

There are several directions for future work: applying the
algorithms to more and larger case studies and developing
better insight into when the algorithms succeed at produc-
ing intuitively desirable policies; adapting the algorithms to
support a more conventional form of PRBAC in which role
parameters are explicit; exploring algorithms for updating
existing PRBAC policies, like StateMiner does for RBAC
policies [10]; and exploring algorithms for mining ABAC
policies. Our PRBAC framework already supports a sim-
ple form of ABAC. More thorough support for ABAC re-
quires extending attribute expressions to allow membership
tests for set-valued attributes, linear constraints for numer-
ical attributes, etc., and then extending the policy mining
algorithms to handle these features.

Section 2 defines our PRBAC framework. Section 3 de-
fines the PRBAC mining problem. Section 4 presents our
algorithms. Section 6 evaluates the algorithms on case stud-
ies. Section 7 discusses related work.

2. PARAMETERIZED RBAC (PRBAC)
PRBAC policies refer to attributes of users and permis-

sions. User-attribute data is represented as a tuple 〈U,AU ,
fU 〉, where U is a set of users, AU is a set of user attributes,
and fU is a function such that fU (u, a) is the value of at-
tribute a for user u. There is a special user attribute called
uid that has a unique value for each user. This allows tra-
ditional identity-based roles to be represented in the same
way as other roles. Similarly, permission-attribute data is
represented as a tuple 〈P,AP , fP 〉, where P is a set of per-
missions, AP is a set of permission attributes, and fP is a
function such that fP (p, a) is the value of attribute a for
permission p. Informally, a permission may be regarded as
involving a resource and an operation, and a permission at-
tribute may be an attribute of the resource or an attribute
(i.e., argument) of the operation. There is a special permis-

sion attribute called pid that has a unique value for each
permission. Let AttrVal be the set of all legal attribute val-
ues. We assume AttrVal includes a special value “⊥” that
indicates that the value of an attribute is unknown.

Attribute expressions are used to express the sets of users
and permissions associated with roles. A conjunctive user-
attribute expression ec is a function from user attributes AU

to Set(AttrVal \ {⊥})∪ {>}. The symbol > denotes the set
of all legal values for an attribute. We say that expression
ec uses an attribute a if ec(a) 6= >. We refer to the set ec(a)
as the conjunct for attribute a. A user u satisfies expres-
sion ec, denoted u |= ec, iff (∀a ∈ AU : fU (u, a) ∈ ec(a)).
For example, if AU = {dept, level}, the function ec with
ec(dept) = {CS} and ec(level) = {undergrad, grad} is a con-
junctive user-attribute expression, which we write with syn-
tactic sugar as dept = CS ∧ level ∈ {undergrad, grad} (note
that, when ec(a) is a singleton set {v}, we may write the con-
junct as a ∈ {v} or a = v). An user-attribute expression is a
set, representing a disjunction, of conjunctive user-attribute
expressions. A user u satisfies a user attribute expression
e, denoted u |= e, iff (∃ec ∈ e : u |= ec). The meaning
of a user-attribute expression e, denoted [[e]]U is the set of
users that satisfy it: [[e]]U = {u ∈ U | u |= e}. We say that a
user-attribute expression e characterizes [[e]]U . We say that e
uses an attribute a if some conjunctive user-attribute expres-
sion in e uses a. The definitions of conjunctive permission-
attribute expression and permission-attribute expression are
similar, except using the set AP of permission attributes in-
stead of the set AU of user attributes. The meaning of a
permission-attribute expression e, denoted [[e]]P is the set of
permissions that satisfy it: [[e]]P = {p ∈ P | p |= e}.

Constraints are used to express parameterization. Tra-
ditional PRBAC frameworks use explicit role parameters to
indirectly express equalities between user attributes and per-
missions attributes; in our framework, such equalities are ex-
pressed directly, as constraints. For example, consider the
policy that the chair of a department can update the course
schedule for the department. This can be expressed using ex-
plicit role parameters by introducing a role chair(dept) and
using a permission assignment rule such as PA(chair(dept),
〈write, courseSchedule(dept)〉). In our framework, we would
define a chair role with the chairs of all departments as mem-
bers, with permissions to write all course schedules, and with
the constraint that the user’s department equals the permis-
sion’s department. The constraint ensures that each member
of the role gets only the appropriate permissions. Informally,
attributes used in the constraint act as role parameters.

A constraint is a set of equalities of the form au = ap,
where au is a user attribute and ap is a permission attribute.
User u and permission p satisfy constraint c, denoted u, p |=
c, if for each equality au = ap in c, fU (u, au) = fP (p, ap).

A core PRBAC policy is a tuple 〈U,P,R〉 where U is a set
of users, P is a set of permissions, and R is a set of roles,
each represented as a tuple 〈eu, ep, c〉, , where eu is a user-
attribute expression, ep is a permission-attribute expression,
and c is a constraint. For a role r = 〈eu, ep, c〉, let uae(r) =
eu, pae(r) = ep, and con(r) = c.

For example, the role 〈uid = {Alice,Bob}, operation =
write ∧ resource = courseSchedule,dept = dept〉 has mem-
bers Alice and Bob, has permissions to write course sched-
ules for all departments (because the department attribute
of the course schedule is not restricted by the permission-
attribute expression), and has constraint dept = dept. If

fU (Alice, dept) = CS and fU (Bob, dept) = EE, the con-
straint ensures that Alice only gets permission to write the
CS course schedule, and Bob only gets permission to write
the EE course schedule.

The user-permission assignment UPA(π) induced by a pol-
icy π is defined by

asgndU(r, U) = {u ∈ U | u |= uae(r)}
asgndP(r, P) = {p ∈ P | p |= pae(r)}

asgndUP(r, U, P) = {〈u, p〉 ∈ asgndU(r, U)×asgndP(r, P) |
u, p |= con(r)}

UPA(〈U,P,R〉) =
⋃

r∈R asgndUP(r, U, P)

A hierarchical PRBAC policy is a tuple π = 〈U,P,R,RH 〉,
where U , P , and R are the same as in a core PRBAC policy,
and the role hierarchy RH is an acyclic transitive binary
relation on roles. A tuple 〈r, r′〉 in RH means that r is
junior to r′ (or, equivalently, r′ is senior to r). This means
that r inherits members from r′, and r′ inherits permissions
from r. This is captured in the equations

ancestors(r,R,RH) = {r′ ∈ R | 〈r, r′〉 ∈ RH }
descendants(r,R,RH) = {r′ ∈ R | 〈r′, r〉 ∈ RH }

authU(r, U,R,RH) = asgndU(r, U) ∪⋃
r′∈ancestors(r,R,RH)

asgndU(r′, U)

authP(r, P,R,RH) = asgndP(r, P) ∪⋃
r′∈descendants(r,R,RH)

asgndP(r′, P)

The user-permission assignment UPA(π) induced by a hier-
archical PRBAC policy π is defined by:

authUP(r, U, P,R,RH) =
{〈u, p〉 ∈ authU(r, U,R,RH)× authP(r, P,R,RH) |
u, p |= con(r)}

UPA(〈U,P,R,RH 〉) =
⋃

r∈R authUP(r, U, P,R,RH)

In the definition of authUP(r, U, P), all authorized users and
permissions of r, including the inherited ones, are subject to
the constraint associated with r. However, constraints are
not “inherited”; in particular, the constraint associated with
a role r affects only r’s contribution to the user-permission
relation induced by the policy.

3. THE PROBLEM
A core PRBAC policy π = 〈U,P,R〉 is consistent with

an ACL policy π′ = 〈U ′, P ′,UP ′〉 if U = U ′, P = P ′,
and UPA(π) = UP ′. A hierarchical PRBAC policy π =
〈U,P,R,RH 〉 is consistent with an ACL policy π′ = 〈U ′, P ′,
UP ′〉 if U = U ′, P = P ′, and UPA(π) = UP ′.

A policy quality metric is a function from PRBAC policies
to a totally-ordered set, such as the natural numbers. The
ordering is chosen so that small values indicate high qual-
ity; this might seem counter-intuitive at first glance but is
natural for metrics based on policy size.

The core PRBAC policy mining problem is: given an ACL
policy π′ and policy quality metric Qpol, find a core PRBAC
policy π that is consistent with π′ and has the best quality,
according to Qpol, among policies consistent with π′. The
hierarchical PRBAC policy mining problem is the same ex-
cept that π is a hierarchical PRBAC policy.

Our algorithms aim to optimize the policy’s weighted struc-
tural complexity (WSC), which is a generalization of pol-
icy size [8]. The weighted structural complexity of a core
PRBAC policy is defined by

WSC(ec) =
∑

a∈domain(ec)

ec(a) = > ? 0 : |ec(a)|

WSC(c) = |c|

WSC(〈eu, ep, c〉) = w1

∑
ec∈eu

WSC(ec) + w2

∑
ec∈ep

WSC(ec)

+ w3WSC(c)

WSC(〈U,P,R〉) =
∑
r∈R

WSC(r),

where |s| is the cardinality of set s, and the wi are user-
specified weights. The weighted structural complexity WSCH

of a hierarchical PRBAC policy is defined in the same way,
except with an additional term w4|RH |, where the size of
the role hierarchy RH is the number of tuples in it.

4. ALGORITHMS
This section presents our algorithms for the problems de-

fined in Section 3.

4.1 Mining Core PRBAC Policies: Elimina-
tion Algorithm

Step 1: Generate Candidate Roles.
This step uses a traditional role mining algorithm to gen-

erate a set Rcan of un-parameterized candidate roles without
role hierarchy. Each role r in Rcan is associated with a set
asgndU(r) of assigned users and a set asgndP(r) of assigned
permissions. We use CompleteMiner [11, 12] to generate
candidate roles. Briefly, CompleteMiner generates a candi-
date role for every set of permissions that can be obtained
by intersecting the sets of permissions granted to some users
by the ACL policy. Note that CompleteMiner’s goal is to
include every reasonable candidate role in its output; Com-
pleteMiner does not attempt to produce a minimum-sized
policy.

We assume that no two candidate roles have exactly the
same set of assigned users, and that no two candidate roles
have exactly the same set of assigned permissions. This is
true for the result of CompleteMiner and other standard role
mining algorithms, because two roles with the same set of
users or permissions can easily be merged into a single role.

Step 2: Generate Attribute Expressions for Candidate
Roles.

This step computes minimum-sized attribute expressions
that characterize the assigned users and assigned permis-
sions of each candidate role, with preference given to (1) at-
tribute expressions that do not use uid or pid, since attribute-
based policies are generally preferable to identity-based poli-
cies, even when they have higher WSC, because attribute-
based generalize better, and (2) conjunctive attribute ex-
pressions, because they are simpler than attribute expres-
sions that use disjunction (in addition to conjunction).

Given a set s of users and the set U of all users, let
minExpU(s, U) be a minimum-sized user-attribute expres-
sion that characterizes s, subject to the preferences described

above. Given a set s of permissions and the set P of all per-
missions, let minExpP(s, P) be a minimum-sized permission-
attribute expression that characterizes s, subject to the pref-
erences described above. In both cases, at least one such
attribute expression exists, because attributes uid and pid
are present and have a unique value for each user or permis-
sion, respectively. For each r ∈ Rcan , this step sets uae(r) =
minExpU(asgndU(r), U) and pae(r) = minExpP(asgndP(r),
P).

Our algorithm to compute minExpU(s, U) appears in Fig-
ure 1; the algorithm for minExpP is the same, except that
AU and fU are replaced with AP and fP , respectively. The
pseudocode for minExpU simply embodies the preferences
described above. It uses an auxiliary function simplifyExp(e)
that simplifies an attribute expression e by repeatedly look-
ing for pairs of conjunctions c1 and c2 in e that differ in
the value of a single attribute a and replacing c1 and c2
with a single conjunction c that agrees with c1 and c2 for all
attributes except a and that maps a to c1(a) ∪ c2(a).

The pseudocode for minExpU also uses an auxiliary func-
tion minConjExpU that computes a minimum-sized con-
junctive user-attribute expression that characterizes s, with
preference given to attribute expressions that do not use uid.
The first for-loop computes a conjunctive user-attribute ex-
pression e that attempts to characterize s without using uid.
If this fails, then uid is needed to characterize s, and the al-
gorithm returns a user-attribute expression that uses only
uid. Otherwise, the algorithm uses e as a starting point for
computation of a minimum-sized user-attribute expression
for s that does not use uid. How could a smaller user at-
tribute expression e′ for s differ from e? It cannot be that
some conjunct of e′ is a strict subset of the corresponding
conjunct of e, because then some user in s will not satisfy
that conjunct. The only way that e′ could differ from e is by
replacement of some conjuncts with >. The second for-loop
considers all expressions that differ from e in this way.

Step 3: Generate Constraints for Candidate Roles.
We take con(r) to contain every equality that holds be-

tween every assigned user and every assigned permission of
r. In other words, for each attribute au in AU and each at-
tribute ap in AP , we add the equality au = ap to con(r) iff
∀u ∈ asgndU(r). ∀p ∈ asgndP(r). u, p |= au = ap. This
is the strictest constraint that can be associated with r,
because any stricter constraint would incorrectly eliminate
some user-permission pairs in asgndUP(r, U, P). Using the
strictest constraint for each role facilitates merging of roles
in the next step.

Step 4: Merge Candidate Roles.
This step creates additional candidate roles by merging

sets of candidate roles. A set s of roles is mergeable if there
exists a role r′ with the same assigned users, same assigned
permissions, and same or larger user-permission assignment
as the roles in s collectively, and asgndUP(r′, U, P) ⊆ UP ′,
i.e., if there exists r′ such that asgndU(r′) =

⋃
r∈s asgndU(r)

and asgndP(r′) =
⋃

r∈s asgndP(r) and
⋃

r∈s asgndUP(r, U, P)
⊆ asgndUP(r′, U, P) ⊆ UP ′. Assuming that all roles have
distinct sets of assigned users and permissions (as mentioned
in Step 1), s is mergeable only if there exists a constraint
that can be associated with r′ that prevents users assigned
to one of the roles in s from incorrectly gaining permis-
sions assigned to one of the other roles in s. Thus, to

function minExpU(s, U):
// compute conjunctive and disjunctive user-attribute
// expressions for s, and then compare them.

1: ec = {minConjExpU(s, U)}
2: ed = simplifyExp(

⋃
u∈s minConjExpU(u, U))

3: if ec does not use uid and ed uses uid
4: return ec
5: end if
6: if ed does not use uid and ec uses uid
7: return ed
8: end if
9: if WSC(ec) ≤WSC(ed)
10: return ec
11: else
12: return ed
13: end if

function minConjExpU(s, U):
// check whether uid is needed to characterize s
// in a conjunctive user-attribute expression.

14: for a in AU \ {uid}
15: e(a) =

⋃
u∈s fU (u, a)

16: if ⊥ ∈ e(a)
17: e(a) = >
18: end if
19: end for
20: e(uid) = >
21: if [[e]]U 6= s

// uid is necessary (and sufficient) to characterize s
// in a conjunctive user-attribute expression.

22: return f∅[uid 7→
⋃

u∈s fU (u, uid)]
23: end if

// e characterizes s. check if there’s a smaller conjunc-
// tive user-attribute expression that characterizes s.

24: for each non-empty subset A of AU \ {uid}
25: e′ = e[a 7→ > for a in A]
26: if [[e′]]U = s
27: if WSC(e′) < WSC(e)
28: e = e′

29: end if
30: end if
31: end for
32: return e

Figure 1: Algorithm to compute minExpU(s), where
s is a set of users, and U is the set of all users.
f [x 7→ y] denotes (a copy of) function f modified so
that f(x) = y. f∅ denotes the empty function, i.e.,
the function whose domain is the empty set.

maximize the chance of a successful merge, we identify the
strictest constraint that can be associated with r′ and then
check whether it prevents such gaining of permissions. The
constraint associated with r′ must not eliminate any user-
permission assignment associated with any role in s. From
Step 3, for each role r, con(r) is the strictest constraint that
does not eliminate any user-permission assignment associ-
ated with r, so con(r′) must be weaker (i.e., less strict) than
or equal to con(r) for each r in s, so the strictest constraint
that can be associated with r′ is con(r′) =

⋂
r∈s con(r). If

the role r′ with the assigned users, assigned permissions,
and constraint specified above satisfies asgndUP(r′, U, P) ⊆

1: R′ = Rcan

// Rmrg contains roles produced by merging.
2: Rmrg = {}

// for each r in R′, remove r from R′, then attempt to
// merge r′ with each remaining role in R′ and each role
// in Rmrg .

3: for each r in R′

4: R′ = R′ \ {r}
5: for each r′ in R′ ∪ Rmrg

6: r′′ = merge({r, r′})
7: if UPA(r′′) ⊆ UP ′

8: Rmrg = Rmrg ∪ {r′′}
9: end if
10: end for
11: end for
12: Rcan = Rcan ∪ Rmrg

Figure 2: Step 4 (Merge Candidate Roles) of elimi-
nation algorithm for core PRBAC policy mining.

UP ′ (note that
⋃

r∈s asgndUP(r, U, P) ⊆ asgndUP(r′, U, P)
holds by construction), then s is mergeable, and we set
uae(r′) = minExpU(asgndU(r′), U) and pae(r′) = minExpP(
asgndP(r′), P) and then add r′ to Rcan (note that we leave
the roles in s in Rcan); if not, s is not mergeable. Let
merge(s) denote the role r′ defined above.

A simple algorithm for this step attempts to merge every
subset s of Rcan . We optimize the algorithm by exploiting
a monotonicity property of merge, namely: s ⊆ s′ implies
asgndUP(merge(s), U, P) ⊆ UPA(merge(s′), U, P). Thus, if
UPA(merge(s)) 6⊆ UP ′, the algorithm does not attempt to
merge supersets s′ of s, because UPA(merge(s′)) 6⊆ UP ′

holds and hence s′ is not mergeable. The algorithm also ex-
ploits the property merge(s ∪ {r}) = merge({merge(s), r}),
which implies that arbitrary merges can be realized by merg-
ing in one role at a time. Pseudo-code for this step appears
in Figure 2. The general structure of the code is similar to
CompleteMiner [11, 12]. Our implementation incorporates
another optimization, not shown in Figure 2. The order
in which roles are merged does not affect the result, so we
extend the algorithm to avoid merging the same roles in dif-
ferent orders. We define an arbitrary total order on roles.
For each role r produced by merging, let maxMerge(r) be
the largest role used in the merges that produced r. In line
6, if r′ was produced by merging, r is merged with r′ only
if r > maxMerge(r′).

Step 5 (Optional): Eliminate Unnecessary Constraints.

For a role r, an equality in con(r) is unnecessary if re-
moving it from con(r) leaves asgndUP(r) unchanged. This
optional step removes each unnecessary equality from the
constraint of each role in Rcan .

Informally, one cannot tell from the given input whether
to include unnecessary constraints in the PRBAC policy,
because they do not affect consistency with the given ACL
policy. Note that these “unnecessary” constraints may have
been useful during merging, because they may help to pre-
vent user-permission assignments from growing when roles
are merged, but they provide no benefit after merging. The
argument in favor of removing them (after merging) is to

reduce policy size and hence increase policy quality. The ar-
gument in favor of keeping them is to be more conservative
from the security perspective, specifically, to minimize the
risk that the policy grants to a new user a permission that
the new user should not have. This is related to how well
the policy generalizes.

We consider this step as optional; in other words, the user
decides whether unnecessary constraints should be removed.

Step 6: Eliminate Low-Quality Removable Candidate
Roles.

This step eliminates low-quality removable candidate roles;
the remaining roles form the generated PRBAC policy.

A role quality metric is a function Q(r, U, P,R), where r is
a new role whose quality is returned, U and P are the sets of
users and permissions, respectively, R is the set of existing
roles, and the range is a totally-ordered set. The ordering is
chosen so that large values indicate high quality (note: this
is opposite to the interpretation of the ordering for policy
quality metrics).

Based on our goal of minimizing the generated policy’s
WSC, we define a role quality metric that assigns higher
quality to roles with smaller WSC that cover more uncov-
ered user-permission pairs; “uncovered”means that the user-
permission pairs are not covered by roles in R. We cap-

ture this notion of quality using the ratio |uncovUP(r,U,P,R)|
WSC(r)

as the first component of the role quality metric, where
uncovUP(r, U, P,R) is the set of user-permission pairs cov-
ered by r and not covered by roles in R. Among roles with
the same value of this ratio, we assign higher quality to roles
that cover more user-permission pairs. We capture this by
using |uncovUP(r, U, P,R)| as the second component of the
role quality metric, and ordering values of the role quality
metric lexicographically. In summary, the role quality met-
ric Q is defined as follows.

uncovUP(r, U, P,R) =
asgndUP(r, U, P) \

⋃
r′∈R asgndUP(r′, U, P)

Q(r, U, P,R) = 〈 |uncovUP(r,U,P,R)|
WSC(r)

, |uncovUP(r, U, P,R)|〉

A role r is removable, denoted removable(r, U, P,R), if
every user-permission pair covered by r is also covered by
another role in R. Formally,

removable(r, U, P,R) =
asgndUP(r, U, P) ⊆

⋃
r′∈R\{r} asgndUP(r′, U, P)

Pseudo-code for step 6 appears in Figure 3. In each iter-
ation, R contains roles currently known to be in the result
policy, and Rcan contains roles that might later get added
to the result policy. The algorithm evaluates removability
of a role with respect to Rcan ∪ R (instead of R), in order
to minimize the set of roles considered unremovable; this
leaves more roles in Rcan , eligible for removal, and therefore
leads to better policy quality. The algorithm evaluates role
quality with respect to R, because this provides a better
estimate of the role’s quality in the final policy.

4.2 Mining Core PRBAC Policies: Selection
Algorithm

Steps 1–5 of the selection algorithm for mining core PRBAC
policies are the same as in the elimination algorithm for min-
ing core PRBAC policies in Section 4.1. Step 6 is as follows.

1: R = ∅
2: while UPA(〈U,P,R〉) 6= UP

// move unremovable roles from candidates Rcan

// to result R.
3: Runrm = {r ∈ Rcan | ¬removable(r, U, P,Rcan ∪R)}
4: Rcan = Rcan \Runrm

5: R = R ∪Runrm

// discard the lowest-quality candidate role
6: if ¬empty(Rcan)
7: rmin = a role in Rcan with minimal quality, i.e.,
8: ∀r ∈ Rcan . Q(rmin, U, P,R) ≤ Q(r, U, P,R).
9: Rcan = Rcan \ {rmin}
10: end if
11: end while
12: return 〈U,P,R〉

Figure 3: Step 6 (Eliminate Low-Quality Removable
Candidate Roles) of elimination algorithm for core
PRBAC policy mining.

Step 6: Select Roles.
This step selects candidate roles for inclusion in the gen-

erated policy. It selects roles from highest quality to lowest,
until every pair in the user-permission relation in the given
ACL policy is covered. It uses the same role quality met-
ric as Step 6 of the elimination algorithm in Section 4.1.
Pseudo-code for this step is as follows.

1: R = ∅
2: while UPA(〈U,P,R〉) 6= UP
3: rmax = a role in Rcan with maximal quality, i.e.,
4: ∀r ∈ Rcan . Q(rmax, U, P,R) ≥ Q(r, U, P,R).
5: R = R ∪ {rmax}
6: Rcan = Rcan \ {rmax}
7: end while
8: return 〈U,P,R〉

4.3 Mining Hierarchical PRBAC Policies:
Elimination Algorithm

Steps 1–5 of this algorithm are the same as in the core
PRBAC policy mining algorithm in Section 4.1. The re-
maining steps are as follows.

Step 6: Compute Role Hierarchy.
This step computes all possible role hierarchy relations be-

tween candidate roles. Let r1 ≺ r2 if r1 6= r2∧asgndP(r1) ⊆
asgndP(r2) ∧ asgndU(r1) ⊇ asgndU(r2). Let RH all be the
transitive reduction of ≺.

Step 7: Generate Result Policy.
This step starts by storing some current information about

each candidate role in auxiliary data structures. Specifically,
let authU0(r) = asgndU(r) and authP0(r) = asgndP(r) and
authUP0(r) = asgndUP(r). Note that the assigned users
and permissions might change as we generate the hierar-
chical policy, because some assigned users and permissions
might become inherited instead. In contrast, the authorized
users and permissions of each role r never change, always
remaining equal to authU0(r) and authP0(r), respectively.
Similarly, asgndUP(r) might change, but authUP(r) always
remains equal to authUP0(r).

Our algorithm always generates policies with full inheri-

tance [13]. This implies that a role hierarchy edge in RH all

is included in the result policy whenever the roles that it
connects are included in the policy. Therefore, we associate
with each candidate role the cost (WSC) of the edges that
will be added to the policy if that role is added. We define
a size metric on roles that reflects this: for a role r in Rcan ,
and a set R of roles that have already been selected to be in
the result policy,

sizeof(r,R,RH all) =
WSC(r) + w4

2
|{r′ ∈ R | 〈r, r′〉 ∈ RH all ∨ 〈r′, r〉 ∈ RH all}|

The coefficient w4
2

(recall that w4 is introduced in Section 3)
reflects that half of the cost of each inheritance relationship
is attributed to each of the involved roles.

We define a role quality metric QH(r,R,RH) similar to
the metric in the non-hierarchical case, except using sizeof
instead of WSC and using authUP0(r) instead of asgndUP(r).

uncovUPH(r,R) = authUP0(r) \
⋃

r′∈R

authUP0(r′)

QH(r,R,RH) =
|uncovUPH(r,R)|

sizeof(r,RH)

We define a function removable similar to the one in the
non-hierarchical case, except using authUP0(r) instead of
asgndUP(r).

removableH(r,R) = authUP0(r) ⊆
⋃

r′∈R\{r}

authUP0(r′)

Pseudo-code for this step appears in Figure 5. It is similar
to the pseudo-code in Figure 3 for Step 6 of the elimination
algorithm for mining core PRBAC policies. The main differ-
ence is that this algorithm calls minExpU and minExpP to
update uae(r) and pae(r), respectively, after roles have been
added to the set R of roles that will be included in the gener-
ated policy. This reflects the fact that, in the presence of role
hierarchy, we are free to choose asgndU(r) in a way that min-
imizes the WSC of the policy, provided authU(r, U,R,RH)
remains equal to authU0(r), and similarly for asgndP(r).

minExpUH(r, U,R,RH) returns a minimum-sized user at-
tribute expression for r that excludes users that can be in-
herited from other roles in R along edges in RH if excluding
those users reduces WSC(uae(r)); this is legitimate, because
the sets of users assigned to and inherited by a role may over-
lap. Let inheritedU(r,R,RH) denote the set of users that r
inherits, i.e.,

inheritedU(r,R,RH) =
⋃

r′∈ancestors(r,R,RH)

authU0(r′).

Ideally, minExpUH(r, U,R,RH) would find a subset s of
inheritedU(r) that minimizes WSC(minExpU(authU0(r) \
s)) and return minExpU(authU0(r) \ s). In practice, trying
all subsets s of inheritedU(r,R,RH) would be too slow. An
obvious heuristic approximation is to try only the extrema—
in other words, only s = ∅ and s = inheritedU(r,R,RH).
We adopt a heuristic approximation, shown in Figure 4 that
is somewhat more thorough and correspondingly more ex-
pensive: it is exponential in the number of attributes, but
polynomial in the number of users. Similar to our algorithm
for minExpU in Figure 1, it starts by constructing an upper-
bound expression e (for authU0(r)) without using uid and
then considers the expressions obtained setting to > the con-
juncts of e corresponding to each subset of the attributes.

function minExpUH(r, U,R,RH):
// try to construct an expression representing a set
// in the required range, without using uid

1: for a in AU \ {uid}
2: e(a) =

⋃
u∈authU0(r)

fU (u, a)

3: if ⊥ ∈ e(a)
4: e(a) = >
5: end if
6: end for
7: e(uid) = >
8: for each non-empty subset A of AU

9: e′ = e[a 7→ > for a in A]
10: // try to remove values from conjuncts of e′

11: for a in AU \A
12: for v in e(a)
13: e′′ = e′[a 7→ e′(a) \ {v}]
14: if isInRange(e′′, r, R,RH)
15: e′ = e′′

16: end if
17: end for
18: end for
19: if isInRange(e′, r, R,RH) ∧WSC(e′) < WSC(e)
20: e = e′

21: end if
22: end for
23: if isInRange(e, r, R,RH)
24: return e
25: end if

// uid is need to represent a set in the required range.
// choose the smallest set in that range, to get the
// smallest expression.

26: return f∅[uid 7→
⋃

u∈authU0(r)\inheritedU(r,R,RH) fU (u, uid)]

// check whether [[e]]U is in the required range
function isInRange(e,r,R,RH):

27: return authU0(r) \ inheritedU(r,R,RH) ⊆ [[e]]U
28: ∧ [[e]]U ⊆ authU0(r)

Figure 4: Algorithm for minExpUH(r, U,R,RH).

However, instead of simply checking whether the resulting
expression now denotes a larger set or still denotes the same
set (namely, authU0(r)) as in Fig 1, it exploits the flexi-
bility that the expression may characterize any set between
authU0(r) \ inheritedU(r) and authU0(r), by removing val-
ues from conjuncts of e (in order to make the denoted set
smaller, partially counteracting the effect of setting some
conjuncts to >), provided the resulting expression still rep-
resents a superset of authU0(r) \ inheritedU(r), and then
checks whether the resulting expression characterizes a set
in the required range. If this fails to produce an expression
representing a set in the required range, then an expression
using uid is constructed.

minExpPH(r, P,R,RH) is defined similarly, except using
inheritedP(r,R,RH) instead of inheritedU(r,R,RH), where
inheritedP(r,R,RH) =

⋃
r′∈descendants(r,R,RH) authP0(r′).

Because we minimize WSC(uae(r)) and WSC(pae(r)) in-
stead of asgndU(r) and asgndP(r), some inheritance rela-
tionships might become useless, if the users and permis-
sions inherited by a role r through those relationships are
also in asgndU(r) and asgndP(r), respectively. Such in-

1: R = ∅
2: while UPA(〈U,P,R,RH 〉) 6= UP

// move unremovable roles from candidates Rcan

// to result R.
3: Runrm = {r ∈ Rcan | ¬removableH(r,Rcan ∪R)}
4: Rcan = Rcan \Runrm

5: R = R ∪Runrm

// update uae and pae of candidate roles,
// based on updated R

6: for r in Rcan

7: uae(r) = minExpUH(r,R,RH all)
8: pae(r) = minExpPH(r,R,RH all)
9: end for

// discard the lowest-quality candidate role
10: if ¬empty(Rcan)
11: rmin = a role in Rcan with minimal quality, i.e.,
12: ∀r ∈ Rcan . QH(rmin, R,RH) ≤ QH(r,R,RH).
13: Rcan = Rcan \ {rmin}
14: remove tuples containing rmin from RH all

15: end if
16: end while
17: finalizePolicy(R,RH all)

procedure finalizePolicy(R,RH all):
// adjust uae and pae of roles in policy, based on final
// role hierarchy, to reduce WSC.

18: for r in R
19: uae(r) = minExpUH(r,R,RH all)
20: pae(r) = minExpPH(r,R,RH all)
21: end for
22: RH = {〈r, r′〉 ∈ RH all | r ∈ R ∧ r′ ∈ R}
23: return 〈U,P,R,RH 〉

Figure 5: Step 6 (Eliminate Low-Quality Removable
Candidate Roles) of elimination algorithm for hier-
archical PRBAC policy mining.

heritance relationships could be eliminated without chang-
ing authUP(r). We leave such relationships in the pol-
icy, because we want to generate policies with complete
inheritance, as mentioned above. To illustrate the bene-
fits of this approach, consider a problem instance in which
there are user attributes indicating which users are employ-
ees (e.g., isEmployee = true) and which users are faculty
(e.g., position = faculty), and that all faculty are employ-
ees. Suppose role mining produces roles corresponding to
employee and faculty. If the assigned users of the employee
role are characterized by isEmployee = true, then users in
the faculty role are assigned users of the employee role, so
an inheritance relationship between these roles is useless and
could be eliminated, but this inheritance relationship is se-
mantically meaningful and natural, so it is better to keep it
in the policy.

4.4 Mining Hierarchical PRBAC Policies: Se-
lection Algorithm

Steps 1–5 of this algorithm are the same as in the elimi-
nation algorithm for mining hierarchical PRBAC policies in
Section 4.3. Step 6 is as follows.

Step 6: Select Roles.

1: R = ∅
2: while UPA(〈U,P,R,RH 〉) 6= UP

// select the highest quality candidate role
3: rmax = a role in Rcan with maximal quality, i.e.,
4: ∀r ∈ Rcan . QH(rmax, R,RH all) ≥ QH(r,R,RH all).
5: R = R ∪ {rmax}
6: Rcan = Rcan \ {rmax}

// update uae and pae of candidate roles,
// based on updated R

7: for r in Rcan

8: uae(r) = minExpUH(r, U,R,RH all)
9: pae(r) = minExpPH(r, U,R,RH all)
10: end for
11: end while
12: finalizePolicy(R,RH all)

Figure 6: Step 6 (Select Roles) of selection algorithm
for hierarchical PRBAC policy mining.

Pseudo-code for this step appears in Figure 6. It is similar
to the pseudocode for Step 6 of the selection algorithm for
mining core PRBAC policies in Section 4.2. The main dif-
ferences are the addition of the for-loop to adjust the user-
attribute expressions and permission-attribute expressions
of previously selected roles when another role is selected,
and the addition of the call to finalizePolicy at the end.

4.5 Complexity Analysis
This complexity analysis applies to all four of the above

algorithms. The running time of CompleteMiner in Step 1
is worst-case exponential in |P | but acceptable in practice,
based on our experience applying it to small inputs in this
work and larger inputs in previous work [13]. Let Rcan(i)
denote the value of Rcan after Step i; note that |Rcan(i)| is
worst-case exponential in the size of the input policy. The
running time of Step 2 is O(|Rcan(1)|×(2|AU | +2|AP |)). The
running time of Step 3 is O(|Rcan(2)| × |AU | × |AP |). The

running time of Step 4 is O(2|Rcan (3)|), since every subset
of Rcan(3) is explored in the worst case; however, the opti-
mizations in Step 4 greatly reduce the number of explored
subsets in our case studies. Steps 5, 6, and 7 are polynomial
in |Rcan(4)|, |Rcan(5)|, and |Rcan(6)|, respectively.

5. CASE STUDIES
This section describes the PRBAC policies we developed

as case studies to illustrate our policy language and evaluate
our algorithms.

The policies are written in a concrete syntax with the fol-
lowing kinds of statements. uae(r, e) associates conjunctive
user-attribute expression e with role r. pae(r, e) associates
conjunctive permission-attribute expression e with role r.
The overall user attribute expression associated with role r
is the disjunction of the expressions in the uae statements for
r; similarly for the permission-attribute expression. con(r, c)
associates constraint c with role r. rh(r, r′) means that r is
junior to r′. userAttrib(u, a1 = v1, a2 = v2, . . .) means that,
for user u, attribute a1 has value v1, attribute a2 has value
v2, etc.; uid = u is implicit. permAttrib(p, a1 = v1, a2 =
v2, . . .) is the analogous statement for permissions.

In each policy, we included only a few users in each “role
instance”, e.g., two or three users in each department. This

provides sufficient data for the algorithm to discover the
patterns, i.e., the parameterization. Increasing the number
of users in each role instance only helps the algorithm, by
providing stronger evidence for each pattern.

These case studies are small in size but non-trivial in
structure. They includes roles with membership specified
using uid, roles with membership specified using other at-
tributes, roles with overlapping membership, roles with dis-
joint membership, roles with multiple pae statements, roles
with constraints with multiple conjuncts, linear role hierar-
chy, diamond-shaped role hierarchy, etc.

University Case Study.
Our university case study controls access to gradebooks

and course schedules. The policy appears in Figure 7, ex-
cept that most of the userAttrib and permAttrib statements
are omitted, to save space. For convenience, we give users
names such as csStu1 and eeStu1, instead of Alice and Bob.
User attributes include: position (student, faculty, or staff),
dept (the user’s academic or administrative department),
crsTaken (course number of course being taken by a stu-
dent; to keep the example small, we assume the student is
taking at most one course, and it is in the student’s depart-
ment), crsTaught (course number of course taught by a fac-
ulty or TA; same assumptions as for crsTaken). Permission
attributes include: resource (resource to which the operation
is applied), operation (requested operation), dept (depart-
ment to which the resource belongs), crsNum (number of the
course that the resource is for), and student (student whose
scores are read, for operation=readScoreStudent). The con-
junct crsTaken=crsNum in the constraint for the Student
role ensures that students can apply the readScoreStudent
operation only to courses the student is taking. This is not
essential, but it is natural and is advisable according to the
defense-in-depth principle.

Healthcare Case Study.
Our healthcare case study controls access to items in elec-

tronic health records. The policy appears in Figure 8, ex-
cept that most of the userAttrib and permAttrib statements
are omitted, to save space. User attributes include: posi-
tion (doctor or nurse; for other users, this attribute equals
⊥); ward (the ward a patient or nurse is in), specialty (the
medical specialty of a doctor), team (the medical team a
doctor is in), and agentFor (the patient for which a user is
an agent). Permissions for access to a health record have
resource=HR (“HR” is short for “health record”). Other at-
tributes of permissions for health records include: operation
(the requested operation), patient (the patient that the HR
is for), topic (the medical specialty to which the HR item is
related), treatingTeam (the team of doctors treating the pa-
tient the HR is for), and ward (the ward housing the patient
that the HR is for).

Engineering Department Case Study.
Our engineering department case study controls access to

project-related documents. It is based on the running ex-
ample in [9]. The policy appears in Figure 9, except that
most of the userAttrib and permAttrib statements are omit-
ted, to save space. The role hierarchy is a lattice: it has a
diamond shape. User attributes include: dept (the user’s
department), project (the project the user is involved in; to
keep the example small, we assume the user is involved in

// Student Role
uae(Student, position=student)
// Student can read his own scores in gradebook for course
// he is taking.
pae(Student, operation=readScoreStudent

and resource=gradebook)
con(Student, dept=dept and crsTaken=crsNum

and uid=student)

// Teaching Assistant (TA) Role
uae(TA, uid in {csStu2, eeStu2, csStu3, eeStu3})
// TA can add and read scores for any student in
// gradebook for course he/she is teaching.
pae(TA, operation in {addScore, readScore}

and resource=gradebook)
con(TA, dept=dept and crsTaught=crsNum)

// Instructor Role
uae(Instructor, uid in {csFac1, csFac2, eeFac1, eeFac2})
// Instructor can change a score and assign a course grade
// in gradebook for course he/she is teaching.
pae(Instructor, operation in {changeScore, assignGrade}

and resource=gradebook)
con(Instructor, dept=dept and crsTaught=crsNum)
rh(TA, Instructor)

// Department Chair Role
uae(Chair, uid in {csChair, eeChair})
// Chair can read and write course schedule for
// his/her department.
pae(Chair, operation in {read, write}

and resource=courseSchedule)
// Chair can assign grades for courses in his/her
// department.
pae(Chair, operation=assignGrade and resource=gradebook)
con(Chair, dept=dept)

// Registrar Role
uae(Registrar, dept=registrar)
// Staff in registrar’s office can modify course schedules
// for all departments.
pae(Registrar, operation=write and resource=courseSchedule)

// User Attribute Data. The userAttrib statement for one
// user is shown here; the full policy contains 19 users.
userAttrib(csStu1, position=student, dept=cs, crsTaken=101)

// Permission Attribute Data. The permAttrib statement
// for one permission is shown here; the full policy
// contains 26 permissions.
permAttrib(cs101addScore, dept=cs, crsNum=101,

operation=addScore, resource=gradebook)

Figure 7: University case study

at most one project, and it is in the user’s department), and
specialty (the user’s specialty, e.g., testing). Permission at-
tributes include: resource (resource to which the operation
is applied), operation (requested operation), dept (depart-
ment to which the resource belongs), and project (project
to which the resource belongs).

// Nurse Role
uae(Nurse, position=nurse)
// Nurse can read and add HR items with topic=general
// for patients in his/her ward.
pae(Nurse, resource=HR and operation in {readItem, addItem}

and topic=general)
con(Nurse, ward=ward)

// Doctor Role
uae(Doctor, position=doctor)
// Doctor can read and add HR items related to his specialty
// for patients being treated by his/her team.
pae(Doctor, resource=HR

and operation in {readItem, addItem})
con(Doctor, team=treatingTeam and specialty=topic)

// Patient Role
uae(Patient, uid in {oncPat1, oncPat2, carPat1, carPat2})
// A patient can read and add items with topic=patientNote
// in his/her HR.
pae(Patient, resource=HR

and operation in {readItem, addItem}
and topic=patientNote)

con(Patient, uid=patient)

// Agent Role
uae(Agent, uid in {agent1, agent2})
// Agent can add an item with topic=agentNote in HR
// for patient whose agent he/she is.
pae(Agent, resource=HR and operation=addItem

and topic=agentNote)
// Agent can read an item with topic patientNote or
// agentNote in HR for patient whose agent he/she is.
pae(Agent, resource=HR and operation=readItem

and topic in {patientNote, agentNote})
con(Agent, agentFor=patient)

// User Attribute Data. The userAttrib statement for one
// user is shown here; the full policy contains 14 users.
userAttrib(oncNurse1, position=nurse, ward=oncWard)

// Permission Attribute Data. The permAttrib statement
// for one permission is shown here; the full policy
// contains 24 permissions.
permAttrib(rdOncItemOncPat1, resource=HR,

operation=readItem, patient=oncPat1, topic=oncology,
treatingTeam=oncTeam1, ward=oncWard)

Figure 8: Healthcare case study

6. EVALUATION
This section describes an evaluation of the effectiveness

of our algorithms, based on the case studies in Section 5.
For each case study, we generated an equivalent ACL policy
and an attribute data file from the PRBAC policy, ran our
hierarchical PRBAC policy mining algorithms on the result-
ing ACL policy and attribute data, and then compared the
generated PRBAC policy to the original PRBAC policy.

The same methodology could be applied starting with syn-
thetic (i.e., pseudo-randomly generated) PRBAC policies.
We did not do this, for two reasons. First, it is difficult to

// Engineer Role
// In this example, all users are engineers.
uae(Engineer, true)
// Engineer can read the project plan and test plan
// for the project he/she is working on.
pae(Engineer, operation=read

and resource in {projectPlan, testPlan})
con(Engineer, dept=dept and project=project)

// ProductionEngineer Role
uae(ProductionEngineer, specialty=production)
// Production Engineer can write the project plan
// for the project he/she is working on.
pae(ProductionEngineer, operation=write

and resource=projectPlan)
con(ProductionEngineer, dept=dept and project=project)
rh(Engineer, ProductionEngineer)

// QualityEngineer Role
uae(QualityEngineer, specialty=testing)
// Quality Engineer can write the test plan for the
// project he/she is working on.
pae(QualityEngineer, operation=write and

resource=testPlan)
con(QualityEngineer, dept=dept and project=project)
rh(Engineer, QualityEngineer)

// ProjectLead Role
uae(ProjectLead, specialty=management)
// Project Lead can create a budget for the project
// he/she is leading.
pae(ProjectLead, operation=create and resource=budget)
con(ProjectLead, dept=dept and project=project)
rh(ProductionEngineer, ProjectLead)
rh(QualityEngineer, ProjectLead)

// User Attribute Data. The userAttrib statement for one
// user is shown here; the full policy contains 14 users.
userAttrib(qe1, dept=ads, project=alpha, specialty=testing)

// Permission Attribute Data. The permAttrib statement
// for one permission is shown here; the full policy
// contains 10 permissions.
permAttrib(rpa1, dept=ads, project=alpha, operation=read,

resource=projectPlan)

Figure 9: Engineering department case study

generate “realistic” synthetic policies, so effectiveness of our
algorithm on synthetic policies might not be representative
of its effectiveness on real policies. Second, it is difficult to
evaluate the effectiveness of our algorithms on synthetic poli-
cies: in case of differences between the synthetic policy and
the mined policy, there would be no basis for determining
which one is better (for example, the synthetic policy might
be unnecessarily complicated, and the mined policy might be
better). We could determine which policy has lower WSC,
but minimizing WSC is just a heuristic aimed at helping the
algorithm discover high-level structure, and we do not know
what the best high-level structure is for synthetic policies.
Ideally, we would evaluate the algorithms on access control
policies in actual use, but we do not know of any publicly

Case Study |U | |P | |UP | |AU | |AP | |Rcan | |R| Time
university 19 26 42 4 5 203 5 2.1 1.2
healthcare 14 24 42 5 6 42 4 .55 .43
eng. dept. 14 10 42 3 4 24 4 .21 .19

Figure 10: Running times and size metrics for case
studies.

available deployed access control policies with accompanying
attribute data.

In summary, for all three case studies, the selection al-
gorithm for mining hierarchical PRBAC policies, without
optional Step 5 (Eliminate Unnecessary Constraints), suc-
cessfully reconstructs the original PRBAC policy from the
ACLs and attribute data.

We implemented the algorithms in Java and ran them on
a laptop with an Intel Core i3 2.13 GHz CPU. In our experi-
ments, all weights wi in the definition of WSC are equal to 1.
Table 10 shows, for each case study, several size metrics and
the running times of both algorithms. The “|Rcan |” column
contains the size of Rcan after Step 4. The “Time” column
contains the running times (in seconds) for the elimination
and selection algorithms, respectively, for mining hierarchi-
cal PRBAC policies and including the optional Step 5. We
also measured the running time of each step. In all cases
except one, Step 4 is the most expensive step; the one ex-
ception is the elimination algorithm on the university case
study, for which Step 7 is the most expensive step.

Results of university case study.
We ran the elimination and selection algorithms on ACLs

and attribute data generated from the university case study.
Without Step 5 (Eliminate Unnecessary Constraints), the
selection algorithm reconstructs the original PRBAC policy.
The elimination algorithm does slightly worse, producing
two roles, corresponding to TAs for CS101 and CS601, in-
stead of a single parameterized TA role. With Step 5 (Elim-
inate Unnecessary Constraints), the output of the elimina-
tion algorithm stays the same, and the output of the se-
lection algorithm becomes the same as the output of the
elimination algorithm.

Results of healthcare case study.
We ran the elimination and selection algorithms on ACLs

and attribute data generated from the healthcare case study.
Without Step 5 (Eliminate Unnecessary Constraints), both
algorithms reconstruct the original PRBAC policy. With
Step 5 (Eliminate Unnecessary Constraints), the elimination
algorithm still reconstructs the original PRBAC policy, but
the selection algorithm does slightly worse, producing two
roles, corresponding to cardiologists and oncologists, instead
of a single parameterized Doctor role.

Results of engineering department case study.
We ran the elimination and selection algorithms on ACLs

and attribute data generated from the engineering depart-
ment case study. The selection algorithm reconstructs the
original PRBAC policy. The elimination algorithm recon-
structs the ProductionEngineer and ProjectLead roles, but
each of the other two roles in the resulting policy contain
some general engineers and some quality engineers. For both

algorithms, the results are unaffected by Step 5 (Eliminate
Unnecessary Constraints).

Limitations.
Our algorithm does not reconstruct the original policy for

some variants of the health care case study, because Com-
pleteMiner does not generate the candidate roles that need
to be merged to produce the original roles. For example,
suppose we modify the policy so that a patient’s agent has
all permissions of that patient, plus some agent-specific per-
missions. As a result, the agent’s permissions are a superset
of the patient’s permissions, and the roles generated by Com-
pleteMiner all have the property that, if the role contains the
patient, then it also contains the agent. This prevents sub-
sequent steps of the algorithm from discovering a parame-
terized patient role, because different constraints are needed
for patients and agents, as one can see from the patient and
Agent roles in Figure 8. To overcome this limitation, Step
1 should be extended to take attribute information into ac-
count when generating candidate roles.

7. RELATED WORK
As mentioned in Section 1, we are not aware of any prior

work on policy mining for PRBAC or ABAC. Our policy
mining algorithms build on two pieces of prior work on
role mining for RBAC: Vaidya, Atluri, and Warner’s Com-
pleteMiner algorithm for generating candidate roles [11, 12],
and Xu and Stoller’s elimination and selection algorithms for
deciding which candidate roles to include in the final policy
[13]. The novel part of our algorithms are the middle steps,
in which constraint generation and role merging are used to
discover parameterization.

Xu and Stoller’s elimination algorithm is partly inspired
by Molloy et al.’s Hierarchical Miner algorithm for mining
roles with semantic meaning based on user-attribute data
[8]. Colantonio et al. developed a different method for tak-
ing user-attribute data into account during role mining; their
method partitions the set of users based on the values of se-
lected attributes, and then performs role mining separately
for each of the resulting sets of users [2].

We use role quality and policy quality metrics based on
weighted structural complexity [8]. Other role quality and
policy quality metrics have been proposed. Colantonio et
al. proposed metrics that measure how well roles fit the
hierarchical structures of an organization and its business
processes [1]. These metrics could be incorporated in our
algorithm. Qi al. proposed a metric for optimality of role
hierarchies and an efficient heuristic algorithm for mining
role hierarchies based on that metric [5]. Their work could
be extended to accommodate parameters and combined with
our approach to discovering parameterized roles.

Several access control frameworks that support some form
of parameterized roles have been proposed. The earliest ones
are by Giuri and Iglio [4] and Lupu and Sloman [7]; the
role templates and policy templates, respectively, in these
frameworks support parameterized roles. More recently, Ge
and Osborn [3] and Li and Mao [6] proposed RBAC frame-
works with parameterized roles. The most visible difference
between parameterization in these frameworks and ours is
that role parameters are explicit in these frameworks but
implicit in ours. However, this difference is more superficial
than significant: our approach to PRBAC policy mining can
be adapted to PRBAC frameworks with explicit parameters.

8. ACKNOWLEDGEMENTS
This material is based upon work supported by ONR un-

der Grant N00014-07-1-0928, NSF under Grant CNS-0831298,
and AFOSR under Grant FA0550-09-1-0481.

9. REFERENCES
[1] A. Colantonio, R. Di Pietro, A. Ocello, and N. V.

Verde. A formal framework to elicit roles with
business meaning in RBAC systems. In Proc. 14th
ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 85–94, 2009.

[2] A. Colantonio, R. Di Pietro, and N. V. Verde. A
business-driven decomposition methodology for role
mining. Computers & Security, 2012.

[3] M. Ge and S. L. Osborn. A design for parameterized
roles. In Research Directions in Data and Applications
Security XVIII, IFIP TC11/WG 11.3 Eighteenth
Annual Conference on Data and Applications Security,
pages 251–264. Kluwer, 2004.

[4] L. Giuri and P. Iglio. Role templates for content-based
access control. In Proc. 2nd ACM Workshop on Role
Based Access Control (RBAC’97), pages 153–159,
November 1997.

[5] Q. Guo, J. Vaidya, and V. Atluri. The role hierarchy
mining problem: Discovery of optimal role hierarchies.
In Proc. 2008 Annual Computer Security Applications
Conference (ACSAC), pages 237–246. IEEE Computer
Society, 2008.

[6] N. Li and Z. Mao. Administration in role based access
control. In Proc. ACM Symposium on InformAtion,
Computer and Communications Security (ASIACCS),
pages 127–138. ACM Press, Mar. 2007.

[7] E. Lupu and M. Sloman. Reconciling role based
management and role based access control. In Proc.
2nd ACM Workshop on Role Based Access Control
(RBAC’97), pages 135–141, November 1997.

[8] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino,
S. B. Calo, and J. Lobo. Mining roles with multiple
objectives. ACM Trans. Inf. Syst. Secur., 13(4), 2010.

[9] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based administration of
roles. ACM Trans. Inf. Syst. Secur., 2(1):105–135,
1999.

[10] H. Takabi and J. B. D. Joshi. StateMiner: an efficient
similarity-based approach for optimal mining of role
hierarchy. In Proc. 15th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages
55–64, 2010.

[11] J. Vaidya, V. Atluri, and J. Warner. RoleMiner:
Mining roles using subset enumeration. In Proc. 13th
ACM Conference on Computer and Communications
Security (CCS), pages 144–153, 2006.

[12] J. Vaidya, V. Atluri, J. Warner, and Q. Guo. Role
engineering via prioritized subset enumeration. IEEE
Trans. Dependable Secur. Comput., 7(3):300–314,
2010.

[13] Z. Xu and S. D. Stoller. Algorithms for mining
meaningful roles. In Proc. 17th ACM Symposium on
Access Control Models and Technologies (SACMAT),
pages 57–66, 2012.

