
ar
X

iv
:1

10
4.

49
54

v1
 [

cs
.S

C
]

 2
6

A
pr

 2
01

1

On the Complexity of Solving a Bivariate

Polynomial System

Pavel Emeliyanenko and Michael Sagraloff

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We study the complexity of computing the real solutions of
a bivariate polynomial system using the recently proposed algorithm Bi-

solve [3]. Bisolve is a classical elimination method which first projects
the solutions of a system onto the x- and y-axes and, then, selects the
actual solutions from the so induced candidate set. However, unlike sim-
ilar algorithms, Bisolve requires no genericity assumption on the input
nor it needs any change of the coordinate system. Furthermore, exten-
sive benchmarks from [3] confirm that the algorithm outperforms state
of the art approaches by a large factor. In this work, we show that, for
two polynomials f, g ∈ Z[x, y] of total degree at most n with integer co-
efficients bounded by 2τ , Bisolve computes isolating boxes for all real
solutions of the system f = g = 0 using Õ(n8τ 2) bit operations1, thereby
improving the previous record bound by a factor of at least n2.

1 Introduction

Systems of polynomial equations naturally arise in many fields of science and
engineering. In computational geometry and computer graphics, there is a par-
ticular interest in the study of polynomial systems in two or three variables. For
instance, all existing exact and complete algorithms for computing the topology
or arrangements of algebraic curves [6,13] (and surfaces [4]) are crucially based
on determining the critical points, which are in turn the solutions of a bivariate
polynomial system. In this work, we investigate in the bit complexity analysis
of the recently proposed algorithm Bisolve [3] to isolate the real solutions of a
bivariate polynomial system

f(x, y) =
∑

i,j∈N:i+j≤n

fijx
iyj = 0, g(x, y) =

∑

i,j∈N:i+j≤n

gijx
iyj = 0, (1.1)

where f , g ∈ Z[x, y] are polynomials of total degree at most n and with integer
coefficients bounded by 2τ , τ ∈ N. For short, we will also write that f and g
have magnitude (n, τ). Henceforth, we assume that f and g share no common
non-trivial factor in Z[x, y]\Z which, due to Bézout’s Theorem, is equivalent to
the existence of finitely many (complex) solutions of (1.1). Bisolve computes a
set of disjoint boxes Bk ⊂ R2 such that the union of all Bk contains

VR := {(x, y) ∈ R
2|f(x, y) = g(x, y) = 0},

1
Õ indicates that polylogarithmic factors in τ and n are omitted.

http://arxiv.org/abs/1104.4954v1

the set of all real solutions of (1.1), and each Bk is isolating, that is, it contains
exactly one solution. We show that to achieve the latter task, Bisolve demands
for Õ(n8τ2) bit operations, improving the previous record bound by a factor of
n2 or more (depending on whether τ or n is dominating). Our analysis uses two
recent results on isolating [17] and refining [14] the real roots of a univariate
polynomial. Yet, we remark that the so obtained complexity bound for Bisolve

is not merely due to the improved complexity bounds for the root isolation and
refinement step, but also due to the effectiveness of the novel inclusion predicate
used in the validation step of Bisolve to certify or discard candidate solutions.
We remark that, in all previous algorithms to compute VR, the computation of
the common roots of f(α, y) and g(α, y) was achieved by considering a corre-
sponding signed remainder sequence, with α the projection of a solution in R2

onto the real axis. In practice, the latter computation often turns out to be a
bottleneck of the overall approach. Bisolve does not follow this approach which
has proven to be favorable in practice. Our analysis also shows that the final
validation step is less hard than isolating the roots of the resultant polynomial,
which seems to be the bottleneck. In addition, we would like to emphasize that
Bisolve is not a “galactic” algorithm just designed to achieve good complexity
bounds. In contrast, the high performance of Bisolve in practice is confirmed by
many experiments; we refer to [3] for an extensive comparison of the algorithm
with other state of the art approaches such as Lgp [7] or Maple’s Isolate.

Related work. An early result on the complexity analysis appears in [12], where
the closely related problem of computing the topology of an algebraic curve
is considered. The authors analyze the algorithm Top and derive a complexity
bound of Õ(N14) bit operations, with N = max(n, τ). Another work [8] presents
several methods to solve a bivariate polynomial system. The first method, Grid,
first projects the solutions onto orthogonal axes and, then, matches them by
means of a Sign at procedure which uses evaluation of a signed remainder se-
quence of f and g. The complexity of Grid is bounded by Õ(N14) bit operations,
where the overall cost is dominated by the Sign at operations. The second ap-
proach, M RUR, is based on subresultants and RUR (rational univariate repre-
sentation) techniques and achieves a bit complexity Õ(n10(n2 + τ2)) = Õ(N12).
The third approach, G RUR, achieves the same complexity as M RUR but re-
lies on the computation of the GCD of the square-free parts of f(α, y) and g(α, y).
It should not be revealed that, using the improved complexity bounds for the
univariate root isolation, one may also obtain improvements of the correspond-
ing complexity bounds for M RUR (only in a sheared system) and G RUR.
However, it seems that the so obtained bounds are still weaker than the bound
achieved by Bisolve. Namely, the dependence on n in the final steps of M RUR

and G RUR is considerably larger (i.e., by a factor n2 when n is dominating).
We further remark that the complexity analysis of G RUR is based on the
modular algorithm in [19] whose complexity is only given with respect to aver-
age running time (cf. Section 3.2 in [19]). In his dissertation, M. Kerber describes
randomized algorithms to analyze the topology of a single algebraic curve and
to compute arrangements of such curves. A detailed analysis of the “curve-pair

analysis” which solves the subproblem of finding the solutions of a bivariate
system shows that the corresponding bit complexity is bounded by an expected
number of Õ(n10(n+ τ)2) bit operations; see [13, Section 3.3.4].

Outline. Section 2 introduces some notations which are used throughout the ar-
gument. In Section 3, we briefly review the algorithm Bisolve omitting some
technical details and filtering techniques to keep the presentation simple. The
complexity analysis is given in Section 4. We analyze the three main steps of
the algorithm separately and, then, combine the results yielding the overall com-
plexity. Finally, in Section 5, we give some concluding remarks.

2 Setting

We express the input polynomials f and g in (1.1) as univariate polynomials in
x and y of degrees nx and ny, respectively:

f(x, y) =

nx
∑

i=0

f
(x)
i (y)xi =

ny
∑

i=0

f
(y)
i (x)yi, g(x, y) =

nx
∑

i=0

g
(x)
i (y)xi =

ny
∑

i=0

g
(y)
i (x)yi,

where f
(y)
i , g

(y)
i ∈ Z[x] and f

(x)
i , g

(x)
i ∈ Z[y]. Throughout the paper, it is assumed

that nx, ny ≤ n. We denote the Sylvester’s matrix associated with f and g by

S(y) = S(y)(f, g) whose entries are the coefficients {f (y)
i } and {g(y)i }; see [11,

p. 286] for the definition. The resultant R(y) = res(f, g, y) ∈ Z[x] of f and g
with respect to the variable y is the determinant of S(y). By analogy, R(x) =
res(f, g, x) defines the resultant with respect to the variable x, and S(x)(f, g) is

the associated Sylvester’s matrix with entries {f (x)
i } and {g(x)i }. If this causes

no ambiguity, we also write R omitting the variable index and by R∗ the square-
free part of R. For an interval I = (a, b) ⊂ R, wI := b − a denotes the width,
mI := (a + b)/2 the center and rI := (b − a)/2 the radius of I. A disc in C is
denoted by ∆ = ∆r(m), where m ∈ C defines the center of ∆ and r ∈ R+ its
radius. For a (not necessarily square-free) polynomial F (x) =

∑n
i=0 Fix

i ∈ R[x]
with distinct roots z1 . . . zm ∈ C, the separation σi := σ(zi, F) of a root zi is
defined as the minimal distance of zi to any root zj 6= zi. The root separation
σ(F) of F is defined as the minimum of all σi, and Σ(F) =

∑m
i=1 log σ(zi, F)−1.

We finally denote Γ (F) := maxi |zi| the maximal absolute value of all zi.

3 Review of the algorithm

In this section, we recall the algorithmBisolve to make the paper self-contained;
for further details and filtering techniques used in the actual realization, we re-
fer to [3]. At the highest level, Bisolve comprises three subroutines which we
consider separately.

Project: We begin with projecting the complex solutions of (1.1) onto the x-
and y-axes. In other words, we consider the two sets:

V
(x)
C

:= {x ∈ C|∃y ∈ C ∧ f(x, y) = g(x, y) = 0}
V

(y)
C

:= {y ∈ C|∃x ∈ C ∧ f(x, y) = g(x, y) = 0}

and compute their restrictions V
(x)
R

:= V
(x)
C

∩R and V
(y)
R

:= V
(y)
C

∩R to the real
values. The real solutions VR of (1.1) are then contained in the product

C := V
(x)
R

× V
(y)
R

⊂ R
2, (3.1)

which we denote the set of candidate solutions for (1.1). To obtain the projection

sets V
(x)
R

and V
(y)
R

, we first compute the resultants R(y) and R(x), respectively,
and extract the square-free part R∗ of either polynomial (R = R(y) or R = R(x)

for short). Next, we isolate the real roots αi of R
∗ using RIsolate, a recently

proposed Descartes method [17] mentioned in the introduction. RIsolate is an
exact method which works with approximations of the coefficients of a polyno-
mial and achieves a significantly better bit complexity compared to the classical
Descartes algorithm [2, Remark 10.52]. Moreover, in contrast to asymptotically
fast algorithms such as those proposed by Pan or Schönhage (see [16] for an
overview), RIsolate is practical and easy to implement; see [18] for an imple-
mentation within Mathematica. The isolating intervals I := I(α) returned
by RIsolate satisfy

σ(α,R)/(4 degR∗)2 < wI < 2(degR∗) · σ(α,R), (3.2)

which will be important for us in the context of our complexity analysis. This
concludes the first step of the algorithm.

Separate: In this step, the real roots of R are further separated from the com-
plex ones. For each root α, we refine a corresponding isolating interval I := I(α)
such that the disc ∆8rI (mI) does not contain any root of R except α. RIsolate
returns an interval I which fulfills the inequality in (3.2). Thus, after performing
⌈log(16 deg(R∗))⌉ bisection steps to refine I, the disc ∆8rI (mI) isolates α as well.
Then, we compute

LB(α) := 2−2 degR|R(mI − 2rI)|, (3.3)

which constitutes a lower bound for |R(x)| on the boundary of∆(α) := ∆2rI (mI),
that is, |R(x)| > LB(α) for all x ∈ ∂∆(α); see [3, Thm. 3.2] for a proof. We
remark that in the initial description of the algorithm (as well as in the real-
ization), we consider a different predicate to ensure that ∆8rI (mI) is isolating.
The latter predicate is based on a local Taylor expansion of R∗ at mI , does
not require (3.2) and shows a slightly more adaptive behavior in practice. It is
rather straight forward to prove that also using this method the overall approach
achieves the claimed bit complexity bound. However, for the sake of simplicity,
we decided to exploit the inequality in (3.2) for our complexity analysis.

To sum up, at the end of Separate, for each real root α of R(y) (and β
of R(x)), we have an isolating interval I(α) (and I(β)) and an isolating disc
∆(α) := ∆2rI(α)

(mI(α)) (and ∆(β)). Then, each real solution of system (1.1) is

contained in a polydisc∆(α, β) := ∆(α)×∆(β) ⊂ C2, and each of these polydiscs
contains at most one solution. In addition, for each point (x, y) on the boundary
of a polydisc ∆(α, β), we have |R(y)(x)| > LB(α) or |R(x)(y)| > LB(β).

Validate: The goal of this final stage is to determine all candidates (α, β)
which are actually solutions of (1.1) and to exclude the remaining ones. Again,
to facilitate the complexity analysis, we assume that the actual solutions are
chosen exclusively based on the inclusion test outlined below. We remark that
the efficiency of the actual implementation is further due to a series of filtering
techniques to rapidly exclude the majority of candidates such as tests based on
interval arithmetic or a bitstream Descartes algorithm [10].

In Separate, we have already computed lower bounds LB(α) and LB(β) for
the values of |R(y)| and |R(x)| at the boundaries of ∆(α) and ∆(β), respectively.
We now rewrite R(y) in terms of cofactors u(y) and v(y) (see [11, p. 287]):

R(y)(x) = u(y)(x, y)f(x, y) + v(y)(x, y)g(x, y) (3.4)

where u(y) and v(y) are determinants of “Sylvester-like” matrices U (y) and V (y).
These matrices are obtained from S(y)(f, g) by replacing the last column with
vectors (yny−1 . . . y 1 0 . . . 0)T and (0 . . . 0 yny−1 . . . y 1)T of appropriate size,
respectively. Next, we compute upper bounds UB(α, β, u(y)) and UB(α, β, v(y))
for |u(y)| and |v(y)| on ∆(α, β), respectively. These bounds can be obtained by
bounding the absolute values of the entries in U (y) and V (y) and then applying
Hadamard’s inequality to U (y) and V (y). We remark that the computation of
the latter bounds is done without explicitly computing the cofactors (which are
typically very large expressions). Cofactor polynomials u(x), v(x) and respective
upper bounds UB(α, β, u(x)), UB(α, β, v(x)) are defined in an analogous way for
the resultant polynomial R(x). The inclusion test based on a homotopy argument
is now formulated as follows (see [3, Thm. 4] for a proof):

Theorem 1. If there exists an (x0, y0) ∈ ∆(α, β) with

UB(α, β, u(y)) · |f(x0, y0)|+ UB(α, β, v(y)) · |g(x0, y0)| < LB(α), (3.5)

UB(α, β, u(x)) · |f(x0, y0)|+ UB(α, β, v(x)) · |g(x0, y0)| < LB(β), (3.6)

then ∆(α, β) contains a solution of (1.1) and, thus, f(α, β) = 0.

All candidate solutions (α, β) ∈ C are now treated as follows: Let B(α, β) =
I(α)×I(β) ⊂ R

2 be the corresponding candidate box. Each candidate box is then
refined with the quadratic interval refinement (QIR for short) method from [14]
until either we can ensure that f(α, β) 6= 0 or g(α, β) 6= 0 based on interval arith-
metic on B(α, β) or, for an arbitrary point (x0, y0) ∈ B(α, β), the inequalities
(3.5) and (3.6) are fulfilled. In the latter case, Theorem 1 guarantees that (α, β)
is a solution of (1.1). We refer to Section 4.3 for the details of the evaluation
using interval arithmetic.

4 Complexity analysis

Throughout the analysis, we assume that the multiplication of two integers is
always done in asymptotically fast way. In other words, the bit complexity to
multiply two k-bit integers is assumed to be M(k) = O(k log k log log k) = Õ(k).

4.1 Project

Computing the resultant polynomials R = R(x) (and R = R(y)) using the subre-
sultant PRS algorithm needs Õ(n7(logn+ τ)) bit operations. R has magnitude

(n2,O(n(log n+ τ))), (4.1)

see [13, Thms. 2.4.14-17], where R = Sres0(f, g, y), the 0-th subresultant of f
and g with respect to y. Next, we compute the square-free part R∗ of R. This
can be done with Õ(n5(τ + logn)) bit operations (see [13, Thm. 2.4.21]), and
R∗ is of magnitude

(n2,O(n(n+ τ))). (4.2)

Finally, the real roots of R∗ are isolated using RIsolate as outlined in Section 3.
The complexity of the root isolation is summarized below (see [17, Thm. 18]):

Theorem 2. Let F be a square-free polynomial of magnitude (d, µ). Then, iso-
lating the real roots of F demands for Õ(d(Σ(F)+ d logΓ (F))2) bit operations,
with Σ(F) and Γ (F) as defined in Section 2.

We aim to apply Theorem 2 to F := R∗. Obviously, Γ (R∗) = Γ (R) and Γ (R∗) =
Γ (R), and a bound on Σ(R) is provided by the following theorem:

Theorem 3. For a (not necessarily square-free) polynomial F (x) with integer
coefficients of magnitude (d, µ) and distinct complex roots z1, . . . , zr (r ≤ d), it
holds that Σ(F) = O(dµ log(dµ)).

Proof. The proof essentially follows the same lines as the proof in [17, Ap-
pendix 6.2], with the exception that we use the Davenport-Mahler bound for
non square-free polynomials. We refer to Appendix A for a full argument.

Now, by Theorem 3 and (4.1), it follows that:

Σ(R∗) = O(n2 · n(τ + logn) · log(n3τ)) = Õ(n3τ). (4.3)

Observe that, due to Cauchy’s bound [2, Corollary 10.4], the absolute values of
the roots of R (and R∗) are bounded by a

B = 2O(n(logn+τ)). (4.4)

Hence, from (4.3), (4.4) and Theorem 2, we conclude that the complexity of
isolating the real roots of R∗ is bounded by:

Õ(n2(Σ(R∗) + n2 logB)2) = Õ(n2(n3τ + n3τ)2) = Õ(n8τ2), (4.5)

which determines the complexity of Project.

4.2 Separate

Let α be a real root of one of the resultant polynomials R and I = I(α) a
corresponding isolating interval returned by RIsolate. In our description of
Separate, we have already seen that I = I(α) is refined by means of O(log n)
bisection steps to guarantee that the disc∆8rI (mI) isolates α. The bit complexity
of one bisection step for a polynomial F of magnitude (d, µ) and an interval
of bitsize θ is Õ(d(µ + dθ)) because this is essentially evaluation of F at the
endpoints of I; see [13, Prop. 2.5.1].2 The maximal bitsize of the interval I = I(α)
is essentially determined by the separation of α. Namely, I is refined to a width
larger than σ(α,R)/(1024n6) because we started with an interval of width larger
than σ(α,R)/(16n4) (see (3.2) for a bound on the size of the initial isolating
interval) and then performed less than 32n2 further bisection steps. Hence, we
obtain θ(α) = O(logB + log(1/σ(α,R)) + logn) for the bitsize of I(α), where
B is the root bound for R, see (4.4). It follows that the complexity to refine the
isolating intervals for the real roots z1, . . . , zk of R∗ in Separate is bounded by
((d, µ) = (n2, Õ(n(n+ τ))) a bound on the magnitude of R∗):

k
∑

i=1

Õ(d(µ + dθ(zi))) =

k
∑

i=1

Õ(n5τ − n4 log σ(zi, R)) = Õ(n7τ), (4.6)

where we use that −
∑k

i=1 log σ(zi, R) < Σ(R∗) + n2 log(2B) = Õ(n3τ) because
each root zj of R

∗ not which is not considered in the left sum has separation less

than 2B = Õ(nτ) according to (4.4) and Σ(R∗) = Õ(n3τ) according to (4.3).

4.3 Validate

Estimating lower and upper bounds In the final stage, we have a set of
candidate solutions C and corresponding disjoint polydiscs ∆(α, β) := ∆(α) ×
∆(β) ⊂ C

2. Each of the polydiscs contains at most one solution of (1.1) (namely,
(α, β)). It remains to determine the actual solutions based on the inclusion test
from Theorem 1 and to exclude the other candidates by means of interval arith-
metic. We split the complexity analysis in two parts. In the first part, we derive
a lower bound for the value LB(α) as well as an upper bound for the values
UB(α, β, u(y)) and UB(α, β, v(y)) needed by the inclusion predicate. In the sec-
ond part, we estimate how good each candidate (α, β) needs to be approximated
in order to certify or it as a solution or to discard it.

Estimating the lower bounds. In this section, we derive a lower bound for LB(α)
which is in turn a lower bound for |R(y)| on the boundary of ∆(α); see (3.3) for
the definition of LB(α). By analogy, we obtain a similar bound also for LB(β),
the lower bound for |R(x)| on the boundary of∆(β). Remark that the polynomial
R = R(y) might have multiple roots. The key idea to keep the bounds tight is to
exploit the fact that the separation of a root actually depends on its multiplicity.
We begin with the following auxiliary lemmas.

2 The bitsize of an interval is defined as maximal bitsize of its rational endpoints.

Lemma 1. [1, Thm. AB and Thm. 1] Let F be an integer polynomial of degree
d ≥ 2. Suppose that α is a zero of F (x) of order s and β a zero of F (x) of order
t. If α 6= β and t ≥ s, then

|α− β| ≥ 2−d/t(d+ 1)−d/t−3d/(2st)|F |−2d/(st)
∞ max{1, |α|}max{1, |β|}.

Lemma 2. [5, Lem. A.7]. Let F be a non-constant integer polynomial of degree
d. Let ξ be a complex number and α be the root of F (x) which is closest to ξ (i.e.
|ξ − α| is minimal for all roots α of F). Then, denoting by s the multiplicity of
α as root of F (x), we have:

|ξ − α|s ≤ dd+3d/(2s)|F |2(d/s−1)
∞ |F (ξ)|.

Suppose α = zi is a root with multiplicity mi of R and let I = I(zi) be the
corresponding isolating interval for zi obtained in Separate. In Section 4.2,
we have already shown that rI ≥ σ(α,R)/(1024n6) and, thus, the distance of
z := mI − 2rI to zi is larger than σ(α,R)/(1024n6). Let zj 6= zi be another
root of R closest to zi (i.e., |zi − zj| = σ(zi, R)) with multiplicity mj . Then, by
Lemma 1, it follows, with m = max(mi,mj), that

log |zi − zj| ≥ −n2/m− (n2/m+ 3n2/(2mimj)) log(n
2 + 1)− 2n2/(mimj) log |R|∞

> −16n2 logn/m− n2/(mimj) log |R|∞ = −Õ(n3τ/m),

(4.7)

where we used that log |R|∞ = O(log n · n(logn+ τ)). By the construction of I,
zi is the closest root to z. Hence, Lemma 2 yields

log |R(z)| ≥ mi log |z − zi| − 2(n2/mi − 1) log |R|∞ − 2n2(1 + 3/(2mi)) logn

≥ mi log(|zi − zj|/(1024n6))− (2n2/mi) · log |R|∞ − 5n2 logn.

(4.8)

By combining (4.7) and (4.8), we obtain

logLB(α) > log |R(z)| − 2n2 = −Õ(mi · n3τ/mi + n3τ/mi + n2) = −Õ(n3τ).
(4.9)

In completely analogous manner, we show that logLB(β) > −Õ(n3τ).

Estimating the upper bounds. We now investigate in estimating the upper bounds
UB(α, β, u(y)) and UB(α, β, v(y)) for |u(y)| and |v(y)| on ∆(α, β). In order to do
so, we apply Hadamard’s inequality to the matrices U (y) and V (y), see Section 3.
By analogy, these estimates then also extend to the upper bounds UB(α, β, u(x))
and UB(α, β, v(x)) for |u(x)| and |v(x)| on ∆(α, β).

In the realization, to compute the upper bounds on the cofactors, we first
use interval arithmetic on a box in C2 to estimate the absolute values of respec-
tive matrix entries Uij and Vij on ∆(α, β), and then apply Hadamard’s bound.
In the complexity analysis, we follow a slightly different but even simpler ap-
proach: From the construction of ∆(α, β), the disc ∆(α) has radius less than

σ(α,R(y))/4, and the disc ∆(β) has radius less than σ(β,R(x))/4; see Section 3
for details. Hence, it is clear that both radii are bounded by B = 2O(n(τ+logn),
where B is the upper bound from (4.4) for the modulus of the roots of R(x)

and R(y). It follows that, for each point (x, y) ∈ ∆(α, β), we have |x|, |y| < 2B.

Recall that, the entries of U (y) are the coefficients f
(y)
i (x) and g

(y)
i (x) which are

polynomials of degree nx ≤ n and with integer coefficients of bitsize τ or less.
Thus, for (x, y) ∈ ∆(α, β), we can bound them as follows:

|f (y)
i (x)| ≤

nx
∑

j=0

|f (y)
ij |(2B)j ≤ (nx + 1) · |f (y)

ij |(2B)nx ≤ 2n+1n · τBn,

and a corresponding bound holds for |g(y)i (x)| as well. Hence, it follows that

log |U (y)
ij (x, y)| = O(n logB + τ + n) = O(n2(logn + τ)). Now, by Hadamard’s

inequality |u(y)| = | det(U (y))| <
∏

i‖U
(y)
i ‖2, where ‖U (y)

i ‖2 is the 2-norm of
the i-th row vector of U (y). Since the absolute value of each entry of U (y) is

bounded by 2O(n2(log n+τ)), we have log‖U (y)
i ‖2 = Õ(n2τ). Taking the product

of all bounds on the 2-norms yields log |u(y)| = Õ(n3τ) and, thus,

UB(α, β, u(y)) = Õ(n3τ)). (4.10)

This bound is also valid for UB(α, β, v(y)), UB(α, β, u(x)) and UB(α, β, v(x)).

The inclusion test Let us first assume that a candidate box B := B(α, β) =
I(α) × I(β) ⊂ R2 contains a real solution of (1.1). Using our bounds from (4.9)
and (4.10), the inequalities in (3.5) and (3.6) rewrite as:

|f(x0, y0)|+ |g(x0, y0)| < δ = 2−Õ(n3τ), (4.11)

where δ is a certain threshold |f(x0, y0)|+ |g(x0, y0)| has to undercut. In the case
where B does not contain a real solution of (1.1), Theorem 1 and (4.11) ensure
that, for all (x0, y0) ∈ B(α, β), we have:

|f(x0, y0)|+ |g(x0, y0)| ≥ 2−Õ(n3τ). (4.12)

Now, in order to certify or discard (α, β) as a solution of f = g = 0, we set
ρ := ⌈− log s⌉ that is directly related to the size s of B and evaluate f(α, β) and
g(α, β) by means of interval arithmetic with precision ρ; see [14, Section 4] and
Appendix B for the definition of polynomial interval evaluation with precision ρ.
Obviously, the so obtained intervals B(f(α, β), ρ) and B(g(α, β), ρ) then contain
f(B) and g(B) because each (x0, y0) ∈ B approximates (α, β) to an error 2−ρ or
less. Now, if one of the intervals B(f(α, β), ρ) or B(g(α, β), ρ) does not contain
zero, then (α, β) cannot be solution of (1.1). If, for all (ǫ1, ǫ2) ∈ B(f(α, β), ρ)×
B(g(α, β), ρ), both inequalities UB(α, β, u(y))|ǫ1| + UB(α, β, v(y))|ǫ2| < LB(α)
and UB(α, β, u(x))|ǫ1| + UB(α, β, v(x))|ǫ2| < LB(β) are fulfilled, then (α, β)
must be a solution. In the case where we cannot discard or certify (α, β) as

a solution, we refine B by refining the corresponding isolating intervals I(α)
and I(β) and proceed. According to (4.11) and (4.12), we eventually succeed if
B(f(α, β), ρ) and B(g(α, β), ρ) have width less than some threshold larger than

2−Õ(n3τ). In the following consideration, we will bound the cost for the evalua-
tion of B(f(α, β), ρ) and B(f(α, β), ρ) and for the refinement of B.

Complexity of polynomial evaluation. In the previous section, we have shown
that the candidate boxes B = B(α, β) have to be refined to a size s such
that B(f(α, β), ρ) and B(g(α, β), ρ) have width less than a certain thresh-

old larger than 2−Õ(n3τ), where we consider interval arithmetic with precision
ρ = ⌈− log s⌉. We first estimate the absolute error induced by the interval arith-
metic. Then, we estimate the overall cost for the polynomial evaluations at all
candidate solutions.

Theorem 4. The cost for evaluating B(f(α, β), ρ) and B(g(α, β), ρ) for all can-
didate solutions (α, β) ∈ C using interval arithmetic with precision ρ ∈ N is
bounded by Õ(n5(ρ+ n2τ)) bit operations. Each of the so obtained intervals has
width less than

2−ρ2τBO(n) = 2−ρ+Õ(n2τ).

Proof. Remark that evaluating a polynomial F of degree d at a point x0 using
fixed point arithmetic with precision ρ demands for Õ(d(ρ+ log(max{|x0|, 1})))
bit operations. Since each root α of the resultant polynomial R(y) has modulus

less than B = 2Õ(nτ), we can compute the coefficients fi(α) of f(α, y) (by means
of interval arithmetic with precision ρ) using Õ(n2(ρ+ n logB)) bit operations,
while the resulting intervals contain values of modulus less than 2τBO(n). Thus,
the cost for evaluating all fiber polynomials f(α, y) is bounded by Õ(n4(ρ +
n logB)) because R(y) has at most n2 many roots. By [14, Lem. 3], the absolute
error for each coefficient fi(α) is given by

|fi(α) −B(fi(α), ρ)| ≤ 2−ρ+1(n+ 1)22τBn = 2−ρ2τBO(n). (4.13)

In a second step, we compute B(f(α, β), ρ) for a fixed α. Again, for each β,
we have to perform n multiplications and additions involving numbers of bit
length O(ρ + τ + n logB), hence, the cost for these evaluations is bounded by
Õ(n(ρ+τ+n logB)) bit operations. Summing up over all β above a fixed α yields
Õ(n3(ρ+τ+n logB)) bit operations and, thus, Õ(n5(ρ+τ+n logB)) = Õ(n5(ρ+
n2τ)) constitutes an upper bound on the number of bit operations needed for
all evaluations. The absolute error for each f(α, β) is bounded by 2−ρ2τBO(n)

because each coefficient fi(α) is approximated to an error 2−ρ2τBO(n) and the
absolute value of each β is bounded by B. The corresponding bounds for the
evaluation of B(g(α, β), ρ) follow in completely analogous manner.

Now, according to the above Theorem and our considerations in the previous
section, we must succeed for a precision ρ ≥ ρ0 = Õ(n3τ). Namely, since the

width of the intervals B(f(α, β), ρ) and B(g(α, β), ρ) is bounded by 2−ρ+Õ(n2τ),
it suffices to consider a precision ρ0 = Õ(n3τ) to guarantee that the so obtained

intervals have width less than a threshold that is lower bounded by 2−Õ(n3τ).
Hence, the cost for all polynomial interval evaluations is bounded by

Õ(n5(n3τ + n2τ)) = Õ(n8τ).

Complexity of the root refinement.We have already shown in the previous section
that it suffices to refine each of the candidate boxes B(α, β) = I(α) × I(β)

to a size 2−Õ(n3τ). As mentioned in Section 3, we use the Quadratic interval
refinement (QIR) method to refine the isolating intervals I(α) and I(β) for the
real roots α, β of R(y) and R(x), respectively. Recent work [14] improves on the
asymptotic complexity for this root refinement by considering approximations of
polynomial coefficients to a certain precision. It is shown that, for a square-free
polynomial F with magnitude (d, µ) and root bound Γ , the algorithm refines
isolating intervals for all real roots of F to a width 2−L or less using

Õ(d(d log Γ (F) +Σ(F))(µ + d logΓ (F) +Σ(F)) + d2L) (4.14)

bit operations, see [14, Thm. 22]. We need to refine the real roots of the square-

free part R∗ of R = R(y) to a width bounded by 2−Õ(n3τ). Using the above
result, we can do so with

Õ(n2 · n3τ · (n(n+ τ) + n3τ) + n4 · n3τ) = Õ(n8τ2) (4.15)

bit operations, where we used that Σ(R∗) = Õ(n3τ) (see (4.3)) and all roots
of R(y) have modulus less than B = 2O(n(logn+τ)). Again, the corresponding
bounds for refining the roots of R(x) follow in complete analogous manner.

5 Conclusions

We have derived a bound on the bit complexity of the algorithm Bisolve to
isolate the real solutions of a bivariate polynomial system. To the best of our
knowledge, the derived complexity bound improves considerably upon the best
known complexity bounds to date. Still, we suppose that the derived bounds
are not tight and there is room for improvement. This mainly stems from the
fact that the number of solutions of a bivariate system is in most cases largely
overestimated while, at the same time, this number is intimately bound up with
the root separation and coefficient bitlength of the resultant. We find it, there-
fore, reasonable to invest some research in the theory of sparse resultants where
the geometry of exponent vectors of input polynomials is analyzed to obtain
sharp estimates. A bottleneck in the current analysis is the isolation of the re-
sultant polynomial which is assumed to be a general polynomial of magnitude
(n2, n(τ + logn)). Hence, the question arises whether isolating the roots of a
resultant is possibly easier than of a general polynomial? Finally, it might be
possible to improve the complexity of the validation step by considering asymp-
totically fast algorithms for multipoint polynomial evaluation [15].

References

1. M. Amou and Y. Bugeaud. On integer polynomials with multiple roots. Mathe-

matika, 54(1–2):83–92, 2007.
2. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry, vol-

ume 10 of Alg. and Comp. in Mathematics. Springer, 2nd edition, 2006.
3. E. Berberich, P. Emeliyanenko, and M. Sagraloff. An Elimination Method for Solv-

ing Bivariate Polynomial Systems: Eliminating the Usual Drawbacks. In ALENEX

’11, pages 35–47. SIAM, 2011.
4. E. Berberich, M. Kerber, and M. Sagraloff. An efficient algorithm for the strati-

fication and triangulation of algebraic surfaces. Computational Geometry: Theory

and Applications, 43:257–278, 2010. Special issue on SoCG’08.
5. Y. Bugeaud. Approximation by Algebraic Numbers. Cambridge University Press,

2004.
6. J. Cheng, S. Lazard, L. Penaranda, M. Pouget, F. Rouillier, and E. Tsigaridas.

On the topology of planar algebraic curves. In SCG ’09: Proc. of the 25th Annual

Symposium on Computational Geometry, pages 361–370, New York, NY, USA,
2009. ACM.

7. J.-S. Cheng, X.-S. Gao, and J. Li. Root isolation for bivariate polynomial systems
with local generic position method. In ISSAC ’09, pages 103–110, New York, NY,
USA, 2009. ACM.

8. D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the asymptotic and prac-
tical complexity of solving bivariate systems over the reals. Journal of Symbolic

Computation, 44(7):818–835, 2009.
9. A. Eigenwillig. Real Root Isolation for Exact and Approximate Polynomials Using

Descartes’ Rule of Signs. PhD thesis, Saarland University, Germany, 2008.
10. A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert.

A Descartes algorithm for polynomials with bit-stream coefficients. In CASC ’05,
volume 3718 of LNCS, pages 138–149, 2005.

11. K. Geddes, S. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer
Academic Publishers, Boston/Dordrecht/London, 1992.

12. L. González-Vega and M. E. Kahoui. An Improved Upper Complexity Bound for
the Topology Computation of a Real Algebraic Plane Curve. Journal of Complex-

ity, 12(4):527–544, 1996.
13. M. Kerber. Geometric Algorithms for Algebraic Curves and Surfaces. PhD thesis,

Universität des Saarlandes, Saarbrücken, Germany, 2009.
14. M. Kerber and M. Sagraloff. Efficient real root approximation. Accepted for ISSAC

’11; see http://arxiv.org/abs/1104.1362v1 for an extended version.
15. M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials. In

ESA ’04, LNCS, pages 544–555. Springer Berlin / Heidelberg, 2004.
16. V. Y. Pan. Solving a polynomial equation: some history and recent progress. SIAM

Review, 39(2):187–220, 1997.
17. M. Sagraloff. On the complexity of real root isolation. CoRR, abs/1011.0344, 2010.
18. A. W. Strzebonski and E. P. Tsigaridas. Univariate real root isolation in an ex-

tension field. CoRR, abs/1101.4369, 2011. ISSAC ’11, to appear.
19. M. van Hoeij and M. B. Monagan. A modular GCD algorithm over number fields

presented with multiple extensions. In ISSAC ’02, pages 109–116, 2002.

A Proof of Theorem 3

We begin with the following auxiliary lemma.

Lemma 3 (Davenport-Mahler). Let F (x) be a polynomial with integer coef-
ficients of magnitude (d, µ), and V be the set of distinct complex roots z1, . . . , zr
of F (r ≤ d). If a directed graph G = (V,E) satisfies conditions: (a) for every
edge (α, β) ∈ E, |α| ≤ |β|; (b) G is acyclic; and (c) the in-degree of any node is
at most 1, then

∏

(α,β)∈E

|α− β| ≥ 1

(
√
d+ 12µ)d−1

·
(√

3

d

)#E

·
(

1

d

)d/2

.

For a proof of the above lemma, we refer to [9, Corollary 3.11]. It exploits the fact
that we can always factorize F over Z and extract its square-free part F ∗ ∈ Z[x].
Then, the generalized Davenport-Mahler bound applied to F ∗ automatically ex-
tends to F because for F ∗, as the divisor of F , it holds that M(F ∗) < M(F).3

Now we are ready to show the main result.

Proof of Theorem 3. We begin with clustering the roots of F into subsets consist-
ing of nearby roots. Without loss of generality, we assume that σ(z1, F) ≤ · · · ≤
σ(zr, F). For h ∈ N, we denote i(h) the maximal index i with σ(zi, F) ≤ 2−h and
U = U(h) := {z1, . . . , zi(h)} the corresponding set of roots zi with σ(zi, F) ≤
2−h. If h ≤ log(1/σ(F)), then U contains at least two roots. Our goal is to
partition U into disjoint subsets U1, . . . , Ul that contain closely located roots. It
can be shown that for h ≤ log(1/σ(F)), there exists such a partition of U that
|Ui| ≥ 2 for all i = 1, . . . , l and |z−z′| ≤ d2−h for all z, z′ ∈ Ui, see [17, Lem. 19].

We consider a directed graph Gi on each Ui connecting consecutive roots of
Ui in ascending order of their absolute values. Let G := (U,E) be the union of
all Gi. Remark that, G is a directed graph on U , and the conditions of Lemma 3
are satisfied. Moreover, since each set Ui contains at least two roots, we must
have #E ≥ i(h)/2. Additionally, it holds that #E < i(h), where in corner case
all roots of F belong to a single partition U1. Hence, by Lemma 3:

(d2−h)
i(h)
2 >

∏

(α,β)∈E

|α− β| ≥ 1

(
√
d+ 12µ)d−1

·
(√

3

d

)i(h)

·
(

1

d

)
d
2

>
1

(d+ 1)d2dµ
·
(

3

d2

)

i(h)
2

,

and therefore,

i(h) <
2d(µ+ log(d+ 1))

log 3 + log d+ h
<

2d(µ+ log(d+ 1))

h
.

3 Here, M(F) denotes the Mahler measure for F .

By combining the above inequality with h ≤ log(1/σ(F)), and i(h) ≥ 2 (because
|Ui| ≥ 2), we conclude that: log(1/σ(F)) < d(µ + log(d + 1)) + 1. Otherwise,
there would exist an h with i(h) < 2 which is not possible. For the bound on
Σ(F), it suffices to consider only the roots z1, . . . , zk with separation ≤ 1/2
since all other roots contribute with at most d to the sum Σ(F). Let hmax =
⌈d(µ+ log(d+ 1))⌉, then:

Σ(F) =

k
∑

i=1

log(1/σ(zi, F)) <

hmax
∑

h=1

i(h) < d(µ+log(d+1))

hmax
∑

h=1

1

h
= O(dµ log(dµ)).

B Approximate polynomial evaluation

In this section we define some basic operations on approximate numbers and
establish the error bounds for polynomial evaluation, we refer to [14, Section 4]
for comprehensive discussion. For ρ ∈ N and x ∈ R, we define:

down(x, ρ) = {k ·2−ρ ∈ R|k = ⌊x·2ρ⌋}, and up(x, ρ) = {k ·2−ρ ∈ R|k = ⌈x·2ρ⌉}.

Meaning that, x is included in an interval: B(x, ρ) := [down(x, ρ), up(x, ρ)].
In what follows, we will omit ρ and write up(x) or B(x) to simplify the nota-
tion. Arithmetic operations on approximate numbers obey the rules of classical
interval arithmetic. For two numbers x, y ∈ R, we define:

B(x) +B(y) := [down(x) + down(y), up(x) + up(y)],

B(x) −B(y) := [down(x) − up(y), up(x) − down(y)],

B(x) ·B(y) :=

[

min
i,j={1,2}

{Hi(x)Hj(y)}, max
i,j={1,2}

{Hi(x)Hj(y)}
]

,

with H1(x) = down(x), and H2(x) = up(x).

Using the above rules, for a polynomial F and z ∈ R, B(F (z), ρ) can be defined
by expanding the polynomial according to Horner scheme:

B(F (z)) = B(F0) +B(z) · (B(F1) +B(z) · (B(F2) + . . .)).

The next lemma bounds the error of polynomial evaluation with precision ρ:

Lemma 4. Let F be a polynomial with magnitude (d, µ), c ∈ R with |c| ≤ 2υ,
and ρ ∈ N. Then,

|F (c)−H(F (c), ρ)| ≤ 2−ρ+1(d+ 1)22µ+dυ,

where H = {down, up}. In particular, B(F (c), ρ) has width 2−ρ+2(d+ 1)22µ+dυ

or less. For a proof, see [14, Lem. 3].

In essence, the lemma asserts that the absolute error result from approximate
polynomial evaluation is linear in 2−ρ, which has important consequences for us
in Section 4.3.

	On the Complexity of Solving a Bivariate Polynomial System
	1 Introduction
	2 Setting
	3 Review of the algorithm
	4 Complexity analysis
	4.1 Project
	4.2 Separate
	4.3 Validate
	Estimating lower and upper bounds
	The inclusion test

	5 Conclusions
	A Proof of Theorem ??
	B Approximate polynomial evaluation

