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ABSTRACT
We present a variation of the modular algorithm for comput-
ing the Hermite Normal Form of an OK -module presented
by Cohen [2], where OK is the ring of integers of a num-
ber field K. The modular strategy was conjectured to run
in polynomial time by Cohen, but so far, no such proof was
available in the literature. In this paper, we provide a new
method to prevent the coefficient explosion and we rigor-
ously assess its complexity with respect to the size of the
input and the invariants of the field K.

Categories and Subject Descriptors
I.1.2 [Algorithms]: Algebraic algorithms—Symbolic and

Algebraic Manipulation

General Terms
Theory, Algorithms

Keywords
Hermite Normal Form, Complexity, Modules, Number the-
ory

1. INTRODUCTION
The construction of a good basis of an OK-module, where K
is a number field and OK its ring of integers, has recently re-
ceived a growing interest from the cryptographic community.
Indeed, OK -modules occur in lattice-based cryptography [8,
9, 10, 13, 14], where cryptosystems rely on the difficulty to
find a short element of a module, or solving the closest vec-
tor problem. The computation of a good basis is crucial for
solving these problems, and most of the algorithms for com-
puting a reduced basis of a Z-lattice have an equivalent for
OK -modules. However, applying the available tools over Z

to OK-modules would result in the loss of of their structure.

The computation of a Hermite Normal Form (HNF)-basis
was generalized to OK-modules by Cohen [2, Chap. 1]. His

algorithm returns a basis that enjoys similar properties as
the HNF of a Z-module. A modular version of this algo-
rithm is conjectured to run in polynomial time, although
this statement is not proven (see last remark of [2, 1.6.1]).
In addition, Fieker and Stehlé’s recent algorithm for comput-
ing a sized-reduced basis relies on the conjectured possibility
to compute an HNF-basis for an OK -module in polynomial
time [5, Th. 1]. This allows a polynomial time equivalent of
the LLL algorithm preserving the structure of OK -module.
In this paper, we adress the problem of the polynomiality
of the computation of an HNF basis for an OK-module by
presenting a modified version of Cohen’s algorithm [2, Chap.
1]. We thus assure the validity of the LLL algorithm for OK -
modules of Fieker and Stehlé [5] which has applications in
lattice-based cryptography, as well as in representations of
matrix groups [4] and in automorphism algebras of Abelian
varieties. In addition, our HNF algorithm allows to com-
pute a basis for the intersection of OK modules, which has
applications in list decoding codes based on number fields
(see [6] for their description).

Our contribution. We present in this paper the first poly-
nomial time algorithm for computing an HNF basis of an
OK -module based on the modular approach of Cohen [2,
Chap. 1]. We rigorously adress its correctness and derive
bounds on its run time with respect to the size of the input,
the dimension of the module and the invariants of the field.

2. GENERALITIES ON NUMBER FIELDS
Let K be a number field of degree d. It has r1 ≤ d real em-
beddings (σi)i≤r1 and 2r2 complex embeddings (σi)r1<i≤2r2

(coming as r2 pairs of conjugates). The field K is isomor-
phic to OK ⊗Q where OK denotes the ring of integers of K.
We can embed K in

KR := K ⊗ R ≃ R
r1 × C

r2 ,

and extend the σi’s to KR. Let T2 be the Hermitian form
on KR defined by

T2(x, x
′) :=

∑

i

σi(x)σi(x
′),

and let ‖x‖ :=
√

T2(x, x) be the corresponding L2-norm.
Let (αi)i≤d such that OK = ⊕iZαi, then the discriminant
of K is given by ∆K = det2(T2(αi, αj)). The norm of an
element x ∈ K is defined by N (x) =

∏

i |σi(x)|.

To represent OK-modules, we rely on a generalization of the
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notion of ideal, namely the fractional ideals of OK . They
can be defined as finitely generated Z-modules of K. When
a fractional ideal is contained in OK , we refer to it as an
integral ideal, which is in fact an ideal of OK . Otherwise,
for every fractional ideal I of OK , there exists r ∈ Z>0 such
that rI is integral. The sum and product of two fractional
ideals of OK is given by

IJ = {i1j1 + · · ·+ iljl | l ∈ N, i1, · · · il ∈ I, j1, · · · jl ∈ J}
I + J = {i+ j | i ∈ I, j ∈ J}.
The fractional ideals of OK are invertible, that is for ev-
ery fractional ideal I , there exists I−1 := {x ∈ K | xI ⊆
OK} such that II−1 = OK . The set of fractional ide-
als is equipped with a norm function defined by N (I) =
det(MI)/det(OK) where the rows of MI are a Z-basis of I .
The norm of ideals is multiplicative, and in the case of an
integral ideal, we have N (I) = |OK/I |. Also note that the
norm of x ∈ K is precisely the norm of the principal ideal
(x) = xOK . Algorithms for ideal arithmetic in polynomial
time are described in Section 5.

3. THE HNF
Let M ⊆ Kl be a finitely generated OK-module. As in [2,
Chap. 1], we say that [(ai), (ai)]i≤n, where ai ∈ K and ai is
a fractional ideal, is a pseudo-basis for M if

M = a1a1 ⊕ · · · ⊕ anan.

Note that a pseudo-basis is not unique, and the main re-
sult of [5] is precisely to compute a pseudo-basis of short
elements. If the sum is not direct, we call [(ai), (ai)]i≤n a
pseudo-generating set for M . Once a pseudo-generating set
[(ai), (ai)]i≤n for M is known, we can associate a pseudo-
matrix A = (A, I) to M , where A ∈ Kn×l and I = (ai)i≤n

is a list of n fractional ideals such that

M = a1A1 + · · ·+ anAn,

where Ai ∈ Kl is the i-th row of A. We can construct
a pseudo-basis from a pseudo-generating set by using the
Hermite normal form (HNF) over Dedekind domains (see
[2, Th. 1.4.6]). Note that this canonical form is also refered
to as the pseudo-HNF in [2, 1.4]. In this paper we simply
call it HNF, but we implicitly refer to the standard HNF
over Z when dealing with an integer matrix. Assume A is of
rank l (in particular n ≥ l), then there exists an n×n matrix
U = (ui,j) and n non-zero ideals b1, · · · , bn satisfying

1. ∀i, j, ui,j ∈ b−1
i aj .

2. a = det(U)b for a =
∏

i ai and b =
∏

i bi.

3. The matrix UA is of the form

UA =





























1 0 . . . 0

... 1
. . .

...
...

...
. . . 0

∗ ∗ . . . 1

(0)





























.

4. M = b1ω1 ⊕ · · · ⊕ blωl where ω1, · · ·ωl are the first l
rows of UA.

In general, the algorithm of [2] for computing the HNF of
a pseudo-matrix takes exponential time, but as in the in-
teger case, there exists a modular one which is polynomial
in the dimensions of A, the degree of K, and the bit size
of the modulus. Note that in the case of a pseudo matrix
representing an OK -module M , the modulus is an integral
multiple of the determinantal ideal g(M), which is generated
by all the ideals of the form

det
i1,··· ,il

(A) · ai1 · · · ail ,

where deti1,··· ,il (A) is the determinant of the l×l minor con-
sisting of the last l columns of rows of indices i1, · · · , il. The
determinantal ideal is a rather involved structure, except in
the case l = n. In applications, the modulus is frequently
known. In the rest of the paper, we restrict ourselves to the
case of an n × n matrix A of rank n. One can immediatly
derive polynonmial time algorithms for the rectangular case,
and for the case of a singular matrix A.

4. NOTION OF SIZE
To ensure that our algorithm for computing an HNF basis
of an OK -module runs in polynomial time, we need a no-
tion of size that bounds the bit size required to represent
ideals and field elements. An ideal I ⊆ OK is given by the
matrix MI ∈ Zd×d of its basis expressed in an integral ba-
sis ω1, · · · , ωd of OK . If the matrix is in Hermite Normal
Form, the size required to store it is therefore bounded by
d2 maxi,j

(

log(|MI
i,j |)

)

, where log(x) is the base 2 logarithm

of x. In the meantime, every coefficient of MI is bounded
by |det(MI)| = N (I) (see [3, Prop. 4.7.4]). Thus, we define
the size of an ideal as

S(I) := d2 log(N (I)).

If a = (1/k)I is a fractional ideal of K, where I ⊆ OK and
k ∈ Z>0 is minimal, then the natural generalization of the
notion of size is

S(a) := log(k) + S(I),

where log(k) is the base 2 logarithm of k. We also define
the size of elements of K. If x ∈ OK can be written as
x =

∑

i≤d xiωi, where xi ∈ Z, then we define its size by

S(x) := d log(max
i
|xi|).

It can be generalized to elements y ∈ K by writing y = x/k
where x ∈ OK and k is a minimal positive integer, and by
setting

S(y) := log(k) + S(x).

In the litterature, the size of elements of K is often expressed
with ‖x‖. These two notions are in fact related.

Proposition 1. Let x ∈ OK , the size of x and its T2-

norm satisfy

log (‖x‖) ≤ Õ

(

S(x)

d
+ d2 + log |∆K |

)

S(x) ≤ Õ (d (d+ log (‖x‖))) .



Proof. In appendix

So, for all x ∈ OK , S(x) = O (log (‖x‖)), and log (‖x‖) =
O(S(x)), where the constants are polynomial in d and log |∆K |.

Corollary 1. Let x, y ∈ OK , their size satisfies

S(xy) ≤ Õ
(

d3 + d log |∆K |+ S(x) + S(y)
)

.

5. COST MODEL
We assume that the module M satifies M ⊆ On

K and that
OK is given by an LLL-reduced integral basis ω1, · · · , ωd

such that ω1 = 1. The computation of such a basis can be
done by using [1, Cor. 3] to produce a good integral basis
for OK and then reducing it with the LLL algorithm [7].
In this section, we evaluate the complexity of the basic op-
erations performed during our algorithm. We rely on stan-
dard number theoretic algorithms. We multiply two integers
of bit size h in time M(h) ≤ O (h log(h) log(log(h))) using
Schönhage-Strassen algorithm, while the addition of such in-
tegers is in O(h), their division has complexity bounded by
O(M(h)), and the Euclidiean algorihm that provides their
GCD has complexity O(log(h)M(h)) (see [11]). In the fol-
lowing, we also refer to two standard linear algebra algo-
rithms, namely the HNF computation over the integers due

to Storjohann [15] in complexity
(

nmrω−1 log |A|
)1+o(1)

and
Dixon’s p-adic algorithm for solving linear systems in

(nω log |A|)1+o(1) ,

where A ∈ Zm×n has rank r and has its entries bounded by
|A|, and where 3 ≥ ω ≥ 2 is the exponent of the complexity
of matrix multiplication. We need to perform additions,
multiplications and inversions of elements of K, as well as
of fractional ideals. There is no reference on the complexity
of these operations, although many implementations can be
found. We adress this problem in the rest of this section.
We use Õ to denote the complexity were all the logarithmic
factors are omitted.

Elements x of K are represented as quotients of an element
of OK and a positive denominator. We add them naively
while their multiplication is done by using a precomputed
table of the ωiωj for i, j ≤ d.

Proposition 2. Let α, β ∈ K such that S(α), S(β) ≤ B,

then the following holds:

1. α+ β can be computed in Õ(dB)

2. αβ can be computed in Õ
(

d2(B + d3 + d log |∆K |)
)

3. 1
α

can be computed in Õ
(

dω−1(B + d3 + d log |∆K |)
)

,

Proof. Adding α and β is straightforward. Multiplying
them is done by storing a precomputed multiplication table
for the ωiωj . Finally, inverting α boils down to solving a
linear system in the coefficients of 1

α
. More details are given

in appendix.

Ideals of OK are given by their HNF representation with
respect to the integral basis ω1, · · · , ωd of OK . It consists
of the HNF of the matrix representing the d generators of
their Z basis as rows. Operations on this matrix yield the
addition, multiplication and inverse of an integral ideal. The
corresponding operations on fractional ideals are trivialy de-
duced by taking care of the denominator.

Proposition 3. Let a and b be fractional ideals of K
such that S(a), S(b) ≤ B, then the following holds:

1. a+ b can be computed in Õ(dω+1B),

2. ab can be computed in Õ(d3(d4 + d2 log |∆K |+B)),

3. 1/a can be computed in Õ
(

d2ω(d4 + d2 log |∆K |+B)
)

.

Proof. The addition of integral ideals a and b given by
their HNF matrix A and B is given by the HNF of

(

A
B

)

. To
multiply them, one has to compute the HNF of the matrix
whose d2 rows represent γiδj where (γi)i≤d is an integral
basis for a and (δi)i≤d is an integral basis for b. Finally,
following the approach of [3, 4.8.4], inverting a boils down
to solving a d2 × (d + d2) linear system. More details are
given in appendix.

Note that the reason why the dependency in B in the com-
plexity of the addition of fractional ideals is slightly more
than in the complexity of the multiplication is the way we
deal with the denominators. In the case of integral ideals,
the addition would be in Õ(dω−1B). The last operation
that needs to be performed during our HNF algorithm is
the multiplication between an element of K and a fractional
ideal.

Proposition 4. Let α ∈ K, a fractional ideal a ⊆ K and

B1, B2 such that S(a) ≤ B1 and S(α) ≤ B2, then αa can be

computed in expected time bounded by

Õ

(

dω
(

d3 + d log |∆K |+ B1

d
+B2

))

.

Proof. If γ1, · · · , γd is an integral basis for a ⊆ OK , then
(αγi)i≤d is one for (α)a. The HNF of the matrix representing
these elements leads to the desired result. More details are
given in appendix.

6. THE NORMALIZATION
The normalization is the key difference between our ap-
proach and the one of Cohen [2, 1.5]. It is the strategy
that prevents the coefficient swell by calculating a pseudo-
basis for which the ideals are integral with size bounded by
the field’s invariants. Given a one-dimensional OK -module
aA ⊆ On

K where a is a fractional ideal of K, and A ∈ Kn, we
find b ∈ K such that the size taken to represent our mod-
ule as (ba)(A/b) is reasonably bounded. Indeed, any non
trivial module can be represented by elements of arbitrary
large size, which would cause a significant slow-down in our
algorithm.



The first step to our normalization is to make sure that a

is integral. This allows us to bound the denominator of the
coefficients of the matrix when manipulating its rows during
the HNF algorithm. If k ∈ Z is the denominator of a, then
replacing a by ka and A by A/k increases the size needed to
represent our module via the growth of all the denominators
of the coefficients of A ∈ Kn. Thus, after this operation, the
size of each coefficient ai of A is bounded by S(ai) + S(a).

We can now assume that our one-dimensional module is of
the form aA where a ⊆ OK and A ∈ Kn at the price of a
slight growth of its size. The next step of normalization is
to express our module as a′A′ where A′ ∈ Kn and a′ ⊆ OK

such that N (a′) only depends on invariants of the field. To
do this, we invert a and write it as

a
−1 =

1

k
b,

where k ∈ Z>0 and b ⊆ OK . As N (a) ∈ a, we have
N (a)a−1 ⊆ OK and thus k ≤ N (a). Therefore,

N (b) ≤ N (k)

N (a)
≤ kd

N (a)
≤ N (a)d−1.

Then we use the LLL algorithm to find an element α ∈ b

such that

‖α‖ ≤ d1/22d/2|∆K |1/2dN (b)1/d.

Our reduced ideal is

a
′ :=

(α

k

)

a ⊆ a
−1

a = OK .

The integrality of a′ comes from the definition of b−1 and
the fact that α ∈ b. From the arithmetic-geometric mean,

we know that N (α) ≤ ‖α‖d

dd
, therefore

N (α) ≤ 2d
2/2

√

|∆K |N (b),

and the norm of the reduced ideal can be bounded byN (a′) ≤
2d

2/2
√

|∆K |. On the other hand, we set A′ := (k/α)A,
which induces a growth of the coefficients ai of A. Indeed,
each ai is multiplied by (k/α).

Proposition 5. The size of the normalized module a′A′

of aA ⊆ Kn satisfies

S(a′
i) ≤ Õ

(

d3 + d log |∆K |+ S(a) + S(ai)
)

S(a′) ≤ Õ
(

d3 + d log |∆K |
)

Proof. From Corollary 1 we know that

S

(

aik

α

)

≤ Õ

(

d3 + d log |∆K |+ S(a)

d
+ S(ai) + S

(

1

α

))

In addition, if 1
α
= x

k′
where x ∈ OK and k′ ∈ Z>0, then

S

(

1

α

)

≤ Õ
(

log(k′) + d(d+ log ‖x‖)
)

.

On the one hand, we have

k′ ≤ N (α) ≤ 2d
2/2

√

|∆K |N (a)d−1,

and on the other hand, we need to bound ‖x‖. We notice
that since N (α) ∈ Q, ∀j ≤ d, N (α) = αβ = σj(αβ). We
also know that ∀j, |σj(α)| ≤ ‖α‖. Therefore,

∀j ≤ d, |σj(x)| = N (α)

|σj(α)| =
∏

i6=j

|σi(α)| ≤ ‖α‖d−1.

Therefore ‖x‖ ≤
√
d‖α‖d−1, and thus

S

(

1

α

)

≤ Õ
(

d3 + d log |∆K |+ S(a)
)

.

Our normalization, summarized in Algorithm 1, was per-
formed at the price of a reasonable growth in the size of the
object we manipulate. Let us now evaluate its complexity.

Algorithm 1 Normalization of a one-dimensional module

Input: A ∈ Kn, fractional ideal a of K.
Output: A′ ∈ Kn, a′ ⊆ OK such that N (a′) ≤

2d
2/2

√

|∆K | and aA = a′A′.
1: a← k0a, A← A/k0 where k0 is the denominator of a.
2: b← ka−1 where k is the denominator of a−1.
3: Let α be the first element of an LLL-reduced basis of b.

4: a′ ←
(

α
k

)

a, A′ ←
(

k
α

)

A.
5: return a′, A′.

Proposition 6. Let B1, B2 such that S(a) ≤ B1 and

∀i, S(ai) ≤ B2, then the complexity of Algorithm 1 is bounded

by

Õ
(

nd2(d3 +B1 +B2 + d log |∆K |)
)

.

Proof. The inversion of a is performed in time

Õ
(

d2ω(d4 + d2 log |∆K |+B1)
)

,

by using Proposition 3. Then, the LLL-reduction of the basis
of b is done by the L2 algorithm of Stehlé and Nguyen [12]
in expected time bounded by

Õ

(

d3
(

d+
S(b)

d2

)

S(b)

d2
d

)

≤ Õ
(

d2S(a)(d2 + S(a))
)

.

Then, computing (α/k)a is the multiplication of the ideal a
by the element α/k which satisfies

S(α/k) ≤ Õ
(

d2 + log |∆K |+ S(a)/d
)

.

This takes Õ
(

dω−1(S(a) + d4 + d2 log |∆K |)
)

. Finally, com-

puting k(1/α)A consists of inverting α with S(α) ≤ Õ(d3 +
log |∆K |+B1/d), which takes

Õ
(

dω−1(d3 +B1/d+ d log |∆K |)
)

,

and performing n + 1 multiplications between elements of
size bounded by Õ(d3+B1+B2+d log |∆K |), which is done
in time

Õ
(

nd2(d3 +B1 +B2 + d log |∆K |)
)

.

The result follows from the combination of the above ex-
pected times and from the fact that 2 ≤ ω ≤ 3.



7. REDUCTION MODULO A FRACTIONAL
IDEAL

To achieve a polynomial complexity for our HNF algorithm,
we reduce some elements of K modulo ideals whose norm
can be reasonably bounded. We show in this section how to
bound the norm of a reduced element with respect to the
norm of the ideal and invariants of K. Let a be a fractional
ideal of K, and x ∈ K. Our goal is to find x ∈ K such that
‖x‖ is bounded, and that x− x ∈ a.

The reduction algorithm consists of finding an LLL-reduced
basis r1, · · · , rd of a and to decompose

x =
∑

i≤d

xiri.

Then, we define

x := x−
∑

i≤d

⌊xi⌉ri.

Proposition 7. Let x ∈ K and a be a fractional ideal of

K, then Algorithm 2 returns x such that x− x ∈ a and

‖x‖ ≤ d3/22d/2N (a)1/d
√

|∆K |.

Proof. In appendix

Algorithm 2 Reduction modulo a fractional ideal

Input: α ∈ K, fractional ideal a of K.
Output: α ∈ K such that α − α ∈ a and ‖α‖ ≤

d3/22d/2N (a)1/d
√

|∆K |.
1: if ‖α‖ ≤ d3/22d/2N (a)1/d

√

|∆K | or α = 1 then

2: return α.
3: else

4: Compute an LLL-reduced basis (ri)i≤d of a.
5: Decompose α =

∑

i≤d xiri.

6: α← α−∑

i≤d⌊xi⌉ri.
7: return α.
8: end if

Proposition 8. Let B1, B2 such that S(a) ≤ B1 and

S(α) ≤ B2, then the complexity of Algorithm 2 is bounded

by

Õ
(

B1(d
3 +B1) + dω−1B2 + dω+2

)

Proof. To compute the LLL-reduced basis of a, we LLL-
reduce the integral ideal ka where k ∈ Z>0 is the denomi-
nator of a. Then, we express x with respect to the basis of
ka where x ∈ OK satifies α = x/a for a ∈ Z>0. Then we
divide by the respective denominator at the extra cost of d
multiplications.

Using the L2 algorithm of Stehlé and Nguyen [12] yields the
reduced basis of ka in expected time bounded by

Õ

(

d3
(

d+
S(a)

d2

)

S(a)

d2
d

)

≤ Õ
(

S(a)(d3 + S(a))
)

.

Then, expressing x with respect to the reduced basis of ka
costs

Õ

(

dω
(

S(a)

d2
+ d log |∆K |+ d2 +

S(x)

d

))

.

Finally, the subtraction and the division by the denomina-
tors are in

Õ

(

d
S(α)

d

)

.

8. MODULAR HNF ALGORITHM
Let M ⊆ On

K be an OK -module. We use a variant of the
modular version of [2, Alg. 1.4.7] which ensures that the cur-
rent pseudo-basis [ai, Ai]i≤n of the module satisfies a ⊆ OK

at every step of the algorithm. This extra feature allows
us to bound the denominator of coefficients of the matrix
whose rows we manipulate. Algorithm 3 computes the HNF
modulo the determinantal ideal g, and Algorithm 4 recovers
an actual HNF for M . In this section, we discuss the differ-
ences between Algorithms 3 and 4 and their equivalent in [2,
1.4].

After the original normalization, all the ideals are integral.
As M ⊆ On

K , we immediatly deduce that the ideal d created
at Step 6 of Algorithm 3 is integral as well. In addition,
from the definition of the inverse of an ideal we also have
that

bi,ibibi,jbj
bi,jbj + bi,ibi

⊆ OK ,

which allows us to conclude that the update of (bi, bj) per-
formed at Step 9 of Algorithm 3 preserves the fact that our
ideals are integral.

Algorithm 3 HNF of a full-rank square pseudo-matrix
modulo g

Input: A ∈ Kn×n, a1, · · · , an , g.
Output: pseudo-HNF B, b1, · · · , bn modulo g.
1: B ← A, bi ← ai, j ← n.
2: Normalize [(Bi), (bi)]i≤n with Algorithm 1
3: while j ≥ 1 do

4: i← j − 1.
5: while i ≥ 1 do

6: d← bi,jbi + bj,jbj
7: Find u ∈ bid

−1 and v ∈ bjd
−1 such that bi,ju +

bj,jv = 1 with [2, Th. 1.3.3].
8: (Bi, Bj)← (bj,jBi − bi,jBj , uBi + vBj).
9: (bi, bj)← (bi,jbibj,jbjd

−1, d).
10: Normalize bi, Bi with Algorithm 1.
11: Reduce Bi modulo gb−1

i and Bj modulo gb−1
j with

Algorithm 2.
12: i← i− 1.
13: end while

14: j ← j − 1.
15: end while

16: return (bi)i≤n, B.

The normalization and reduction at Step 10-11 allow us to
keep the size of the Bi and of the bi reasonably bounded by
invariants of K and the dimension of the module. By doing
so, we give away some information about the module M .



However, algorithm 4 allows us to recover M , as we state in
Proposition 9.

Proposition 9. The OK-module defined by the pseudo-

basis [(Wi), (ci)] obtained by applying Algorithm 4 to the

HNF of M modulo g(M) satisfies

c1W1 + · · ·+ cnWn = M.

Proof. The proof of this statement essentially follows
its equivalent for matrices over the integers. It consists of
showing that W :=

∑

i ci and M :=
∑

i aiAi have the same
determinantal ideal and that W ⊆ A, and then showing that
this implies that W = M . A more complete proof is given
in appendix.

Algorithm 4 Eucledian reconstruction of the HNF

Input: B ∈ Kn×n, b1, · · · , bn output of Algorithm 3 mod-
ulo g for M ⊆ On

K .
Output: An HNF W ,c1, · · · , cn for M .
1: j ← n , gj ← g.
2: while j ≥ 1 do

3: cj ← bj + gj .
4: Find u ∈ bjd

−1 and v ∈ gc−1
j such that u+ v = 1.

5: Wj ← uBj mod gc−1
j .

6: gj ← gjc
−1
j .

7: j ← j − 1.
8: end while

9: return W, (ci)i≤n.

9. COMPLEXITY OF THE MODULAR HNF
Let us assume that we are able to compute the determinan-
tal ideal g of our module M in polynomial time with respect
to the bit size of the invariants of the field and of S(g). We
discuss the computation of g in Section 10. In this section,
we show that Algorithm 3 and Algorithm 4 are polynomial
wih respect to the same parameters. This result is analo-
gous to the case of integers matrices. Indeed, the only thing
we need to verify is that the size of the elements remains
reasonably bounded during the algorithm.

In Algorithm 3, the coefficient explosion is prevented by the
modular reduction of Step 11. It ensures that

∀i1, i2 < j, ‖bi1,i2‖ ≤ d3/22d/2N (gb−1
i1

)1/d
√

|∆K |.
This is not enough to prevent the explosion since bi1,i2 might
not be integral. Therefore, there is a minimal k ∈ Z>0

such that kbi1,i2 ∈ OK , which we need to bound to en-
sure that S(bi1,i2) remains bounded as well. We know that
bi,jbi ⊆ OK , and that bi is integral. Thus, N (k) | N (bi1),
which in turns implies that k ≤ N (bi1). As on the other
hand, the normalization of Step 10 ensures that N (bi1) ≤
2d

2/2
√

|∆K |, we conclude that after Step 11,

S(bi1,i2) ≤ Õ

(

d2 + d log |∆K |+ S(g)

d2

)

.

In Algorithm 3, we last manipulateBj and bj when the index
j is the pivot. In that case, we cannot use the normalization

to bound the size since we require that bj,j = 1. However
we reduce Bj modulo gbj , which means that

∀i ≤ j, ‖bi,j‖ ≤ d3/22d/2N (gb−1
i )1/d

√

|∆K |.
In addition, the arithmetic-geometric tells us that ‖bj,j‖ ≥√
dN (bi,j)

1/d, which in turn implies that

∀i ≤ j, N (bi,jbi) ≤ dd2d
2/2N (g)d|∆K |d/2. (1)

As we know that

N (bi,jbi + bj,jbj) ≤ max (N (bi,jbi),N (bj,jbj)) ,

we therefore know that after Step 9

N (bj) ≤ dd2d
2/2N (g)d|∆K |d/2,

which allows us to bound the size of the denominators in the
j-th row the same way we did for the rows of index i1 < j:

∀i ≤ j, S(bi,j) ≤ Õ

(

d2 + d log |∆K |+ S(g)

d2

)

.

Proposition 10. The complexity of Algorithm 3 is in

Õ
(

n3d2
(

d3 + d2 log |∆K |+ S(g)
)2
)

.

Proof. Steps 6 to 11 of Algorithm 3 are repeated O(n2)
times. Let us analyze their complexity. First, at Step 6 we
have

S(bi,j) ≤ Õ

(

d3 + log |∆K |+ S(g)

d2

)

(2)

S(bi) ≤ Õ(d3 + log |∆K |) (3)

so from Proposition 4, computing bi,jbi takes

Õ
(

dω−2(d5 + d3 log |∆K |+ S(g))
)

.

Then, from Proposition 3 and (1),

S(bi,jbi) ≤ Õ
(

d4 + dS(g) + d3 log |∆K |
)

,

and computing d costs

Õ
(

dω+2(d3 + d2 log |∆K |+ S(g))
)

.

As S(d) ≤ S(bi,jbi), computing d−1 takes

Õ
(

d2ω+1
(

d3 + d2 log |∆K |+ S(g)
))

.

From [3, 4.8.4], this is done by solving a linear system on a
matrix D satisfying

log |D| ≤ Õ

(

d2 + log |∆K |+ S(g)

d2

)

,

and the coefficients of the HNFmatrix of d are those of a ma-
trix M satisfying log |det(M)| ≤ Õ

(

d2 log |D|
)

. Therefore,
we have

S(d−1) ≤ d2 log | det(M)| ≤ Õ
(

d2
(

d4 + d2 log |∆K |+ S(g)
))

.

As S(bi), S(bj) ≤ Õ(d3 + log |∆K |), computing bid
−1 and

bjd
−1 takes

Õ
(

d5
(

d4 + d2 log |∆K |+ S(g)
))

.

Then, from [2, Th. 1.3.3], computing u and v is done by
finding u′ ∈ bi,jbid

−1 and v′ ∈ bj,jbjd
−1 such that u′ + v′ =



1 and returning u := u′/bi,j and v := v′/bj,j . Let Ii :=
bi,jbid

−1 ⊆ OK . Then, from [2, Prop. 1.3.1] computing
u′, v′ is done at the cost of an HNF computation of a 2d× d
matrix whose entries have their size bounded by log(N (Ij)).
This cost is in

Õ
(

dω(d3 + d2 log |∆K |+ S(g))
)

.

In addition, S(u′), S(v′) ≤ Õ(d4 + d3 log |∆K | + dS(g)).
Then, by using the same methdods as in the proof of Propo-

sition 5, we know that S
(

1
bi,j

)

≤ Õ
(

d3 + S(g)
d

+ d2 log |∆K |
)

while Proposition 2 ensures us that inverting bi,j is done in

Õ

(

dω−1

(

d3 + d log |∆K |+ S(g)

d2

))

.

Then, calculating u′/bi,j and v′/bj,j is done in time bounded
by

Õ
(

d2
(

d4 + d3 log |∆|+ dS(g)
))

,

and by Corollary 1, we know that

S(u), S(v) ≤ Õ
(

d4 + d3 log |∆K |+ dS(g)
)

.

Then, from Proposition 2 and (2), the expected time for
Step 8 is bounded by

Õ
(

nd2(d4 + d3 log |∆K |+ dS(g))
)

.

In addition, after Step 8, we have

S(bi,j) ≤ Õ
(

d4 + d3 log |∆K |+ dS(g)
)

.

Then, from Proposition 3 and the bounds on S(bi,jbi) and
S(d−1) computed above, Step 9 takes

Õ
(

d5
(

d4 + d2 log |∆K |+ S(g)
))

.

By using Proposition 6, we bound the time taken by Step 10
by

Õ
(

nd3(d3 + d2 log |∆K |+ S(g))
)

,

Finally, from the bound on S(bi,j) after Step 8 and Propo-
sition 8, Step 11 takes

Õ
(

nd2
(

d3 + d2 log |∆K |+ S(g)
)2
)

.

The Euclidian reconstruction of Algorithm 4 can be seen as
another pivot operation between the two one-dimensional
OK -modules bjBj and gjej for each j ≤ n. We can therefore
bound the entries of W by the same method as for Step 6-11
of Algorithm 3, we the extra observation

N (gj) ≤ N (g).

Therefore, we showed that we could bound the size of the ob-
jects that are manipulated throughout the algorithm by val-
ues that are polynomial in terms of n, d, S(g) and log(|∆K |),
and that the complexity of the HNF algorithm was polyno-
mial in these parameters.

10. COMPUTING THE MODULUS
Let us assume that A ∈ On×n

K . If it is not the case, then
we need to multiply by the common denominator k of the
entries of A and return det(kA)/kn. In this section, we de-
scribe how to compute g in polynomial time with respect

to n, d, log |∆K | and the size of the entries of A. The idea
is to compute det(A) mod (p) for a sufficiently large prime
number p. In practice, one might prefer to compute det(A)
mod (pi) for several prime numbers p1, · · · , pl and recom-
bine the values via the chinese remainder theorem, but for
the sake of simplicity, we only describe that procedure for a
single prime. Once det(A) is computed in polynomial time,
we return

g = det(A) · a1 · · · an.

The first step consists of evaluating how large p should be
to ensure that we recover det(A) uniquely. As pω1, · · · , pωd

is an integral basis for (p), it suffices that p ≥ maxi |ai|
where det(A) =

∑

i aiωi. As maxi |ai| ≤ 23d/2‖det(A)‖,
it suffices to bound ‖det(A)‖. We first compute an upper
bound on |σ(det(A))| for the d complex embeddings σ of
K via Hadamard’s inequality and then we deduce a bound
on ‖det(A)‖. Let σ : K → C, we know from Hadamard’s
inequality that

|σ(det(A))| ≤ Bnnn/2,

where B is a bound on σ(ai,j). Such a bound can be derived
from the size of the coefficient of A by using

∀x, ∀i |σi(x)| ≤
(

max
j
|xj |

)

d3/22d
2/2

√

|∆K |.

This way, we see that B := 2maxi,j(S(ai,j))d3/22d
2/2

√

|∆K |
suffices. Then, our bound on ‖det(A)‖ is simply

‖det(A)‖ ≤ √n2maxi,j(S(ai,j))d3/22d
2/2

√

|∆K |.

Algorithm 5 Computation of det(A)

Input: A ∈ On×n
K , B > maxi,j (S(ai,j))

Output: det(A).

1: Let p ≥ √n2Bd3/22d
2/2

√

|∆K | be a prime.
2: for pi | (p) do
3: Compute det(A) mod pi.
4: end for

5: Recover det(A) mod (p) via successive applications of
Algorithm 6

6: return det(A).

To reconstruct det(A) mod (p) from det(A) mod ai for i ≤
d, let us consider the simpler case of the reconstruction mod-
ulo two coprime ideals a, b of OK . Let Ma and Mb be the
matrices representing the Z basis of a and b in the integral
basis (ωi)i≤d of OK , and let x, y,w ∈ OK such that

x = y mod a

x = w mod b.

We wish to compute z ∈ OK such that x = z mod ab. As
in [2, Prop. 1.3.1], we can derive a ∈ a, b ∈ b such that

a + b = 1 from the HNF of
(

Ma

Mb

)

. Then, a solution to our

CRT recomposition is given by

z := wa+ yb.



Algorithm 6 CRT recomposition

Input: a, b ⊆ OK , x, y, w ∈ OK such that x = y mod a and
x = w mod b.

Output: z ∈ OK such that x = z mod ab.
1: Compute a ∈ a, b ∈ b such that a+ b = 1.
2: return z.

Proposition 11. Let B > maxi,j (S(ai,j)), then the com-

plexity of Algorithm 5 is bounded by

Õ
(

n3d7(d2 +B + log |∆K |)2
)

.

Proof. For each pi, the computation of det(A) mod pi
consists of n3 multiplications of reduced elements modulo pi
followed by a reduction modulo pi. Given our choice of p,
we have

logN (pi) ≤ Õ
(

d(B + d2 + log |∆K |)
)

.

Therefore, the size of the elements x ∈ OK involved in these
multiplications satisfies

S(x) ≤ Õ
(

d2(d2 + log |∆K |+B)
)

.

The cost of the multiplications is in

Õ
(

d4(d2 +B + log |∆K |)
)

,

while the mdular reductions cost

Õ
(

d6(d2 +B + log |∆K |)2
)

.

The time to reconstruct det(A) mod (p) corresponds to the
computation of n2 Hermite forms of d2 × d integer matrices
M such that log |M | ≤ log(N (pi)). This takes

Õ
(

n2dω+3(d2 +B + log |∆K |)2
)

.

11. CONCLUSION
We described a polynomial time algorithm for computing
the HNF basis of an OK -module. Our strategy relies on the
one of Cohen [2, 1.4] who had conjectured that his modular
algorithm was polynomial. The crucial difference between
our algorithm and the one of [2, 1.4] is the normalization
which allows us to prove the complexity to be polynomial.
Without it, we cannot bound the denominator of the coef-
ficients of the matrix when we recombine rows, even if they
are reduced modulo the determinantal ideal. We provided a
rigorous proof of the complexity of our method with respect
to the dimension of the module, the size of the input and
the invariants of the field. Our algorithm is the first polyno-
mial time method for computing the HNF of an OK -module.
This result is significant since other applications rely on the
possibility of computing the HNF of an OK -module in poly-
nomial time. In particular, Fieker and Stehlé [5] made this
assumption in the analysis of their LLL algorithms for OK-
modules. Our result has natural ramifications in cryptogra-
phy through the LLL algorithm of Fieker and Stehlé [5], but
it can also be used for list-decoding number field codes.
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[11] N. Möller. On schÃűnhage’s algorithm and
subquadratic integer gcd computation. Mathematics of

Computation, 77:589–607, 2008.

[12] P. Q. Nguyen and D. Stehlé. An lll algorithm with
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APPENDIX
A. DETAILED PROOFS OF STATEMENTS
A.1 notion of size

Proposition 1. Let x ∈ OK , the size of x and its T2-

norm satisfy

log (‖x‖) ≤ Õ

(

S(x)

d
+ d2 + log |∆K |

)

S(x) ≤ Õ (d (d+ log (‖x‖))) .

Proof. Let us show how S(x) and log(‖x‖) are related.
First, we can assume [5, Lem. 1] that we choose an LLL-
reduced integral basis ω1, · · · , ωd of OK satisfying

max
i
‖ωi‖ ≤

√
d2d

2/2
√

|∆K |.

Then, we have

∀i ≤ d, |x|i = |σi(x)| =

∣

∣

∣

∣

∣

∣

∑

j≤d

|xj |σi(ωj)

∣

∣

∣

∣

∣

∣

≤ d
(

max
i
|xi|

)

‖ωj‖

≤
(

max
i
|xi|

)

d3/22d
2/2

√

|∆K |.

Therefore, log (‖x‖) ≤ S(x) + d log
(

d3/22d
2/2

√

|∆K |
)

. On

the other hand, we know from [5, Lem. 2] that for our choice
of an integral basis of OK , we have

∀x ∈ OK , S(x) ≤ d log
(

23d/2‖x‖
)

.

A.2 Cost model
Proposition 2. Let α, β ∈ K such that S(α), S(β) ≤ B,

then the following holds:

1. α+ β can be computed in Õ(dB)

2. αβ can be computed in Õ
(

d2(B + d3 + d log |∆K |)
)

3. 1
α

can be computed in Õ
(

dω−1(B + d3 + d log |∆K |)
)

,

where Õ denotes the complexity whithout the logarithmic fac-

tors.

Proof. Let x, y ∈ OK and a, b ∈ Z>0 such that α = x/a
and β = y/b. The first step of computing α+ β consists of
reducing them to the same denominator. This takes a time
bounded by Õ(dB). Then the addition of the numerators

takes Õ(dB), as well as and the simplification by the GCD
of the denominator and the d coefficients.

For i, j, k ≤ d, let a
(k)
i,j be such that ωiωj =

∑

k≤d a
(k)
i,j ωk.

From [5, Lem. 1], we know that ∀i, ‖ωi‖ ≤
√
d2d

2/2
√

|∆K |,
and thus

∀i, j‖ωiωj‖ ≤ ‖ωi‖‖ωj‖ ≤ d2d
2 |∆K |.

Therefore, from Proposition 1, we have ∀i, j, k, log
(

|a(k)
i,j |

)

≤
Õ(d2+log |∆K |). Then, if x =

∑

i≤d biωi and y =
∑

j≤d cjωj ,

we first need to compute bicj for every i, j ≤ d, which takes

time d2M(B/d). Then, we compute (bicj)a
(k)
i,j for i, j, k ≤ d,

which takes Õ(d3M(2B/d + d2 + log |∆K |). Then for each

k ≤ d, we compute
∑

i,j bicja
(k)
i,j , which is in Õ(d(B/d+d2+

log |∆K |)). Finally, the multiplication of the denominators
is in M(B), and the simplification of the numerator and

denominator takes Õ(dM(B/d+ d2 + log |∆K |)).

To invert x =
∑

i biωi, we first define A := (dj,k)j,k≤d by

dj,k :=
∑

i bia
(k)
i,j , and notice that

∀i, xωi =
∑

i

bi





∑

k≤d

a
(k)
i,j ωk



 =
∑

k≤d

dj,kωk.

Inverting x boils down to finding x1, · · · , xd ∈ Q such that
∑

i xxiωi = 1. It can be achieved by solving

XA = (1, 0, · · · , 0).
We derive the complexity of this step by noticing that log |A| ≤
2B/d+d2+3d/2d|∆K |. From Hadamard’s inequality, we know
that the numerator and the denominator of xi are bounded
by

dd/2|A|d ≤ 2d
3+3d2/2+Bd3d/2|∆K |d.

Multiplying all numerators by a where α = x/a costs

Õ
(

dM(d3 +B + d log(|∆K |)
)

,

while reducing the axi to the same denominator and simpli-
fying the expression can be done in

Õ
(

d(d3 +B + d log(|∆K |))
)

.

As ω ≥ 2, the complexity of the inversion is in fact domi-
nated by the resolution of the linear system.

Proposition 3. Let a and b be fractional ideals of K
such that S(a), S(b) ≤ B, then the following holds:

1. a+ b can be computed in Õ(dω+1B),

2. ab can be computed in Õ(d3(d4 + d2 log |∆K |+B)),

3. 1/a can be computed in Õ
(

d2ω(d4 + d2 log |∆K |+B)
)

.

Proof. Let A,C ∈ Zd×d in HNF form and a, c ∈ Z>0

such that a = 1
a

(

∑

i≤d ZAi

)

and b = 1
c

(

∑

i≤d ZCi

)

, where

Ai denotes the i-th row of A. Adding a and b is done by
computing the HNF of

(

cA
aC

)

and reducing the denominator.
The complexity is bounded by the one of the HNF which is
in Õ(dω+1B) since log |cA|, log |aC| ≤ B +B/d2.

Let γ1, · · · , γd and δ1, · · · , δd be integral elements such that

a =
1

a
(Zγ1 + · · ·+ Zγd)

b =
1

b
(Zδ1 + · · ·+ Zδd)

for a, b ∈ Z>0. We first compute γiδj , which takes

Õ
(

d3(S(a) + d4 + d2 log |∆K |)
)

.



Their size satisfies S(γiγj) ≤ Õ
(

d3 + d log |∆K |+ S(a)
d

)

.

Then, we compute the HNF basis of the Z-module gener-
ated by the γiδj , which costs

Õ
(

dω(d4 + d2 log |∆K |+ S(a))
)

,

and we finally perform d2 gcd reduction involving the prod-
uct of the denominators which is bounded by Õ(B).

Finally, we know from [3, 4.8.4] that finding the inverse of
a consists of calculating a basis of the nullspace of a matrix

D ∈ Z(d2+d)×d2 satisfying log |D| ≤ Õ(d2+log |∆K |+B/d2),
and returning the HNF of its left d×dminor U . By using [15,

Prop. 6.6], we find such a nullspace M ∈ Zd×d2 satisfying

|M | ≤ d(
√
d|D|)2d in expected time bounded by

Õ
(

d2+2ω log |D|
)

≤ Õ
(

d2ω(d4 + d2 log |∆K |+B)
)

.

The HNF of U has complexity bounded by Õ(dω+1 log |M |) ≤
Õ(d2+ω log |D|).

Proposition 4. Let α ∈ K, a fractional ideal a ⊆ K and

B1, B2 such that S(a) ≤ B1 and S(α) ≤ B2, then αa can be

computed in expected time bounded by

Õ

(

dω
(

d3 + d log |∆K |+ B1

d
+B2

))

.

Proof. Let x ∈ OK and a ∈ Z>0 such that α = x/a and
let k ∈ Z>0 and γ1, · · · , γd be an HNF basis for a. Then,
(xγi)i≤d is a Z-basis for (x)a. We perform d multiplications
xγi where S(γi) ≤ B1/d and S(x) ≤ B2. This costs

Õ

(

d3
(

B1

d
+B2 + d3 + d log |∆K |

))

.

Then, from Corollary 1, we know that

S(xγi) ≤ Õ
(

d3 + d log |∆K |+ S(x) + S(γi)
)

.

Therefore, computing the HNF of the resulting matrix of
entries bounded by S(xγi)/d takes

Õ (S(xγi)d
ω) ≤ Õ

(

dω
(

d3 + d log |∆K |+ S(x) + S(γi)
))

.

Finally, we multiply the denominators and reduce them by
successive GCD computations in time Õ(dS(xγi)).

A.3 Reduction modulo a fractional ideal
Proposition 7. Let x ∈ K and a be a fractional ideal of

K, then Algorithm 2 returns x such that x− x ∈ a and

‖x‖ ≤ d3/22d/2N (a)1/d
√

|∆K |.

Proof. The LLL [7] algorithm allows us to compute a
basis (rj)j≤d for I that satisfies

‖rj‖ ≤ 2d/2
√
dN (I)1/d

√

|∆K |.
The same holds for a fractional ideal a of K by multiply-
ing the above relation by the denominator of a. Then, as
⌊xj⌉rj ≤ 1, we see that

‖x‖ ≤ dmax
j
‖rj‖ ≤ d3/22d/2N (a)1/d

√

|∆K |.

A.4 The HNF
At the end of Algorithm 3, we obtain a pseudo-basis [(Bi)i≤n, (bi)i≤n]
such that

∀i ≤ n biBi ⊆M + gei,

where ei := (0, 0, · · · , 1, 0, · · · , 0) is the i-th vector of the
canonical basis of Kn. However, the determinant of i × i
minors is preserved modulo g. Let Mi ⊆ On−i

K be the OK -
module defined by

a1(a1,n−i, · · · , a1,n) + · · ·+ an(an,n−i, · · · , an,n),

and g(Mi) its determinantal ideal. The operations per-
formed at Step 6 to 10 in Algorithm 3 preserve g(Mi) while
after Step 11, our pseudo-basis [(Bi)i≤n, (bi)i≤n] only de-
fines a module M ′ ⊆ On

K satisfying

g(M ′
i) + g = g(Mi) + g.

This property is the equivalent of the integer case when the
HNF is taken modulo a multiple D of the determinant of
the lattice. To recover the ideals ci of a pseudo-HNF of M ,
we first notice that

∀i, g(M ′
i) + g = g(Mi) + g = cn−i · · · cn + g

= cn−i · · · cn + c1 · · · cn
= cn−i · · · cn.

On the other hand, g(M ′
i) + g = bn−i · · · bn + g. Thus, we

have

∀i, bn−i · · · bn + g = cn−i · · · cn,
which allows us to recursively recover the ci from the (bj)j≥i

and g. Indeed, as in the integer case, it boils down to taking

ci =
g

∏

j>i cj
+ bi.

To do so, we keep track of gi := g∏
j>i cj

throughout Algo-

rithm 4 that reconstructs the actual pseudo-HNF from its
modular version given by Algorithm 3. At each step we set

ci ← bi + gi.

This replacement of the ideals in the pseudo-basis defining
our module impacts the corresponding vectors in Kn as well.
In particular, we require that the diagonal elements all be
1. Do ensure thus, we find u ∈ bic

−1
i , v ∈ gic

−1
i such that

u+ v = 1 which implies that

ci(uBi + vei) ⊆ biBi + giei,

where the i-th coefficient of uBi + vei ∈ Kn is 1 and the
coefficient of index j > i in uBi + vei are 0. Then we set

Wi ← uBi mod gic
−1
i ,

and observe that
∑

i ciWi ⊆ M . These OK -modules have
the same determinantal ideal, and as in the integer case, we
can prove that it is sufficient to ensure that they are equal.

uBi+vei = Wi+di where the coefficients of di ∈ (gi/ci)
n of

index j > i are 0. The vector di satisfies cidi ⊆ gid
′
i where

d′i ∈ On
K with coefficients j > i equal to 0. This allows us to

state that

ciWi ⊆ biBi + giei + cidi ⊆M + giei + gid
′
i ⊆M + giDi,

where the coefficients of Di ∈ On
K of index j > i equal 0.

We now want to prove that ciWi ⊆M . To do this, we prove
that giDi ⊆M .



Lemma 1. Let M = a1A1+ · · · anAn ∈ On
K , then we have

g(M)On
K ⊆M

Proof. We can prove by induction that if [(Bi), (bi)] is
a pseudo-HNF basis of M , then

∀i, g1 · · · giei ⊆M,

where ei is the i-th vector of the canonical basis of On
K . Our

statement immediatly follows.

We now consider the intersection Ni of our module M ⊆ On
K

with Oi
K . Note that with the previous definitions, we have

in particular M = Ni ⊕Mi.

Lemma 2. Let i ≤ n and D ∈ On
K a vector whose entries

of index j > i are 0. Then we have

giD ⊆M.

Proof. From Lemma 1, we know that giOi
K ⊆ Ni. If

Di ∈ Oi
K is the first i coordinates of D, then giDi ⊆ Ni,

and as the last n− i coordinates of D are 0, we have

giD ⊆M.

The module generated by the pseudo-basis [(Wi), (ci)] com-
puted by Algorithm 4 is a subset of M . We ensured that
its determinantal ideal

∏

i ci equals the determinantal ideal
g of M . Let us prove that it is sufficient to ensure that

c1W1 + · · ·+ cnWn = M.

Lemma 3. Let M =
∑

i≤n aiAi and M ′ =
∑

i≤n biBi

two n-dimensional OK-modules such that M ′ ⊆ M and

g(M ′) = g(M). Then necessarily

M = M ′.

Proof. Let [(Wi), (ci)] be a pseudo-HNF for M , and
[(W ′

i ), (c
′
i)] a pseudo-HNF for M ′. By assumption, we have

∏

i ci =
∏

i c
′
i, and M ′ ⊆ M . As both matrices W and W ′

have a lower triangular shape, it is clear that

∀i,
∑

j≤i

c
′
jW

′
j ⊆

∑

j≤i

cjWj . (4)

As the diagonal coefficients of both W and W ′ are 1, we see
by looking at the inclusion in the coefficient i of (4) that
c′i ⊆ ci. Then as g(M) = g(M ′), we have

∀ici = c
′
i.

Now let us prove by induction that

∀i, ciWi ⊆ c1W
′
1 + · · ·+ ciW

′
i . (5)

This assertion is clear for i = 1 since W1 = W ′
1 = e1. Then,

assuming (5) for 1, · · · , i− 1, we first use the fact that

ciW
′
i ⊆ c1W1 + · · ·+ ciWi.

In other words, ∀c′i ∈ ci, ∃(c1, · · · , ci) ∈ c1 × · · · × ci such
that

c′i(w
′
i,1, · · · , w′

i,i−1, 1) =





∑

1≤j≤i

cjwj,1, · · · , ciwi,i−1 + ci−1, ci



 .

In particular, ci = c′i, which allows us to state that ∀ci ∈ ci,
∃(c1, · · · , ci−1) ∈ c1 × · · · × ci−1 such that

ciwi,i−1 = ci−1 + ciw
′
i,i−1

ciwi,i−2 = ci−2 + ci−1wi−1,i−2 + ciw
′
i,i−2

... =
...

ciwi,1 = c1 + · · ·+ ci−1wi−1,1 + ciw
′
i,1.

This shows that

ciWi ⊆ c1W1 + · · ·+ ci−1Wi−1 + ciW
′
i ,

and since we have ∀j < i, cjWi ⊆
∑

j<i cjW
′
j , we obtain the

desired result.

Lemma 3 is a generalization of the standard result on Z-
modules stating that if L′ ⊆ L and det(L) = det(L′), then
L = L′. Although implied in [2, Chap. 1], Lemma 3 is not
stated, nor proved in the litterature. Yet, it is essential to
ensure the validity of Algorithm 4.

Proposition 9. The OK-module defined by the pseudo-

basis [(Wi), (ci)] obtained by applying lgorithm 4 to the pseudo-

HNF of M modulo g(M) satisfies

c1W1 + · · ·+ cnWn = M.
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