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With Partially Observable Markov Decision Processes (POMDPs), Intelligent Tutoring Systems (ITSs) can
model individual learners from limited evidence and plan ahead despite uncertainty. However, POMDPs
need appropriate representations to become tractable in ITSs that model many learner features, such as
mastery of individual skills or the presence of specific misconceptions. This article describes two POMDP
representations—state queues and observation chains—that take advantage of ITS task properties and let
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given as one example. A human study (n = 14) provides initial validation for the model construction. Finally,
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1. INTRODUCTION

Intelligent Tutoring Systems (ITSs) are teaching or training programs that model
individual learners’ thought processes to estimate what kinds of help they need and
adapt instruction so they learn more effectively. In the current state-of-the-art, several
successful ITSs have used Bayesian inference principles to model learners at the levels
of overall knowledge mastery or affective state estimation (e.g., Arroyo et al. [2006] and
Conati et al. [2002]). Partially Observable Markov Decision Processes (POMDPs) are
an important class of Bayesian planning model that hold promise for future intelligent
tutors yet remain relatively unexplored. POMDPs describe both how to estimate reality
from unreliable evidence and, additionally, how the actions a system can take might
change the real world. POMDPs can plan ahead with action sequences that are optimal
in the long term, while still maintaining flexibility to deal with changes in an uncertain
environment [Kaelbling et al. 1998].

Uncertainty often affects intelligent tutors. Learners’ mental processes and plans
are often vague and difficult to discern [Chi et al. 1981]. Learners who need help can
still make lucky guesses, while learners who know material well can make mistakes
[Norman 1981]. Learner understanding is fluid and changes often. There are many
possible reasons for mistakes, and it is difficult to exhaustively check all of them
[VanLehn and Niu 2001]. Further, the effects of a particular intervention on a learner
are rarely certain [Snow and Lohman 1984].

Despite the uncertainty inherent in teaching and training, human instructors and
ITSs can still improve learning by successfully planning ahead. For example, a tutor
might ask questions to confirm which underlying misconceptions caused an error,
rather than simply correcting the most likely one [Graesser and Person 1994]. When
a trainee makes a mistake during practice, a trainer might decide to delay feedback to
avoid overload [Hattie and Timperley 2007]. Even encouraging a frustrated learner is
an example of planning ahead because it takes time away from immediate instruction
to make later instruction more effective. POMDPs are able to estimate the long-term
impacts of their actions and plan interventions that improve learning over time
[Kaelbling et al. 1998].

However, the price of POMDPs’ power is their complexity. Modeling more learner
states leads to exponential growth in memory and processing requirements. The scaling
problems of large POMDPs probably help explain why existing POMDP ITSs are small,
modeling fewer than 20 features such as “skill mastery” or “broad affective states”
[Levchuk et al. 2013; Theocharous et al. 2009, 2010]. In contrast, ITSs deployed in
classrooms may need to model over 100 of these features [Payne and Squibb 1990].

In order to create tractable POMDPs, researchers can make assumptions that limit
the kinds of problems on which the POMDPs work well. The simplifying assumptions
must exploit properties of the problems being represented, or they will cause poor per-
formance; they must sacrifice unimportant information to keep important information.
Certain properties of ITS tasks can make them easier to represent with POMDPs. The
present article proposes two experimental POMDP representations to leverage these
properties. State queues mitigate the state-space explosion that keeps POMDPs small,
and observation chains increase the information a single assessment can convey to the
ITS. Together, these representations let POMDPs model much larger problems, of the
scale a real-world ITS would face.

Section 2 of this article contains background information about POMDPs, how they
function, and how they relate to some established ITS architectures. Section 3 de-
scribes how state queues and observation chains can represent problems with proper-
ties common to ITS problems. Section 4 describes an initial study with human trainees
and trainers that confirms the suggested model could represent a real-world training
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problem. Section 5 describes three experiments with simulated students that test state
queues and observation chains, showing that they perform well in a variety of condi-
tions a real ITS might face.

2. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

2.1. Definition

Tutoring can be modeled as a problem of sequential decision making under uncertainty.
An ITS must select appropriate pedagogical actions such as corrections and hints, with-
out having absolute knowledge of learners’ mental states and without any guarantee
that the actions will have the desired effect.

A Partially Observable Markov Decision Process (POMDP) is a general tool for mod-
eling such problems. With a POMDP model, a system can infer underlying causes for
observations and determine in advance how best to react to changes, even when ob-
servations and actions are unreliable [Kaelbling et al. 1998]. POMDPs have proven
useful in non-ITS tasks such as controlling robots [Thrun et al. 2000], planning medi-
cal treatments [Hauskrecht and Fraser 2000], and interpreting spoken dialog [Young
et al. 2010] or video [Hoey and Little 2007]. These applications highlight the potential
power of POMDPs for finding long-term optimal actions in uncertain situations.

In general, a POMDP defines states that describe the real world at a given moment in
time. States are discrete, finite, and mutually exclusive, but their true values are hidden
from the system. A belief is a probability distribution over a set of states that estimates
which states are more likely to be true. Observations provide evidence to update a
belief. The true, hidden state of the real world makes certain observations more likely,
though they are rarely perfect. In turn, system actions try to change the state of the
real world. Action outcomes are not guaranteed. At any given time a policy selects the
best action, depending on the current belief. Before execution, the POMDP parameters
determine what policy will maximize an expected long-term reward. Rewards can be
assigned to choosing beneficial actions or reaching goal states.

A particular POMDP is defined by a tuple 〈S, A, T, R, �, O〉 comprising a set of
hidden states S, a set of actions A, a set of transition probabilities T that define how
actions change system states, a set of rewards R, a set of observations �, and a set
of emission probabilities O that define which observations appear when the system is
in a given state. Modeling a problem consists of defining these parameters. Then an
algorithm can find a policy that consults the model and tells how to act [Kaelbling et al.
1998].

In summary, Figure 1 illustrates how the POMDP problem representation aligns
with the processes and workflow many ITSs follow in modeling a learner, assessing
and diagnosing the learner’s needs, and choosing adaptive interventions. If S models
the mental states of a particular learner, then A, T, and R model the effects of ITS
interventions, connecting the POMDP with the ITS’s pedagogical module. Likewise, �
and O relate to ITS assessment and diagnosis modules. Thus, a POMDP learner model
has the potential to integrate with more aspects of an ITS than many conventional
learner models. The greater reach of the POMDP throughout the ITS adds to the
model’s future potential to build more intelligent interactions more efficiently with
machine learning, although that potential will not be the subject of the present work.

2.2. Comparisons to Selected ITS Models

ITS practitioners familiar with other model architectures may find differences when
considering POMDP models.

Compared to rule-based cognitive tutors, POMDPs operate at a higher level of ab-
straction. They have no need to specify neurological events (but no ability to leverage
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Fig. 1. The POMDP representation aligns with intelligent tutors’ needs. Just as an ITS must model a
learner’s hidden mental states and adapt its interventions accordingly, a POMDP maintains a “belief” about
the real world that is updated with each new observation and that determines optimal actions according to
a predetermined policy.

them either). POMDPs are more closely related to knowledge tracing models, overlay-
like structures that augment some cognitive tutors [Corbett and Anderson 1995] and
can themselves be machine-learned Bayesian networks (e.g., Baker et al. [2010] and
Ritter et al. [2009]). However, POMDPs may also model nonmastery states that affect
learning.

POMDPs are also related to constraint-based tutors’ long-term models [Mayo and
Mitrovic 2001] and affective models [Zakharov et al. 2008] because both can make
inferences about multiple states from a single assessment and can differentiate a
misconception from a momentary slip. In a POMDP, the policy selects optimal actions
according to Bayesian principles, but POMDP policies are typically determined only
once while the constraint-based long-term model is updated during student interaction.

Manually constructed and machine-learned classifiers can also play the role of a
learner model. Classifiers in ITSs typically sort individuals into broad groups based on
mastery or cognitive traits. Examples of classifiers that have been used as learner mod-
els include decision trees (e.g., Cha et al. [2006] and McQuiggan et al. [2008]), neural
networks (e.g., Castellano et al. [2007]), and ensemble methods (e.g., Hatzilygeroudis
and Prentzas [2004] and Lee [2007]). POMDPs differ from methods that merely clas-
sify learners by integrating actions and action planning in the same model. Neural
networks and very complex decision trees, such as ones that handle many uncertain
situations, can be opaque, making decisions that are difficult to explain. In contrast,
POMDPs can report their beliefs and recommendations in ways that users who are not
expert in Bayesian principles understand [Almond et al. 2009].

ACM Transactions on Intelligent Systems and Technology, Vol. 4, No. 2, Article 29, Publication date: March 2013.



TIST0402-29 ACM-TRANSACTION March 7, 2013 18:30

Tractable POMDP Representations for Intelligent Tutoring Systems 29:5

In summary, POMDPs are capable of modeling learner information that is quali-
tatively similar to the data successful existing ITSs use. The similarity supports the
intuition that a POMDP may effectively control an ITS, while the important differences
represent interesting directions for future research into their consequences.

2.3. Comparisons to Bayesian Learner Models

POMDP ITSs build on the successes of other Bayesian models in intelligent tutors.
Bayesian models can handle uncertainty and recover from errors, infer hidden state
values from evidence, and allow machine learning of some model components during
development. The usefulness of increasingly complex Bayesian models in ITSs suggests
POMDPs could also control ITSs successfully.

As an initial example OLAE, an assessment tool and precursor to the Andes physics
tutor, observes individual steps of learners’ work to infer their domain knowledge
mastery [VanLehn and Martin 1998]. Similarly, the ITS Ecolab observes learners’ help
use to predict both topic mastery and readiness to learn each new topic [Luckin and
du Boulay 1999]. In both models, subject-matter experts designed networks by hand
that used Bayesian methods to interpret assessments.

The Bayesian model architecture also lets developers apply machine learning to
speed tutor development and refine accurate models from real learner data. For exam-
ple, the high-school math tutor Wayang Outpost [Arroyo et al. 2004] observes help use
to form mastery estimates. In this system, machine learning from experimental data
helps define model parameters [Ferguson et al. 2006].

In the elementary grammar tutor CAPIT [Mayo and Mitrovic 2001], Bayesian meth-
ods inform a still larger portion of the tutor behaviors. Whereas previous Bayesian-
model tutors selected pedagogical actions with heuristics or hand-written rules, CAPIT
can predict action outcomes with its learner model. CAPIT also modifies its Bayesian
model updates with a simple discount function to reflect the fact that learners’ knowl-
edge changes over time.

Dynamic Bayesian Networks (DBNs) are Bayesian networks that can model changes
over time. An early version of the Andes physics tutor [Conati et al. 2002] used a DBN,
and the Prime Climb math tutor [Conati 2002; Conati and Maclaren 2009] models
learner goals and affective states with a similar, DBN-like construct that substitutes
a non-Bayesian update method for better scaling.

Finally, a coin tutor for elementary students [Theocharous et al. 2010] uses a full-
fledged POMDP learner model. For this prototype, problem state is assumed to be
completely observable, concepts are ordered strictly linearly, and only one cognitive
state is modeled (attention/distraction). Another instance of the tutor [Theocharous
et al. 2009] has a six-state learner model with factorization [Boutilier et al. 1999] to
address scaling problems, creating several small POMDPs that can be selected by a
second, hierarchical POMDP. A POMDP that controls lesson selection in a military
training setting has 11 states [Levchuk et al. 2013; Shebilske et al. 2009]. Compared
to previous Bayesian ITSs, these POMDP ITSs model fewer facts about each learner.

In summary, Bayesian models allow diagnosis despite uncertainty and the possibility
to base parameters and structure on expert requirements, empirical data, or both.
Dynamic solutions such as DBNs and POMDPs can additionally model change over
time. While DBNs estimate hidden states and require separate, hand-written rules to
act on the diagnoses, optimal intervention planning is integral in POMDPs. However,
existing POMDP ITSs only model relatively few features or learner states.

2.4. Tractability Limitations

POMDPs are characterized by important size limitations. Intelligent tutors often model
numerous facts about each learner, for example, skill mastery or other cognitive states
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that impact learning. Finding good policies and even storing a POMDP in memory can
become difficult when more than a few of these features need to be modeled.

First, solving a POMDP to find a policy is exponentially complex according to the
number of states modeled. Policies map beliefs to actions, and beliefs are probability
distributions over states. Therefore, finding a good policy requires searching a hyper-
space with as many continuous dimensions as the POMDP has states. Fortunately,
approximate search algorithms exist, for example, ones that only evaluate selected
points in belief space (e.g., Kurniawati et al. [2008], Lovejoy [1991], and Pineau et al.
[2003]). However, memory and processor resource limitations still make policy search
more difficult or even impossible as the number of states increases [Kurniawati et al.
2008; Poupart 2005].

Second, without any special representations, POMDP state counts grow exponen-
tially with the number of independent variables or features to describe. For example,
ITS designers might need to model ten binary facts about a learner. A naı̈ve state rep-
resentation would then require |S| = 210 = 1,024 separate states to store all possible
combinations of these values. Likewise, state transition probabilities, observation emis-
sion probabilities, and rewards all depend on system state and would therefore have
exponentially increasing numbers of parameters to store (and either specify or discover
empirically) in at least three more places, up to |T | = |S|2 x |A|, |O| = |S| x |A| x |�|,
and |R| = |S|2x|A|x|�|. During the POMDP’s policy learning and application, beliefs
and policies would have similar space requirements.

There have been several general approaches to representing POMDPs more com-
pactly. For more information, a good resource is Poupart [2005]. For example, state
aggregation decreases the number of states in a POMDP by combining states that
have the same reward values, even when they have different underlying meanings
[Boutilier and Poole 1996; Feng and Hansen 2004; McCallum 2002]. To reduce the
branching factor at each possible step in a policy, several atomic actions can be grouped
together into macro-actions that dictate several turns in a row [Hauskrecht et al.
1998; He et al. 2010]. POMDP observations can be split into independent underlying
components or aggregated into groups of observations that all have the same effect
on planning, for example, because they give the same information about the current
state [Hoey and Poupart 2005].

Although much effort has been dedicated to general methods for alleviating POMDPs’
exponential costs, general methods must be able to handle possibilities that may never
apply in a particular problem domain. An important way to make a POMDP tractable
is to focus on a single problem class and take advantage of regularities in that class.
The present article describes two POMDP representations that can efficiently model
the process of intelligent tutoring.

3. MAKING POMDPS PRACTICAL FOR ITS APPLICATIONS

This section describes two compression schemes that make POMDPs capable of repre-
senting problems as large as the ones real-world ITSs confront. The first, state queues,
compresses a POMDP’s representation of system states, while the second, observation
chains, compresses a POMDP’s observation representation. Both compression schemes
use properties of the tutoring task to discard some data for better scaling. The special-
ized representations work with generic search algorithms to find effective policies for
large problems.

State queues and observation chains are designed to compress a wide variety of pos-
sible problem representations. The following subsection introduces a simple example
of a learner model, M, with a specific state, action, and observation structure. The
model M has the same structure as the one that produced the empirical results in this
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article. The components in the example model can, in turn, be assigned any number of
interpretations in specific instructional domains.

3.1. An Example POMDP Learner Model

POMDP hidden states can model the current mental status of a particular learner
at the level of knowledge states and cognitive states. Knowledge states describe tutee
knowledge or skill mastery, while cognitive states describe any nonmastery states that
affect learning.

In the example learner model, K is the domain-specific set of specific misconceptions
or facts or competencies the learner has not grasped. By itself, K is related to a buggy
or perturbation model, learner models with which ITSs have successfully detected
common misconceptions or malrules in novices (e.g., Johnson [1990] and Shute et al.
[2008]). In the present article, members of K are called gaps to indicate that each
element can represent either the presence of a misconception or the absence of a
required mastery. The intelligent tutor should act to discover and remove all gaps.

In addition to the knowledge states in K, the learner state model S also contains
cognitive states. The set C of cognitive states represents transient or permanent prop-
erties of a specific learner that may change action efficacy. Cognitive states can also
explain observations. When possible, the intelligent tutor should account for a learner’s
cognitive state so as to remove gaps more effectively. Cognitive states are not domain
specific, although the instructional domain might determine which states are impor-
tant to track. In the example learner model, the set C includes boredom, confusion,
frustration, and flow.

Many hints or other actions could tutor any particular gap. Each POMDP action i has
a chance to correct each gap j with base probability aij . The interventions available to
the ITS determine the values of a, and they must be either fitted from empirical data or
set by a subject-matter expert. In M, A = K U {noop}, and POMDP actions decide which
gap to address (or none). A pedagogical module, separate from the POMDP, is posited
to choose an intervention that tutors the target gap effectively in the current context.
A POMDP could also control ITS actions directly, with no intervening pedagogical
module, but a values would be needed for each action.

The learner’s cognitive state may further increase or decrease an action’s ability
to correct a gap according to a modifying function fc: [0,1]→[0,1]. In M, values for fc
approximate trends empirically observed during tutoring [Craig et al. 2004]. Tran-
sitions between the cognitive states are also based on empirical data [Baker et al.
2007; D’Mello et al. 2007]. Actions which do not succeed in improving the knowledge
state have higher probability to trigger a negative affective state [Robison et al. 2009].
Because of the cognitive state modifications in fc, an ITS might improve its overall per-
formance by not intervening immediately, such as when there is too much uncertainty
about a learner’s state.

For simplicity, no actions in M introduce new gaps. In the present experiment’s
instructional domain, training takes place over a short time period so forgetting learned
information is less likely. However, in many domains it is not realistic to assume actions
cannot create gaps, so future work should relax this assumption by adding transitions
in M that model misunderstanding or forgetting. The extra transitions will increase
the number of parameters to define, but not change M qualitatively.

Finally, an external assessment module is also posited to preprocess ITS observations
of learner behavior into POMDP observations of assessment lists. Thus, observations
in M are (possibly noisy) indicators that particular gaps are present or absent. Each
observation can contain information about multiple gaps. The POMDP’s task is to find
patterns in these assessments and transform them into a coherent diagnosis in its
belief state. For simplicity, M does not include direct observations of cognitive states.
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3.2. Tutoring Problem Characteristics

Often, tutoring problems have four characteristics that can be exploited to compress
their state-space representations. These are a natural ordering on states, few action
side-effects, state independence, and feature-rich observations.

First, in many cases instructors naturally address knowledge gaps or misconceptions
in a particular order. Often, certain gaps are difficult to address in the presence of
other gaps. For example, when a person learns algebra it is difficult to understand
exponentiation before multiplication. Multiplication in turn is difficult to comprehend
without a grasp of addition. This relationship property allows instructors in general to
assign a partial ordering over the misconceptions or gaps they wish to address. They
make sure learners grasp the fundamentals before introducing topics that progressively
build on the learners’ knowledge.

To reflect the way the presence of one gap, k, can change the possibility of removing
another gap j, a final term djk : [0, 1] is added to M. The probability that an action i
will clear gap j when any other gaps k are present then becomes fc(aij�k,k�= j(1 − djk)).
Values of djk near 1 indicate that for pedagogical reasons gap j “depends on” gap k, and
it is difficult to remove gap j as long as gap k exists.

Second, in tutoring problems each action often affects a small proportion of K. Pre-
senting a lesson about addition will not give a student a sudden understanding of
multiplication. Furthermore, in ITS model design, interventions often target individ-
ual gaps. For example, an ITS that models a specific misconception about carrying
during addition is likely to contain an intervention targeting that misconception. In
contrast, an ITS that models several addition misconceptions but addresses all of them
by reteaching the entire addition lesson does not meet this criterion. The second char-
acteristic holds true for ITS problems where aij = 0 for relatively many combinations
of i and j.

Third, the presence or absence of knowledge gaps in the initial knowledge state can
be close to independent, that is, with approximately uniform co-occurrence probabili-
ties. Finding that a learner has a misconception about carrying in addition does not
make it more or less likely the learner will need drilling in multiplication facts. This
characteristic is the most restrictive, in that it is probably less common in the set of
all tutoring problems than the other three, but such problems do exist. For example, in
cases when a tutor is teaching new material, all knowledge gaps will be likely to exist
initially, satisfying the uniform co-occurrence property.

Finally, ITSs often receive rich inputs that include evidence about several orthogonal
features in a single observation. For example, a learner’s success on a math problem
that requires addition, multiplication, and exponentiation could form evidence for mas-
tery of all the competencies needed to complete the task. Conversely, specific kinds of
mistakes could be evidence the student has mastered some math skills but certain
misconceptions still exist. The various skill assessments represent independent di-
mensions that are all transmitted to the ITS by observing a single event.

Together, these four characteristics of teaching and training enable the state queue
and observation chain POMDP representations to represent the ITS problem tractably.

3.3. State Queues

In tutoring problems, a partial ordering over K exists and can be discovered, for ex-
ample, by interviewing subject-matter experts. By reordering the members of K to
minimize the values in d where j < k and breaking ties arbitrarily, it is further possi-
ble to choose a strict total ordering over the knowledge states, or priority. This ordering
does not necessarily correspond to the POMDP’s optimal action sequence, because of
other considerations such as current cognitive states, initial gap likelihoods, or action
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efficacies. However, it gives a heuristic for reducing the number of states a POMDP
must track at once.

A state queue is an alternative knowledge state representation. Rather than maintain
beliefs about the presence or absence of all knowledge gaps at once, a state queue only
maintains a belief about the presence or absence of one gap, the one with the highest
priority. Gaps with lower priority are assumed to be present with the initial probability
until the queue reaches their turn, and POMDP observations of their presence or
absence are ignored except insofar as they provide evidence about the priority gap.
POMDP actions attempt to move down the queue to lower-priority states until reaching
a terminal state with no gaps.

The state space in a POMDP using a state queue is S = C × (KU {done}), with done a
state representing the absence of all gaps. Whereas an enumerated state representation
grows exponentially with the number of knowledge states to tutor, a state queue grows
only linearly.

State queuing places tight constraints on POMDPs. However, these constraints may
lead to approximately equivalent policies and outcomes on ITS problems, with which
they align. If ITSs can only tutor one gap at a time and actions only change the belief
in one dimension at a time, it may be possible to ignore information about dimensions
besides the one to move in first. Finally, the highly informative observations that are
possible in the ITS domain may ameliorate the possibility of discarding some.

3.4. Observation Chains

When emission probabilities of different dimensions are independent, conditioned on
the underlying state, one observation can be serialized into multiple observations that
each contains nonorthogonal information. A process for accomplishing this is observa-
tion chaining. Under observation chaining, observations decompose into observation
chain elements. Decompositions are chosen so that emission probabilities within chain
elements are preserved, but emission probabilities between elements are independent.

As an example, imagine a subset of � that informs a POMDP about the values
of two independent binary variables, X and Y. To report these values in one obser-
vation, � might contain four observations {XY, X′Y , XY ′, X′Y ′}. An observation chain
would replace these with four chain elements, {X, X′, Y, Y ′}. Then where one original
observation would appear, a chain of two equivalent components is observed instead.
Whenever one observation completely describes more than two independent features,
a chain representation will add fewer observations to � than an enumerated one.

Chains can be of arbitrary length, so a token end is added in � to signal the end of
a chain. In M, the simplified example learner model, assessments a POMDP observes
can signal the presence of a particular knowledge gap, its absence, or neither. A blank
chain element that conveys no information signals an observation that is uninformative
about any gap. With observation chaining, � = K U {blank}) U (K′ U {blank}′) U {end}.

In POMDPs with observation chaining, S contains an unlocked and a locked version
of each state. Observing the end token moves the system into an unlocked state, while
any other observation sets the equivalent locked state. Transitions from unlocked states
are unchanged, but locked states always transition back to themselves. Therefore,
the ITS can observe any number of chain elements before it recommends another
action, and the POMDP controller does not need to be rewritten. Observation chains
make � scale better with the number of orthogonal observation features, at the cost of
doubling |S|.

Observation chains are similar to the plan Hoey and Poupart [2005] suggest for
reducing conditionally independent observation dimensionality. However, where they
add a counter to the state space and transmit observations in order, the lock-unlock
scheme does not impose an order on chain elements and requires no counter. Therefore,
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reducing observation space does not require increasing state space by the same factor,
as Hoey and Poupart’s [2005] algorithm does. Instead, observation chains deliver expo-
nential observation-space improvements with only a one-time doubling of state space
cardinality.

3.5. Representation Summary

This section describes an example learner model structure that lets a POMDP rep-
resent an adaptive tutoring problem, and two compression schemes that make large
problems possible to represent with such structures. The information discarded dur-
ing compression is theorized to have little impact on outcomes for certain classes of
real-world problems, including the intelligent tutoring problem. Section 5 describes ex-
periments designed to explore situations under which the compression leads to effective
tutoring.

4. HUMAN STUDY

A specific instructional domain was studied in order to illustrate how POMDPs can
represent ITS problems. The domain, a training scenario that is currently in use by
the U.S. military, grounded the ITS-specific POMDP representations in a real-world
example and helped explore any assumptions about ITS tasks and the corresponding
POMDP structures.

This section describes a study of the instructional domain with a human trainer
and trainees (n = 14). The study was designed to determine which states an ITS
for the domain should model. Similar studies with larger sample sizes could also yield
information about actions, observations, and rewards in a particular domain. The study
also gathered information about different model input channels, which will be reported
elsewhere. The study results provided preliminary validation of the proposed POMDP
learner model.

4.1. The CFF Instructional Domain

The training task, known as Call For Fire (CFF), is performed by United States Marine
Corps personnel called Forward Observers (FOs). FOs let distant artillery and other
units engage targets with precise fire that is more likely to be effective and less likely
to harm friendly units or noncombatants in the area.

Trainees in the CFF domain must locate potential targets, identify which are foes,
prioritize threats, and transmit target descriptions (themselves called CFFs) to the ar-
tillery. Each CFF transmission must contain accurate details about a target’s position,
its type, one of two ammunition types to use, and one of two firing patterns to use.
CFF errors can have different underlying causes, such as either incorrectly identifying
a unit’s type or misremembering the prescribed method to attack that unit type.

In the U.S. Marine Corps, FOs may train to perform the CFF task with the Deploy-
able Virtual Training Environment (DVTE), a laptop-based suite of training programs
[Bailey and Armstrong 2002]. The DVTE program that trains the CFF task is a single-
user, first-person simulation controlled with a mouse and keyboard. In this simulation,
the role of the artillery is played by the computer.

Studying the CFF instructional domain helps ensure that the present work formu-
lates an ITS problem realistically. Any POMDP that can usefully represent training in
the CFF domain has successfully scaled to represent a real-world ITS problem.

4.2. Method

Undergraduate volunteers were trained to perform the CFF task in the DVTE. Each
training and testing session took 2.5 hours. The course included training on using the
simulator (Practice 1) and on the domain task (Practice 2), a test on the domain task
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(Test1), and a test on a transfer task requiring similar skills in a new setting (Test 2). In
previous studies using the same CFF task, material in Practice 2 was normally broken
into two or more scenarios [Vogel-Walcutt et al. 2009, 2008]. The present study com-
bined these scenarios to introduce more material at once, for the purpose of degrading
trainees’ support and causing them to display more misconceptions.

Trainees’ performance was measured in time needed to generate a CFF, number of
CFFs that resulted in a hit, errors in CFF descriptions or details, and target prioriti-
zation. Final performance was used as a proxy for learning because, based on intake
forms, all trainees initially had no knowledge of the CFF task. It was not possible to
administer a pretest for the same reason, and in addition pretests in this domain can
act as advance organizers, unduly influencing training outcomes.

During training and testing, trainees were encouraged to share their thoughts in
real time, to help reveal their knowledge and cognitive states to researchers. In one
condition, participants (n = 7) were encouraged to ask questions of the trainer. In a
second condition, participants (n = 7) were required to “think aloud” [Ericsson and
Simon 1984; Fonteyn et al. 1993], describing the conscious thought processes under-
lying their actions in the simulator. The differing conditions were part of an ongoing
effort to explore the role of learner questions in updating a cognitive model, but in
the present work they will not be considered separately. In both conditions, a human
trainer answered all questions.

The cognitive and knowledge states trainees displayed were observed and recorded
by two researchers. Based on input from subject-matter experts and pilot studies,
31 knowledge states were initially hypothesized to comprise a sufficient model of the
misconceptions and gaps trainees could have. In addition, several cognitive states were
explored. After each simulator interaction, trainees reported how often they had felt
each of six affective states on a seven-point Likert scale that was created for the present
study. The states were the ones studied by Craig et al. [2004], Baker et al. [2007],
Rodrigo et al. [2007], and D’Mello et al. [2007]: boredom, confusion, flow, frustration,
delight, and surprise. In accordance with that work, the first four states named were hy-
pothesized to appear more often during training than the last two. The states were func-
tionally defined for the participants as in D’Mello et al. [2006] and Graesser et al. [2006].
Retrospective trainee reports of mental effort as measured by the Cognitive Load
Questionnaire [Paas 1992] were also collected after each simulator and nonsimulator
task.

4.3. Results and Discussion

The average number of investigator observations per trainee was 33.25 (σ = 10.2).
There were also 42 cognitive state self-reports collected during each training session.
Together these represented a quantitative and qualitative improvement over the
learner data usually available from simulator performance metrics in this domain
(inputs per trainee μ = 25.85, σ = 2.32). The additional data helped explore the
knowledge states and cognitive states trainees are likely to experience during training
in the CFF domain.

As Figure 2 shows, the CFF training conducted by the human trainers succeeded
in making trainee CFFs faster and more accurate after practice. Since training was
effective according to several measures, the knowledge gaps and cognitive states in-
vestigators observed during the study are likely to comprise the most important or
most frequently occurring components of a useful ITS model for this domain and user
population.

Of the 31 misconceptions or other knowledge gaps learners were expected to expe-
rience during training, investigators actually observed 25 during the human study. In
addition, two new domain knowledge gaps and three new gaps relating to simulator
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Fig. 2. Trainee performance improved on several measures during the human study. Time to generate a
CFF decreased (a) while the number of CFFs that resulted in hits and the percentage of hits with no errors
increased (b, c). Target prioritization improved slightly, not significantly (d).

usage were observed at least once. These will be evaluated for incorporation into the
learner model. Overall, the participants’ experiences appeared to fit within the approx-
imate number and detail level of the hypothesized knowledge states, suggesting that
they are sufficient to model training in the CFF domain.

Like the hypothesized knowledge states, the human study also supported the selec-
tion of the hypothesized cognitive states. The most commonly reported cognitive states
were flow (94% of reports in the mid or high range) and delight (79%). The reported
occurrence of delight was both higher and more varied than hypothesized, suggesting
its usefulness for a learner model if its impact on training effectiveness can be quan-
tified. A reason for the difference might be that participants were actually reporting
satisfaction, a state functionally similar to delight but with lower magnitude [Graesser
et al. 2006]. The other hypothesized cognitive states also appeared often enough to allow
modeling them: confusion (45%), surprise (42%), boredom (39%), and frustration (37%).

Self-reports of cognitive load showed little variability. Participants reported median
values of cognitive load in most cases (63%). Instances of reporting cognitive load
as high (24%) or low (13%) did not appear to correlate with any task or with trainee
performance. The overall low variability of the cognitive load measure during this study
suggests that it is less useful to model during CFF training. However, the usefulness
of modeling cognitive load is likely to increase at more detailed timescales than this
study recorded, such as second-to-second changes.

To summarize, the human study of CFF training supported incorporating the hy-
pothesized knowledge states and cognitive states into an ITS learner model for the
domain. Participants’ experiences also suggested new knowledge gaps to incorporate
as model states. Additional data collection would yield information about more model
parameters such as state transitions, but for the purpose of the current study these
parameters will be set by subject-matter experts instead. The following section com-
bines the selected states with various model structures and parameters in a simulated
training environment to explore the model’s viability and sensitivity to parameter
settings.
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5. SIMULATION EXPERIMENTS

Three experiments were conducted on simulated students to empirically evaluate ITSs
driven by different POMDP representations of the same underlying learner model.
Empirically testing the performance of different representations helped estimate how
the experimental compression schemes might impact real ITS learning outcomes.

5.1. Method

POMDPs and their accompanying policies represented ITSs and were presented with
simulated students. In each simulation, a student was first generated with a random
set of knowledge gaps and a random initial cognitive state from among those modeled.
An ITS then had a limited number of actions to tutor the student and remove as many
knowledge gaps as possible. Given a student’s hidden mental reality, each ITS action
had a specific probability to clear gaps, change cognitive states, and generate new
student output observations that let the ITS update its plan. Changes in the students’
mental states always occurred according to the probabilities specified in the model M
described in Section 3. Therefore, M was an exact model of a simulated student, and
the simulation experiments tested the experimental POMDPs’ ability to represent M
usefully.

Simulations tested a range of models with the M structure, to correspond to multiple
real-world instructional domains. Specific parameter values appear in Section 5.2.

The first experiment was designed to explore the effects of problem size on the exper-
imental representation loss during tutoring. Lossless POMDPs were created that used
traditional, enumerated state and observation encodings and preserved all informa-
tion from M, perfectly reflecting the simulated students. Experimental POMDPs used
either a state queue or observation chains, or both. For problems with |K| = |�| = 1,
the experimental representations do not lose any information. As K or � grow, the
experimental POMDPs compress the information in their states and/or observations,
incurring an information loss and possibly a performance degradation.

Since the lossless representation had a perfect model of ground truth, the initial hy-
pothesis in this experiment was that an ITS based on the experimental representations
would produce student scores that differ from a lossless representation ITS by no more
than 0.25 standard deviations (Glass’ delta). This threshold was chosen to align with
the Institute of Education Science’s standards for indentifying substantive effects in
educational studies with human subjects [U. S. Department of Education 2008]. A dif-
ference of less than 0.25 standard deviations, though it may be statistically significant,
is not considered a substantive difference.

The second experiment measured the sensitivity of the experimental representations
to the tutoring problem parameters a and d. Testing several parameter combinations
helped understand how well the experimental representations could model a variety
of instructional settings or other planning problems that fulfill the underlying
assumptions.

As introduced in Section 3, d is a parameter describing the difficulty of tutoring
one concept before another. When d is low, the concepts may be tutored in any order.
Since a state-queue POMDP is constrained in the order it tries to tutor concepts, it
might underperform a lossless POMDP on problems where d is low. Furthermore, the
efficacy of different tutoring actions can vary widely in real-world problems. Efficacy
of all actions depends on a, including those not subject to ordering effects.

Simulated tutoring problems with a in {0.1, 0.3, 0.5, 0.7, 0.9} and d in {0.00, 0.05,
0.10, 0.15, 0.20, 0.25, 0.50, 0.75, 1.00} were evaluated. To maximize performance
differences, the largest possible problem size was used, |K| = 8. In problems with
more than eight knowledge states, lossless representations were not able to learn
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useful policies under some parameter values before exhausting all eight gigabytes of
available memory.

The experimental representations were hypothesized to perform no more than
0.25 standard deviations worse than the lossless representations. Parameter settings
that caused performance to degrade by more than this limit would indicate problem
classes for which the experimental representations would be less appropriate in the
real world.

The third experiment explored the performance impact of POMDP observations that
contain information about more than one gap. Tests on large problems (|K| ≥ 16)
showed the experimental ITSs successfully tutor fewer gaps per turn as size increases.
One cause of performance degradation on large problems was conjectured to be the
information loss associated with state queuing. As state queues grow longer, the prob-
ability increases that a given observation’s limited information describes only states
that are not the priority state. If the information loss with large K impacts performance,
state queues may be unsuitable for representing some real-world tutoring problems
that contain up to a hundred separate concepts (e.g., Payne and Squibb [1990]).

To assess the feasibility of improving large problem performance, the third experi-
ment varied the number of gaps that could be diagnosed based on a single observation.
Observations were generated, by the same method used in the other experiments, to
describe n equally sized partitions of K. When n = 1, observations were identical to
the previous experiments. With increasing n, each observation contained information
about the presence or absence of more gaps the ITS should tutor. Observations with
high-dimensional information were possible to encode with observation chaining. This
experiment would not conclusively prove that low-information observations degrade
state queue performance, but would explore whether performance could be improved
in high-information settings.

5.2. Experimental Setup

ITS performance in all experiments was evaluated by the number of gaps remaining
after t ITS-tutee interactions, including no-op actions. In these experiments, the value
t = |K| was chosen to increase differentiation between conditions, giving enough time
for a competent ITS to accomplish some tutoring but not to finish in every case.

All gaps had a 50% initial probability of being present. Any combination of gaps was
equally likely, except that starting with no gaps was disallowed. Simulated students
had a 25% probability of starting in each cognitive state.

The set of ITS actions included one action to tutor each gap, and a no-op action.
Values for a and d were aij = 0.5 where i = j, and 0 otherwise; and dij = 0.5 where
i < j, and 0 otherwise. These values were hypothesized to be moderate enough to avoid
extremely good or bad performance, and reasonable for representing at least some
real-world tutoring tasks. Nonzero values varied in the second experiment.

POMDP rewards were used only for policy search, not for evaluating POMDP per-
formance. The reward structure was necessarily different for lossless and state-queue
POMDPs because state queues do not model some knowledge gap information. How-
ever, both reward structures emphasized eliminating gaps as quickly as possible. For
lossless POMDPs, any transition from a state with at least one gap to a state with
j fewer gaps earned a reward of 100 j/|K|. For state-queue POMDPs, any transition
that changed the priority gap from a higher-priority i to a lower-priority i − j earned
a reward of 100 j/|K|, but resolving any gaps other than the priority gap was not
rewarded. In both conditions, changes in cognitive state did not earn any reward. The
reward discount was 0.90. Goal states were not fully observable.

Policy search was conducted with the algorithm Successive Approximations of the
Reachable Space under Optimal Policies (SARSOP). SARSOP is a point-based search
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Fig. 3. Direct comparison to a lossless POMDP on problems with |K| ≤ 8, a = 0.5, d = 0.5 shows the
experimental representations do not substantively degrade tutoring performance.

algorithm that quickly explores large belief spaces by focusing on the points that
are more likely to be reached under an approximately optimal policy [Kurniawati
et al. 2008]. SARSOP’s ability to find approximate solutions to POMDPs with many
hidden states makes it suitable for solving ITS problems, especially with the large
baseline lossless POMDPs. Version 0.91 of the SARSOP package was used in the
present experiment [Wei 2010].

5.3. Results

The first experiment did not find substantive performance differences between experi-
mental representations and the lossless baseline. Figure 3 shows absolute performance
degradation was small in all problems. Degradation did tend to increase with |K|. Ob-
servation chaining alone did not cause any degradation except when |K| = 8. State
queues, alone or with observation chains, degraded performance by less than 10% of a
standard deviation for all values of |K|.

Lossless POMDPs were not able to represent problems with |K| > 8. However, ex-
trapolating from the results of the first experiment suggested that if a lossless POMDP
with larger memory and processor resources could represent a problem with |K| = 16,
its performance would be more than 0.25 standard deviations better than the exper-
imental representations. This extrapolation motivated the third experiment, which
tested the extent to which more informative observations could mitigate performance
degradation on large problems.

The second experiment tested for performance differences under extreme values
of action efficacy a and priority effect d. In lossless POMDPs, performance depended
mostly on action efficacy. Varying the strength of the priority effect caused relatively
small performance differences. Furthermore, observation chaining POMDPs performed
substantively the same as lossless POMDPs under every combination of parameters.

Differences did appear for POMDPs with a state queue alone or a state queue
combined with observation chaining. With a state queue alone, POMDPs performed
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Fig. 4. When |K| = 8, |A| = 8, and |�| = 64, as here, lossless POMDP performance (a) varies with action
efficacy, not priority effect. Experimental POMDPs perform about the same as lossless in many conditions
(b, c, d), but state queues substantively degrade performance at some points (circled), indicating they are
unsuitable to represent problems with priority effect d < 0.25.

substantively worse than the lossless baseline on tutoring problems with d < 0.25.
The relative degradation increased on problems with greater action efficacy because
the lossless POMDPs’ better performance magnified small absolute differences. With
a state queue and observation chaining combined, POMDPs performed substantively
worse on problems with d < 0.20. The improvement over queues alone may be
attributable to more efficient policy learning possible with smaller �.

Figure 4 shows the performance degradation in the second experiment POMDP using
both state queues and observation chains, as a percentage of the lossless performance.
Performance changes that were not substantive, but were close to random noise, ranged
from 0% to 50% worse than the lossless representation. The first substantive difference
came at d = 0.15, with a 53% degradation. The most substantive difference was 179%
worse, but represented an absolute difference of only 0.22 (an average of 0.34 gaps
remaining, compared to 0.12 with a lossless POMDP).

The third experiment (see Figure 5) showed the effect on tutoring performance of
observations with more information. For |K| = 32, tutoring left an average of 9.4 gaps
when each observation had information about one gap, and 3.7 when each observation
described 16 gaps. For |K| = 64, the number of gaps remaining improved from 21.5 to
9.2. Finally, when |K| = 128, average performance increased from leaving 47.9 gaps
to leaving just 22.3 with information about 32 gaps in each observation. However, for
this size problem, doubling the available information again did not further improve
performance.

5.4. Discussion

Together, the simulated experiments in this section show encouraging results for the
practicality of POMDP ITSs.

The first experiment demonstrated that information compression in the experi-
mental representations did not lead to substantively worse performance for problems
small enough to directly compare. The size limit on lossless representations (|K| ≤ 8)
is too restrictive for many ITS applications (e.g., Payne and Squibb [1990]). The
limit was caused by memory requirements of policy search. Parameters chosen to
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Fig. 5. Performance on large problems can be improved up to approximately double, if every observation
contains information about multiple features. Observation chaining greatly increases the number of inde-
pendent dimensions a single observation can completely describe (the number above each column).

shorten policy search could increase maximum problem size by only one or two more.
Furthermore, one performance advantage of using enumerated representations stems
from their ability to encode complex relationships between states or observations. But
the improvement may not be useful if it is impractical to learn or specify each of the
thousands of relationships.

The second experiment suggested that although some types of problems are unsuit-
able for the experimental representations, problems with certain characteristics are
probably suitable. Whenever gap priority had an effect on the probability of clearing
gaps d ≥ 0.2, state queues could discard large amounts of information (as they do) and
retain substantively the same final outcomes. Informal discussions with subject-matter
experts suggest many real-world tutoring problems have priorities near d ≈ 0.5.

Although it would be premature to compare simulation results to the performance
of any ITS on real learners, there is a way to provide context for the value of a POMDP
in tutoring the simulated problems. Figure 6 compares the results of the second ex-
periment to a simulated reactive ITS that does not model knowledge gaps, but simply
tutors the last gap observed. The comparison shows that, unlike POMDPs, the reac-
tive ITS’s performance was affected by the priority effect d. Figure 6(b) displays the
gaps the POMDP ITS left remaining as a percentage of the reactive ITS’s gap counts.
The POMDP performed substantively better in almost all cases, achieving learning
improvements between 0.09 and 0.72 standard deviations.

The third experiment demonstrated one method to address performance degradation
in large problems. Adding more assessment information to each observation empiri-
cally improved performance. Observing many dimensions at once is practical for a
subset of real-world ITS problems. For example, it may be realistic to assess any tutee
performance, good or bad, as demonstrating a grasp of all fundamental skills that lead
up to that point. In such a case one observation could realistically rule out many gaps.
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Fig. 6. Simply tutoring the most recently observed gap (a) causes poor performance when gap priority is
important. POMDP scores. (See Figure 4(a)) are a fraction of the comparison scores at all points (b). The
POMDP performs substantively better at many points (circled).

In the third experiment, problems with |K| = 128 and more than 32 gaps described
in each observation did not finish policy learning before reaching memory limits. This
suggests an approximate upper limit on problem size for the experimental representa-
tions. POMDPs that are able to encompass 128 gaps (1,024 POMDP states) could be
sufficient to control ITSs that tutor many misconceptions, such as Payne and Squibb
[1990]. Even larger material could be factored to fit within the limit by dividing it into
chapters or tutoring sessions.

In summary, the three simulation experiments suggest that POMDPs compressed
with state queues and observation chains are promising for use on ITS problems when
topics must be taught in order. The Call For Fire (CFF) domain and other domains
where model structure reflects instructional material ordering and dependencies (e.g.,
Conati et al. [2002] and Luckin and du Boulay [1999]) align well with POMDP ITSs.
The structures may be less appropriate when topics can appear in many orders, such as
in exploratory learning environments (e.g., Shute and Glaser [1990]). Second, although
state queues were shown in the present work to accommodate state counts that can
model many real ITS problems, they are still not appropriate for very large numbers
of states, such as in highly detailed moment-to-moment models like production rule
systems use (e.g., Anderson [1993]). Finally, observation chains are helpful when a large
observation space can be factored into several conditionally independent observations.
An assessment module is sufficient but not necessary to create such observations.
However, observation chains are not useful if a large number of observations must
relate directly to states through a complex function that cannot be factored, and then
a different representation must be used.

The representations discussed in this article have advantages in some circumstances
over other POMDP simplifications. Compared to existing examples of state-factored or
hierarchical POMDP ITSs [Theocharous et al. 2009, 2010], state queues better preserve
relationships between cognitive states or other modes that form the dividing lines in
factored POMDPs, at the cost of some knowledge state information. State queues can
be used in conjunction with other state factoring schemes. Compared to macro-actions
that shorten lookahead horizons by grouping actions [He et al. 2010], the compressed
representations do not limit observations or constrain the range of tutoring options.
While macro-actions may be unnecessary with the present compressed representations
which also make policy search easier, they can be used together. Finally, an alternative
observation compression scheme is the one proposed by Hoey and Poupart [2005], in
which all observations that lead to the same policy are aggregated. This scheme can
integrate with the smaller state spaces of state queues, in place of observation chains.
However, that algorithm requires data to learn the aggregation and therefore works
best with a small number of possible plans, whereas ITSs usually have many actions
which can be combined into even more possible plans, making compression schemes
that do not take advantage of domain knowledge difficult to implement.
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6. CONCLUSIONS

This article discussed applying POMDPs in intelligent tutors. With POMDPs, intel-
ligent tutors can plan action sequences despite uncertainty. One sample method for
encoding the ITS problem in a POMDP was described which can expand to include
many knowledge states and cognitive states that existing ITSs model. The article stud-
ied a real-world training problem and its knowledge state characteristics. POMDPs
are suitable for representing this real-world problem.

POMDPs are known to scale poorly with naı̈ve problem representations. This article
introduced two representations, state queues and observation chains, that let POMDPs
represent large problems of the size ITSs might reasonably face, while staying small
enough to find an effective policy. State queues and observation chains were studied
with simulated students to determine their impact on ITS performance. Although
the compressed representations are not suitable for some tutoring problems, they can
represent a wide range of problems without damaging instructional efficacy.

Future work building on this article might include making ITSs less expensive to
build by accomplishing more development tasks with machine learning, or making
POMDPs useful for even more tutoring problems by addressing the performance degra-
dation state compression information loss can cause. Immediate next steps will include
building a POMDP to drive a real-world ITS for the CFF instructional domain, and
evaluating its efficacy with human trainees.
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