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Abstract

Data parallelism has proven to be an effective technique for high-
level programming of a certain class of parallel applications, but
it is not well suited to irregular parallel computations. Blelloch
and others proposed nested data parallelism (NDP) as a language
mechanism for programming irregular parallel applications in a
declarative data-parallel style. The key to this approach is a com-
piler transformation that flattens the NDP computation and data
structures into a form that can be executed efficiently on a wide-
vector SIMD architecture. Unfortunately, this technique is ill suited
to execution on today’s multicore machines. We present a new
technique, called data-only flattening, for the compilation of NDP,
which is suitable for multicore architectures. Data-only flattening
transforms nested data structures in order to expose programs to
various optimizations while leaving control structures intact. We
present a formal semantics of data-only flattening in a core lan-
guage with a rewriting system. We demonstrate the effectiveness
of this technique in the Parallel ML implementation and we report
encouraging experimental results across various benchmark appli-
cations.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.2 [Programming Languages]: Language
Classifications — Applicative (Functional) Programming, Concur-
rent, distributed, and parallel languages; D.3.4 [Programming
Languages]: Processors — Compilers, Optimization

Keywords multicore, NESL, nested data parallelism, compilers

1. Introduction

Data-parallel computations are ones in which a function is applied
to the elements of a collection (e.g., set or sequence) in paral-
lel. Data parallelism is an effective technique to take advantage
of parallel hardware and is especially suited to large-scale paral-
lelism [10], but most languages that support data parallelism limit
that support to flat data parallelism (FDP), where the computation
being mapped over the collection does not contain nested data par-
allel computation. While FDP is very effective for many regular-
parallel applications, it is not well-suited for irregular parallel ap-
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plications. To address this weakness, Blelloch and others proposed
nested data parallelism (NDP) [4, 5, 8, 20].

The basic operation in both flat and nested data parallelism is the
parallel map operation, which applies a function to the elements
of a collection in parallel. What distinguishes NDP from FDP
is that elements of the collection may themselves be collections,
and the mapped computation may itself involve parallel maps over
the nested collections. Because the nested collections in an NDP
computation may vary in size, it is difficult to ensure a balanced
partitioning of work across multiple processors and it is difficult to
execute the parallel computation with Single-Instruction-Multiple-
Data (SIMD) architectures.

Blelloch addressed these challenges with an approach that he
called flattening. Flattening (also called vectorisation) is a tech-
nique for converting irregular nested computations into regular
computations on flat arrays. This approach, which was invented for
first-order NDP by Sabot and Blelloch [2, 5] and extended to full-
featured higher-order functional languages by Keller, Chakravarty,
and others [7, 8, 14, 16], transforms both the data representations
and the code so that the computation can be executed by a SIMD
machine. An alternative approach, which is used in the Manticore
system, is to execute the parallel map operations as fork-join par-
allelism and to rely on efficient work-stealing techniques to handle
load balancing [1, 23].

In this paper, we introduce a new approach to implementing
NDP constructs that is based on the idea of flattening the nested
data representations, but not vectorising the code [25]. In our pro-
totype implementation, we build on the Manticore compiler for
PML [11], a parallel dialect of Standard ML [17].

This paper makes the following contributions:

1. We introduce a novel approach to implementing NDP that is
well suited to execution on MIMD architectures, such as mod-
ern multicore processors.

2. We provide a formalization of our approach using a core calcu-
lus.

3. We present empirical evidence that our approach improves the
performance of code that executes over irregular data while also
preserving performance on regular data.

2. Full flattening for NDP

As a motivating example, consider the NDP code to implement
sparse-matrix times dense-vector multiplication. We represent a
dense vector as a parallel array of floating-point values:

type dense_vec = float parray

and a sparse vector is a parallel array of index-value pairs:
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Figure 1. Representations of a sparse matrix

type sparse_vec = (int x float) parray

In this representation, we record only the non-zero entries of the
vector, paired with their indices. A sparse matrix is a parallel array
of sparse vectors:

type sparse_mat = sparse_vec parray

Figure 1(a) and (b) illustrate a matrix and its sparse representation.
The sumP operator is a parallel reduction that computes the sum
of the elements of a parallel array of floats:

val sumP float parray -> float

We define multiplying a dense vector by a sparse-matrix as the
following high-level NDP function:

fun smvm (sm : sparse_mat, v : dense_vec) =
[| sumP [| x = v!i | (i,x) in sv |] | sv in sm |]

The technical challenge is to find the meeting point between this
elegant declarative code and an efficient implementation that can
exploit powerful multicore architectures.

As one solution to this challenge, Blelloch and Sabot intro-
duced the NESL language and the flattening transformation to
compile nested-data-parallel programs for wide-vector parallel ma-
chines [2, 5]. NESL is an ML-like language with nested-data-
parallel features. NESL’s provides only scalars and associated oper-
ators, sequences, simple datatypes, conditionals, let bindings, top-
level function definitions, and a parallel apply-to-each construct.
Blelloch’s flattening transformation then substantially changes both
the data structures and code. This transformation is especially ef-
fective in treating irregular parallelism: certain operations like the
parallel segmented sum operation, where sums are computed over
an array of arrays of numbers, complete in the same number of
steps regardless of the irregularity of the shapes of the segments.
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datatype ’a rope
= Leaf of ’a seq
| Cat of “a rope * ’a rope

datatype shape
= Lf of int * int
| Nd of shape rope

datatype ’a farray
= FArray of ’a rope * shape

Figure 2. Datatypes rope, shape and farray.

The flattening transformation yields flattened arrays consisting
of two components: one or more flat data vectors (more than one in
the case of unzipped tuples), containing the elements of the nested
array in left-to-right order, and one or more segment-descriptors.
In NESL, a segment-descriptor is always a flat vector of integers,
and a flattened array carries with it one segment-descriptor for each
level of nesting. Figure 1(c) illustrates the flat representation of the
example sparse matrix.

2.1 Challenges for full flattening

Full flattening, while a successful innovation, can produce inef-
ficient code in common cases, including conditionals and certain
regular nested parallel programs.

When full flattening is applied to conditionals, the resulting
code generates many intermediate vectors, as we demonstrate here
in a simplified example. Here is a function that replaces the zeroes
in a vector with ones:

fun g (xs dense_vec) =
[| if x=0.0 then 1.0 else x | x in xs |]

The transformed code (which uses standard split and combine
operations [2]) builds intermediate vectors to handle partitioning
the data elements, performs the appropriate conditional work on
each partition of the data, and then combines them:

fun g_full_flat (xs dense_vec) = let
val flags = [| x=0.0 | x in xs |]
val (zs, nzs) = split (xs, flags)
val zs’ = [| 1.0 | z in zs |]

in
combine (zs’, nzs, flags)

end

This approach makes sense for SIMD architectures with large
penalties for failing to keep the vector registers full, but on mul-
ticore machines those benefits can be overwhelmed by the large
number of memory operations. There are many more extended ex-
amples of this kind of transformation in the literature [2, 13]. Our
approach, by contrast, will transform g to operate on a flattened
dense vector, but will not otherwise transform the code; to the point,
it will not necessitate generating any intermediates.

With respect to regular nested parallel programs, problems sim-
ilar to dense matrix multiplication suffer from a polynomial space
increase under full flattening, which is a known serious prob-
lem [26] also due to excessive data copying. The present work
describes a system designed to address these problems with tra-
ditional full flattening by avoiding extra data copies, both due to
splitting of conditional branches and duplication of vectors within
nested parallel applications.

3. Data-Only Flattening

We present data-only flattening in the context of a broader system
for hybrid flattening. Hybrid flattening is a program representation
that allows both flat and nested representations of parallel arrays
and which has coercions for transforming between representations.
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This representation allows flexibility in choosing when it is prof-
itable to use a flat representation vs. a nested representation. Hybrid
flattening does not itself express or embody a particular transforma-
tion policy.

Whereas Manticore without flattening compiles nested parallel
arrays to nested ropes [6], with flattening it compiles nested paral-
lel arrays to flattened arrays. Flattened arrays, like nested arrays as
compiled by NESL, consist of two pieces: a flat data vector, and a
value representing the structure of the nested array called a shape
tree. By means of standard unzipping transformations, nested ar-
rays of tuples are compiled to tuples of flattened arrays. In our im-
plementation, flattened arrays are represented by the polymorphic
farray datatype. To represent the flat data vector part of flattened
arrays, we use ropes, exploiting Manticore’s existing rope infras-
tructure to compute in parallel with them. Figure 2 presents the
PML datatype definitions for rope, shape, for shape trees, and
farray. Note that ropes and shape trees are internal representa-
tions; the programmer uses them only indirectly.

Shape trees are our adaptation of segment descriptors in the
NESL tradition. A shape is an n-ary tree whose leaves store inte-
ger pairs. Each leaf contains the starting index and the index of the
element following the segment of data in an farray. The shape
Shape.Lf (i, i+n) describes a length-n segment starting at
i and ending at the last position before i+n.!

A simple, flat parallel array of integers such as

(i, 2, 311
has the following farray representation:?
FArray (Rope.Leaf [1,2,3], Shape.Lf (0,3))

The data in the original sequence appears here in the original order
as a Rope.Leaf and the accompanying shape indicates that
the flattened array’s only segment begins at position 0 and ends
at position 2.

Nested parallel arrays are translated as follows. Consider the
following nested array:

tr o, 201, 1y, 03, 4, 5 611 1]

Its flattened array representation is the following:
FArray (Rope.Leaf [1,2,3,4,5,6],
Shape.Nd [Shape.Lf (0,2),
Shape.Lf (2,2),
Shape.Lf (2,6)1])

The flat data appears in order in a Rope . Leaf. The shape is a
Nd with three leaves: this means that the parallel array consists of
three subsequences. The leaves tell us that the first sequence begins
at position 0 and ends at 1, the second sequence is empty at position
2, and the third sequence begins at position 2 and ends at 5. This
representation naturally scales to any nesting depth.

Literal values can be flattened at transformation time directly,
with the representation change incurring no runtime cost. In gen-
eral, however, the compiler must cope with arbitrarily nested arrays
whose dimensions are known only at runtime. In such cases, the
compiler needs to arrange for flattening to take place at runtime. We
handle this issue, by inserting coercion operators that perform run-
time flattening. When nested arrays are transformed into flattened
arrays, all operations applied to those array values must be corre-
spondingly transformed. Our approach to this problem is to pro-
vide a core group of type-indexed families of array operators, each
of which performs its operation at every array type in its family.

!'In practice, this choice of bounds is a convenient convention that guards
against common fencepost errors.

2 For brevity, we present the sequence in the Rope . Leaf node and the
sequence of leaves in the Shape . Nd with list syntax.
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T = g ground types
| (7,7) pairs
| o7 Sfunctions
| 7] parallel arrays
| {7; v}  flattened parallel arrays
v == If structure of flat arrays
| nd(v) structure of nested arrays
g == int | bool
Figure 3. Flatland: types.
t = e
e == b ground terms
X variables
if tthentelset conditionals
letx=tint let expressions
funfx™ =tint  function expressions
tot Jfunction composition
tt application
(t,t) pairs
it projection (i € {1,2})
[t, ..., 1 arrays
{t, ..., t;s} flattened arrays
tlt array subscript
| map(T,T,T,‘r) (t7 t) array map
| filt, - (2,1) array filter
red(; ) (t,t,1) array reduction
T>T type coercions
s u= 1f(t, 1) leaves
|  ndfs, ..., 9 nodes
b == true | false
| O0]1]..
|  not|+]

Figure 4. Flatland: terms.

This group contains parallel array subscripting and parallel maps,
filters, and reductions over parallel arrays. All operations on par-
allel arrays are either members of this core group or are built from
members of this group. As such, transformation of the type-indexed
operators matching the transformations of data structures is suffi-
cient to preserve the program’s behavior.

4. Formalization

The system presented here, Flatland, consists of a model language
and a variety of rewriting systems and judgments. Its model lan-
guage is an explicitly-typed, monomorphic, strict, pure functional
language. Flattened and non-flattened terms commingle in Flat-
land: there is no inherent distinction between source language and
target language.

Figure 3 presents Flatland’s types, ranged over by the metavari-
able 7. We use subscript indices (7;) and overbars (7) to distinguish
types from one another. The type language consists of ground types
int and bool, pairs, functions, parallel arrays, and flattened parallel
arrays. Flattened-parallel types include shape types as subcompo-
nents. Shape types, ranged over by the metavariable v (for “nest-
ing”), record an array’s nesting depth.
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I'ts,:v
, Sn] 1 nd(v)

Figure 7. Calculation of shape types.

' = 7
Hrslfy = 7
Hrsndv)} = A{r;v}

!(7’1,7’2) = (' ’7'1,!’7'2)

I (I‘ed(fl,m) (61<71‘71)H717627176372))T1 ok

FT>Tok
' (ro7)77 ok

Figure 5. Well-typedness of terms (selected rules).

Fr>Tok

Frle{r; If} ok EA{r; If}>[r] ok

F (1, )] e (1], [72]) ok = ([, [r2]) & (11, 72)] ok

71> 79 0k F 7> 73 0k

F 71> 73 0k

Figure 6. Well-formedness of coercions (selected rules).

Figure 4 contains Flatland’s term language. Every term ¢ in-
cludes an explicit type as a superscript. The metavariable b ranges
over constants, and = ranges over variables. As in the type lan-
guage, parallel-array types are written with square brackets, and
flattened-array types with curly braces. Every flattened array in-
cludes a shape tree. Since the language is monomorphic, array op-
erators — in Flatland these are subscript, map, filter, and reduce
— do not have polymorphic implementations. Instead, we assume
there is a type-indexed family for each one.

Flattening and unflattening operators are represented in our
system by coercions. For the coercion that transforms values of
type 71 into values of type 72, we write 71 > 72. Except for identity
coercions, these are potentially expensive representation-changing
operations; during compilation, we try to eliminate as many of them
as possible.

Well-formedness of coercions, so that nonsensical coercions
like int > (int,int) are rejected, is given in Figure 6. Well-
typedness of terms is in Figure 5, and the rules for calculating shape
types appear in Figure 7.°> For array type 7, we use the notation

3 Due to space limitations, only selected rules are presented; the full rule
sets appear in [25].
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Figure 8. Array-type subscripting.

TLT
T1L’7'2 T1L’7'2 TQLTg
T2L7'1 7'1L7'3

(71, )] L ([71], [72])

{r; v} YL {r; ndv)}

Hrs v} ndW)yL{{r; ndv)}; v'}

T1L7’2

[m] L{m s if}

T1 LT2
[11] L [72]

71 L 7o

{rn;v}iL{r;v}

LT o L7

71— 1 LT — 7

LT o L 75

(T17 7—2) L (7—{7 Té)

T1 L [Tz}
T1 ATQ

Figure 9. Definition of 71 A 72 and its auxiliary relation 7 L 7».

(! 7) to mean the type of the element selected by subscript out of a
value of type 7. The return type of a particular subscript operator is
calculated from its domain. Figure 8 gives the definition of (! 7). If
(! 7) cannot be computed from these rules, it is undefined.

In order to understand the typing of the type-indexed operators,
one needs to understand the relation A. For a type 7, we cannot
definitively write [7] to mean “array of 7,” because {7 ; If} is also
an array of 7, albeit in a different representation. Furthermore, if 7
is a pair type (71, 72), then [(71, 72)] and ([71], [72]) (and more) are
also arrays of 7, and so on. Thus we appeal to the relation 71 A 7
for “71 is an array of 72.” For arrays of (int, int), for example, all
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|—T1>’7'20k }—T2l>7'30k

T1 D> T3 — (7‘2l>7'3)0(7'1 [>T2)

(letz =t1in (7o 7) t2) > ((7o7) (letz = 1 inta))

FT>T1ok
X = (Fe>T) )

Figure 10. Coercion distribution (selected rules), by which coer-
cions are introduced, eliminated and otherwise manipulated.

of the following are established by A:

[(int,int)] A (int,int)

([int], [int]) A (int,int)
{(int,int) ; If} A (int,int)

({int 5 If}, {int ; If}) A (int,int)

These types correspond to arrays of integer pairs and all equivalent
representations under well-formed coercions. The relation A is
defined in Figure 9. A is defined by defining an auxiliary relation
L that verifies that two types are both representations of the same
scalar or array type. We use the name L for the relation because it
tells us that one type is “on the same level as” another. All arrays
of type 7 can be coerced between one another. Formally, if 71 A 7,
then 2 A 7 < 71 > 72 ok (proven elsewhere [25].)

We specify array operators by writing their type indices in a
subscript. !, is the operator that selects elements from an array
type 7. map,, .. .. . takes two arguments, a function of type
71 — T2 and a term of array type 73, and produces a term of array
type 74. filt and red carry similar type subscripts. The typing rules
of map, filt and red all appeal to A.

To perform a flattening step, we insert a coercion. A standard
step in flattening transformations is to unzip arrays of pairs of
scalars—that is, to reshape an array of pairs into a pair of ar-
rays. The coercion that unzips an array of integer pairs is writ-
ten [(int, int)] > ([int], [int]). Its inverse coercion ([int], [int]) >
[(int, int)] is also part of the language of coercions. If it is ever
the case that a pair of inverse coercions, like these two, are suc-
cessively applied to a value, they may be rewritten to an identity
coercion, which can in turn be removed from the program.

Well-formed programs are guaranteed to remain well-formed
under any legal transformation in our rewriting system. The top-
level type of the whole program remains fixed under transforma-
tion, but the types of the subexpressions within a program may
change. The well-formedness guarantee is maintained by introduc-
ing inverse coercions for every coercion introduced into the pro-
gram, to maintain the stability of the types in the program. For ex-
ample, every time a coercion is applied to the value to which a
variable x is bound, the inverse coercion is introduced at every use
of coerced x. This ensures that no clients of x are put in a position
to compute with a term of the wrong type, post-coercion. Type-
indexed operators such as map and filt have the ability to absorb
type coercions, since, for each one, there are many implementa-
tions from which to choose, and this helps reduce the number of
type coercions in the transformed program.

To provide intuition about how this machinery works, here is an
example of Flatland in action. Consider the following program:

let ns = [1,2, 3] in (ns [jny 0)
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(7‘2[>7’3)O(7‘1 [>T2) — T1 D> T3

F7>7T ok

= (7o) (To7) 0) b )" )

T
(t1 rtz)( s ¢

To AT

(ﬁlt(Tl,Tz) (t1,t2))T2 — ((72 DTQ) (ﬁlt(ﬁ,?ﬁ (t1, (TQ l>72) tz)))Tz

T4 A1
T4

T3 AT

(map(ﬂ,mﬁs,m) (tl’tQ))
= ((Ta>7a) (Map ., -, = =, (t1, (T3> 73) t2)))

T4

To AT
(red(ﬁ,m) (t17 ta, t3))T1 = (red(ﬁ T2) (tl’ ta, (7-2 D?Q) t3))ﬁ

Figure 11. Coercion introductions with type-indexed operators.
Note how the indexing types change to accommodate the coercions
introduced.

S=[z/((Fi>m)x )]
—> (letf = (Tl l>?1) t1 inS tg)TO

F7mi>T1 0k T fresh
(let z =t1 int2)™

Fro>Took  f,Z fresh

= [T/ o TODTO)) ]
S = S[z™/((To>70) X7°)"]

(funfxmo =t inty)™ — (funfx© =S 1 in S t2)"

Figure 12. Coercion propagation rules. Coercions introduced at
binding sites necessitate substitutions accordingly.

let ns = [1,2, 3] in (ns [y 0)

let is =| [1,2,3]in (1 75) !ny O

let 75 =] [1,2,3]in (int > int) (I (T 75)) Yine ;3 0)
let s =| [1,2,3]in ({ (T 75)) im0} O

let is = [1,2,3]in (({ o 1) 75) Yfine ;13 O

let 755 =) [1,2,3]in ((
let is =| [1,2,3]in (75 !{in ; 4y 0)

111111

Figure 13. Transforming a program by .

For brevity, we let

1= [int] > {int ; If}
and

= {int ; If} > [int]
Think of | as “flatten” and 1 as “unflatten.” The step-by-step trans-
formation of this let-expression appears in Figure 13. The paral-
lel array [1,2, 3] is transformed to its flattened array equivalent,
(4 [1,2, 3]), which evaluates to {1, 2, 3;1£(0, 3) }. Furthermore, by
rewriting, we exchange one type-indexed subscript operator for an-
other, thereby eliminating coercion operations. The coercions | and

1 are inverse coercions. Note by the fourth rule in Figure 10 we
have

(lint)> {int ; If})o ({int 5 If}>[int]) > {int ; If}o{int ; If}
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Flg] g
Fllg]l] = A{9: 1}

F[rn —» 7] = F[n]— F[r]
Fl(r,72)] = (F[n] Flr])
F[[n = 7]l = {F[n—7]; I}
F[[(r1,m)]] = (F[[n]],F[[]])

F[[[-Il = NIF]DI

N[(r,7)] = (N[n],N[r])
N[{r; v}l = {7;ndl)}

Figure 14. Type flattening.

JFe\For)oe”
e | (For)er)’

Figure 15. Top-level data-only flattening.

so the composition of | and 71 is mutually annihilating. Post-
transformation, the representation of the array bound to ns is co-
erced exactly once, to the differently-typed fresh variable 7s.

4.1 Formal data-only flattening

We now present data-only flattening in the context of the Flatland
system, as a transformation from a source language to a target lan-
guage. A source type is a type that is neither a flattened-array type,
nor contains any flattened-array types, generated by the grammar

Tu=gl|lT—=7|(r,7) ]| [7]

We define source programs as a term e” for source type 7, all of
whose subterms have source types and contain no coercions. By
this definition, we have made it illegal to write down flattened
arrays anywhere in a source program. The transformation will
introduce all flattened-array values and all coercions.

The target language is defined in terms of flat types. A type T is
Sfat if

e it is a ground type g,
e it is a function type 71 — 72 and 71 and 7 are flat,
e it is a pair type (71, 72) and 71 and 7 are flat, or

e it is an array type {7 ; v} and 7 is a ground type or a flat
function type.

If a type is not flat, we say it is nonflat. Note that source types and
nonflat types are not the same. For example, [(int, bool)] is a source
type, and the related type ({int ; If}, {bool ; If}) is a flat type.
But the related type {(int, bool) ; If} is neither a source type nor
a flat type; it is disqualified as a source type since it is a flattened-
array type and disqualified as a flat type since it includes a pair
inside an array. A target program is an expression whose outermost
type is a source type, yet all of whose subexpressions have flat
types. The restriction on its outermost type is a consequence of the
type-preservation property of Flatland’s rewriting. The restriction
is enforced by the application of one last “unflattening” coercion to
the transformed program at the top level. Within the program, all
subexpressions are flattened.

Flattening of whole programs is written as a type-preserving
relation J}. Figure 15 gives the sole judgment for }, which immedi-
ately delegates its work to an auxiliary relation . Whole-program
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Figure 16. Data-only flattening, group 1.

flattening consists of transforming a program e” of source type 7
to a program &’ of flat type 7 and then coercing the transformed
program to original type 7 at the top level. Note that in the cases
where 7 is, for example, a ground type (see Figure 13), the outer-
most coercion is an identity coercion and has no effect.

The auxiliary relation of data-only flattening is given in Fig-
ures 16 and 17. The syntax of “\is as follows:

AFe” N\ (FoT)oE"

A is a finite map from variable terms to variable terms; it is used
to implement propagations through let-expressions and functions.
On the right-hand side of the relation, a diamond (¢) is used to
construct a pair out of a coercion and a transformed expression.
The relation produces an unflattening coercion, along with the
transformed expression, for use in one of the following ways. If
the expression transformed is the whole program, the |} relation
applies the coercion to preserve the program’s original type (as per
the rule in Figure 15). If the expression is not the whole program,
the accompanying coercion is used as a building block for further
coercions as program transformation proceeds outward.

The important work in data-only flattening takes place at array
terms; see the second rule in Figure 17 (which in turn appeals to
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Figure 17. Data-only flattening, group 2.

type flattening in Figure 14.) This rule introduces coercions from
parallel arrays to flattened arrays. The variable rule (second rule,
Figure 16) substitutes typed variables for their flattened replace-
ments per the map carried by A. The array-operator rules exchange
operators indexed by source type to operators indexed by the corre-
sponding flat types. The other rules are administrative, recursively
propagating transformations through expressions. There is exactly
one rule for every distinct syntactic form, so the rules describes
both a semantic specification and an algorithm.

5. Implementation

Data-only flattening in PML is accomplished in three successive
phases: an abstract flattening phase, whereby abstract flattening
operations — symbolic values that stand in for actual implemen-
tations — are inserted throughout the code; a fusion phase where
canceling coercions (adjacent coercions that undo one another’s
work) are eliminated; and a concrete flattening phase, where sym-
bolic flattening operations are replaced by monomorphic code. Due
to space limitations, the detailed operations of these phases is not
presented here and may be found elsewhere [25].
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5.1 Optimizations

Flattened PML programs are amenable to various optimizations
that cannot be applied to non-flattened ones. In this section, we dis-
cuss several such optimizations, each of which is responsible, in
part, for the performance improvements we report in our bench-
mark results.

Monomorphization. Monomorphization is an optimization
whereby a polymorphic data structure containing uniformly-
represented (i.e., boxed) elements is transformed to a representa-
tion containing raw (unboxed) elements in their place. The flat-
tening transformation, by virtue of unzipping arrays of tuples, ex-
poses more opportunities for monomorphization than otherwise.
In PML, arrays of double pairs, for example, become pairs of
double arrays, which in turn become farrays, each containing
a specialized rope of doubles as its flat data vector. Monomor-
phization is well known to be valuable even outside the context of
nested data parallel compilation. MLton [18], an optimizing whole-
program SML compiler, performs monomorphization to generate
better-performing sequential code. PML stands to benefit from
monomorphization even without flattening (PML currently does
no monomorphization unless flattening is enabled), although it
will never be the case that, without unzipping tuples, non-flattened
PML will have as many opportunities to do it.

Tab flattening. Nested parallel comprehensions over ranges have
regular structure: at each dimension, the length of every array is
fixed a constant. The regularity of such structures can be exploited
by the tab flattening optimization, which performs simple integer
arithmetic operations to collapse multidimensional tabulations into
linear ones.

Every one-dimensional parallel comprehension of scalars is
trivially regular:

val xs = [| Double.fromInt i | i in [| 0 to 9 |] |]

The straightforward, and inefficient, implementation of this parallel
comprehension is to translate it to a map over the parallel array
containing the integers from 0 to 9.

PArray.map Double.fromInt [|] O to 9 |[]

This naive translation entails building an ephemeral data structure
that is immediately computed with and discarded. To save the cost
associated with this intermediate structure, the compiler rewrites
parallel comprehensions over ranges as tabulations:

PArray.tabulate (10, Double.fromInt)

Tabulating over integer intervals requires no intermediate data
structures, and realizes a performance improvement over the build-
and-map strategy outlined above.

Nested parallel comprehensions naturally give rise to nested
tabulations. The computation of xss in this excerpt

val xss = [| [| (i%*10)+3 | J in [

| i in [

can be naturally expressed by a tabulate within a tabulate as fol-
lows:

PArray.tabulate (10, fn i =>
PArray.tabulate (10, fn j =>
(1%10) + 7))

This translation is already better than using maps with ephemeral
structures, but the shape of our flattened array representations al-
lows us to use tab flattening to improve on nested tabulations. Re-
call our evaluation of xss results in an farray containing a flat
data vector and a shape tree. We name the result xssF and sketch
it as follows:
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val xssF = FArray (Rope.Leaf [0, 1, 2, ..., 991,
Shape.Nd [Shape.Lf (0,10),

Shape.Lf (90,100)17)

We can generate the flat data vector of xssF in one tabulation,
over a single counter representing the total number of elements in
the nested array, by performing the appropriate index arithmetic on
the counter:

let fun f k = let

val (i, j) = (k div 10, k mod 10)
in
(1%10) + 3
end
in
PArray.tabulate (10«10, f)
end

The shape tree in rectangular cases has a simple regular structure as
well, and be computed from the dimensions of a regular array in a
straightforward way. Tab flattening operation scales to any number
of dimensions for regular nested arrays.

Segmented reductions. NESL’s fast segmented operations are an
important element of NESL’s ability to perform well on irregular
nested data parallel programs, and an important one for PML to
emulate. NESL’s segmented sum operation, for example, is able to
compute the sums of a nested array of numbers in a fixed number
of steps regardless of the irregularity of the array’s structure. This
operation 1is critical to the performance of sparse-matrix/vector
multiplication (see below). Here is an example of an irregular sum
computation in PML:

let val nss = [| [| 1, 2 |1,
[
[ 3, 4, 5, 6 []1 |1]
in
[| sum ns | ns in nss |]
end

If this parallel comprehension is rewritten such that the sum oper-
ation is simply mapped over the array-valued elements of nss, the
irregularity of the structure of nss, if there is wide variation in the
lengths of its elements, is bound to affect load balancing adversely.
As such, the compiler replaces nested reductions like these

val ss = [| PArray.reduce add 0.0 ns | ns in nss |]
with “segmented reductions”
val ss = PArray.segreduce add 0.0 nss

The non-flattened implementation of PArray.segreduce
oper ident is simply PArray.map (PArray.reduce
oper ident). As part of the flattening transformation, the non-
flattened segreduce implementation is replaced by a faster
segreduce written to exploit the shape of farray data struc-
tures.

6. Evaluation

These benchmarks compare the performance and scalability of
Manticore’s current implementation of parallel arrays [1] against
data-only flattening. The baseline performance is from the sequen-
tial version of the benchmark, which runs on a single processor and
eliminates all overhead from the parallel language constructs and
associated runtime features. The sequential version does not take
advantage of any of the data transformations provided by data-only
flattening, relying on the default polymorphic array representation.

These benchmarks were selected to show that we gain perfor-
mance on code that executes over irregular data, as in SMVM,
while preserving most of the performance of benchmarks over
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regular data. Flattening happens at compile time in the follow-
ing sense: nested arrays such as those in the main expressions of
mandelbrot and raytracer are created flat in the first place,
not constructed nested and then flattened.

6.1 Experimental method

Our benchmark machine is a Dell PowerEdge R815 server, outfitted
with 48 cores and 128 GB physical memory. This machine runs
x86_64 Ubuntu Linux 10.04.2 LTS, kernel version 2.6.32-42. The
48 cores are provided by four 12 core AMD Opteron 6172 “Magny
Cours” processors. Each core operates at 2.1 GHz and has 64 KB
each of instruction and data L1 cache and 512 KB of L2 cache.
There are two 6 MB L3 caches per processor, each of which is
shared by six cores, for a total of 48 MB of L3 cache.

We ran each experiment configuration 30 times, and we report
the average performance results in our graphs and tables. Times are
reported in seconds.

6.2 Mandelbrot

We compute the Mandelbrot set by means of a function e1t which
consumes a pair of integers and produces an integer. The argument
to elt represents a location in the complex plane. Its return value
is the number of iterations required, according to the standard
iterating Mandelbrot set membership test, for a given point to
diverge outside the set (by having a modulus greater than 2). A
point is a member of the Mandelbrot set if it fails to diverge before
reaching a fixed upper limit of iterations (we use 1000). We execute
this simple function in parallel over a 2048 x 2048 range using the
following PML code:

fun mandelbrot n = let

val rng = [| 0 to (n-1) |]
in

(I [l elt (i, 3) | 3 in rng |] | 1 in rng |]
end

Figure 18(a) shows PML speedups, with and without flattening,
against the sequential baseline. Due to the relatively small amount
of computation at each element, the benefits of the data-only flat-
tening transformation provide only a 5% speedup at 48 cores.
These benefits come from the reduced amount of memory traffic
when using a monomorphic array representation, avoiding an ex-
tra allocation per result element and associated garbage collector
pressure.

6.3 Raytracer

Our ray tracing benchmark computes the image of a scene graph
consisting of a group of overlapping spheres with transparency and
reflection. The code is translated from a parallel program in the
implicitly-parallel language 1d90 [19]. It is a brute-force imple-
mentation and does not use any acceleration data structures. The
Raytracer benchmark renders a 2048 x 2048 image in parallel as a
two-dimensional sequence.

Similar to the Mandelbrot benchmark, we write the body of the
main function as a nested parallel comprehension:

fun raytracer n = let

val ns = [| 0 to (n-1) |]
in

[l [| trace (i, 3J) | J in ns [] | 1 in ns |]
end

In all versions of the program, the Manticore compiler transforms
this nested parallel comprehension into a two-dimensional tabu-
lation over fixed ranges, avoiding creation of an intermediate ar-
ray of values to iterate over. In the data-only version of this pro-
gram, that two-dimensional tabulation is instead performed as a
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Figure 18. Comparison of flattened and non-flattened performance.

one-dimensional tabulation with adjusted indices. As is shown in
Figure 18(b), this transformation slightly reduces the overhead re-
quired by the work-stealing scheduler to evenly balance the remain-
ing work, since work on the one-dimensional data structure requires
only splitting the index in half instead of the default finger-tree
splitting required in the two-dimensional version [1].

6.4 Sparse-Matrix Vector Multiplication

Among our benchmarks, sparse-matrix vector multiplication profits
most from the data-only flattening transformation. Sparse-matrix
vector multiplication is expressed concisely in the following PML
code:
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fun smvm (sm, v) = let
fun add (a,b) = atb
in
[| PArray.reduce add 0.0
[| x*(v!i) | (i,x) in sv |]
| sv in sm |]
end

The inner parallel array expression computes the dot-product of the
sparse matrix and the vector. The outer parallel array then computes
the sum of each of those resulting dot-products. The summation
is implemented on top of PArray.reduce, which allows the
runtime to processes the reduction in parallel.

In both versions of the benchmark, the Manticore compiler
automatically optimizes the parallel reduction over multiple values
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into a single segmented reduction. Segmented operators have been
shown by Blelloch and others to result in more balanced chunks of
parallel work, across a variety of platforms [3, 24]. All versions are
transformed into the following PML code:

fun smvm (sm, v) = let
val prods = products (sm, V)
val sums = segsum prods
in
sums
end

The flattened version of smvm uses monomorphic vectors for
both the intermediate representation of the dot-products and the
final result of the segmented reduction. Further, the implementation
of segmented reduction over monomorphic vectors takes advantage
of the layout, performing the segmented reduction with far less
overhead than the sequential and non-flattened versions.

Figure 18(c) gives the speedups of PML over its sequential
baseline, both with and without flattening. The sparse matrix is
10,000 x 10,000, with a random number of entries between 100
and 500 in each row. Flattened smvm is substantially faster than
non-flattened smvm for all numbers of processors up to 48, and fur-
thermore has much better performance with respect to the sequen-
tial baseline. The super-linear speedups are due to the relatively
small amount of work performed on each element compared to the
improvement due to the representation change. Above 36 proces-
sors, our performance improvement flattens due to having insuffi-
cient data to take advantage of the processors. Unfortunately, lim-
itations in the Manticore runtime currently prevent us from further
increasing the size of the data.

6.5 Dense Matrix Matrix Multiplication

The dense matrix multiplication (DMM) benchmark is a dense-
matrix by dense-matrix multiplication in which each matrix is
600x 600. As mentioned in Section 2, this benchmark has tradition-
ally had extremely poor performance under flattening. As shown in
Figure 18(d), our approach does still result in a slowdown in per-
formance due to the creation of some intermediate arrays (resulting
in a factor of 3 increase in memory usage). This penalty is roughly
13% and could be reduced through the introduction of additional
fusion operations to avoid those intermediate arrays.

6.6 Conclusion

These benchmarks demonstrate that the data-only flattening trans-
formation significantly improves a benchmark with irregular data
(SMVM), does not experience the polynomial blowup typical to
full flattening on DMM, and does not dramatically change the per-
formance of other programs.

7. Related work

The incremental extension of NESL’s foundation to a more feature-
rich platform has ultimately taken the form of Data Parallel
Haskell [9]. Chakravarty et al. first present the language Nepal in
2001 [8], characterized as a version of Haskell including nested
data parallelism. Nepal is succeeded by Chakravarty er al.’s Data
Parallel Haskell [9], bringing together Nepal-style nested data par-
allelism with Haskell as implemented in the Glasgow Haskell Com-
piler (GHC) [12]. In 2008, Peyton Jones et al. give a thorough
overview of the Data Parallel Haskell language and its compi-
lation [22], including an updated account of how Data Parallel
Haskell uses the flattening transformation in their implementation.
The especially germane question is this: what happens after a sys-
tem has compiled a Data Parallel Haskell program in the man-
ner of NESL, and yet executes on an SMP rather than a SIMD
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machine? Their answer to this technical problem is to adapt the
split and join mechanisms originally presented in Keller’s dis-
sertation [13] to implement NESL-style operations across the mul-
tiple processing elements on a multicore computer. Parallel com-
putations are split across processing elements and subsequently
joined on completion. To eliminate unnecessary synchronization
points, GHC uses rewrite rules [21] to erase successive applica-
tions of split and join (per the identity equivalence rule origi-
nally given by Keller). (In addition to this, various advanced fusion
techniques are employed to streamline the resulting post-flattened
program, an overview of which is given in their paper.)

Though Data Parallel Haskell represents broad advances in
NESL-style flattening in numerous ways, and although it has been
adapted to run on multicore machines, its compilation strategy con-
tinues to reflect the SIMD orientation of its predecessors, though
there has been recent work on vectorisation in DPH to avoid exces-
sive flattening [15]. This work differs from that line of research by
never performing the full vectorisation transformation on the code,
though both approaches flatten nested data.
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