
23

Shared Recovery for Energy Efficiency and Reliability Enhancements
in Real-Time Applications with Precedence Constraints

BAOXIAN ZHAO and HAKAN AYDIN, George Mason University
DAKAI ZHU, University of Texas at San Antonio

While Dynamic Voltage Scaling (DVS) remains as a popular energy management technique for modern
computing systems, recent research has identified significant and negative impacts of voltage scaling on
system reliability. To preserve system reliability under DVS settings, a number of reliability-aware power
management (RA-PM) schemes have been recently studied. However, the existing RA-PM schemes normally
schedule a separate recovery for each task whose execution is scaled down and are rather conservative. To
overcome such conservativeness, we study in this article novel RA-PM schemes based on the shared recovery
(SHR) technique. Specifically, we consider a set of frame-based real-time tasks with individual deadlines and
a common period where the precedence constraints are represented by a directed acyclic graph (DAG). We
first show that the earliest deadline first (EDF) algorithm can always yield a schedule where all timing and
precedence constraints are met by considering the effective deadlines of tasks derived from as late as possible
(ALAP) policy, provided that the task set is feasible. Then, we propose a shared recovery based frequency
assignment technique (namely SHR-DAG) and prove its optimality to minimize energy consumption while
preserving the system reliability. To exploit additional slack that arises from early completion of tasks, we
also study a dynamic extension for SHR-DAG to improve energy efficiency and system reliability at runtime.
The results from our extensive simulations show that, compared to the existing RA-PM schemes, SHR-DAG
can achieve up to 35% energy savings, which is very close to the maximum achievable energy savings. More
interestingly, our extensive evaluation also indicates that the new schemes offer non-trivial improvements
on system reliability over the existing RA-PM schemes as well.

Categories and Subject Descriptors: H.4.1 [Operating Systems]: Process Management—Scheduling; D.4.7
[Operating Systems]: Organization and Design—Real-time systems and embedded systems

General Terms: Algorithms, Performance

Additional Key Words and Phrases: DVS, reliability-aware power management, real-time systems

ACM Reference Format:
Zhao, B., Aydin, H., and Zhu, D. 2013. Shared recovery for energy efficiency and reliability enhancements in
real-time applications with precedence constraints. ACM Trans. Des. Autom. Electron. Syst. 18, 2, Article 23
(March 2013), 21 pages.
DOI: http://dx.doi.org/10.1145/2442087.2442094

1. INTRODUCTION

Energy management has become an important research area in the past decade due to
dramatic increase in power consumption of modern computing systems and remains

This work was supported by US National Science Foundation awards CNS-1016855, CNS-1016974, and
CAREER Awards CNS-0546244 and CNS-0953005.
Author’s addresses: B. Zhao and H. Aydin, Computer Science Department, George Mason University, Fairfax,
VA; email: bzhao@gmu.edu, aydin@cs.gmu.edu; D. Zhu, Computer Science Department, University of Texas
at San Antonio, San Antonio, TX; email: dzhu@cs.utsa.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1084-4309/2013/03-ART23 $15.00

DOI: http://dx.doi.org/10.1145/2442087.2442094

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:2 B. Zhao et al.

as one of the grand challenges. The popular energy management technique dynamic
voltage scaling (DVS) achieves energy savings by simultaneously scaling down proces-
sors’ supply voltage and processing frequency at runtime [Weiser et al. 1994; Yao et al.
1995]. Based on DVS, many research studies have been recently conducted aiming
at minimizing energy consumption while meeting applications’ performance require-
ments, in particular for realtime embedded systems [Aydin et al. 2004; Pillai and Shin
2001; Jejurikar and Gupta 2004; Zhuo and Chakrabarti 2005; Quan and Hu 2007;
Wang et al. 2010].

On the other hand, reliability and fault tolerance have been traditional research
topics for computing systems and many fault tolerance solutions (based on different
redundancy techniques) have been proposed [Pradhan 1996]. While there are a few
studies focusing on providing fault tolerance capabilities to soft real-time systems (e.g.,
[Caccamo and Buttazzo 1998; Mejia-Alvarez et al. 2000; Aydin et al. 1999; Izosimov
et al. 2010]), most research has focused on safety-critical hard real-time systems. In
particular, to tolerate transient faults (which have been shown to be much more com-
mon than permanent faults [Castillo et al. 1982; Iyer et al. 1986]), one can explore
temporal redundancy in a system and adopt backward recovery technique to reexecute
faulty applications.

Although both fault tolerance and energy management have been extensively (but
independently) studied, the co-management of system reliability and energy efficiency
has caught researchers’ attention only very recently [Melhem et al. 2004; Zhang and
Chakrabarty 2003; Acharya and Mahapatra 2008; Wei et al. 2006; Liu et al. 2010].
Moreover, recent research also reported significant reliability degradation for systems
that exploit DVS features, where the probability of failure for an application executed
at low supply voltage and processing frequency levels can increase by several orders of
magnitude [Ernst et al. 2004; Zhu et al. 2004]. To tackle such negative impacts of DVS
on reliability, a number of reliability-aware power management (RA-PM) schemes have
been studied for various real-time systems [Zhu 2006; Zhu and Aydin 2006, 2009].
The central idea of RA-PM is to reserve a portion of system slack for scheduling a
recovery task before exploiting the remaining slack for DVS to save energy. In RA-
PM, should an error caused by transient faults be detected at the end of task’s scaled
execution (through sanity checks or other error detection techniques [Pradhan 1996]),
the recovery is invoked in the form of reexecution at the maximum clock frequency
before the task’s deadline to preserve the system reliability [Zhu 2006].

A common feature of the existing RA-PM schemes is that a separate recovery task
is scheduled for each task that is executed at scaled supply voltage and processing
frequency in order to preserve the reliability of all tasks. However, such recovery
tasks may not be needed at the same time, especially for frame-based real-time tasks
under non-preemptive scheduling. Thus, the existing individual-recovery based RA-PM
schemes are rather conservative, in the sense that they reserve more slack for recovery
and less slack for DVS with a negative impact on energy savings. To address such
conservativeness, for a set of independent frame-based real-time tasks with a common
deadline, a shared-recovery (SHR) based scheme was suggested in Zhao et al. [2009].
In the SHR scheme, all tasks whose executions are scaled through DVS can share a
single recovery block.

In a number of applications (such as those found in feedback-based control appli-
cations), real-time tasks depend on each other for input/output data and thus have
precedence constraints. In this work, by extending the basic idea of shared-recovery
technique [Zhao et al. 2009], we develop SHR-based RA-PM schemes for a set of frame-
based dependent real-time tasks with individual deadlines and a common period, where
the precedence constraints are represented by a directed acyclic graph (DAG).

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:3

D=100

c1=8
D1=30

T1

c2=15
D2=80

T2
c3=12
D3=90

T3

c4=21
D4=100

T4
c5=8
D5=100

T5

Fig. 1. An example application with five dependent tasks.

The main contributions of this research effort can be summarized as follows.

—First, a shared recovery (SHR) technique is proposed to address the conservativeness
of the existing RA-PM schemes;

—Second, based on the derived effective deadlines of tasks represented by DAGs, the
Earliest Deadline First (EDF) policy [Baruah et al. 1990] is shown to be a feasible
scheduling algorithm;

—Third, an optimal shared-recovery based RA-PM scheme for DAG-represented tasks
is studied, in order to minimize energy consumption while preserving system relia-
bility;

—Fourth, the online shared-recovery based RA-PM scheme that exploits dynamic slack
at runtime is developed to further improve energy efficiency and system reliability;

—Last, the proposed schemes are evaluated through extensive simulations.

The remainder of this article is organized as follows. Section 2 presents system
models and states our assumptions, followed by a motivational example and problem
description. The static and online shared-recovery based schemes for real-time tasks
represented by DAGs are addressed and evaluated in Sections 3 and 4, respectively.
Section 5 reviews the related work and Section 6 concludes the article.

2. SYSTEM MODELS

2.1. Application Model

In this work, we consider a real-time application consisting of n frame-based dependent
tasks running on a single-processor system. The tasks are represented by a directed
acyclic graph (DAG): G = (V, E). The set of vertices (or nodes) in G represent the set
of tasks V = {T1, . . . , Tn}. The set of edges E = {E1, . . . , Em} represent the precedence
constraints among tasks, where an edge (Ti, Tj) ∈ E indicates that task Tj cannot start
to execute until Ti has finished its execution [Buttazzo 2004].

Each task Ti is characterized by its worst-case execution time (WCET) ci and relative
deadline Di. As we consider systems with variable processing frequencies, it is assumed
that the WCET of task Ti corresponds to execution time under the maximum processing
frequency fmax of the system. Moreover, we assume normalized processing frequencies
where fmax is assumed to be 1. When task Ti is executed at a lower frequency fi(< fmax),
its execution time is assumed to scale linearly and hence becomes ci

fi
. The common

period for all tasks (i.e., the frame of the application) is denoted by D. That is, the
application that consists of n dependent tasks is reexecuted in every period of D. We
assume Di ≤ D (i = 1, . . . , n).

As an example, Figure 1 shows the DAG for an application with five dependent tasks,
where each task is annotated with its WCET ci and deadline Di (in milliseconds). The
common period (i.e., the application’s frame length) is D = 100ms.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:4 B. Zhao et al.

2.2. Power and Energy Model

Considering the almost linear relationship between the supply voltage and operating
frequency, DVS scales down the supply voltage alongside the processing frequency to
save energy. In what follows, when there is no ambiguity, we use the term frequency
change to stand for changing the supply voltage and processing frequency simultane-
ously. Assuming a DVS-capable system, we adopt the simple system-level power model
proposed in Zhu et al. [2004] and subsequently used in prior RA-PM research [Zhu
2006; Zhao et al. 2008; Zhu and Aydin 2009], where the system power consumption at
frequency f is given by:

P(f) = Ps + �(Pind + Pd) = Ps + �(Pind + Cef f m). (1)

Here Ps is the static power, which includes the power to maintain basic circuits, and
keep the clock running and the memory in sleep modes. It can be removed only by
powering off the whole system. The active power consist of two parts: the frequency-
independent active power Pindand the frequency-dependent active power Pd. Pind in-
cludes the power consumed by off-chip devices (such as main memory and external
devices) that can be efficiently removed by putting systems into sleep states. In addi-
tion to the dynamic power of CPU, Pd includes the power consumed by any devices that
depends on processing frequencies. � represents system states and indicates whether
active powers are currently consumed in the system. When the system is active, � = 1;
otherwise, � = 0. The effective switching capacitance Cef and the dynamic power expo-
nent m (which is, in general, no smaller than 2) are system-dependent constants and
f is the processing frequency.

Since there exists an excessive overhead associated with turning on/off a system
[Elnozahy et al. 2002], we assume that the system is always on while the periodic real-
time application is running. That is, Ps is always consumed and not manageable. Thus,
we concentrate on managing the active power (Pind and Pd) in this work. Note that,
although DVS can reduce energy consumption due to reduced frequency-dependent
active power Pd at lower processing frequencies, it will take longer for an application to
finish its execution and thus may consume more energy due to frequency-independent
active power Pind. Thus, it may not be always energy efficient to execute applications at
lower frequencies and it has been shown that there exists a minimum energy-efficient
frequency [Jejurikar and Gupta 2004; Zhuo and Chakrabarti 2005], which can be found
as [Zhu and Aydin 2006]:

fee = m

√
Pind

(m− 1)Cef
. (2)

Assuming the operating frequency of the system under consideration can vary from
a minimum available frequency fmin to the maximum frequency fmax, the lowest fre-
quency to execute a task ia flow = max{ fmin, fee}. For cases where the frequency-
independent active power Pind is excessive and fee exceeds fmax, operating the system
at fmax would be the most energy efficient option and no DVS is needed [Aydin et al.
2006]. For systems considered in this article, we assume that fee ≤ fmax.

2.3. Fault and Recovery Models

During the execution of an application, a fault may occur due to various reasons, such
as hardware failure, software errors and the effect of electromagnetic interference and
cosmic ray radiations. Since transient faults occur much more frequently than perma-
nent faults [Castillo et al. 1982; Iyer et al. 1986], in this article, we focus on transient
faults, especially the ones caused by cosmic ray radiations and electromagnetic inter-
ference. More specifically, we focus on the transient faults at the hardware level and

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:5

assume that software does not have any design faults. Hence, errors detected at the
task level are considered as manifestation of transient hardware faults.

Traditionally, transient faults have been modeled by Poisson distributions [Zhang
and Chakrabarty 2003]. However, considering the effects of voltage scaling on tran-
sient faults [Ernst et al. 2004; Zhu et al. 2004], the average occurrence rate λ of soft
errors caused by transient faults will depend on the system supply voltage (and thus
processing frequency). In particular, it is known that the likelihood of creating a criti-
cal charge (which may cause soft errors at the hardware level) increases drastically at
low voltage levels. In our analysis and simulations, we focus on the exponential rate
model which was developed by using historical data and first principles in Zhu et al.
[2004]. Other alternative models with similar exponential fault rate characterizations
have been suggested [Chandra and Aitken 2008; Dabiri et al. 2008], but we adopt the
the model in [Zhu et al. 2004] which has been widely widely used in prior RA-PM
research [Ejlali et al. 2005; Pop et al. 2007; Zhu 2006; Zhu and Aydin 2006, 2009]:

λ(f) = λ0 10
d(1− f)
1− fmin , (3)

where λ0 is the average error rate corresponding to the maximum frequency fmax =
1 (and supply voltage Vmax). The exponent d (> 0) is a constant that indicates the
sensitivity of error rates to voltage scaling. That is, reducing the supply voltage and
frequency for energy savings can result in exponentially increased error rates. At the
minimum frequency fmin (and the supply voltage Vmin), the maximum error rate is
λmax = λ0 · 10d.

Therefore, based on the Poisson distribution, the reliability of a task Ti executed at
frequency fi, defined as the probability of completing its execution without encounter-
ing errors triggered by transient faults, can be found as Ri(fi) = e−λ(fi)· ci

fi [Zhu et al.
2004], where λ(fi) is given as in Equation (3). The original reliability of task Ti is
defined as the reliability level obtained when executed at fmax (without voltage scal-
ing) and is given as R0

i = Ri(fmax) = e−λ0·ci [Zhu et al. 2004]. As the correctness of an
application normally depends on the successful execution of all its tasks, the original
system reliability is defined as R0

sys = ∏n
i=1 R0

i [Zhu 2006].
When a task is executed at a low frequency level, its reliability can degrade signif-

icantly without special provisions. In settings where soft errors caused by transient
faults can be detected (for example, through sanity checks [Pradhan 1996]) at the
end of a task’s execution, we can exploit temporal redundancy (i.e., system slack) and
backward recovery technique to enhance system reliability. As in the existing RA-PM
schemes [Ejlali et al. 2005; Pop et al. 2007; Zhu and Aydin 2006, 2009], we assume
that the backward recovery takes the form of reexecution of the faulty task at fmax to
preserve its original reliability [Zhu 2006].

Problem Description. Taking the negative effects of DVS on system reliability into
consideration, for frame-based dependent real-time tasks with individual deadlines
and a common period that are represented by a DAG, the problem to be addressed
in this article is to: find the execution order of tasks and their frequency assignment
to minimize system energy consumption while preserving the system original relia-
bility without violating tasks’ deadline and precedence constraints. Before presenting
the details of our new shared-recovery based RA-PM schemes, in what follows, we
first illustrate the conservativeness of the existing individual-recovery based RA-PM
schemes through a concrete example.

2.4. A Motivational Example

For the example application with five tasks shown in Figure 1, a feasible schedule
when all tasks run at fmax, that is, with no power management (NPM), is given in

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:6 B. Zhao et al.

f D1 D2 D3 D4 ,D5=D

0 10 20 30 40 50 60 70 80 90 100

T1 T3 T4 T5 T2

(a) No power management (NPM) scheme

f D1 D2 D3 D4 ,D5=D

0 10 20 30 40 50 60 70 80 90 100

B1 T4 T5 T1
 T2 B3 T3

(b) Greedy (GRE) scheme

 D1 D2 D3 D4 ,D5=D

T5

f

0 10 20 30 40 50 60 70 80 90 100

 T1 T2 T4 SRT T3

(c) SHR-DAG scheme without faults

 D1 D2 D3 D4 ,D5=Da fault is detected

B4 T3

f

0 10 20 30 40 50 60 70 80 90 100

 T1 T2 T4 T5

(d) SHR-DAG scheme with a fault

Fig. 2. Schedules for the motivational example under different schemes.

Figure 2(a). Tasks are executed in increasing order of their indices and the schedule
satisfies the tasks’ individual deadlines and precedence constraints. Assuming that
λ0 = 10−6, d = 5 and fmin = 0.1 [Zhu 2006], the original system reliability can be
evaluated as R0

sys = 99.9999936%.
From Figure 2(a), we can see that the system has access to 100 − 64 = 36 (ms) of

slack, which can be utilized to scale down the execution of tasks to save energy. Next,
consider the application of the Greedy (GRE) RA-PM scheme [Zhu and Aydin 2006]
where two tasks T1 and T3 are chosen for management (Figure 2(b)). Two separate
recovery tasks (denoted by {Bi}) are statically scheduled, which leaves 16ms slack for
scaling down the execution of T1 and T3. The remaining tasks execute at fmax and do
not need recovery tasks since they preserve their original reliability by definition. It
can be found out that the energy consumption under the GRE schedule is 0.84 · E,
where E is the energy consumed by all tasks under NPM. Moreover, since both scaled
tasks T1 and T3 have their own recovery tasks, the reliability levels of all tasks will
be equal to or higher than their original reliability level under NPM [Zhu 2006]. The
system reliability, which is the product of the individual task reliabilities, can be found
as Rgre

sys = 99.9999956%, which is slightly better than R0
sys and thus the GRE scheme

preserves the system’s original reliability as expected [Zhu and Aydin 2006].
Observe that, for frame-based real-time tasks that are executed nonpreemptively

one after another within each frame, the multiple recovery tasks (e.g., B1 and B3 in
the given example) will not be invoked simultaneously. Thus, scheduling a separate
recovery task for each task whose execution is scaled down is a conservative approach
that over-provisions for reliability and limits the amount of slack for DVS and energy
savings. In the shared recovery (SHR) scheme proposed in Zhao et al. [2009], a single
recovery block can be shared among tasks in order to reexecute any faulty scaled task
at runtime [Zhao et al. 2009]. Under the SHR-based RA-PM schemes the system will
typically have access to more slack for DVS and yield more energy savings.

Consider extending the SHR scheme and applying to our task set with precedence
constraints and individual deadlines. This technique is denoted by SHR-DAG. For
instance, we can have one recovery task (i.e., SRT) of size 8ms at the very beginning
and the remaining slack can be used to scaled down all tasks. The recovery task is large
enough to recover task T1 (at fmax) in case it encounters soft errors during its scaled
execution. When the scaled execution of T1 completes successfully, we can adjust the
recovery task size to be 15ms, which will be large enough to reexecute T2 by borrowing
slack from the following tasks and so on. For the case where the scaled execution of all
tasks complete successfully, the resulting schedule is shown in Figure 2(c). It can be
found out the energy consumption of all tasks under the SHR-DAG scheme is 0.56 · E,
which is an improvement of 33% over that of the existing GRE scheme.

Observe that, as long as there are no errors caused by transient faults, each scaled
task, at its dispatch time, will have access to a recovery block that is large enough
for reexecution under the new SHR-DAG scheme. Once soft errors are detected and

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:7

the recovery block is used to reexecute the faulty task, the remaining tasks within the
current frame may have to be executed in contingency mode at fmax. Otherwise, the
system may not have enough slack to recover from further soft errors and the original
reliability of remaining tasks cannot be preserved. With the contingency execution of
remaining tasks until (and only until) the end of current frame, we will later prove that
the system’s original reliability can be preserved under the new SHR-DAG scheme by
maintaining the original reliability of each and every task.

Figure 2(d) shows a scenario where the shared recovery block is used to reexecute the
faulty task T4 and the following task T5 is executed at the maximum frequency fmax.
We can further compute the achieved system reliability under SHR-DAG as Rshr

sys =
99.99999999995%, which turns out to be even better than that of GRE. In fact, by
optimizing the most common case (i.e., by covering all single-error scenarios), SHR-
DAG is generally more effective than GRE (which, in our example, cannot recover
from any single fault, but can recover from two separate errors in both T1 and T3,
respectively). Our simulation results will further confirm this observation.

3. STATIC SHARED-RECOVERY RA-PM SCHEME FOR DEPENDENT TASKS

List scheduling is the most commonly used scheduling approach for dependent tasks
represented by DAGs [Pop et al. 2007]. However, finding a feasible and optimal schedule
of dependent tasks to maximize the opportunities for energy and reliability manage-
ment is not trivial, especially for tasks with individual deadlines.

In this section, based on the effective deadlines of tasks (as defined in Section 3.1),
we first show that the Earliest Deadline First (EDF) scheduling policy can always
find a valid schedule if the tasks are feasible. Then, we propose the shared-recovery
based RA-PM scheme for dependent tasks (denoted as SHR-DAG), which is proved
to guarantee the system’s original reliability. Next, for the valid EDF schedule (i.e.,
execution order) of tasks, the optimal frequency assignment for SHR-DAG to minimize
the fault-free energy consumption of the tasks is discussed, followed by the evaluations
of SHR-DAG through simulations.

3.1. Feasible Schedule and EDF Scheduling

In the existence of precedence constraints, a task may have to complete well before
its deadline to ensure that all its successor tasks can finish in time. Therefore, based
on the as late as possible (ALAP) policy [Kung et al. 1985], we can define the effective
deadline of a task Ti as follows:

De
i =

{
Di, Succ(Ti) = ∅
min

{
Di, De

j − c j
}
, Tj ∈ Succ(Ti),

(4)

where Succ(Ti) is the set of successor tasks of Ti. That is, if there exists an edge
(Ti, Tj) ∈ E, we have Tj ∈ Succ(Ti).

THEOREM 3.1. If a set of frame-based tasks with individual deadlines represented
by a DAG are feasible then the EDF scheduling policy, when invoked with the tasks’
effective deadlines, can meet all the timing and precedence constraints of tasks.

PROOF. We prove this theorem in two parts: First, from Equation (4), we can see that
the effective deadline of each task is the latest time by which a task has to complete its
execution in a valid schedule. Therefore, if the tasks under consideration are feasible
and there exists a valid schedule, all tasks will complete their executions before their
effective deadlines. Therefore, replacing tasks’ original deadlines with their effective
deadlines does not hurt the feasibility of the task set.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:8 B. Zhao et al.

Second, we show that the schedule obtained by the EDF scheduling based on tasks’
effective deadlines is valid if there exists a valid schedule for the original problem. Note
that, if tasks are executed under EDF and their effective deadlines, the precedence
constraints among tasks are automatically satisfied (as a task always has a smaller
effective deadline than its successor tasks). Thus, based on their effective deadlines,
we can treat the tasks as independent tasks under EDF scheduling. For independent
tasks, it is well-known that the schedule under EDF scheduling is feasible if there
exists a feasible schedule for the tasks [Buttazzo 2004], which concludes the proof.

3.2. Shared-Recovery for Reliability Preservation of Dependent Tasks (SHR-DAG)

As opposed to scheduling multiple separate recovery tasks statically as in the conven-
tional RA-PM schemes [Zhu and Aydin 2006, 2009], the central idea of the shared-
recovery technique is to let scaled tasks share a single recovery block and thus use
more slack for DVS to improve energy savings [Zhao et al. 2009]. Moreover, once the
execution order of tasks is known in a valid schedule, the size of the required recovery
block at any given time depends only on the currently running task. Hence, in con-
trast to the original SHR scheme [Zhao et al. 2009], where the size of the recovery
block is determined by the size of the largest task, our new SHR-DAG scheme varies
the recovery block size dynamically for improved energy savings through better slack
usage.

Without loss of generality, suppose that the execution order of tasks in a valid sched-
ule is T1, T2, . . . , Tn. If every task Ta before task Ti (a < i) is executed at the scaled
frequency fa without incurring soft errors caused by transient faults, we will need to
reserve a recovery block of size ci before dispatching task Ti at the scaled frequency fi,
which has to satisfy the following time constraint:

i∑
a=1

ca

fa
+ ci ≤ De

i , (5)

where De
i is the effective deadline of task Ti. Moreover, in case Ti encounters a soft

error, its recovery as well as all remaining tasks have to finish in time at the maximum
frequency fmax = 1. That is, we need to have:

i∑
a=1

ca

fa
+

k∑
x=i

cx ≤ De
x, ∀ k : (i + 1) ≤ k ≤ n. (6)

Hence, for feasibility, the scaled frequency fi for task Ti has to satisfy
∑i

a=1
ca
fa

≤ bi,

where bi = min{De
k − ∑k

x=i cx|i ≤ k ≤ n}. Therefore, the optimization problem, denoted
as SHR-DAG, can be formally expressed as: find the frequency assignments { f1, . . . , fn}
to minimize

Etotal =
n∑

i=1

Ei(fi) =
n∑

i=1

(
Pind + Cef f m

i

) ci

fi
. (7)

Subject to
i∑

a=1

ca

fa
≤ bi (∀ i : 1 ≤ i ≤ n). (8)

flow ≤ fi ≤ fmax (∀ i : 1 ≤ i ≤ n) (9)

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:9

Recall that flow = max{ fmin, fee}. Once we find out the valid frequency assignment, the
online operation is the same as the SHR scheme [Zhao et al. 2009]: as long as there
are no errors, tasks can be executed at their scaled frequencies. Once a soft error is
detected at runtime, the recovery of the faulty task is immediately dispatched in the
form of reexecution and the system switches to a contingency mode where all remaining
tasks within the current frame are executed at fmax.

In Zhu [2006], it is shown that the overall reliability of a task Ti that is executed at a
scaled frequency fi < fmax, by also taking into consideration its recovery task, is given
as:

Ri = Ri(fi) + (1 − Ri(fi)) · R0
i > R0

i , (10)

where the first term on the right side is the probability of the scaled execution of the
primary task completing successfully, and the second term captures the probability of
the recovery executing at fmax successfully when the primary task fails. That is, with
the help of the recovery task, the task Ti ’s original reliability R0

i is preserved.

LEMMA 3.2. For an application with a set of frame-based dependent tasks, the sys-
tem’s original reliability in every frame will be preserved under the SHR-DAG scheme.

PROOF. We will prove the statement by showing that SHR-DAG preserves the orig-
inal reliability of every task, in each period. Consider the first task T1 executed by
SHR-DAG. If f1 = fmax, its reliability is exactly R0

1 = R1(fmax), hence no reliability
degradation occurs. Otherwise, if f1 < fmax, SHR-DAG must have assigned a recovery
block with size of ci before its deadline and its reliability can be given by Equation (10),
which is guaranteed to be greater than R0

1.
For the second task T2, if T1 fails and the shared recovery has been used, T2 and all

remaining tasks within the current frame are executed at fmax, which again maintains
their original reliability levels. Otherwise, if T1 does not fail, the same argument can
be repeated for T2. Continuing in this way, we can show that the reliability of a task
set under SHR-DAG is never worse than its original reliability while satisfying the
deadline constraints.

3.3. Optimal Frequency Assignments

In this section, for a given valid schedule with fixed execution order of tasks, we discuss
how to obtain the optimal frequency assignments assuming all tasks take their WCETs.

We first define the following problem, denoted as the SHR-DAGpart, that ignores the
frequency lower and upper bound constraints of the original SHR-DAG problem: find
the frequency assignments { f1, . . . , fn} to minimize

Etotal =
n∑

j=1

Ej(f j) =
n∑

j=1

(
Pind + Cef · f m

j

) c j

f j
. (11)

Subject to
j∑

a=1

ca

fa
≤ bj (∀ j : 1 ≤ j ≤ n). (12)

In order to solve the SHR-DAGpart problem, we can apply the necessary and suffi-
cient Kuhn-Tucker conditions [Luenberger 1984] for optimality and then obtain the
following expressions:(

(m− 1)Cef · f m−2
j − Pind

f 2
j

)
c j −

n∑
a= j

μa
c j

f 2
j

= 0 (∀ j : 1 ≤ j ≤ n) (13)

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:10 B. Zhao et al.

μ j

(j∑
a=1

ca

fa
− bj

)
= 0 (∀ j : 1 ≤ j ≤ n) (14)

μ j ≥ 0 (∀ j : 1 ≤ j ≤ n), (15)
where μ1, . . . , μn are Lagrange multipliers. Expression (13) can be further written as:

f j =
(

Pind + ∑n
a= j μa

(m− 1)Cef

) 1
m

(∀ j : 1 ≤ j ≤ n). (16)

Based on expressions (14), (15) and (16), it is clear that if ∀ j : 1 ≤ j ≤ n, μ j = 0, then
the optimal solution is f j = fee ∀ j and that solution should satisfy the constraint set
(12). Otherwise, there must exist at least one strictly positive μ j value. In this case, in
order to solve the SHR-DAGpart problem, we can use the iterative techniques to exploit
the Kuhn-Tucker conditions, as in Aydin et al. [1999, 2006] to adjust the solution while
guaranteeing the completion time constraints through the interval intensity principle
introduced in [Yao et al. 1995].

Next, we consider the problem, called SHR-DAG-L, which adds the frequency
lower bound constraints but still ignores the frequency upper bound constraints
(f j ≤ fmax j = 1, . . . , n). Formally, we define the problem SHR-DAG-L as to minimize

Etotal =
n∑

j=1

Ej(f j) (17)

Subject to
j∑

a=1

ca

fa
≤ bj (∀ j : 1 ≤ j ≤ n) (18)

flow ≤ f j (∀ j : 1 ≤ j ≤ n). (19)

LEMMA 3.3. A set of frequency assignments F = { f1, . . . , fn} is the solution to SHR-
DAG-L if F is the solution to SHR-DAGpart and satisfies the constraint set (19).

PROOF. The necessary and sufficient Kuhn-Tucker conditions for the problem SHR-
DAG-L include the constraints (18), (19), and:

E′
j(f j) −

n∑
a= j

μa
c j

f 2
j

− μ j = 0 (∀ j : 1 ≤ j ≤ n) (20)

μ j

(j∑
a=1

ca

fa
− bj

)
= 0 (∀ j : 1 ≤ j ≤ n) (21)

μ j(flow − f j) = 0 (∀ j : 1 ≤ j ≤ n) (22)

μ j ≥ 0 (∀ j : 1 ≤ j ≤ n) (23)

μ j ≥ 0 (∀ j : 1 ≤ j ≤ n), (24)

where {μ j} and {μ j} are the Lagrange multipliers. Then we can see that the condition
given in the lemma coincides with the case where μ j = 0. Indeed, in that case, necessary
and sufficient Kuhn-Tucker conditions for SHR-DAG-L become identical to that to
SHR-DAGpart. Therefore, Lemma 3.3 holds.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:11

LEMMA 3.4. If F violates the lower bound constraints given by (19), then, in the
solution of SHR-DAG-L, fi = flow ∀i ∈ �, where � = {i| f 2

low

ci
∑n

a=i μa
E′

i(flow) ≥ f 2
low

c j
∑n

a= j μa

E′
j(flow)∀ j}.
PROOF. If F violates the lower bound constraints, then due to (22), we can conclude

that ∃ μ j > 0 such that f j = flow. We will prove that, under the condition specified in
the lemma, the Lagrange multipliers μi > 0 for ∀i ∈ �, which will imply (by (22)) that
fi = flow ∀i ∈ �.

Assume ∃ m ∈ � such that μm = 0. both the previous discussion, we know that
∃ μ j > 0 and f j = flow. Using (20), we can obtain f 2

m
cm

∑n
a=m μa

E′
m(fm) = f 2

low

c j
∑n

a= j μa
E′

j(flow) −
μ j

f 2
low

c j
∑n

a= j μa
.

Then we obtain f 2
low

c j
∑n

a= j μa
E′

j(flow) >
f 2
m

cm
∑n

a=m μa
E′

m(fm). Moreover, the function f 2
m

c j
∑n

a=m μa

E′
m(fm) is strictly increasing with increasing fm. Observe that since fm ≥ flow,

hence, f 2
low

c j
∑n

a= j μa
E′

j(flow) >
f 2
m

cm
∑n

a=m μa
E′

m(fm) ≥ f 2
low

cm
∑n

a=m μa
E′

m(flow), which contradicts the as-
sumption that m ∈ �.

LEMMA 3.5. If the solution of SHR-DAG-L violates upper bound constraints given by
(9), then, in the solution of SHR-DAG, fi = fmax ∀i ∈ �, where � = {i| f 2

max
ci

∑n
a=i μa

E′
i(fmax) ≤

f 2
max

c j
∑n

a= j μa
E′

j(fmax)∀ j}
PROOF. The proof is very similar to that of Lemma 3.4. First, we obtain the necessary

and sufficient Kuhn-Tucker conditions for the problem SHR-DAG, which include (8),
(9) and:

E′
j(f j) −

n∑
a= j

μa
c j

f 2
j

− μ j + ν j = 0 (∀ j : 1 ≤ j ≤ n) (25)

μ j

(j∑
a=1

ca

fa
− bj

)
= 0 (∀ j : 1 ≤ j ≤ n) (26)

μ j(flow − f j) = 0 (∀ j : 1 ≤ j ≤ n) (27)

ν j(f j − fmax) = 0 (∀ j : 1 ≤ j ≤ n) (28)

μ j ≥ 0 (∀ j : 1 ≤ j ≤ n) (29)

μ j ≥ 0 (∀ j : 1 ≤ j ≤ n) (30)

ν j ≥ 0 (∀ j : 1 ≤ j ≤ n), (31)

where μ j , ν j and μ j (∀ j) are the Lagrange multipliers. Comparing the Kuhn-Tucker
conditions for problems SHR-DAG and SHR-DAG-L, we notice that at least one ν j
should be definitely larger than zero, if the solution of SHR-DAG-L violates some upper
bound constraints of SHR-DAG. This is because that when ν j = 0 (∀ j), Equations (29)
and (31) vanish and Equation (25) become identical to the Equation (20), which means
that both sets of Kuhn-Tucker conditions (hence, the optimal solutions of two problems)
coincide. But this contradicts the assumption that we gave. Similarly, if ∃i νi > 0, (which

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:12 B. Zhao et al.

should be the case if the solution of SHR-DAG-L violates the constraints of SHR-DAG),
then μ j should be zero: otherwise, from Equations (27) and (28) one would conclude
that fi = flow = fmax, which is a contradiction.

In the rest of the proof we will show that, under the condition specified in the lemma,
the Lagrange multipliers νi (∀i ∈ �) are all nonzero, which will imply (by (28)) that
fi = fmax. Assume that ∃m ∈ � such that νm = 0 (implying μm > 0. From the previous
discussion, we know that that must exist task Tj such that ν j > 0 (implying μ j = 0)

and f j = fmax. Applying equation (25), we obtain: f 2
m

cm
∑n

a=m μa
E′

m(fm) − μm
f 2
m

cm
∑n

a=m μa
=

f 2
max

c j
∑n

a= j μa
E′

j(fmax)+ν j
f 2
max

c j
∑n

a= j μa
giving f 2

m
cm

∑n
a=m μa

E′
m(fm) >

f 2
max

c j
∑n

a= j μa
E′

j(fmax). Since fm ≤ fmax,

then f 2
max

cm
∑n

a=m μa
E′

m(fmax) ≥ f 2
m

cm
∑n

a=m μa
E′

m(fm). Finally we conclude that f 2
max

cm
∑n

a=m μa
E′

m(fmax) >

f 2
max

c j
∑n

a= j μa
E′

j(fmax) which contradicts the assumption that m ∈ �.

Before presenting the algorithm to find the optimal frequency assignments, we first
give similar definitions and terms as used in Yao’s algorithm [Yao et al. 1995].

Definition 3.6. The intensity of an interval I = [z, z′] is defined as

g(I) =

∑
Ti∈XI

ci

z′ − z
where XI = {Tj |z ≤ bj ≤ z′}, (32)

which is the average frequency required to execute all the tasks whose bi values satisfy
z ≤ bi ≤ z′ for a given interval I = [z, z′]. Notice that the bi value can be seen as the
latest time point at which task Ti must complete in order to guuarantee the deadline
and recovery task size constraints.

Algorithm 1 summarizes the basic steps to find the optimal frequency assignment
for SHR-DAG. Here, we first compute the effective deadline and the value of bj for
each task Tj . The time complexity for this step with n tasks is O(n2). Steps from line 3
to 13 operate in a way similar to Yao’s algorithm. Specifically, the new algorithm first
computes the interval with maximum intensity gmax, and then sets the frequency of
all the tasks whose bi values are contained in that interval to gmax, and repeats the
procedure for the remaining intervals. However, in order to satisfy the frequency bound
constraints (fmin and fmax), the frequency obtained after invoking the Yao’s algorithm
must be adjusted in line 5. There are most n iterations before the task set � becomes
empty. During each iteration, it takes at most n steps to compute the value of g(I)
(line 4). Therefore, the time complexity to perform from line 3 to 13 is O(n2) and the
overall complexity of Algorithm 1 is O(n2).

3.4. Evaluations and Discussions

To evaluate the performance of the SHR-DAG scheme on both energy efficiency and
system reliability, we designed and implemented a discrete-event simulator. For fair
comparison, we also extended the GRE and SUEF algorithms [Zhu and Aydin 2006]
for tasks with precedence constraints. These new extensions are called GRE-DAG and
SUEF-DAG, respectively. We also implemented a static power management scheme
in DAG settings, namely SPM-DAG, which focuses on minimizing energy consumption
while not scheduling recovery tasks and hence ignoring reliability degradations. In fact,
SPM-DAG is a special case of SHR-DAG that does not reserve any slack for recovery.
In other words, SPM-DAG can be implemented by SHR-DAG algorithm by using Dj
instead of bj in Algorithm 1. Notice that SPM-DAG cannot preserve system reliability
and is included here to show the maximum achievable energy savings. The complexity
of these schemes is given in Table I.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:13

Table I. The Complexity of the Schemes (n is the number of tasks)

Scheme Complexity Scheme Complexity

GRE-DAG O(n) SUEF-DAG O(n log n)
SPM-DAG O(n2) SHR-DAG O(n2)

ALGORITHM 1: Optimal Frequency Assignment for SHR-DAG
1: Under ALAP policy, compute the effective deadlines (De

1, De
2, . . . , De

n) and
bj = min{De

k − ∑k
i= j ci(∀ k : j ≤ k ≤ n)} values for all tasks.

2: Set z = 0, � = {T1, T2, . . . , Tn};
3: while � is not empty do
4: Identify Tm ∈ � such that g(I = [z, z′ = bm]) = gmax ≥ g(I′ = [z, bi])∀ Ti ∈ �;
5: Let s = max{ flow, min{gmax, fmax}};
6: if s = flow then
7: set the frequency of tasks in � to s and return;
8: else
9: set the frequency of tasks in � = {Ti|bi ≤ bm ∧ Ti ∈ �} to s;
10: � = � − �;
11: set z = z + ∑ ci

s (∀i : Ti ∈ �);
12: end if
13: end while

In our simulations, we have λ0 = 10−6 for the lowest error rate, which is realistic
according to historical data on transient faults [Hazucha and Svensson 2000; Ziegler
2004]. The processing frequency of the system can vary from fmin = 0.1 to fmax = 1.0.
Furthermore, we assume Cef = 1 and m = 3.The frequency-independent power Pind
for each task is normalized with respect to the maximum frequency-dependent power
Pmax

d = 1. All results are normalized with respect to those of the no power management
(NPM) scheme, which executes all tasks at fmax.

The tasks are generated with the well-known TGFF tool [Dick et al. 1998]. Since
task sets with different number of tasks yielded similar performance trends for all
the schemes, we report only the results for cases with 10 tasks per task set. Within
a task set, the worst-case execution time ci for each task is randomly generated by
the UUniFast algorithm [Bini and Buttazzo 2005] in the range of [10ms, 100ms]. Each
result point in the figures is obtained by averaging the values obtained by three kinds
of graph topologies: (1) independent tasks, without precedence constraints among any
tasks; (2) chain graph, where the precedence constraints among tasks form a chain;
and (3) tree graph. For each graph topology, the reported simulation results correspond
to the values averaged over 1000 different task sets.

3.4.1. Evaluation of Energy Consumption. First,Figure 3 shows the impact of available
slack on the system energy consumption. In these experiments, the exponent d for the
error rate in Equation (3) is set to 2 and the frequency-independent power is Pind = 0.05.
The available slack is represented by L = D−C, where C = ∑

ci. Intuitively, the larger
the slack, the more opportunities for DVS and energy savings. Therefore, all schemes
can get lower energy consumption with increasing value of L. Moreover, compared
to the existing RA-PM schemes (GRE-DAG and SUEF-DAG), SHR-DAG can obtain
significantly more (up to 35%) energy savings. The reason is that, unlike SUEF-DAG
and GRE-DAG that allocate separate recovery tasks statically, SHR-DAG reserves
only a small amount of slack for the shared recovery and is able to allocate much more
slack for DVS. Moreover, as more slack becomes available (e.g., when L ≥ 0.6 · C),

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:14 B. Zhao et al.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
available slack L (*C)

GRE-DAG
SUEF-DAG
SHR-DAG
SPM-DAG

Fig. 3. The impact of system slack on system energy consumption.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Pind

GRE-DAG
SUEF-DAG
SHR-DAG
SPM-DAG

Fig. 4. The impact of Pind on system energy consumption.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y

of
 fa

ilu
re

available slack L (*C)

GRE-DAG
SUEF-DAG

SHR-DAG
SPM-DAG

(a) normalized probability of failure for d = 2

 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 100
 1000

 10000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y

of
 fa

ilu
re

available slack L (*C)

GRE-DAG
SUEF-DAG
SHR-DAG
SPM-DAG

(b) normalized probability of failure for d = 5

Fig. 5. The impact of slack on system reliability.

the performance of SHR-DAG becomes remarkably close to that of SPM-DAG, which
stands for the upper bound for any DVS-based energy management algorithm.

Figure 4 shows the relationship between different frequency-independent active
power Pind and the system energy consumption when we set the available slack to
L = 0.8 · C. The minimum value of Pind is set to 0.05. The energy consumption
for all schemes increases with increased Pind. This is because, with larger values of
Pind, the frequency-independent energy consumption increases and the threshold of
energy-efficient frequency for tasks become higher, which limits the DVS opportunities
(Section 2.2). Again, SHR-DAG outperforms GRE-DAG and SUEF-DAG. Further its
energy performance is very close to the bound yielded by SPM-DAG.

3.4.2. Evaluation of System Reliability. Next, we evaluate the system reliability dimension
for these schemes. For convenience, we present the probability of failure (PoF) (defined
as 1−reliability) achieved by all schemes. Again, all results are normalized with respect
to NPM.Figures 5(a) and 5(b) show the reliability performance when the exponent d is
2 and 5, respectively. Here, Pind is set to 0.05. Without special provision for reliability,
SPM-DAG can lead to several orders of magnitude degradation for system reliability.
As expected, all RA-PM schemes (SHR-DAG, GRE-DAG and SUEF-DAG) can preserve
the system’s original reliability.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:15

More interestingly, the results point to a somewhat counterintuitive phenomena:
SHR-DAG has also a clear advantage on the reliability side through the evaluated
spectrum, despite the fact that it uses a shared recovery block for all tasks. The main
reason comes from the fact that GRE-DAG and SUEF-DAG allocate separate recovery
tasks statically. As a result, except for cases where the available slack is very large, only
a subset of tasks can be managed by SUEF-DAG and GRE-DAG while the remaining
tasks do not receive any recovery. On the other hand, SHR-DAG allocates a single
recovery block that can be used by any task in case it fails. In essence, SHR-DAG
provides a better protection for the single-fault scenarios that are typically much more
likely than multiple-fault scenarios that SUEF-DAG and GRE-DAG provision for –
these two schemes are unable to cover certain single-fault scenarios. When more slack is
available, the PoF of SHR-DAG increases slightly as the system can use more aggressive
voltage scaling. For the cases where the error rate is very sensitive to the voltage scaling
(i.e., d = 5), the normalized PoF of SHR-DAG approaches (but never exceeds) 0.001.

4. ONLINE EXTENSION OF SHR-DAG

While the offline SHR-DAG scheme provides a powerful mechanism to save more
energy while preserving system original reliability, some runtime optimizations can
further improve its performance. Typically, real-time applications only consume a small
fraction of their WCETs and abundant amount of dynamic slack can be available at
runtime. In fact, many DVS frameworks [Aydin et al. 2004; Pillai and Shin 2001]
have been proposed in the past to exploit the dynamic slack that arises from early
completions of tasks for better energy savings. The same approach can be incorporated
in SHR-DAG as well.

In this section, we consider an extension to our static SHR-DAG scheme. The on-line
SHR-DAG algorithm, namely, DSHR-DAG, dynamically reclaims the slack at runtime
to further scale down the processing frequency of tasks for additional energy savings.
Specifically, DSHR-DAG operates as follows: initially, SHR-DAGis invoked to obtain
the scaled frequency for the first running task. Then, at runtime, when a task completes
early and/or without encountering errors, the frequency assignment for the next task
will be updated by reinvoking SHR-DAG with the size of recovery block needed and
the worst-case workload for the remaining tasks. The details of DSHR-DAG is given in
Algorithm 2. At runtime, the system’s original reliability can be guaranteed since we
decide frequency assignments by iteratively invoking SHR-DAG, which can preserve
system original reliability as shown in Lemma 3.2. With only the information about
the worst-case workload in advance, applying SHR-DAG among remaining tasks for
each step can maximize energy savings. In other words, at each scheduling point, we
need to invoke the SHR-DAG algorithm. Hence the complexity of DSHR-DAG at each
scheduling point is O(j2), where j is the total number of remaining tasks. A further
observation is that, at runtime, we need to decide only the frequency assignment for the
currently running task. That is, we can stop SHR-DAG algorithm when the frequency
assignment for the current task is obtained (i.e., just a single iteration from line 4 to
line 5 in Algorithm 1 with the complexity O(j)). Therefore, the complexity of DSHR-
DAG at each scheduling point can be improved to O(j). In the following simulations,
we use the improved version of DSHR-DAG.

4.1. Evaluations and Discussions

In this section, we evaluate the performance DSHR-DAG. For comparison, we also
implemented DGRE-DAG and DSUEF-DAG by extending GRE-DAG and DSUEF-DAG
to dynamic settings, respectively. Moreover, in order to compute an absolute bound
on achievable energy savings, we also implemented a clairvoyant scheme (denoted

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:16 B. Zhao et al.

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
available slack L (*C)

DGRE-DAG
DSUEF-DAG

DSHR-DAG
Bound-DAG

Fig. 6. The impact of slack on system energy consumption.

ALGORITHM 2: Online Frequency Assignment for DSHR-DAG
1: Under ALAP policy, obtain effective deadlines (D1, D2, . . . , Dn) for all tasks and also

compute bj = min{Dk − ∑k
i= j ci(∀ k : j ≤ k ≤ n)} for each task Tj .

2: for i := 1 to n do
3: Invoke SHR-DAG algorithm (Algorithm 1) for tasks from Ti to Tn to get the initial

frequency assignments { fi};
4: Execute Ti at frequency fi and record its completion time ai ;
5: if a fault is detected at Ti ’s completion then
6: Schedule a recovery of size ci at fmax and update ai = ai + ci ;
7: end if
8: for j := i + 1 to n do
9: bj = bj − ai ; //update bj by considering the elapsed time
10: end for
11: end for

as Bound-DAG) that uses the information about the actual workload of the tasks in
advance.

The simulation settings are essentially the same as those in Section 3.4. In addition,
to model the variations of the actual workload of tasks, we use the ratio WCC

BCC , which
denotes the ratio of the worst-case execution time (WCC) to the best-case execution
time (BCC). At runtime, the actual execution time of each task is determined in the
range [BCC, WCC] with the uniform probability distribution. Here, the higher ratio
of WCC

BCC indicates that the actual execution time of tasks deviates more from the worst-
case and more dynamic slack can be expected at runtime. In the simulations, we set
d = 2 and all results are normalized with respect to that of the NPM scheme.

4.1.1. Evaluation of Energy Consumption. Figure 6 first shows the effects of the available
slack L on the system energy consumption, for WCC

BCC = 3 and Pind = 0.05. As before,
when more slack is available, more energy savings can be obtained. For most cases,
DSHR-DAG has clear advantages over DGRE-DAG and DSUEF-DAG. However, when
the available slack is limited (e.g., L = 0.3 · C), the difference between the clairvoy-
ant algorithm Bound-DAG and DSHR-DAG is more significant since Bound-DAG can
utilize lower frequencies with the knowledge of tasks’ actual execution time.

A trend to underline is the greatly enhanced performance of DGRE-DAG (compared
to the worst-case settings). When WCC

BCC = 3, DGRE-DAG outperforms SUEF-DAG and
its achieved energy savings are quite close to that of DSHR-DAG. The reason is that,
many tasks complete much early at such high workload variation settings. As suggested
by previous DVS research [Aydin et al. 2004; Pillai and Shin 2001], reusing the slack
as early as possible typically pays off. However, DSUEF-DAG chooses to reallocate
the slack according to slack usage efficiency factors, which can possibly exclude the

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:17

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
WCC/BCC

DGRE-DAG
DSUEF-DAG

DSHR-DAG
Bound-DAG

Fig. 7. The impact of WCC
BCC ratio on system energy consumption.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y

of
 fa

ilu
re

available slack L (*C)

DGRE-DAG
DSUEF-DAG

DSHR-DAG

Fig. 8. The impact of the system slack on the probability of failure.

next tasks that would immediately benefit. When L is very large, DGRE-DAG, DSHR-
DAG and Bound-DAG converge to almost the same level, which is determined by the
energy-efficient frequency.

Figure 7 further illustrates how system energy consumptions changes for different
variation of tasks’ actual execution time workload (i.e., different ratios of WCC

BCC) with
L = 0.8 · C and Pind = 0.05. As expected, the system energy consumption generally
decreases with decreasing actual workloads (i.e., large WCC

BCC ratios). Among the three
schemes, DSHR-DAG obtain the most energy savings, which is close to the yardstick
algorithm Bound-DAG by at most a margin of 7%.

Interestingly, when WCC
BCC = 1, DGRE-DAG’s performance quickly deteriorates. It

is because, when the actual workload does not exhibit high variations, DSUEF-DAG
assigns slack according to tasks’ slack usage efficiency factors, which typically yields
better results, compared to DGRE-DAG that make all available slack to the next task.

4.1.2. Evaluation of System Reliability. Next, Figure 8 shows the probability of failure as
the function of the available slack with Pind = 0.05 and WCC

BCC = 5. Although DSHR-
DAG still performs the best, DGRE-DAG and DSUEF-DAG greatly benefit from dy-
namic slack reclamation, especially for large values of L. Essentially, DGRE-DAG and
DSUEF-DAG can allocate more recovery tasks at runtime by recycling the slack of un-
used recoveries, which leads to smaller values of PoF. Another interesting observation is
that, just like the energy dimension, DGRE-DAG appears to outperform DSUEF-DAG
as it reassigns recovery tasks in a greedy fashion. Moreover, when L ≥ 1.5 · C, almost
all tasks will be effectively executed at the energy-efficient frequencies by DGRE-DAG
and DSHR-DAG, which gives similar PoF values.

Figure 9 illustrates how the system reliability changes for different variations of
tasks’ actual workload when L = 0.8 · C and Pind = 0.05. In general, the probability
of failure for DGRE-DAG and DSUEF-DAG decreases with lower actual workload
(i.e., large WCC

BCC ratios) since more slack becomes available due to early completions
of tasks. Because of the greedy nature of DGRE-DAG (i.e., aggressively allocate all
dynamic slack to the next task), the achieved system reliability under DGRE-DAG

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:18 B. Zhao et al.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y

of
 fa

ilu
re

WCC/BCC

DGRE-DAG
DSUEF-DAG
DSHR-DAG

Fig. 9. The impact of WCC
BCC ratio on the probability of failure.

tends to degrade with smaller values of WCC
BCC . When WCC

BCC ≥ 2, DSHR-DAG can execute
almost all tasks at the energy-efficient frequencies, which yields almost stable PoF
values.

5. RELATED WORK

Simultaneous consideration of both energy consumption and fault tolerance has at-
tracted researchers’ attention in recent years. By deploying the primary/back-up
model for independent periodic tasks, Unsal et al. proposed an energy-aware software-
based fault tolerance scheme. The optimal number of checkpoints was investigated by
Melhem et al. [2004] to tolerate faults and reduce energy consumption at runtime.
Zhang et al. further adopted the checkpointing technique for soft periodic realtime
tasks and developed an online fault tolerance algorithm in Zhang and Chakrabarty
[2003]. Further, they suggested a fixed priority scheme through the Rate-Monotonic
algorithm (RMA) to tolerate faults in hard real-time systems. Based on the character-
ization of feasibility with RMA, in Wei et al. [2006], the authors proposed an efficient
online scheme to minimize energy consumption through DVS policies, by considering
the runtime behavior of tasks and fault occurrences. Focusing on tolerating a fixed
number of faults, Liu et al. [2010] proposed a heuristic-based scheduling technique
to minimize energy consumption for independent frame-based tasks. However, these
existing research works [Melhem et al. 2004; Zhang and Chakrabarty 2003; Wei et al.
2006; Liu et al. 2010] focused on tolerating a fixed number of faults within the context
of energy-aware real-time operation.

Despite the effectiveness of DVS to reduce energy consumption, it has been shown
that DVS has a significant and negative effect on the system reliability [Zhu et al.
2004; Zhang and Chakrabarty 2003], primarily because of the significantly increased
transient fault rates at low supply voltage and frequency levels. Hence, recently a
number of research studies promoted the so-called Reliability-Aware Power Manage-
ment (RA-PM) framework. The modeling of system reliability as a function of fre-
quency/voltage assignment and a preliminary analysis of related trade-off dimensions
has been conducted by Zhu et al. [2004]. Following the same line of research, RA-PM
has been extended to multiple tasks with a common deadline [Zhu and Aydin 2006]
and to periodic real-time tasks [Zhu and Aydin 2009]. To address the conservativeness
of such an individual-recovery based approach, considering independent frame-based
task model, a preliminary version of SHR technique for independent frame-based tasks
was first proposed in Zhao et al. [2009]. Recently, SHR has been further extended to gen-
eralized shared recovery (GSHR) technique [Zhao et al. 2011] through which a small
number of recovery tasks are shared by all the tasks while satisfying an arbitrary
system-level target reliability.

Moreover, based on the fault models developed in [Zhu et al. 2004], Ejlali et al.
[2001] studied a number of schemes that combine the information about hardware

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:19

resources and temporal redundancy to save energy and to preserve system reliability.
Considering dependent tasks represented by directed acyclic graphs (DAGs), Pop et
al. proposed a novel framework by studying the energy and reliability trade-offs for
distributed heterogeneous embedded systems [Pop et al. 2007]. Dabiri et al. [2008]
studied the problem of assigning frequency/voltage to tasks for energy minimization
subject to reliability and timing constraints. Recently, hardware redundancy technique
[Ejlali et al. 2009] is deployed through an extra spare processor to preserve original
system reliability where the catch-up scheme is developed to minimize system energy
consumption. In order to achieve more energy savings in a standby sparing scheme.

For multiprocessor settings, the exact evaluation of the reliability may be quite com-
plex due to the possibility of task replication and need for considering the schedule
lengths on individual processors, even when voltage scaling is not used. A bicriteria
scheduling heuristic based on Pareto optimization has been developed in Girault and
Kalla [2009] in these settings. Benoit et al. showed later that computing the exact reli-
ability of a given schedule with task replication on a parallel system is #P ′−Complete
(hence at least as hard as NP-Complete problems).

6. CONCLUSIONS

The negative effects of DVS on system reliability due to increased transient faults at
lower supply voltage and frequency promote the necessity of reliability-aware power
management (RA-PM). However, the existing RA-PM schemes normally schedule a
separate recovery task for any task whose execution is scaled down, which is rather
conservative as the recovery tasks may not be needed simultaneously, especially for
non-preemptive execution of frame-based real-time tasks.

In this article, focusing on a set of frame-based real-time tasks with precedence
constraints that have individual deadlines and the common period, we proposed and
evaluated a shared-recovery based RA-PM scheme, SHR-DAG. First, based on tasks’
effective deadlines that are derived from precedence constraints of tasks following as
late as possible (ALAP) policy, we show that EDF scheduling can always obtain a valid
schedule provided that the task set is feasible. Based on the shared-recovery technique,
where all scaled tasks can share a single recovery block, the SHR-DAG scheme is
shown to be able to preserve the system reliability. For a given valid schedule with
fixed execution order of tasks, the static optimal frequency assignment of SHR-DAG
is presented and formally demonstrated. We further proposed an online extension of
SHR-DAG aiming at better utilizing dynamic slack for more energy savings. Simulation
results show that, compared to the existing individual-recovery based RA-PM schemes,
SHR-DAG cannot only obtain more energy savings but also have a clear advantage on
the reliability dimension. The energy savings under SHR-DAG are very close to the
upper-bounds in both static and dynamic settings.

REFERENCES

ACHARYA, S. AND MAHAPATRA, R. 2008. A dynamic slack management technique for real-time distributed
embedded systems. IEEE Trans. Comput. 57, 2, 215–230.

AYDIN, H., DEVADAS, V., AND ZHU, D. 2006. System-level energy management for periodic real-time tasks. In
Proceedings of the IEEE Real-Time Systems Symposium.

AYDIN, H., MELHEM, R., AND MOSSÉ, D. 1999. Incorporating error recovery into the imprecise computation
model. In Proceedings of the IEEE International Conference on Real-Time Computing Systems and
Applications.

AYDIN, H., MELHEM, R., MOSSÉ, D., AND MEJIA-ALVAREZ, P. 2004. Power-aware scheduling for periodic real-time
tasks. IEEE Trans. Comput. 53, 5, 584–600.

BARUAH, S. K., HOWELL, R. R., AND ROSIER, L. 1990. Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one processor. Real-Time Syst. 2, 301–324.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

23:20 B. Zhao et al.

BENOIT, A., CANON, L.-C., JEANNOT, E., AND ROBERT, Y. 2011. Reliability of task graph schedules with transient
and fail-stop failures: complexity and algorithms. J. Scheduling, 1–13.

BINI, E. AND BUTTAZZO, G. C. 2005. Measuring the performance of schedulability tests. Real-Time Syst. 30,
1–2.

BUTTAZZO, G. C. 2004. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applica-
tions. Real-Time Systems Series. Springer

CACCAMO, M. AND BUTTAZZO, G. 1998. Optimal scheduling for fault-tolerant and firm real-time systems. In
Proceedings of the IEEE International Conference on Real-Time Computing Systems and Applications.

CASTILLO, X., MCCONNEL, S., AND SIEWIOREK, D. 1982. Derivation and calibration of a transient error reliability
model. IEEE Trans. Comput. 31, 7, 658–671.

CHANDRA, V. AND AITKEN, R. 2008. Impact of technology and voltage scaling on the soft error susceptibility in
nanoscale cmos. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance of
VLSI Systems.

DABIRI, F., AMINI, N., ROFOUEI, M., AND SARRAFZADEH, M. 2008. Reliability-aware optimization for DVS-enabled
real-time embedded systems. In Proceedings of the International Symposium on Quality of Electronic
Design.

DICK, R., RHODES, D. L., AND WOLF, W. 1998. Tgff: Task graphs for free. In Proceedings of the 6th International
Workshop on Hardware/Software Co-design.

EJLALI, A., AL-HASHIMI, B. M., AND ELES, P. 2009. A standby-sparing technique with low energy- overhead
for fault-tolerant hard real-time systems. In Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis.

EJLALI, A., SCHMITZ, M. T., AL-HASHIMI, B. M., MIREMADI, S. G., AND ROSINGER, P. 2005. Energy efficient SEU-
tolerance in DVS-enabled real-time systems through information redundancy. In Proceedings of the
International Symposium on Low Power and Electronics and Design.

ELNOZAHY, E. M., KISTLER, M., AND RAJAMONY, R. 2002. Energy-efficient server clusters. In Proceedings of the
Workshop on Power Aware Computer Systems.

ERNST, D., DAS, S., LEE, S., BLAAUW, D., AUSTIN, T., MUDGE, T., KIM, N. S., AND FLAUTNER, K. 2004. Razor:
Circuit-level correction of timing errors for low-power operation. IEEE Micro 24, 6, 10–20.

GIRAULT, A. AND KALLA, H. 2009. A novel bicriteria scheduling heuristics providing a guaranteed global system
failure rate. IEEE Trans. Dependable Secure Comput. 6, 4, 241–254.

HAZUCHA, P. AND SVENSSON, C. 2000. Impact of cmos technology scaling on the atmospheric neutron soft error
rate. IEEE Trans. Nucl. Sci. 47, 6, 2586–2594.

IYER, R., ROSSETTI, D., AND HSUEH, M. 1986. Measurement and modeling of computer reliability as affected by
system activity. ACM Trans. Comput. Syst. 4, 3, 214–237.

IZOSIMOV, V., ELES, P., AND PENG, Z. 2010. Value-based scheduling of distributed fault-tolerant real-time systems
with soft and hard timing constraints. In Proceedings of the 8th IEEE Workshop on Embedded Systems
for Real-Time Multimedia.

JEJURIKAR, R. AND GUPTA, R. 2004. Dynamic voltage scaling for systemwide energy minimization in real-
time embedded systems. In Proceedings of the International Symposium on Low Power Electronics and
Design.

KUNG, S., WHITEHOUSE, H., AND KAILATH, T. 1985. VLSI and Modern Signal Processing. Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

LIU, Y., LIANG, H., AND WU, K. 2010. Scheduling for energy efficiency and fault tolerance in hard real-time
systems. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition.

LUENBERGER, D. 1984. Linear and Nonlinear Programming. Addison-Wesley, Reading MA.
MEJIA-ALVAREZ, P., AYDIN, H., MOSSÉ, D., AND MELHEM, R. 2000. Scheduling optional computations in fault-

tolerant real-time systems. In Proceedings of the IEEE International Conference on Real-Time Computing
Systems and Applications.

MELHEM, R., MOSSÉ, D., AND ELNOZAHY, E. 2004. The interplay of power management and fault recovery in
real-time systems. IEEE Trans. Comput. 53, 2, 217–231.

PILLAI, P. AND SHIN, K. G. 2001. Real-time dynamic voltage scaling for lowpower embedded operating systems.
In Proceedings of the ACM Symposium on Operating Systems Principles.

POP, P., POULSEN, K., IZOSIMOV, V., AND ELES, P. 2007. Scheduling and voltage scaling for energy(reliability trade-
offs in fault-tolerant time-triggered embedded systems. In Proceedings of the International Conference
on Hardware/Software Codesign and System Synthesis.

PRADHAN, D. K. 1996. Fault-Tolerant Computer System Design. Prentice-Hall, Inc., Upper Saddle River, NJ.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

Shared Recovery for Energy Efficiency and Reliability Enhancements 23:21

QUAN, G. AND HU, X. 2007. Energy efficient dvs schedule for fixed-priority real-time systems. ACM Trans.
Embed. Comput. Syst. 6, 4, 1–30.

WANG, Y., LIU, D., WANG, M., QIN, Z., AND SHAO, Z. 2010. Optimal task scheduling by removing inter-core
communication overhead for streaming applications on mpsocs. In Proceedings of the IEEE Real-Time
and Embedded Technology and Applications Symposium.

WEI, T., MISHRA, P., WU, K., AND LIANG, H. 2006. Online task-scheduling for fault-tolerant low-energy real-time
systems. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design.

WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S. 1994. Scheduling for reduced cpu energy. In Proceedings
of the USENIX Conference on Operating Systems Design and Implementation.

YAO, F., DEMERS, A., AND SHENKER, S. 1995. A scheduling model for reduced cpu energy. In Proceedings of the
Annual Symposium on Foundations of Computer Science.

ZHANG, Y. AND CHAKRABARTY, K. 2003. Energy-aware adaptive checkpointing in embedded real-time systems.
In Proceedings of the Conference on Design, Automation and Test in Europe.

ZHAO, B., AYDIN, H., AND ZHU, D. 2008. Reliability-aware dynamic voltage scaling for energy-constrained
real-time embedded systems. In Proceedings of the International Conference on Computer Design.

ZHAO, B., AYDIN, H., AND ZHU, D. 2011. Generalized reliability-oriented energy management for real-time
embedded applications. In Proceedings of the Design Automation Conference.

ZHAO, B., ZHU, D., AND AYDIN, H. 2009. Enhanced reliability-aware power management through shared recovery
technique. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design.

ZHU, D. 2006. Reliability-aware dynamic energy management in dependable embedded real-time systems.
In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium.

ZHU, D. AND AYDIN, H. 2006. Energy management for real-time embedded systems with reliability require-
ments. In Proceedings of the International Conference on Computer Aided Design.

ZHU, D. AND AYDIN, H. 2009. Reliability-aware energy management for periodic real-time tasks. IEEE Trans.
Comput. 58, 10, 1382–1397.

ZHU, D., MELHEM, R., AND MOSSÉ, D. 2004. The effects of energy management on reliability in real-time
embedded systems. In Proceedings of the International Conference on Computer Aided Design.

ZHUO, J. AND CHAKRABARTI, C. 2005. System-level energy-efficient dynamic task scheduling. In Proceedings of
the Annual Conference on Design Automation.

ZIEGLER, J. F. 2004. Trends in electronic reliability: Effects of terrestrial cosmic rays. http://www.srim.org/
SER/SERTrends.htm.

Received December 2011; revised August 2012, November 2012; accepted November 2012

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 23, Pub. date: March 2013.

