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Abstract

In this paper we outline an algorithmic approach to compute Puiseux series expansions
for algebraic surfaces. The series expansions originate at the intersection of the surface with
as many coordinate planes as the dimension of the surface. Our approach starts with a
polyhedral method to compute cones of normal vectors to the Newton polytopes of the given
polynomial system that defines the surface. If as many vectors in the cone as the dimension
of the surface define an initial form system that has isolated solutions, then those vectors
are potential tropisms for the initial term of the Puiseux series expansion. Our preliminary
methods produce exact representations for solution sets of the cyclic n-roots problem, for
n = m2, corresponding to a result of Backelin.
Keywords. algebraic surface, binomial system, cyclic n-roots problem, initial form, Newton
polytope, orbit, permutation symmetry, polyhedral method, Puiseux series, sparse polynomial
system, tropism, unimodular transformation.

1 Introduction

We presented polyhedral algorithms to develop Puiseux expansions, for plane curves in [2] and
for space curves in [1], based on ideas described in [30]. In this paper we explain a polyhedral
approach to compute series developments for algebraic surfaces. Although we use the numerical
solver of PHCpack [29], one may use any solver for the leading coefficients of the series and obtain
a purely symbolic method. We implemented our methods using Sage [26].

We could reduce the treatment of algebraic surfaces to the curve case by adding sufficiently
many hyperplanes in general position to cut out a curve on the surface. This approach does not
give enough flexibility to exploit permutation symmetry as the added general hyperplanes must
ignore the symmetric structure of the polynomial system.

Although presently we do not have a fully automatic implementation suitable for benchmark-
ing on a large class of polynomial systems, we have obtained promising results on the cyclic n-root
systems:

∗This material is based upon work supported by the National Science Foundation under Grant No. 1115777.
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




x0 + x1 + · · · + xn−1 = 0

x0x1 + x1x2 + · · · + xn−2xn−1 + xn−1x0 = 0

i = 3, 4, . . . , n − 1 :

n−1∑

j=0

j+i−1∏

k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

(1)

The cyclic n-roots system is a standard benchmark problem in computer algebra, relevant to
operator algebras. We refer to [28] for recent advances in the classification of complex Hadamard
matrices. In [11], the close relationship of (1) with some systems occurring in optimal design of
filter banks is stressed. The numerical factorization of the two dimensional surface of cyclic 9-
roots into 6 irreducible cubics was reported in [23]. Recent results for the cyclic 12-roots problem
can be found in [21].

Although our original intent of developing Puiseux series for algebraic sets remains, for cyclic
9-roots we found exact results: the first term of the series satisfies the entire polynomial system.
These exact result correspond to known (see e.g. [3] or [11]) configurations of cyclic n-roots.

The type of polynomial systems targeted by the polyhedral approach are sparse polynomial
systems. We introduce our approach in the next section with a very particular sparse class of
systems. We use unimodular transformations to work with points at infinity. The second section
ends with a general approach to solve a binomial system.

To find the initial coefficients in the Puiseux series we look for initial form systems, systems
that have fewer monomials than the original systems and that are supported on faces of the New-
ton polytopes. Those faces of the Newton polytopes which define the initial forms are determined
by their inner normals. The inner normals that define the initial form systems are the leading
powers (called tropisms) of generalized Puiseux series. The leading coefficients of the series vanish
at the initial form systems.

In the third section we define initial form systems, give an illustrative example, and describe
the degeneration of a d-dimensional algebraic surface along a path towards the intersection with
the first d coordinate planes. Polyhedral methods give us cones of pretropisms and initial form
systems that may lead to initial coefficients of Puiseux series. We end this paper giving an exact
description of positive dimensional sets of cyclic n-roots.
Related work. A geometric resolution of a polynomial system uses a parameterization of the
coordinates [13] for global version of Newton’s iterator [8]. Our algorithms arose from an un-
derstanding of [5, Theorem B] and are inspired by tropical methods [6] and in particular by
the constructive proof of the fundamental theorem of tropical algebraic geometry [19]. Software
related to [19] is Gfan [17] and the Singular library tropical.lib [18].

Connections with Gröbner bases are described in [27]. Polyhedral and tropical methods
for finiteness proofs in celestial mechanics are explained in [15] and [16]. Truncations of two
dimensional varieties are studied in [20]. A Newton-Puiseux algorithm for polynomials in several
variables is described in [4]. The unimodular coordinate transformations are related to power
transformations in [7].
Acknowledgement. We thank Marc Culler for pointing at the Smith normal form in connection
with unimodular transformations.
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2 Binomial Systems

We aim to solve sparse polynomial systems, systems of polynomials with relatively few monomials
appearing with nonzero coefficient. The sparsest polynomial systems which admit solutions with
nonzero values for all coordinates consist of exactly two monomials in every equation and we call
such systems binomial systems. See e.g.: [9] and [10] for more on binomial ideals.

2.1 An Example

Consider for example {
x2

1x2x
4
3x

3
4 − 1 = 0

x1x2x3x4 − 1 = 0.
(2)

We write the exponent vectors in the matrix

A =

[
2 1 4 3
1 1 1 1

]
(3)

and we look for a basis of the null space of A. Two linearly independent vectors that satisfy Ax = 0
are for example u = (−3, 2, 1, 0) and v = (−2, 1, 0, 1). Placing u and v in the columns of a
matrix M leads to a coordinate transformation:

M =





−3 −2 1 0
2 1 0 1
1 0 0 0
0 1 0 0










x1 = y−3
1 y−2

2 y3

x2 = y2
1y2y4

x3 = y1

x4 = y2.

(4)

The coordinate transformation x = yM eliminates y1 and y2 — because u and v are in the null
space of A — as substituting the coordinates corresponds to computing Au and Av, reducing
the given system to {

y2
3y4 − 1 = 0

y3y4 − 1 = 0.
(5)

Solving the reduced system in (5) gives values for y3 and y4 which after substitution in the
coordinate transformation in (4) yields an explicit solution for the original system in (2) with y1

and y2 as parameters.

2.2 Unimodular Transformations

In the previous section we constructed in (4) a unimodular coordinate transformation x = yM ,
where det(M) = ±1. In the new y coordinates all points that make the same inner product of
the first row of the given exponent matrix A will have the same value for y1.

We are given a matrix B ∈ Zk×n, k < n and assume moreover that the rank of A equals k. The
Smith normal form of B consists of the triplet (U,S, V ), with U ∈ Zk×k, S ∈ Zk×n, V ∈ Zn×n,
with det(U) = ±1, det(V ) = ±1, the only nonzero elements of S are on the diagonal and
UBV = S. Because the rank of A equals k, the rank of S is also k.

If U equals the identity matrix, then UBV = S implies B = SV −1. This means that for any x,
the outcome of Bx is the same as SV −1x. Using V −1 to define the unimodular transformation will
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create fractional exponents in case the elements on the diagonal of S are strictly larger than one,
but those fractions can occur only for the first k variables. Note that the first k variables appear
with the same power after the unimodular coordinate transformation so they can be removed.

For the matrix A in (3), the matrix B has in its two rows the vectors u and v so that ABT = 0:

B =

[
−3 2 1 0
−2 1 0 1

]
. (6)

The computation of the Smith normal form of B with GAP [14] (from the console in Sage [26])
gives

U =

[
1 −2
2 −3

]
, S =

[
1 0 0 0
0 1 0 0

]
, (7)

and

V =





1 0 1 −2
0 1 2 −3
0 0 1 0
0 0 0 1



 . (8)

We use the inverses U−1 and V −1 to construct a unimodular transformation extending U−1 with
the identity matrix, as follows:





−3 2 0 0
−2 1 0 0

0 0 1 0
0 0 0 1









1 0 1 −2
0 1 2 −3
0 0 1 0
0 0 0 1



 (9)

and this product gives the transpose of M , the matrix in the unimodular transformation of (4).
This examples illustrates the case when U is not the identity matrix and where we may ignore S
as its diagonal elements are all equal to one.

We point out that the vectors in the null space of the exponent matrix A as in (3) are typically
normalized so that the greatest common divisors of the components of the vectors equals one.
We may change coordinates so that the first vector in the null space has only its first coordinate
different from zero, the second vector in the null space can have nonzero entries only in the first
two coordinates, etc. For a 2-dimensional surface in C5, consider for example the null space could
be spanned by the rows in the matrix

B =




1 0 0 0 0
1 2 0 0 0
3 5 7 0 0



 . (10)

As the rows of B belong to the null space of a matrix (in particular they span a 3-dimensional
cone), we may multiply the row independently with different factors, e.g.:

B̄ =




1 0 0 0 0
5 10 0 0 0
6 10 14 0 0



 . (11)
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In general we multiply the rows so that each column is divisible by the number on the diagonal.
Then we may scale the columns to obtain ones on each diagonal:

̂̄B =




1 0 0 0 0
5 1 0 0 0
6 1 1 0 0



 . (12)

At the monomial level, this division by 10 in the second column corresponds to replacing x2 by
x10

2 in the system. Because x2 will cancel out in the reduced system, this variable substitution
concerns only the parametrization of the surface and has no effect on the resulting binomial
system. For a lower triangular matrix with ones on its diagonal, the Smith normal form S has
also ones on its diagonal.

2.3 Solving Binomial Systems

We denote a binomial system by xA − c = 0, where A ∈ Zk×n and c = (c1, c2, . . . , ck) with ci 6= 0
for all i = 1, 2, . . . , k. If the rank of A equals k, then k is the codimension of the solution set. Given
the tuple (A, c), the solution set of xA − c = 0 is described by a unimodular transformation M
and a set of values for the last n − k variables. Eventually, following the end of the previous
section, the coordinate transformation may involve a relabeling of variables and a scaling of the
exponents.

In the sketch of the solution method below we assume that A has rank k, otherwise xA−c = 0
has no (n − k)-dimensional solution set for general values of c. The steps are as follows:

1. Compute the null space B of A, d = n − k.

2. Compute the Smith normal form (U,S, V ) of B.

3. Depending on U and S do one of the following:

• If U is the identity matrix, then M = V −1 and the first d variables have positive
denominators in their powers when not all elements on the diagonal of S are equal to
one.

• If U is not the identity matrix and if all elements on the diagonal of S are one, then
extend U−1 with an identity matrix to obtain an n-by-n matrix E that has U−1 in its
first d rows and columns. Then, M = EV −1.

• In all other cases, change coordinates so the null space B has a triangular shape with
ones on the diagonal. Then, with the new B, return to step 2.

4. After the coordinate transformation x = yM , compute the leading coefficients solving a
binomial system of k equations in k unknowns. Return M and the corresponding solutions
of the binomial system.

3 Sparse Polynomial Systems

To look for d-dimensional components of sparse polynomial systems, we investigate solutions of
initial forms defined by cones of normal vectors. In order for the initial form systems to have
solutions with all coordinates different from zero, they need to be at least binomial systems.
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3.1 Initial Forms

A polynomial f in n variables x = (x1, x2, . . . , xn) is denoted as

f(x) =
∑

a∈A

cax
a, ca ∈ C \ {0}, (13)

xa = xa1

1 xa2

2 · · · xan
n , where A is the set of all exponents of monomials with nonzero coefficient.

The set A is the support of f and the convex hull of A is the Newton polytope P of f . Any nonzero
vector v defines a face of P , spanned by

inv(A) = { b ∈ A | 〈b,v〉 = min
a∈A

〈a,v〉 }, (14)

where 〈·, ·〉 denotes the usual inner product of two vectors. We use the notation inv(A) because
a face of a support set defines an initial form of the polynomial f :

inv(f)(x) =
∑

a∈inv(A)

cax
a, (15)

where A is the support of f . For a system f(x) = 0 and a nonzero vector v, the initial form
system inv(f)(x) = 0 is defined by the initial forms of the polynomials in f with respect to v.

Because the initial coefficients of Puiseux series expansions are solutions to initial form sys-
tems, the initial forms we consider must have at least two monomials, otherwise the solutions will
have coordinates equal to zero and are unfit as leading coefficients in a Puiseux series development.

3.2 An Illustrative Example

In this section we indicate how the presence of a higher dimensional solution set manifests itself
from the relative position of the Newton polytopes of the polynomials in the system. To illustrate
a numerical irreducible decomposition of the solution set of a polynomial system, the following
system was used in [22]:

f(x1, x2, x3) =




(x2 − x2
1)(x

2
1 + x2

2 + x2
3 − 1)(x1 − 0.5) = 0

(x3 − x3
1)(x

2
1 + x2

2 + x2
3 − 1)(x2 − 0.5) = 0

(x2 − x2
1)(x3 − x3

1)(x
2
1 + x2

2 + x2
3 − 1)(x3 − 0.5) = 0

(16)

The solution set Z = f−1(0) is decomposed as

Z = Z2 ∪ Z1 ∪ Z0 (17)

= {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01} (18)

where

1. Z21 is the sphere x2
1 + x2

2 + x2
3 − 1 = 0,

2. Z11 is the line (x1 = 0.5, x3 = 0.53),

3. Z12 is the line (x1 =
√

0.5, x2 = 0.5),
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4. Z13 is the line (x1 = −
√

0.5, x2 = 0.5),

5. Z14 is the twisted cubic (x2 − x2
1 = 0, x3 − x3

1 = 0),

6. Z01 is the point (x1 = 0.5, x2 = 0.5, x3 = 0.5).

A first cascade of homotopies in [22] needed 197 solution paths to compute generic points on all
components. The equation-by-equation solver of [25] reduced the number of paths down to 13.
The Newton polytopes of the polynomials in the system are displayed in Figures 1 and 2.

Figure 1: From top to bottom, we see the Newton polytopes of f1, f2, and f3 of the polynomials
in (16). The edges of the faces of the polytopes with normals (1, 0, 0) and (0, 1, 0) are marked in
bold, respectively in red and black.

Consider a point on the 2-dimensional solution component of f−1(0) and let the first coordi-
nate of that point go to zero. As x1 = t → 0:

in(1,0,0)(f)(x1, x2, x3)

=






x2(x
2
2 + x2

3 − 1)(−0.5) = 0

x3(x
2
2 + x2

3 − 1)(x2 − 0.5) = 0

x2x3(x
2
2 + x2

3 − 1)(x3 − 0.5) = 0.

(19)

Alternatively, as x2 = s → 0, we end up at a solution of the initial form system:

in(0,1,0)(f)(x1, x2, x3)

=






−x2
1(x

2
1 + x2

3 − 1)(x1 − 0.5) = 0

(x3 − x3
1)(x

2
1 + x2

3 − 1)(−0.5) = 0

−x2
1(x3 − x3

1)(x
2
1 + x2

3 − 1)(x3 − 0.5) = 0.

(20)

Looking at the Newton polytopes along v = (1,0,0) and v = (0, 1, 0), we consider faces of
the Newton polytopes, see Figures 1 and 2.
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Figure 2: The Newton polytopes of the third polynomial in (16). The edges of the faces of the
polytopes with normals (1, 0, 0) and (0, 1, 0) are marked in bold, respectively in red and black.

Combining the two degenerations, we arrive at the initial form system:

in(0,1,0)(in(1,0,0)(f))(x1, x2, x3)

=






x2(x
2
3 − 1)(−0.5)

x3(x
2
3 − 1)(−0.5)

x2x3(x
2
3 − 1)(x3 − 0.5)

(21)

The factor x2
3 − 1 is shared with in(1,0,0)(in(0,1,0)f)(x1, x2, x3).

Based on these degenerations, we arrive at the following representation for a solution surface.
The sphere is two dimensional, x1 and x2 are free:






x1 = t1
x2 = t2
x3 = 1 + c1t

2
1 + c2t

2
2.

(22)

For t1 = 0 and t2 = 0, x3 = 1 is a solution of x3 − 1 = 0. Substituting (x1 = t1, x2 = t2, x3 =
1 + c1t

2
1 + c2t

2
2) into the original system gives linear conditions on the coefficients of the second

term: c1 = −0.5 and c2 = −0.5.

3.3 Asymptotics of Algebraic Surfaces and Puiseux Series

Denoting by d the dimension of the algebraic surface defined by f(x) = 0, for x ∈ Cn, we assume
the defining equations are in Noether position so we may specialize the first d coordinates to
random complex numbers in f(x) = 0 and obtain a system with isolated solutions. Moreover, we
assume that when specializing the first d variables to zero, the algebraic set remains of dimension d.
Geometrically this means that we assume that the algebraic set meets the first d coordinate planes
(perpendicular to the first d coordinate axes) properly.
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We consider what happens when starting at a random point on the surface we move the first
d coordinates to zero. For simplicity of notation we take d = 2 and consider a multiparameter
family of polynomial systems:






f(x) = 0
x1 = c1t1
x2 = c2t

v1,2

1 t
v2,2

2 (c1,2 + O(t1, t2)),
(23)

with c1, c2, c1,2 ∈ C \ {0}, v1,1, v1,2 ∈ Q, letting t1 and t2 go from 1 to 0, starting at a generic
point on the surface with its first two coordinates equal to c1 and c2.

The multiparameter family in (23) specifies the last equation as a series to leave enough
freedom for the actual shape of the surface. While we may always move x1 as going linearly to
zero, with x1 = c1t1, the second coordinate of a point along a path on the surface may no longer
move linearly. Taking x2 as c2t2 would be too restrictive.

As we move x1 to zero as t1 goes to zero, then x2 can go to zero as well if v1,1 > 0 and
v2,2 > 0, or go to infinity if v1,2 < 0 or v2,2 < 0, or go to c2c1,2 if both v1,2 = 0 and v2,2 = 0.
The multiparameter family in (23) contains what we imagine as a multiparameter version of a
Puiseux series for algebraic curves. Similar to x2, the other components of the moving point can
be developed as a generalized Puiseux series

xk = ckt
v1,k

1 t
v2,k

2 (c1,k + O(t1, t2)), (24)

ck, ck,2 ∈ C \ {0}, vk,1, vk,2 ∈ Q. If in the limit – when t1 and t2 are both zero – the solution is
finite and of multiplicity one, then the generalized Puiseux series coincides with a multivariate
Taylor series.

As t1 and t2 go to zero, the system f(t1, t2) = 0 — obtained after replacing x1 and x2 using
the last two equations of (23) and after substituting (24) for the remaining n−2 into f(x) = 0 —
must have at least two monomials with lowest power in t1 and lowest power in t2 in every equation
because ck, c1,k ∈ C \ {0} for all k = 1, 2, . . . , n. We call the part of f(x) = 0 corresponding to
f(t1, t2) with lowest powers of t1 and t2 the initial form system of f(x) = 0 with respect to the
normal vectors v1 = (1, v1,2, v1,3, . . . , v1,n) and v2 = (0, v2,2, v2,3, . . . , v2,n). Because the normal
vectors are the leading powers of the generalized Puiseux series, v1 and v2 can be called tropisms
in analogy to the case of algebraic curves.

Given any vector v ∈ Qn, v 6= 0, the initial form system is denoted as inv(f)(x) = 0. Every
monomial xa in inv(f) makes a minimal inner product 〈a,v〉, minimal with respect to any other
monomial in f \ inv(f), i.e.: 〈a,v〉 ¡ 〈b,v〉 for all xb ∈ f \ inv(f). For a 2-dimensional surface
with tropisms v1 and v2 solutions to the the initial form system inv1

(inv2
(f))(x) = 0 are the

leading coefficients of the generalized Puiseux series.
The derivation for an algebraic surface in any dimension d is straightforward and we have the

following:

Proposition 3.1 If f(x) = 0 is in Noether position and defines an algebraic surface of dimen-
sion d in Cn, then there are d linearly independent tropisms v1,v2, . . . vd ∈ Qn so that the initial
form system inv1

(inv2
(· · · invd

(f) · · · ))(x) = 0 has a solution c ∈ (C \ {0})n. This solution and
the tropisms are the leading coefficients and powers of a generalized Puiseux series expansion for
the algebraic surface.
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3.4 Polyhedral Methods

In our algorithm to develop Puiseux series developments for algebraic surfaces, Proposition 3.1
is applied as follows. If we are looking for a surface of dimension d and

• if there are no cones of vectors perpendicular to edges of the Newton polytopes of f(x) = 0
of dimension d, then there the system f(x) = 0 has no solution surface of dimension d that
intersects the first d coordinate planes properly; otherwise

• if a d-dimensional cone of vectors perpendicular to edges of the Newton polytopes exists,
then that cone defines a part of the tropical prevariety.

We call a vector perpendicular to at least one edge of every Newton polytope of f(x) = 0 a
candidate tropism or pretropism.

Algorithms to compute a tropical prevariety are described in [6]. As we outlined in [1], we
applied cddlib [12] to the Cayley embedding of the Newton polytopes of the system to compute
pretropisms. With the Cayley embedding we managed to compute all pretropisms of the cyclic
12-roots problem, reported in [1].

For highly structured problems such as the cyclic n-roots problem, a tropism found at lower
dimension often occurs also in extended form for higher dimensions. For example, for n = 4, a
tropism is (+1,−1,+1,−1) which extends directly to (+1,−1,+1,−1,+1,−1,+1,−1) for n = 8
and (+1,−1,+1,−1,+1,−1,+1,−1,+1,−1,+1,−1) for n = 12, and any n that is a multiple
of 4.

In addition to the extraneous results reported from the Cayley embedding, it suffices to restrict
to pretropisms with positive first coordinate because geometrically we intersect the surface with
the coordinate hyperplane perpendicular to the x1-axes at the end of moving x1 to zero. Allowing
a negative first exponent in the first pretropism corresponds to intersecting the surface at infinity,
when in the limit we let x1 go to infinity.

In any case, after the computation of pretropisms, exploiting permutation symmetry is rela-
tively straightforward as we can group the pretropisms in orbits and process only one generator
per orbit.

3.5 Puiseux Series for Algebraic Surfaces

The approach to develop Puiseux series proceed as follows.
For every d-dimensional cone C of pretropisms:

1. we select d linearly independent generators to form the d-by-n matrix A and the corre-
sponding unimodular transformation x = yM .

2. Because the matrix A contain pretropisms, the initial form system inv1
(inv2

(· · · invd
(f) · · · ))(x) =

0 determined by the rows v1, v2, . . ., vd of A has at least two monomials in every equation.
If the initial form system has no solution with all coordinates different from zero, then we
move to the next cone C and return to step 1, else we continue with the next step.

3. Solutions of the initial form system found in the previous step are leading coefficients in a
potential Puiseux series with corresponding leading powers equal to the pretropisms. If the
leading term satisfies the entire polynomial system, then we report an explicit solution of
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the system and we continue processing the next cone C. Otherwise, we take the current
leading term to the next step.

4. If there is a second term in the Puiseux series, then we have computed an initial development
for an algebraic surface and report this development in the output.

To compute in the last step a second term in a multivariate Puiseux series seems very com-
plicated, but we point out that it is not necessary to compute the second term in full generality.
To ensure that a solution of an initial form system is not isolated, it suffices that we can compute
a series development for a curve starting at that solution. In practice this means that we may
restrict all but one free variable in the series development and apply the methods we outlined
in [1] for the computation of the second term of the Puiseux series for a space curve.

4 Applications

With our polyhedral approach we are able to recover exact representations for positive solutions
of the cyclic n-roots problem.

4.1 On cyclic 9-roots

Taking n = 9 in (1), for cyclic 9-roots, we show that our solution can be transformed into the
same format as in the proof we found in [11, Lemma 1.1] of the statement in [3] that square
divisors of n lead to infinitely many cyclic n-roots.

Among the tropisms computed by cddlib [12] on the Cayley embedding of the Newton
polytopes of the system, there is a two dimensional cone of normal vectors spanned by u =
(1, 1,−2, 1, 1,−2, 1, 1,−2) and v = (0, 1,−1, 0, 1,−1, 0, 1,−1). The vectors u and v are tropisms.
The initial form system inu(inv(f))(x) = 0 is






x2 + x5 + x8 = 0
x0x8 + x2x3 + x5x6 = 0

x0x1x2 + x0x1x8 + x0x7x8 + x1x2x3

+ x2x3x4 + x3x4x5 + x4x5x6 + x5x6x7

+ x6x7x8 = 0
x0x1x2x8 + x2x3x4x5 + x5x6x7x8 = 0

x0x1x2x3x8 + x0x5x6x7x8 + x2x3x4x5x6 = 0
x0x1x2x3x4x5 + x0x1x2x3x4x8

+ x0x1x2x3x7x8 + x0x1x2x6x7x8

+ x0x1x5x6x7x8 + x0x4x5x6x7x8

+ x1x2x3x4x5x6 + x2x3x4x5x6x7

+ x3x4x5x6x7x8 = 0
x0x1x2x3x4x5x8 + x0x1x2x5x6x7x8

+ x2x3x4x5x6x7x8 = 0
x0x1x2x3x4x5x6x8 + x0x1x2x3x5x6x7x8

+ x0x2x3x4x5x6x7x8 = 0
x0x1x2x3x4x5x6x7x8 − 1 = 0

(25)
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Observe that, compared to the original system, the number of monomials is reduced significantly
and is thus sparser and easier to solve than the original system. To solve the initial form system,
we eliminate x0 and x1 with a unimodular coordinate transformation M that has u and v on its
first two rows. The last seven rows of M are zero except for the ones on the diagonal:

M =





1 1 −2 1 1 −2 1 1 −2
0 1 −1 0 1 −1 0 1 −1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





. (26)

The matrix M defines the unimodular coordinate transformation x = yM :

x0 = y0

x1 = y0y1

x2 = y−2
0 y−1

1 y2,

x3 = y0y3

x4 = y0y1y4

x5 = y−2
0 y−1

1 y5,

x6 = y0y6

x7 = y0y1y7

x8 = y−2
0 y−1

1 y8.

(27)

The transformation x = yM reduces the initial form system inu(inv(f))(x = yM ) = 0 to a system
of 9 equations in 7 unknowns.

After adding two slack variables to square the system (see [24] for an illustration of introducing
slack variables), the mixed volume equals 326. In contrast, the mixed volume of the original
polynomial system equals 20,376.

For this problem it turns out that the entire cyclic 9-roots system vanishes at this first term
of the series expansion. Recognizing the numerical roots as primitive roots of unity leads to an
exact representation of the two dimension set of cyclic 9-roots.

Denoting by u = ei2π/3 the primitive third root of unity, u3 − 1 = 0, our representation of the
solution set is

x0 = t1
x1 = t1t2
x2 = t−2

1 t−1
2 u2

x3 = t1u
x4 = t1t2u

x5 = t−2
1 t−1

2

x6 = t1u
2

x7 = t1t2u
2

x8 = t−2
1 t−1

2 u.
(28)

Introducing new variables y0 = t1, y1 = t1t2, and y2 = t−2
1 t−1

2 u2, our representation becomes

x0 = y0

x1 = y1

x2 = y2

x3 = y0u
x4 = y1u
x5 = y2u

x6 = y0u
2

x7 = y1u
2

x8 = y2u
2

(29)

which modulo y3
0y

3
1y

3
2u

9 − 1 = 0 satisfies by plain substitution the cyclic 9-roots system, as in the
proof of [11, Lemma 1.1].

Note that the representation in (28) allows a quick computation of the degree of the surface.
This degree equals the number of points in the intersection of the surface with two random
hyperplanes. Using (28) for points on the surface, the two random hyperplanes become a system

12



in the monomials t1, t1t2, and t−2
1 t−1

2 :

{
α1t1 + α1,2t1t2 + α−2,−1t

−2
1 t−1

2 = 0

β1t1 + β1,2t1t2 + β−2,−1t
−2
1 t−1

2 = 0
(30)

for some complex numbers αi,j and βi,j . The above system is equivalent to the system

{
t−3
1 t−1

2 − c1 = 0
t2 − c2 = 0

(31)

for some c1, c2 ∈ C. We see that for any nonzero c1 and c2, the system has three solutions. So the
algebraic surface represented in (28) is a cubic surface. Using other roots of unity and permuting
variables leads to an entire orbit of cubic surfaces.

4.2 On cyclic m
2-roots

While the Cayley embedding becomes too wasteful to extend the computation of all candidate
tropisms beyond n = 12, by the structure of the tropisms for n = 9 we can predict the tropisms
for cyclic 16-roots:

u = (1, 1, 1,−3, 1, 1, 1,−3, 1, 1, 1,−3, 1, 1, 1,−3),
v = (0, 1, 1,−2, 0, 1, 1,−2, 0, 1, 1,−2, 0, 1, 1,−2),
w = (0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1),

(32)

and the corresponding initial form solutions are primitive fourth roots of unity. Similar to (28)
and (29) we can show that the exact representation obtained with tropical methods corresponds
to what is in the proof of [11, Lemma 1.1].

A general pattern for surfaces of cyclic m2-roots is in the following proposition.

Proposition 4.1 For n = m2, there is an (m− 1)-dimensional set of cyclic n-roots, represented
exactly as

xkm+0 = ukt0
xkm+1 = ukt0t1
xkm+2 = ukt0t1t2

...
xkm+m−2 = ukt0t1t2 · · · tm−2

xkm+m−1 = ukt
−m+1
0 t−m+2

1 · · · t−2
m−3t

−1
m−2

(33)

for k = 0, 1, 2, . . . ,m − 1 and uk = ei2kπ/m.

In addition to the triplet of tropisms (u,v,w), we found other components, not strictly along
the general pattern:
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x0 = t0 x0 = t0
x1 = t−1

0 t1t2 x1 = t−1
0 t1t2

x2 = t0t2 x2 = t0t2
x3 = It−1

0 t−1
1 t−2

2 x3 = −It−1
0 t−1

1 t−2
2

x4 = −t0 x4 = −t0
x5 = (−1/I)t−1

0 t1t2 x5 = (1/I)t−1
0 t1t2

x6 = −t0t2 x6 = −t0t2
x7 = t−1

0 t−1
1 t−2

2 x7 = t−1
0 t−1

1 t−2
2

x8 = t0 x8 = t0
x9 = −t−1

0 t1t2 x9 = −t−1
0 t1t2

x10 = t0t2 x10 = t0t2
x11 = −It−1

0 t−1
1 t−2

2 x11 = It−1
0 t1t

−2
2

x12 = −t0 x12 = −t0
x13 = (1/I)t−1

0 t1t2 x13 = (−1/I)t−1
0 t1t2

x14 = −t0t2 x14 = −t0t2
x15 = −t−1

0 t−1
1 t−2

2 x15 = −1t−1
0 t−1

1 t−2
2

(34)

where I =
√
−1.

5 Conclusions

Preliminary experiments with a polyhedral method for algebraic surfaces has given promising
results for an important benchmark for polynomial system solving, the cyclic n-roots problem.
The approach is well suited to exploit permutation symmetries.
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K. Shirayanagi and K. Yokoyama, editors, Computer Mathematics - Proceedings of the Fifth
Asian Symposium (ASCM 2001), volume 9 of Lecture Notes Series on Computing, pages
1–12. World Scientific, 2001.

[12] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler,
and Y. Manoussakis, editors, Selected papers from the 8th Franco-Japanese and 4th Franco-
Chinese Conference on Combinatorics and Computer Science, volume 1120 of Lecture Notes
in Computer Science, pages 91–111. Springer-Verlag, 1996.
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