
Configurable Memory Security In Embedded
Systems

JÉRÉMIE CRENNE, ROMAIN VASLIN, GUY GOGNIAT, and JEAN-PHILIPPE DIGUET

Université Européenne de Bretagne

and

RUSSELL TESSIER and DEEPAK UNNIKRISHNAN

University of Massachusetts, Amherst

System security is an increasingly important design criterion for many embedded systems.

These systems are often portable and more easily attacked than traditional desktop and server
computing systems. Key requirements for system security include defenses against physical at-

tacks and lightweight support in terms of area and power consumption. Our new approach to
embedded system security focuses on the protection of application loading and secure application

execution. During secure application loading, an encrypted application is transferred from on-

board flash memory to external double data rate synchronous dynamic random access memory
(DDR-SDRAM) via a microprocessor. Following application loading, the core-based security tech-

nique provides both confidentiality and authentication for data stored in a microprocessor’s system

memory. The benefits of our low overhead memory protection approaches are demonstrated using
four applications implemented in a field-programmable gate array (FPGA) in an embedded sys-

tem prototyping platform. Each application requires a collection of tasks with varying memory

security requirements. The configurable security core implemented on-chip inside the FPGA with
the microprocessor allows for different memory security policies for different application tasks.

An average memory saving of 63% is achieved for the four applications versus a uniform security

approach. The lightweight circuitry included to support application loading from flash memory
adds about 10% FPGA area overhead to the processor-based system and main memory security

hardware.

Categories and Subject Descriptors: K.6.5 [Authentication]: Security and Protection

General Terms: Security, Design

Additional Key Words and Phrases: AES-GCM, embedded system, FPGA

1. INTRODUCTION

Cost-sensitive embedded systems are used to execute end-user applications in a wide
range of computing environments which span a spectrum from handheld computing

J. Crenne, R. Vaslin, G. Gogniat, and J.-P. Diguet are with the Université de Bretagne Sud - UEB,
France. R. Tessier and D. Unnikrishnan are with the University of Massachusetts, Amherst, MA,

USA 01003.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2011 ACM 1529-3785/2011/0700-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011, Pages 1–0??.

2 · Jérémie Crenne et al.

to automotive control. These systems often contain little more than a micropro-
cessor, field-programmable logic, external memory, I/O (input/output) ports, and
interfaces to sensors. In addition to standard concerns regarding system perfor-
mance and power consumption, security has become a leading issue for embedded
applications. The portable nature of many embedded systems makes them par-
ticularly vulnerable to a range of physical and software attacks. In many cases,
attackers are uninterested in the details of the embedded system design, but rather
desire information about the sensitive program code and data included in system
memory storage. If left unprotected, off-chip memory transfers from microproces-
sors can easily be observed and may reveal important information. Some memory
protection can be provided by simply encrypting data prior to external memory
transfer. Although data encryption techniques are widely known and used, simply
modifying the values of data and instructions is generally thought to be insufficient
to provide full protection against information leakage [Anderson 2001].

The memory contents of embedded systems often require protection throughout
the various phases of system operation from application loading to steady-state sys-
tem operation. For microprocessors, application code is frequently kept in on-board
flash to facilitate system loading. Following system initialization, application code
and data are stored in external system main memory, which is usually interfaced
to a microprocessor via a vulnerable external bus. The sensitivity of stored in-
formation varies from highly-sensitive to low importance, motivating configurable
memory security which can be adjusted on a per-task and per-application basis.
The real-time performance demands of most embedded systems indicate the need
for a memory security approach which is implemented in on-chip hardware, adja-
cent to the microprocessor. This hardware implementation should just meet an
application’s security needs while minimizing area. Resource efficiency is typically
a key for embedded computing in constrained environments.

Our work includes the development of a new lightweight memory security ap-
proach for embedded systems which contain microprocessors implemented within
secure FPGAs. Our approach provides security to off-chip FPGA processor instruc-
tion and data accesses during both application loading and steady-state operation.
Our new technique differs from previous embedded system memory security ap-
proaches [Elbaz et al. 2006] [Lie et al. 2003] [Suh et al. 2005] by limiting logic
overhead and storing security tag information on-chip. After loading application
code from flash memory, a security core based on the recently-introduced Advanced
Encryption Standard Galois/Counter Mode (AES-GCM) block cipher [National In-
stitute of Standards and Technology 2007] determines the appropriate data security
level as memory accesses occur in conjunction with an embedded real-time oper-
ating system. Our approach allows for the optimization of security core size on a
per-application basis based on memory footprint and security level requirements.
To facilitate secure application loading during system bootup, a low overhead data
decryption and authentication circuit has been implemented which can reuse some
of the hardware used for main memory protection.

To demonstrate the effectiveness of our approach, we evaluate the hardware over-
head required by the overall security system for four different multi-task applica-
tions, each requiring different mixes of security levels. The four applications have

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 3

been quantified and tested using a Microblaze soft processor on a Xilinx Spartan-6
FPGA-based prototyping board. The Microblaze runs the MicroC/OS II operating
system (OS) [LaBrosse 2002] to schedule tasks for each application. The improved
security is achieved with about a 13% reduction in application performance.

Overall, our work provides the following specific contributions:

—Our approach provides a low-overhead implementation of authenticated encryp-
tion for FPGA-based embedded systems based on the AES-GCM policy approved
by the National Institute of Standards and Technology (NIST). The approach
minimizes logic and latency required for authentication and takes advantage of
increased internal FPGA memory storage in contemporary FPGAs to store au-
thentication information.

—Unlike previous encryption and authentication approaches for embedded systems
[Vaslin et al. 2008], the new AES-GCM based authenticated encryption is syn-
chronized and parallelized to enhance throughput.

—The overheads and performance of our authenticated encryption approach has
been fully validated in the hardware of an FPGA-based embedded system for
both main memory security and application loading from flash.

—The approach allows for a low overhead, flexible technique for providing selective
confidentiality and authentication to different parts of an application without the
need for processor instruction additions or significant operating system overhead.

Our approach can be used to protect any SRAM-based FPGA which supports
bitstream encryption. This feature is available in all Altera Stratix II, III, IV, and
V and Xilinx Virtex II, -4, -5, and -6 family devices.

The paper is organized as follows. Section 2 describes data security issues for
embedded systems and previous approaches to address memory protection and
secure application loading. Section 3 provides details of the developed AES-GCM
based security core. Section 4 focuses on our mechanism for the low-overhead,
secure application loading. In Section 5, the integration of the new memory security
core with a microprocessor is described along with its use with four embedded
applications. A description and analysis of experimental results regarding steady-
state memory protection are provided in Section 6. Section 7 discusses results from
secure application loading. Section 8 concludes the paper and offers directions for
future work.

2. BACKGROUND

2.1 System Model

The system model that is addressed by this work is shown in Figure 1. The em-
bedded system is connected to the external world via a communication port (e.g.
an Ethernet connection, 802.11 wireless, etc). An on-board microprocessor exe-
cutes one or more applications which are stored in off-chip flash memory. Following
power-up or system reset, protected application code is loaded from the flash to
the main memory (in this case DDR-SDRAM) via the microprocessor implemented
in the FPGA. This model has been used in a series of previous embedded system
studies [Lee and Orailoglu 2008] [Pasotti et al. 2003]. Generally, code execution is
not performed from flash memory due to high read latencies. The time needed to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

4 · Jérémie Crenne et al.

FPGA

Ethernet

Flash
memory

Main
memory

Hardware Security
Core

Processor

Encrypted
applications

Encrypted
Code & data

Download

Software

Fig. 1. High level model of a typical embedded system

load the microprocessor-based application from flash is dependent on the code size
and the data fetch latency. During steady state system operation, both program
data and instructions are stored in DDR-SDRAM. These off-chip accesses consist
of both read and write operations.

The memory security approach described in this paper addresses two specific
memory protection scenarios based on the system model shown in Figure 1:

—System loading of a microprocessor application - To provide application code se-
curity, flash memory contents must be protected against attack. Since application
code is stored in the flash, the same sequence is performed every time following
system reset.

—System main memory protection - Following application loading, both code and
data stored in DDR-SDRAM must be protected.

These memory security mechanisms must consume minimal area and power and
provide effective performance for embedded systems. Although Figure 1 shows a
potential system capability to securely download new applications from an external
source to flash or DDR-SDRAM, this issue is not addressed by the work described
in this manuscript.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 5

2.2 Embedded System Memory Threats

The system memory of an embedded system can face a variety of attacks [Elbaz
et al. 2006] resulting from either the probing of the interface between a processor and
the memory or physical attacks on the memory itself (fault injection). Bus probing
results in the collection of address and data values which can be used to uncover
processor behavior. The encryption of data values using algorithms such as the
Advanced Encryption Standard (AES) or Triple Data Encryption Standard (3DES)
prior to their external transfer guarantees data confidentiality. Data encrypted with
these algorithms cannot be retrieved without the associated key. However, even
encrypted data and their associated addresses leave memory values vulnerable to
attack. Well-known attacks [Elbaz et al. 2006] include spoofing, relocation, and
replay attacks. A spoofing attack occurs when an attacker places a random data
value in memory, causing the system to malfunction. A relocation attack occurs
when a valid data value is copied to one or more additional memory locations. A
replay attack occurs when a data value, which was previously stored in a memory
location, is substituted for a new data value which overwrote the old location.
Processor instructions are particularly vulnerable to relocation attacks since specific
instruction sequences can be repeated in an effort to force a system to a specific
state. Specific approaches that maintain the authentication of data from these
types of attacks are needed to secure embedded systems. Authentication in this
context indicates that the retrieved data from a memory location is the same as
the data which was most recently written.

2.3 System Threat Model

The scope of our main memory security work is limited by the same threat model
assumed by earlier approaches [Elbaz et al. 2006] [Suh et al. 2003] [Lie et al. 2003].
The following specific assumptions are made regarding the threat model:

—The FPGA and its contents (e.g. a microprocessor) are secure and keys and
other configuration and user information in the FPGA cannot be accessed by
either physical or logical attacks. These attacks include differential power attacks
(DPA), side channel attacks, and probing. The FPGA is the trusted area.

—The FPGA configuration bitstream is encrypted and stored external to the FPGA
(e.g. in on-board flash). The bitstream is successfully decrypted inside the FPGA
using bitstream decryption techniques available from commercial FPGA compa-
nies. A number of effective FPGA bitstream encryption [Xilinx Corporation
2005] and secure bitstream download [Badrignans et al. 2008] techniques have
been developed and tested for commercial devices. An assessment of the ability
of these encryption techniques to protect FPGA contents has previously been
performed [Altera Corporation 2008].

—Any on-board component outside the FPGA is insecure. These resources in-
clude the DDR-SDRAM, the flash memory which holds application code, and
flash memory which holds the bitstream information. These components may
be subject to physical attacks which attempt to read and/or modify data in the
components.

—The interconnections between the components and the FPGA are also vulnerable

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

6 · Jérémie Crenne et al.

PE-ICE XOM AEGIS Yan-GCM

[Elbaz et al. 2006] [Lie et al. 2003] [Suh et al. 2003] [Yan et al. 2006]

Security 1
232

1
2128

or 1
2160

1
2160

1
2128

Table I. Security against brute force attack for memory protection

to attack. Data on the interconnect can be observed or modified by an attacker.

Interconnect and components outside the FPGA are located in the untrusted
area. Our approach provides protection against replay, relocation, and spoofing
attacks caused by threats.

2.4 Related Work

A number of techniques have been developed that provide data confidentiality and
authentication to main memory in processor-based systems. For these systems
[Elbaz et al. 2006] [Lie et al. 2003] [Suh et al. 2005] [Suh et al. 2003] [Yan et al.
2006], confidentiality is provided via data encryption using AES or 3DES. Data
is encrypted prior to off-chip transfer and decrypted following data retrieval from
memory. Data authentication is typically maintained by hashing data values in a
hierarchical fashion. The brute force security level of these schemes, summarized
in Table I, measures the likelihood that an attacker could break the provided au-
thentication using a changed data value that could pass the authentication check
(AC). This type of attack would likely consist of a large number of attempts using
varied data values. Even though these previous solutions have been shown to be
effective, the cost of security can be high in terms of the memory space needed to
store hash [Gassend et al. 2003], compressed hash [Suh et al. 2003], and AC tags
for each data item and increased read latency due to the AC. Our new approach
limits authentication time, although it does require the on-chip storage of security
information. This overhead is quantified in Section 6. The use of AES-GCM for
accelerated authentication for external memory accesses was first proposed by Yan,
et al. [Yan et al. 2006]. This work involved the simulation of a full microprocessor-
based system, including a multi-cache level memory hierarchy. Our work focuses
on quantifying both the performance and area costs for AES-GCM based security
for low-end computing typically used in embedded systems.

A distinguishing feature of our new low-overhead approach is its ability to offer
configurable data security levels for different tasks in the same application. The
confidentiality and authentication approach in AEGIS [Suh et al. 2005] most closely
matches our approach. AEGIS also allows for the selection of different security
levels for different portions of memory. However, new instructions are added to
the processor for OS use. These instructions take advantage of hardware security
primitives to enter and access operating system (OS) kernel primitives. Overall,
this approach adds complexity to both the processor architecture and the operating
system. Although it appears that other data confidentiality and authentication
approaches [Elbaz et al. 2006] [Lie et al. 2003] [Yan et al. 2006] could be easily
extended to multiple tasks, selective security based on memory addresses has not
been reported for them.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 7

2.4.1 Secure Application Loading. The secure application loading from flash
memory for processor-based systems has been extensively examined in the context
of both desktop [Arbaugh et al. 1997] and mobile devices [Dietrich and Winter 2008].
Like our approach, the techniques primarily include code stored in flash memory
which is external to the processor [Heath and Klimov 2006]. This code is encrypted
and protected by additional authentication values stored in flash memory. Early
secure loading approaches [Arbaugh et al. 1997] integrated authentication with a
processor’s basic input/output system (BIOS) to ensure proper loading. This pro-
cess is generally thought to be overly complex for embedded systems [Dietrich and
Winter 2008]. More recent approaches, such as TrustZone [Alves and Felton 2004],
overcome the need for read-only memory (ROM) authentication by integrating the
ROM onto the same chip as the processor. Although effective, not all embedded
systems use FPGAs which contain embedded ROM. A recent reevaluation of se-
cure application loading [Dietrich and Winter 2008] for mobile platforms notes that
software and hardware flexibility is allowed in the implementation of secure load-
ing implementations in embedded systems. The Trusted Computing Group (TCG)
mobile working group defines a hierarchy of loading activities including the initial
retrieval of processor code. Our implementation focuses at this lowest level of this
hierarchy, the fetching of code for the processor from an external, unsecured loca-
tion. Unlike earlier techniques, our approach specifically targets minimization of
required logic overhead in the initial stages of the secure loading process and the
use of synchronized authenticated encryption using AES-GCM.

2.4.2 Relationship to the Authors’ Previous Work. This manuscript extends our
previous work in main memory security [Vaslin et al. 2008] by integrating main
memory protection with secure application loading. These two security compo-
nents complement each other by allowing for resource sharing. The authentication
of main memory security is now performed using AES-GCM, a block cipher mode
of operation which has previously been proven to be secure [National Institute of
Standards and Technology 2007]. Our previous work used a less secure authentica-
tion approach performed by an abbreviated AES operation.

3. MAIN MEMORY SECURITY ARCHITECTURE

3.1 Security Policy

Before discussing our approach for secure application loading from flash memory, se-
curity for system main memory is described. Our main memory security approach,
shown in Figure 2, relies on a hardware security core (HSC) fashioned from logic
and embedded memory which is able to manage different security levels depending
on the memory address received from the processor.

A memory segment corresponding to a user-defined software task can be deter-
mined from compiled code or associated data. Depending on the security policy
required by the software designer, numerous memory segments can be built. Each
memory segment is defined by 4 parameters:

—The segment base address

—The segment size

—The segment security level

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

8 · Jérémie Crenne et al.

Task 1 data

Hardware Security Core

Security Memory Map

AES-GCM Logic

Timestamp
memory

AC Tag
memory

Control Logic

Task 3 data

No protectionConfidentiality only
Confidentiality &
authentication

Trusted Area

D
a
ta

 c
a
ch

e
In

st
ru

ct
io

n
 c

a
ch

e

Processor

Possible Attack

Untrusted Area

OS data

Task 2 data

Task n data

Task 1 code

Task 3 code

OS code

Task 2 code

Task n code

Fig. 2. Main memory security system overview. Main blocks in the trusted area (FPGA) include

the Security Memory Map (SMM), AES in Galois Counter Mode of operation block (AES-GCM),

timestamp (TS) memory and authentication check (AC) tag memory storage

—The kind of segment: code (read-only) or data (read-write)

A small lookup table security memory map (SMM) is included in the hardware
security core to store the security level of memory segments associated with tasks.
We consider three security levels for each memory segment: confidentiality-only,
confidentiality and authentication, or no security. The implementation of the se-
curity policy in the SMM is independent of the processor and associated operating
system. The isolation of the SMM from the processor makes it secure from software
modification at the expense of software-level flexibility. Although authentication-
only is another possible security level, we do not claim support for this level since
we were not able to evaluate it experimentally with our application set. Since
the HSC directly works with the memory segment address, no specific compiler or
compilation steps are necessary.

3.2 Security Level Management

The use of an operating system with most embedded system processors provides
a natural partitioning of application code and data. In Figure 2, the application
instructions and data of Task 1 have different security levels and require different
memory segments. The availability of configurable security levels provides a benefit
over requiring all memory to perform at the highest security level of confidentiality

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 9

and authentication checking. The amount of on-chip memory required to store tags
for authentication checking can be reduced if only sensitive external memory must
be protected. Additionally, the latency and dynamic power of unprotected memory
accesses are minimized since unneeded security processing is avoided.

3.3 Memory Security Core Architecture

Our core for management of memory security levels is an extension of a preliminary
version [Vaslin et al. 2008] which provides uniform security for all tasks and memory
segments and uses one-time pad (OTP) operations [Suh et al. 2003] for confidential-
ity and an abbreviated AES sequence for authentication checking. Confidentiality
in our new system employs AES-GCM [McGrew and Viega 2004] [National Institute
of Standards and Technology 2007] which has previously been proven to be secure.
Unlike other cipher modes of operation, such as cipher block chaining (CBC), elec-
tronic code book (ECB), and counter mode (CTR), AES-GCM synchronizes and
ensures confidentiality and authenticity (authenticated encryption) and can be both
pipelined and parallelized.

Rather than encrypting write data directly, our approach generates a keystream
using AES, which operates using a secret key stored inside the FPGA. In our im-
plementation, a timestamp (TS) value, the data address, and the memory segment
ID of the data are used as inputs to an AES-GCM encryption circuit to generate
the keystream. This keystream is then XORed with the data to generate ciphertext
which can be transferred outside the FPGA containing the microprocessor. The
timestamp is incremented during each cacheline write. The same segment ID is
used for all cachelines belonging to a particular application segment. Like previous
OTP implementations [Suh et al. 2003], a benefit of this ExecGCM policy based on
AES-GCM versus direct data encryption of the write data can be seen during data
reads. The keystream generation can start immediately after the read address is
known for read accesses. After the data is retrieved, a simple, fast XOR operation
is needed to recover the plaintext. If direct data encryption was used, the decryp-
tion process would require many clock cycles after the encrypted data arrives at the
processor. One limitation of this approach is a need to store the timestamp values
for each data value (usually a cacheline) in on-chip storage so it can be used later
to verify data reads against replay attacks. A high-level view of the placement of
security blocks is seen in Figures 3 and 4.

Figure 5 shows the AES-GCM operations necessary to cipher 256 bits of a plain-
text cacheline (a similar scheme is applied for deciphering). The figure shows two
128-bit AES operations EUkey each using a 128-bit secret key, UKey. A 128-bit
AES input includes the 32-bit timestamp (TS), the 32-bit data address (@) and
the 64-bit memory segment ID (SegID). The 0 || Len(C) value is a 128-bit word
resulting from padding the length of ciphertext C with zero bits. Two 128-bit
ciphertexts and a 128-bit authentication tag are generated from the two 128-bit
plaintext input values. The tag is not ciphered since it is stored in secure on-chip
embedded memory.

A step-by-step description of ExecGCM protected data writes and reads based on
the AES-GCM block in Figure 5 are shown in Algorithms 1 and 2. From a security
standpoint, it is essential that the keystream applied to encrypt data is used only
one time. Since the keystream is obtained with AES, the AES inputs also need to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

10 · Jérémie Crenne et al.

Hardware Security Core

D
a
ta

 c
a
ch

e
In

st
ru

ct
io

n
 c

a
ch

e

Processor

O
u
tp

u
t

ca
ch

e
 l
in

e

AC Tag
memory

= ?

bypass

core control

core control

Timestamp
generator

A
E
S
 i
n
p
u
t

AES-GCM

AES Key (UKey)

keystream

tag

In
p
u
t

ca
ch

e
 l
in

e

Possible Attack

External
Memory

Trusted Area

address
(@)

A
E
S
 o

u
tp

u
t

Security
Memory

Map

Timestamp
memory

Segment ID

Untrusted Area

No Possible Attack

Fig. 3. Hardware security core architecture for a write request

Hardware Security Core

D
a
ta

 c
a
ch

e
In

st
ru

ct
io

n
 c

a
ch

e

Processor

In
p
u
t

ca
ch

e
 l
in

e

O
u
tp

u
t

ca
ch

e
 l
in

e

AC Tag
memory

= ?

bypass

core control

core control

Segment ID

Timestamp
generator

Timestamp
memory

A
E
S
 i
n
p
u
t

A
E
S
 o

u
tp

u
t

AES-GCM

AES Key (UKey)

tag
= ?

valid

Possible Attack No Possible Attack

Trusted Area Untrusted Area

External
Memory

keystream

Security
Memory

Map

address
(@)

Fig. 4. Hardware security core architecture for a read request

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 11

ENCRYPTION
&

DECRYPTION
CIRCUITRY

AUTHENTICATION
CIRCUITRY

SegID64 || @32 ||
TS32

EUKey

Plaintext 1

Ciphertext 1

MultH

incr
SegID64 || @32 ||

(TS+1)32

EUKey

Plaintext 2

Ciphertext 2

MultH

MultH

Tag

064 || Len(C)64

128 bit

128 bit

128 bit

128 bit

128 bit

128 bit

128 bit 128 bit

128 bit

128 bit

128 bit

128 bit

128 bit

128 bit

128 bit

128 bit

128 bit

Fig. 5. The AES-GCM architecture for an authenticated encryption operation of a 256-bit
plaintext cacheline. MultH denotes Galois field multiplications in GF (2128) by the hash key H,

and incr denotes an increment function. The symbol || denotes concatenations between words.
This figure was adapted from [National Institutes of Standards and Technology 2007].

be used just one time. If the same keystream is used several times, information
leakage may occur since an attacker may be able to determine if data encrypted
with the same keystream have the same values. The use of the data memory address
in the generation of the keystream (Figures 3 and 4) protects the data value from
relocation attacks. To prevent replay attacks, a simple 32-bit counter or linear
feedback shift register (LFSR) counter is used for timestamp generation.

As shown in Algorithm 1, the 32-bit TS value is incremented by 2 after each write
to the memory since two separate TS values are used by the circuit in Figure 5. It
is stored in the Timestamp memory based on the data memory address. For each
new cacheline memory write request, the system will compute a different keystream
since the value of TS is updated. During a read, the original TS value is used for
comparative purposes (Algorithm 2). The retrieved TS value is provided to AES
during the read request. This value is fetched from the Timestamp memory using
the data memory address. The AES result will give the same keystream as the one
produced for the write request and the encrypted data will become plaintext after

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

12 · Jérémie Crenne et al.

being XORed (step 5 in Algorithm 2).

The use of an AES-GCM core allows for provably secure data authentication
without a costly latency penalty. If two 128-bit AES cores are used to cipher
or decipher 256-bit data values (Figure 5), the authenticated encryption and au-
thenticated decryption process can be done in 13 cycles: 10 cycles for ciphering or
deciphering and 3 cycles for authentication. Each multiplication in GF (2128), when
implemented using a fully parallel datapath with XOR and AND operations, takes
1 cycle [National Institute of Standards and Technology 2007]. XOR operations
shown at MultH inputs in Figure 5 are implemented directly in the MultH core, so
no additional cycles are required. This cycle count does not include the bus-based
memory read/write latency.

Algorithm 1 - Cache memory write request:

1 − T imestamp incrementation : TS = TS + 2

2 − {Keystream, Tag} = AES −GCM{SegID, @, TS}
3 − Ciphertext = Plaintext ⊕ Keystream

4 − Ciphertext ⇒ external memory

5 − T imestamp storage : TS ⇒ TS memory(@)

6 − Authentication Tag storage : Tag ⇒ Tag memory(@)

Algorithm 2 - Cache memory read request:

1 − TS loading : TS ⇐ TS memory(@)

2 − Tag loading : Tag ⇐ Tag memory(@)

3 − {Keystream, Tag} = AES −GCM{SegID, @, TS}
4 − Ciphertext loading : Ciphertext ⇐ external memory

5 − Plaintext = Ciphertext ⊕ keystream

6 − Authentication checking : Tag ≡ Tag

7 − Plaintext ⇒ cache memory

Read-only data, such as processor instructions, do not require protection from
replay attacks because these data are never modified. No TS values are needed for
these data so the amount of on-chip TS memory space can be reduced accordingly.
Read-only data may be the target of relocation attacks but the address used to
compute the ExecGCM policy guarantees protection against these attacks. The
use of TS and data addresses for ExecGCM policy protects read/write data against
replay and relocation attacks. If a data value is replayed, the TS used for ciphering
will differ from the one used for deciphering. If a data value is relocated, its ad-
dress will differ from the one used to generate the keystream. In both cases, data
authentication will fail and the deciphered data will be considered invalid.

The need for unique TS creates a problem if the TS generation counter rolls over
and starts reusing previously-issued TS. A typical solution to this issue involves

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 13

the reencryption of stored data with new TS [Yan et al. 2006]. A solution which
uses multiple TS generator counters [Yan et al. 2006] was proposed to address this
issue. If a TS counter reaches its maximum value, only about half the data must
be reencrypted. With our security approach, the same idea can be applied based
on segment IDs. If a TS associated with a segment rolls over, the segment ID value
is incremented. All the data included in the segment are reencrypted with the
new segment ID value. The use of the segment ID in keystream generation helps
avoid the issue of matching TS values in this case. If reencryption due to counter
rollover is needed, only a portion of the external memory is affected. Although
not considered in the current implementation, reencryption could commence in the
background prior to counter overflow or larger TS values could be used for certain
applications, limiting or eliminating down time. In our prototype, a 32-bit TS
is used, indicating a need to reencrypt only after 232 cacheline writes for a given
memory segment. This event is expected to occur infrequently.

The tag of the cacheline to be encrypted (step 2 in Algorithm 1) is stored in
the authentication check (AC) tag memory (step 6 in Algorithm 1). Later, when
the processor core requests a read, the tag result of the final XOR operation is
compared with the AC tag value stored in the memory (step 6 in Algorithm 2).
If data is replayed, relocated or modified, the tag of the retrieved value will differ
from the stored value, so the attack is detected.

The storage required for AC tag values impacts the security level provided. To
limit this storage without compromising the security, between 64 and 128 of the
most significant bits (MSB) of the tag are kept for a 256-bit cacheline. For an
n-bit tag, an attacker has a 1 out of 2n probability of successfully modifying the
deciphered value and achieving the original tag value. NIST ensures the security
of AES-GCM authenticated encryption for tags of these sizes [National Institute of
Standards and Technology 2007].

The sizes of the on-chip TS and AC tag memories represent an important over-
head of our approach which can vary widely on a per-application basis. These
overheads are calculated and analyzed for four applications in Section 6.3.

4. SECURE APPLICATION LOADING

As described in Section 2.1, at system power up or reset, application code must be
loaded from flash memory. As part of the application loading process, the contents
of flash memory are copied to main memory by the system microprocessor as soon
as the processor’s registers are configured. To maintain both the confidentiality
and authentication of application code, instructions stored in flash must be appro-
priately protected via ciphering and authentication checking. In our secure system,
two distinct scenarios are considered:

—Application code loading - In this scenario, the SMM is already loaded in hardware
so that only application instruction loading to main memory is needed. This
scenario may occur if the SMM is included in an FPGA bitstream.

—Application code and SMM loading - The SMM information must be loaded into a
memory-based table adjacent to the microprocessor and application code must be
loaded to main memory. SMM loading takes place first, followed by application
code loading.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

14 · Jérémie Crenne et al.

The details of these two scenarios are now described.

4.1 Secure Application Code Loading from Flash Memory

Our secure application approach for loading code from flash memory (Figure 6) uses
an AES-GCM core in a similar fashion to the ExecGCM technique for main memory
described in the previous section. In general, secure loading is less constrained than
main memory protection leading to AES-GCM optimization. Since data writes and
replay attacks are not an issue for embedded system flash memory, the segment-
based timestamp and per-cacheline AC approach used for main memory exhibits
unnecessary overhead for flash-based code. The need for address and segment data
as AES-GCM inputs is eliminated. Thus, our new LoadGCM policy only uses
a single initial 32-bit timestamp and a 96-bit initialization vector (IV) which is
unique for each application. These values replace the input to EUkey and incr in
the upper left of Figure 5. Except for AES secret keys and the IV/TS inputs, the
same AES-GCM circuitry used for ExecGCM main memory security is reused for
LoadGCM application instruction loading.

Algorithm 3 - Application loading

1 − The IV is copied to the AESGCM running the LoadGCM policy

2 − The TS is copied to the AESGCM running the LoadGCM policy

Pipelined loop (for all application code)

3 − The encrypted application code is copied to the AESGCM running the LoadGCM

policy

4 − The encrypted application code is decrypted with the LoadGCM policy

5 − The decrypted data is encrypted with the AESGCM running the ExecGCM policy

6 − The encrypted data is copied in main memory

End Loop

7− The application tag is compared with the one generated by the AESGCM running the

LoadGCM policy. If the two tags match, the application is securely loaded and can be safely

used for secure execution

A secure hardware architecture for application code loading for an embedded
system (Figure 6) uses both LoadGCM and ExecGCM policies to securely load
instructions from the flash to the main memory. This process can be done in a
pipelined fashion with multiple or shared 128-bit AES cores used for the LoadGCM
and ExecGCM policies. As shown in Figure 6, while LoadGCM circuitry deciphers
data from the flash, ExecGCM policy write operations, outlined in Algorithm 1,
are applied to the instructions before they are stored in main memory. Steps 3,
4, 5 and 6 in Algorithm 3 are performed repetitively instruction-by-instruction
in a pipelined fashion until the application is loaded. When loading is complete,
the 64-bit ciphered tag located in flash is checked against the tag generated by
the AES-GCM block running the LoadGCM policy to ensure application loading
authentication (Step 7). Unlike the ExecGCM policy, which needs multiple tags
to be stored in a secure on-chip memory (one per protected cache line), the single
64-bit tag stored in flash is used to authenticate application loading.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 15

FPGA

Hardware Security Core

SMM

IV

TS

Application
Code

Tag

2

3

7

Application
Code

Processor

Software

AES-GCM
(ExecGCM)

5

6

Protected with the AES-GCM based EXECGCM policyProtected with the AES-GCM based LOADGCM policy

Flash
memory

External
memory

1

=
7

AES-GCM
(LoadGCM)

4

Fig. 6. Secure hardware architecture for application code loading. The SMM
configuration is a part of the FPGA bitstream

4.2 Application Code and SMM Loading from Flash Memory

Most microprocessor platforms require the capability to load and execute different
applications at different times. This issue requires not only the initialization of
an application, but also the SMM on a per-application basis. As mentioned in
Section 4.1 for FPGA-based processors, the flexibility could be provided by loading
a different bitstream which has an alternate SMM configuration for each application.
An alternative strategy is to load both the SMM entries and the application code
from flash memory.

The SMM configuration for an application is stored in flash memory in an appli-
cation header (Figure 7). Like application code, headers provide important security
information and must be protected. Figure 7 exhibits the layout of a memory block
in flash which includes a protected application header and application code. The
header contains information which is necessary to perform application loading in-
cluding the SMM configuration, the application size, and the initial main memory
load address. The header size will vary depending on the size of the SMM configu-
ration. Specific components for the tested implementation include:

—A 96-bit initialization vector (IV)

—A 32-bit timestamp (TS)

—A 64-bit authentication check tag for SMM configuration

—A SMM configuration containing:

—A 32-bit application address (@)
—A 32-bit application size
—64-bit values for each segment. Each value indicates the segment security level.

The information in the block is loaded into the SMM using the LoadGCM policy,
necessitating the inclusion of an IV and a TS specifically for the SMM. Following

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

16 · Jérémie Crenne et al.

Plain data Header

Application @

Application Size

IV

TS

Tag

SMM Configuration

Segment 1

Segment 2

Segment n

32 bits

96 bits

32 bits

64 bits

32 bits

64 bits

64 bits

32 + 32 +
(64 x n)

bits

Application Code

m bits

64 bits

Encrypted data

Fig. 7. Detailed flash application header, necessary to protect an application with
the LoadGCM policy

the configuration of the SMM, the steps for secure hardware application loading,
described in Section 4.1, are followed to complete system load. In the case of an
ExecGCM policy architecture, the TS memory size, the AC tag memory size and
the number of memory segments supported by the SMM must be large enough to
support the storage requirements of a target application. This approach is used to
avoid the need to develop a new FPGA bitstream for each protected application.

5. EXPERIMENTAL APPROACH

An FPGA-based system including an architecture based on a Xilinx Microblaze
processor [Xilinx Corporation 2009] was developed to validate our approach. Our
security core and associated memory was implemented in FPGA logic and embed-
ded memory and interfaced to the processor via a 32-bit processor local bus (PLB).
In separate sets of experiments, the Microblaze was first allocated instruction and
data caches of 512 bytes and then 2 kilobytes (KB). The widely-used MicroC/OS-
II [LaBrosse 2002] embedded operating system was used to validate our approach.
MicroC/OS-II is a scalable, preemptive and multitasking kernel. The OS can be
configured by the designer during application design to use only the OS features
that are needed. A priority-based scheduling approach is used to evaluate which
one of up to 64 tasks run at a specific point in time. MicroC/OS-II uses a hardware
timer to produce ticks which force the scheduler to run.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 17

To explore the impact of the security management on performance and area, four
multi-task applications were used. These applications include:

—Image processing (Img) - This application selects one of two values for a pixel
and combines the pixels into shapes. Pixel groups that are too small are removed
from the image. This process is sometimes called morphological image processing
[Dougherty and Lotufo 2003].

—Video on demand (VOD) - This application includes a sequence of opera-
tions needed to receive transmitted encrypted video signals. Specific operations
include Reed Solomon (RS) decoding, AES decryption, and Moving Picture Ex-
perts Group 2 (MPEG-2) decoding with artifact correction.

—Communications (Com) - This application includes a series of tasks needed
to send and receive digital data. Specific operations include Reed Solomon de-
coding, AES encryption, and Reed Solomon encoding.

—Halg - This application can perform selective hashing based on a number of
common algorithms. Supported hash algorithms include Message Digest (MD5),
secure hash algorithm (SHA-1) and SHA-2.

The security requirements of portions of the application were estimated based
on their function. Other security assignments than the ones listed could also be
possible, although they are not explored in this work. For the image processing
application, image data and application code used to filter data is protected, but
data and code used to transfer information to and from the system is not. For the
video on demand application, deciphered image data and AES specific informa-
tion (e.g. the encryption key) is considered critical. Also, the MPEG algorithm
is considered proprietary and its source code is encrypted, while MPEG data and
RS code and data are left unprotected. For the communications application, all
data is considered sensitive and worthy of protection. In order to guarantee cor-
rect operation, the code must not be changed, so confidentiality and authentication
checking is applied to all code. Application data is only protected for confidential-
ity. Halg application code is only encrypted (confidentiality) and application data
has no protection. For example, a company may wish to protect its code from visual
inspection. Since there is no need for authentication checking for this application,
no storage for TS or tag values is needed.

Figure 8 summarizes the tasks, external memory count, and number of memory
segments for the applications. As noted in Section 3.1, memory segments may be of
variable sizes. All four applications were successfully implemented on a Spartan-6
SP605 evaluation platform ([Xilinx Corporation - DS160 2010] [Xilinx Corporation -
UG526 2010]) containing a XC6SLX45T FPGA device, 128 MB of external DDR3
memory and 32 MB of flash memory. Area and embedded memory counts were
determined following synthesis with Xilinx Platform Studio 12.2.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

18 · Jérémie Crenne et al.

25

7

48

55

92

28

40

71

113

318

26

58

68

33

10

16

Code (KB)

2 tasks, 5
segments

VOD Com. HalgImg.

2 tasks, 1
segment

1 task, 1
segment

2 tasks, 3
segments 2 tasks, 1

segment

1 task, 1
segment

5 tasks, 3
segments

6 tasks, 1
segment

6 tasks, 4
segments no task, 2

segments

Data (KB)

1 task, 1
segment

1 task, 1
segment

1 task, 1
segment

6 tasks, 1
segment

5 tasks, 1
segment

5 tasks, 1
segment

Conf. and Auth. Conf. only No protection

Fig. 8. Application memory protection details by protection level. The three protection levels

include confidentiality and authentication (Conf. and Auth.), confidentiality-only (Conf. only),
and no protection

6. EXPERIMENTAL RESULTS FOR MAIN MEMORY SECURITY

For comparison purposes, a Microblaze-based system without a security core was
synthesized to a Spartan-6 based FPGA. An XC6SLX45T FPGA, contains 43,661
look-up tables (LUTs), 54,576 flip-flops (FFs), 116 18-kilobit (Kb) block RAMs
(BRAMs) and 58 digital signal processing (DSP) slices. Our base configuration in-
cludes data and instruction caches, a timer, flash memory controller, DDR-SDRAM
memory controller and a Joint Test Action Group (JTAG) interface. After synthe-
sis with XPS 12.1 it was determined that the base configuration with 512 byte
caches consumes 3,610 LUTs and 2,647 FFs, and operates at a clock frequency of
75 megaHertz (MHz). A base configuration with 2 KB caches requires 3,335 LUTs,
2,538 FFs and 4 additional 18-Kb BRAMs. It operates at 86 MHz.

As stated in Section 3, the availability of a security core which allows for different
security levels for different memory segments provides for security versus resource
tradeoffs. In our analysis we consider three specific scenarios:

—No protection (NP) - This is the base Microblaze configuration with no memory
protection.

—Programmable protection (PP) - This Microblaze and security core configuration
provides exactly the security required by each application memory segment (Sec-
tion 5).

—Uniform protection (UP) - This Microblaze and security core configuration pro-
vides the highest level of security required by a memory segment to all memory
segments. Since all segments use the same security level, the SMM size is reduced.

The logic overhead of the security core in the programmable protection case is not

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 19

Uniform Programmable

protection protection

Arch. µB + HSC HSC µB + HSC HSC

LUTs FFs LUTs FFs LUTs FFs LUTs FFs

Img. 512 7095 3769 3485 1122 7237 3796 3627 1149

16.3% 6.9% 8.0% 2.1% 16.6% 7.0% 8.3% 2.1%

Img. 2k 6820 3660 3485 1122 6962 3687 3627 1149

15.6% 6.7% 8.0% 2.1% 15.9% 6.8% 8.3% 2.1%

VOD 512 7229 3796 3619 1149 7209 3792 3599 1145

16.6% 7.0% 8.3% 2.1% 16.5% 6.9% 8.2% 2.1%

VOD 2k 6954 3687 3619 1149 6934 3683 3599 1145

15.9% 6.8% 8.3% 2.1% 15.9% 6.7% 8.2% 2.1%

Com. 512 7080 3768 3470 1121 7120 3776 3510 1129

16.2% 6.9% 7.9% 2.1% 16.3% 6.9% 8.0% 2.1%

Com. 2k 6805 3659 3470 1121 6845 3667 3510 1129

15.6% 6.7% 7.9% 2.1% 15.7% 6.7% 8.0% 2.1%

Halg 512 6186 3598 2576 951 6153 3596 2543 949

14.2% 6.6% 5.9% 1.7% 14.1% 6.6% 5.8% 1.7%

Halg 2k 5911 3489 2576 951 5878 3487 2543 949

13.5% 6.4% 5.9% 1.7% 13.5% 6.4% 5.8% 1.7%

Table II. Architecture synthesis results and overall XC6SLX45T device logic resources usage for
different security levels.

constant since the size of the SMM depends on the number of defined security areas.
For the uniform protection case, logic overhead variations result from differences in
the control circuitry required for the AC tag storage.

6.1 Area Overhead of Security

As shown in Table II for configurations with 512 byte caches, in most cases the
hardware security core (HSC) logic required for programmable protection is similar
to uniform protection. A detailed breakdown of the size of individual units in the
HSC is provided in Table III for both uniform and programmable protection. It
is notable that the resources required for AC tag storage for the programmable
protection version of VOD is reduced versus uniform protection since the amount
of AC tag storage is reduced. For the Halg application, authentication checking
is not performed for either uniform or programmable protection so no additional
hardware is needed. The used percentage of total FPGA logic resources for each
unit is also included in the table.

The ExecGCM implementation includes two 128-bit AES units with a single
128-bit key (as shown in Figure 5). The AES blocks (labeled EUKey in Figure 5)
are implemented using a balance of BRAMs, DSP slices and logic slices [Drimer
et al. 2010]. Although not shown in Table III, 16 BRAMs and 32 DSP slices are
necessary for the two required 128-bit AES cores. Memory overheads associated
with the approach are discussed in Section 6.3.

6.2 Performance Cost of Security

The run time of each Microblaze-based system for each application was determined
using counters embedded within the FPGA hardware. Table IV shows the run time
of each application in each configuration and an assessment of performance loss

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

20 · Jérémie Crenne et al.

Uniform

protection

App. Total AESGCM AC Tag Storage SMM Ctrl.

LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs

Img. 3485 1122 2065 798 473 154 23 3 924 167

8.0% 2.1% 4.7% 1.5% 1.1% 0.3% 0.1% 0.0% 2.1% 0.3%

VOD 3619 1149 2065 798 604 177 29 3 921 171

8.3% 2.1% 4.7% 1.5% 1.4% 0.3% 0.1% 0.0% 2.1% 0.3%

Com. 3470 1121 2065 798 470 153 20 3 915 167

7.9% 2.1% 4.7% 1.5% 1.1% 0.3% 0.0% 0.0% 2.1% 0.3%

Halg 2576 951 2065 798 0 0 21 3 490 150

5.9% 1.7% 4.7% 1.5% 0.0% 0.0% 0.0% 0.0% 1.1% 0.3%

Programmable

protection

App. Total AESGCM Core AC Tag Storage SMM Ctrl.

LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs

Img. 3627 1149 2065 798 473 153 214 31 875 167

8.3% 2.1% 4.7% 1.5% 1.1% 0.3% 0.5% 0.1% 2.0% 0.3%

VOD 3599 1145 2065 798 473 153 161 27 900 167

8.2% 2.1% 4.7% 1.5% 1.1% 0.3% 0.4% 0.0% 2.1% 0.3%

Com. 3510 1129 2065 798 475 154 61 10 909 167

8.0% 2.1% 4.7% 1.5% 1.1% 0.3% 0.1% 0.0% 2.1% 0.3%

Halg 2543 949 2065 798 0 0 12 1 466 150

5.8% 1.7% 4.7% 1.5% 0.0% 0.0% 0.0% 0.0% 1.1% 0.3%

Table III. Detailed breakdown of hardware security core (HSC) logic resource usage. Percentage

values indicate the used fraction of available XC6SLX45T FPGA resources

No Uniform Programmable

protection protection protection

Arch. Time (ms) Time (ms) Overhead Time (ms) Overhead

Img. 512 150.5 188.0 24.9% 173.4 15.2%

Img. 2k 131.3 156.9 19.5% 146.9 11.9%

VOD 512 13691.5 16806.4 22.8% 15619.8 14.1%

VOD 2k 11940.3 13751.2 15.2% 13453.5 12.7%

Com. 512 69.1 84.1 21.6% 78.7 14.0%

Com. 2k 60.2 66.7 10.8% 65.4 8.6%

Halg 512 8.6 10.2 18.9% 9.9 15.1%

Halg 2k 7.5 8.7 15.9% 8.6 14.4%

Table IV. Application execution time and performance reduction

versus the base configuration. Experiments were performed for all three security
approaches using both 512 bytes and 2 KB caches. The 32-bit PLB bus requires six
75 MHz cycles for both reads and writes. The extra latency caused by our security
approach for the prototype implementation is 7 cycles for a 256-bit cacheline read
and 13 cycles for a cacheline write. The cacheline write overhead is primarily due
to the 10-cycle 128-bit AES operation in ExecGCM . The read overhead is reduced
due to an overlap in ExecGCM and bus read operations. The percentage perfor-
mance loss due to security is higher for configurations which include smaller caches.
This is expected, since smaller caches are likely to have a larger number of memory
accesses, increasing the average fetch latency. Some per-application variability is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 21

24.9

19.5

22.8

15.2

21.6

10.8

18.9

15.915.2

11.9
14.1

12.7
14

8.6

15.1 14.4

0

5

10

15

20

25

30

Img. 512 Img. 2K VOD 512 VOD 2K Com. 512 Com. 2K Halg 512 Halg 2K

O
ve
rh
e
ad

(%
)

Uniform protection Programmable protection

Fig. 9. Performance overhead of uniform and programmable protection versus no protection for
four applications

seen. Both image processing and VOD applications show a substantial perfor-
mance reduction (25% and 23%, respectively) with uniform protection even though
both contain data segments which require no protection. The use of programmable
protection allows these data segments to have less of an impact on application per-
formance. More modest performance reductions (15% and 14%, respectively) are
reported for these configurations. The overall effects of our approaches on perfor-
mance are summarized in Figure 9.

Note that for the 2 KB cache versions of the communications application, the
performance loss for the programmable protection version is only 2% less than
the uniform protection version. Figure 8 shows that all data and code for this
application must be protected with either confidentiality or confidentiality and au-
thentication, so the benefit of programmability is limited.

6.3 Memory Cost of Security

As stated in Section 5, the memory overhead of main memory security is the result
of on-chip storage of TS and authentication tags. Equation 1 provides the formulae
needed to obtain the required amount of on-chip memory to store these values.

For our experimentation, the cacheline size is 256 bits, the AC tag size is 64
bits, and the TS size is 32 bits. Using the values from Figure 8, it is possible
to determine the size of required on-chip memory based on the selected security
policy. An example of TS and tag overhead calculation is shown for the image
processing application with programmable protection. Figure 10 assesses the on-
chip memory overhead of security. For the VOD application, 150 KB of on-chip
memory are saved by using programmable protection rather than uniform protec-
tion. The large savings primarily result from the presence of a large unprotected
memory segment in the VOD application which does not require protection. Note
that the programmable protection version of the Halg application does not require
any memory storage since no data values require authentication protection and TS

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

22 · Jérémie Crenne et al.

20
6.25

38

6.5
17.75 17.75

14.75

8.25

107.75

28.25
17

7

7.4

5.4

53.8

14.1 8.5
8.5

6.80

20

40

60

80

100

120

140

160

180

200

image UP image PP VOD UP VOD PP comm UP comm PP hash UP hash PP

O
v

e
rh

e
a

d
 (

K
B

)

AC code AC data TS data

42.15 19.9 199.55 48.85 6.833.2543.25 0.0

-75%

-53%
-23%

-100%

Fig. 10. On-chip security memory footprint for timestamp (TS) and authentication check (AC)
tags for uniform protection (UP) and programmable protection (PP). The arrows indicate the

percentage on-chip memory savings for programmable versus uniform protection

values are not needed for read-only application code.

Equations 1 - Security Memory Equations

Size of AC Tag memory for code:

1 − AC overhead = AC tag size
cacheline−size

2 − AC code = total code × AC overhead

Size of AC Tag memory for data:

3 − AC data = total data × AC overhead

Size of TS memory for data:

4 − TS overhead = TS size
cacheline size

5 − TS data = total data × TS overhead

Example for image processing with programmable protection:

AC overhead = 256
64

= 0.25

AC code = 25KB × 0.25 = 6.25 KB

AC data = 33KB × 0.25 = 8.25 KB

TS overhead = 32
256

= 0.125

TS data = (33KB + 10KB) × 0.125 = 5.4KB

6.4 Comparison to Previous Approaches

In general, the performance of our approach compares favorably to previous security
approaches shown in Table I. Although AEGIS [Suh et al. 2003] exhibited a smaller

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 23

TS storage overhead of 6.25%, its integrity check storage overhead of 28% is similar
to ours. A significant difference between the two approaches is the integrity checking
latency. While AEGIS relies on SHA-1 which has a latency approaching 80 cycles,
our new approaches uses recent AES-GCM authentication which requires 3 cycles
for 256-bit inputs. The PE-ICE (Parallelized Encryption and Integrity Checking
Engine) approach [Elbaz et al. 2006] has a reported 33% memory overhead and
a 15% performance penalty for a reduced brute force security level of 1

232 . Our
brute force security level of 1

264 (discussed in Section 3.3), although less than XOM
(eXecute Only Memory) and AEGIS, is still appropriate for a number of embedded
applications, as indicated in Appendix C in [National Institute of Standards and
Technology 2007]. Our approach requires on-chip AC tag storage which may be
limiting for some embedded platforms where most segments must be protected.
XOM, PE-ICE, Yan-GCM and AEGIS allow for a combination of on-chip and off-
chip storage of security information. However, the recent expansion in on-chip
memory for FPGAs limits the impact of this issue. The brute force security level of
our approach could be doubled to 1

2128 if on-chip AC storage is doubled, although
that option was not explored in this work.

7. EXPERIMENTAL RESULTS FOR APPLICATION LOADING SECURITY

The following results consider the area and performance costs related to securely
loading and executing a given application. The two memory loading cases consid-
ered in Section 4, application code only and application code and SMM loading,
are described for systems requiring both uniform and programmable protection.

7.1 Example Hardware and Delay Costs for Application Code Loading From Flash

The Xilinx board described in Section 5 was used to validate our secure system
approach. In our developed prototype, application code is read from the flash,
decrypted using the LoadGCM policy, and reencrypted using the ExecGCM pol-
icy. The performance and flash memory cost of LoadGCM policy varies on a per-
application basis. The load time is directly related to the size of the protected
application. In this experiment, all data fetches and operations from flash take
place at 85 MHz. A total of 580 cycles are required to read 256 bits from flash
memory in 8-bit chunks. Table V shows a breakdown of the time needed to per-
form application loading from the flash up to the point the code is sent to the
DDR-SDRAM. Results are shown for no protection, uniform protection, and pro-
grammable protection for the four designs evaluated in Section 6. Code fetch delays
from flash memory are shown for the no protection case. LoadGCM policy decryp-
tion and ExecGCM encryption delays are also shown for the other two cases. In
our implementation, the same AES cores are multiplexed between LoadGCM and
ExecGCM operations, and for security needs two distincts 128-bits keys are used,
one for each policy circuitry. A total of 1024 LUTs are needed for LoadGCM con-
trol and AES-GCM multiplexing. The combined time of a pipeline of these steps
is limited by the fetch time from flash, so the overall application loading time is
roughly equivalent to the flash load time for each application. There is a 9% load
time penalty on average for the applications due to the need for memory protection.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

24 · Jérémie Crenne et al.

No Uniform Programmable

protection protection protection

App. Time (ms) Time (ms) Time (ms)

Load Exec Total Overhead Load Exec Total Overhead

Img. 19.84 20.36 1.51 21.87 10.21% 20.36 1.05 21.41 7.92%

VOD 37.32 38.30 2.87 41.17 10.32% 38.30 2.41 40.71 9.07%

Com. 17.46 17.92 1.34 19.26 10.33% 17.92 1.34 19.26 10.33%

Halg 22.48 22.91 1.73 24.64 9.62% 22.91 1.73 24.64 9.62%

Table V. Secure loading time for application code transferred from flash to the output of the

ExecGCM core. Load indicates the amount of time to load the application from flash and
decrypt/authenticate it using the LoadGCM policy. Exec indicates the amount of time needed

to reencrypt and generate authentication tags for the application using the ExecGCM policy.

Application header and SMM

Application Size (bytes)

Img. 128

VOD 112

Com. 64

Halg 48

Table VI. Flash application header overheads

7.2 Example Hardware and Delay Costs for Application Code and SMM Loading From
Flash

The area overhead required for application-specific SMM loading is minimal com-
pared to the cost of securing memory. The extra flash storage required to hold
application header information, including the SMM configuration, for each applica-
tion is shown in Table VI. Compared to the target applications, the load time and
decryption for this additional information is negligible. Since the SMM must be
writable to support configuration, a 18-Kb internal FPGA BRAM is used to hold
the 15 SMM memory segments needed by the largest application of our testbench.
The LUT count of the SMM control module is increased from 214 (Table III) to
252.

8. CONCLUSIONS AND FUTURE WORK

In this paper we present a security approach for external memory in embedded
systems. The approach provides a low-overhead implementation of authenticated
encryption for embedded systems based on the NIST-approved AES-GCM policy.
The approach minimizes logic required for authentication and takes advantage of
increased internal FPGA memory storage. Selective confidentiality and encryption
is provided for different parts of an application without the need for additional mi-
croprocessor instructions or extensive operating system modifications. The benefits
of our security core are demonstrated and quantified using four embedded applica-
tions implemented on a Spartan-6 FPGA. The size and performance penalties of the
lightweight circuitry included to support secure application loading from external
memory are also quantified.

Several opportunities exist for future work. Our approach could be evaluated for
authentication-only main memory security in addition to the three levels described

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

Configurable Memory Security In Embedded Systems · 25

here. The work could be extended to target ASICs by considering secure key
distribution techniques and fixed size tag and SMM storage. A detailed analysis
of appropriate tag and SMM storage size for a variety of applications would be
required. An additional optimization would be to store some or all TS and tag
values off-chip. A complicated mechanism would be required to ensure that this
information is not compromised by an attack.

REFERENCES

Altera Corporation 2008. FPGA Design Security Solution Using a Secure Memory Device Ref-

erence Design. Altera Corporation.

Alves, T. and Felton, D. 2004. TrustZone: Integrated Hardware and Software Security. ARM

White Paper .

Anderson, R. 2001. Security Engineering. John Wiley & Sons, Inc., New York, NY.

Arbaugh, W., Farber, D., and Smith, J. 1997. A secure and reliable bootstrap architecture.

In Proceedings of the IEEE Symposium on Security and Privacy. 65–71.

Badrignans, B., Elbaz, R., and Torres, L. 2008. Secure FPGA configuration architecture

preventing system downgrade. In Proceedings of the International Conference on Field-

Programmable Logic and Applications. 317–322.

Dietrich, K. and Winter, J. 2008. Secure boot revisited. In Proceedings of the International
Conference for Young Computer Scientists. 2360–2365.

Dougherty, E. R. and Lotufo, R. A. 2003. Hands-on Morphological Image Processing. SPIE
Press, New York.

Drimer, S., Güneysu, T., and Paar, C. 2010. DSPs, BRAMs, and a pinch of logic: Extended
recipes for AES on FPGAs. ACM Trans. Reconfigurable Technol. Syst. 3, 1, 1–27.

Elbaz, R., Torres, L., Sassatelli, G., Guillemin, P., Bardouillet, M., and Martinez, A.

2006. A parallelized way to provide data encryption and integrity checking on a processor-

memory bus. In Proceedings of the IEEE/ACM International Design Automation Conference.
506–509.

Gassend, B., Suh, G. E., Clarke, D., van Dijk, M., and Devadas, S. 2003. Caches and Merkle
trees for efficient memory integrity verification. In Proceedings of the International Symposium

on High Performance Computer Architecture. 295–306.

Heath, C. and Klimov, A. 2006. A foundation for secure mobile DRM embedded security.

Wireless Design Magazine, 32–34.

LaBrosse, J. 2002. MicroC/OS-II: The Real-Time Kernel. CMP Books, San Francisco, CA.

Lee, K. and Orailoglu, A. 2008. Application specific non-volatile primary memory for embedded

systems. In Proceedings of the International Conference on Hardware/Software Codesign and

System Synthesis. 31–36.

Lie, D., Thekkath, C., and Horowitz, M. 2003. Implementing an untrusted operating system
on trusted hardware. In Proceedings of the ACM Symposium on Operating Systems Principles.

178–192.

McGrew, D. and Viega, J. 2004. The Galois/Counter Mode of Operation (GCM). Submission

to NIST Modes of Operation Process.

National Institute of Standards and Technology 2007. Recommendation for Block Cipher Modes

of Operation: Galois/Counter Mode (GCM) and (GMAC). National Institute of Standards
and Technology. Special publication 800-38D.

Pasotti, M., Sandre, G. D., Iezzi, D., Lena, D., Muzzi, G., Poles, M., and Rolandi, P. L.
2003. An application specific embeddable flash memory system for non-volatile storage of code,

data and bit-streams for embedded FPGA configurations. In Proceedings of the Symposium on

VLSI Circuits. 213–216.

Suh, G. E., Clarke, D., Gassend, B., van Dijk, M., and Devadas, S. 2003. Efficient memory
integrity verification and encryption for secure processors. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture. 339–350.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

26 · Jérémie Crenne et al.

Suh, G. E., O’Donnell, C. W., Sachdev, I., and Devadas, S. 2005. Design and implementation

of the AEGIS single-chip secure processor using physical random functions. In Proceedings of
the International Symposium on Computer Architecture. 25–36.

Vaslin, R., Gogniat, G., Diguet, J.-P., Tessier, R., Unnikrishnan, D., and Gaj, K. 2008.

Memory security management for reconfigurable embedded systems. In Proceedings of the
IEEE Conference on Field Programmable Technology. 153–160.

Xilinx Corporation 2005. Lock Your Designs with the Virtex-4 Security Solution. Xilinx Corpo-

ration.

Xilinx Corporation 2009. Microblaze Processor Reference Guide. Xilinx Corporation.

Xilinx Corporation - DS160 2010. Spartan-6 Family Overview. Xilinx Corporation - DS160.

Xilinx Corporation - UG526 2010. SP605 Hardware User Guide. Xilinx Corporation - UG526.

Yan, C., Rogers, B., Englender, D., Solihin, Y., and Prvulovic, M. 2006. Improving cost,
performance, and security of memory encryption and authentication. In Proceedings of the

International Symposium on Computer Architecture. 179–190.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2011.

