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ABSTRACT
Incremental parallelism is an uncomplicated and expressive
parallelisation practice and has led to wide adoption of OpenMP.
However, the OpenMP specification does not present a bind-
ing for the Java language and the OpenMP threading model
finds limited use for GUI (Graphical User Interface) applica-
tion development. Our research strives towards supporting
OpenMP-like directives to simplify parallelism for Java and
address the limitations of the OpenMP model in the devel-
opment of interactive applications.

We present a compiler-runtime system for OpenMP-like
directives in Java, enhanced with GUI-aware mechanisms.
This paper describes the compiler and the runtime. We
introduce GUI-aware directives and propose methods for in-
cremental concurrency. We present and discuss the per-
formance of programs written using our system by com-
paring them with previous attempts and traditional ways
of parallelisation, using the parallel Java Grande Forum
(JGF) benchmarks and a fractal-generation application with
a GUI.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques—Object-oriented pro-
gramming ; D.3.3 [Programming Languages]: Language
Constructs and Features—Concurrent programming struc-
tures

General Terms
Languages, Performance
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OpenMP, Incremental Parallelism, Incremental Concurrency,
Application Development
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1. INTRODUCTION
Parallel programming has been largely restricted to the

high performance computing in the scientific and engineer-
ing community. The parallel programming tools and prac-
tices are not commonly been used in mainstream program-
ming and are considered part of advanced programming.
This trend is decidedly bound to change; multi-core pro-
cessors are fast becoming a norm, and it is evident that
software must be parallelised to leverage the power of these
processors [7, 18].

Even with the parallelisation tools that already exist, they
are poorly suitable for the development of interactive appli-
cations for desktops, tablets and mobile devices. The poor
suitability of parallelisation tools is because of the two ma-
jor ways in which interactive applications are different from
the scientific applications.

The first major difference between scientific and desktop
applications lies in the programming languages. Scientific
applications are typically written in speed efficient languages
that tend to be low level, for example C and Fortran [4].
Interactive applications, however, tend to be developed us-
ing high level and object-oriented languages to promote a
software engineering approach to programming. The second
major difference lies in the control flow of these applications.
Scientific applications tend to be batch-type and compute
intensive. The computations tend to be rather regular, and
repetitive computations are performed on a vast amount of
data. On the other hand, desktop, tablet or smartphone ap-
plications have their execution flow determined by the user
(and other external inputs). As such, these applications tend
to be more interactive and hence the computations tend to
be irregular depending on the user actions [10].

With the above differences, it is clear to see why the
parallelisation tools typically used in scientific applications
have not been embraced by GUI application developers. As
a result, many libraries are now emerging to take advan-
tage of multi-cores. Unfortunately, these tools typically in-
volve significant code structuring and the presumption that
developers understand complicated parallelisation concepts.
OpenMP [14] is an API that has essentially become the de
facto choice for scientific applications using C/C++. The
large appeal of OpenMP is its incremental parallelism ap-
proach, where parallelism is introduced by the addition of
compiler comments that leave the original sequential pro-
gram intact.

Unfortunately, developers do not have the luxury of us-
ing a parallelisation API such as OpenMP for typical desk-
top, tablet and smartphone applications. The reason is not



only due to the lack of official implementation for object-
oriented languages (C++ being the only object-oriented lan-
guage supported), but primarily due to the control flow of
GUI applications. The OpenMP model does not recognise
the structure of GUI frameworks and therefore violates re-
quirements of such GUI frameworks. Below is an example
Java code typical of desktop applications with inherent par-
allelism:

public void actionPerformed(ActionEvent e){
for (File file: list){

process(file);
done++;
// GUI
progressBar.setValue(done*100/todo);

}
// GUI

label.setText(“Job complete”);
}

This example contains many points of interest. First, we
notice an object-oriented solution (for example, the for-each
loop traversing a collection of Files). Second, there are GUI
computations being performed at various stages. This in-
cludes intermittent updates to the progress bar as each file
is processed, in addition to the final message displayed when
all files have processed. Finally, the code snippet is con-
tained within an event handler, which will be executed in
response to an action (e.g. a mouse click).

Contributions
This paper makes the following contributions:

Pyjama: It presents Pyjama, a Java compiler-runtime sys-
tem for OpenMP-like directives.

GUI-awareness: It introduces GUI-aware Open-MP like
directives that are essential for the parallelisation of
object-oriented applications and GUI frameworks. The
novelty lies in the notion of incremental concurrency,
as described in this paper

Productivity with OpenMP: It demonstrates how Py-
jama directives allow OpenMP to be used in a wider set
of applications, in particular everyday interactive ap-
plications as found on desktop computers, tablets and
smartphones. Considering that multi-core systems are
now typically executing such interactive applications.

Performance Evaluation: We evaluate conventional OpenMP-
like Pyjama directives using JGF benchmarks [5]. The
evaluations benchmark Pyjama against other related
systems and different Java concurrency practices. The
GUI-aware directives are evaluated using a fractal-generation
application with a GUI, where the responsiveness and
the performance is evaluated.

2. RELATED WORK
Ongoing efforts in parallel computing comprise of devel-

oping language extensions and creating language constructs
such as Parallel Task [9], making parallel compilers, develop-
ing new parallel framework models [20] and new languages
such as Erlang [2]. These efforts focus on creating new par-
allel software; apart from them, the most important effort is

being put in converting existing sequential programs to par-
allel forms by using compiler directives or library functions.
This remains one of the easiest and clutter free approach
and it involves a moderate learning curve. OpenMP direc-
tives, which are the most popular compiler directives, enable
engineers to adapt this approach.

Java is a popular object-oriented language [19, 13] and is
widely accepted for desktop and mobile application devel-
opment, such as Android [1]. But there is no specification
or binding to support OpenMP on Java programming lan-
guage. No wonder that there have been attempts to merge
the best of both the worlds by implementing OpenMP stan-
dards in Java. JOMP [3] and JaMP [12] are two such en-
vironments that support a subset of the OpenMP speci-
fication. The JOMP source-to-source compiler transforms
OpenMP-like directives to multi-threaded normal Java pro-
grams by using Java native threading; JaMP is a distributed
shared memory implementation that uses Jackal framework
to translate the sequential code to parallel version. Parallel
Java [11] is another approach which exposes unified APIs,
rather than supporting OpenMP-like directives, to target
shared memory model as well as clusters.

Furthermore, Java also provides support for concurrency
and parallelism, mostly through SwingWorker and Java con-
current library (java.util.concurrent.*). Alternatively, the
Java concurrent library exposes the Executor interface with
a wide array of thread pool types, concurrent collections and
data structures to achieve concurrency. Java 1.7 introduces
the fork-join framework. The fork-join framework uses easy
programming constructs and can help leverage multiple pro-
cessors.

When it comes to supporting GUI awareness in OpenMP
(Java or otherwise), we are not aware of any related work
which introduces OpenMP-like directives for GUI applica-
tions.

3. BACKGROUND
An application with a graphical user interface needs to re-

spond to multiple inputs from the user, at the same time per-
forming multiple background processing, while all the time
keeping the user interface responsive. In other words, per-
formance means two things: utilising the underlying hard-
ware potential through parallelism, and addressing a user-
perceived performance through concurrency.

3.1 Structure of desktop applications
Other than the GUI aspect of applications mentioned ear-

lier, figure 1 illustrates another distinguishing aspect of ap-
plications; inversion of control [8] is when the flow of control
is dictated by a framework rather than the application code.
In the case of desktop applications, the framework facilitates
the communication with users. In comparison, batch-type
programs have the control flow determined by the program-
mer; the application code defines the execution flow, with
frequent calls to other frameworks (e.g. input/output li-
braries). The primary concept is that events are generated
from within the framework code. Developers implement the
necessary routines, known as event handlers, in the applica-
tion code in response to the respective events. The control
returns back to the framework upon completion of the re-
spective event handler, namely to the event loop. In most
GUI frameworks, this is performed by a dedicated thread
named the GUI thread. In Java, this is more specifically



Figure 1: Control flow in a typical (sequential) desk-
top application. The application is processed by a
single thread, known as the GUI thread (in Java
this is also known as the Event Dispatch Thread).
The application is unresponsive whenever control
lies within the application code, rather than the GUI
framework.

known as the Event Dispatch Thread (EDT).

3.2 Maintaining responsiveness
To maintain an interactive and responsive application,

programmers must ensure the GUI thread minimises its ex-
ecution in the application code. This is ensured by keeping
event handlers as short as possible by off-loading a time-
consuming computation to a helper thread. This allows the
GUI thread to return to the event loop and respond to other
potential events.

As the off-loaded computation is being executed, informa-
tion typically needs to be presented to the user (e.g. progress
updates and various messages). In most graphical toolkits,
only the GUI thread may access the GUI components that
communicate with the user. This means that helper threads
must request GUI updates by posting an event to the GUI
thread. The GUI thread consequently picks up the event
and invokes the respective code to update the GUI. The
reasoning behind this is because GUI toolkits are not coded
thread-safe and must therefore only be accessed by the ded-
icated GUI thread.

This means that multi-threading is introduced solely for
the purpose of achieving concurrency and just to maintain
a responsive application. The performance improvement is
solely for the user perception, and is likely to even increase
the overall computation time due to the introduced over-
head. No speedup is witnessed, even on a multi-core pro-
cessor. In order to truly benefit from multi-core processors,
the programmer needs to have parallelism in mind and take
multi-threading further.

3.3 OpenMP and GUI threads
For developers wishing to take advantage of multi-core

machines without multi-threading knowledge or experience,
OpenMP serves as an easy, yet effective, solution. This is
especially true for applications with obvious parallelism (e.g.
loops without loop-carried dependencies). OpenMP involves
an incremental parallelisation approach that keeps the serial
version intact. It is a cross-platform and portable solution,
where developers do not need to know of the underlying
system. It is also a scalable software solution compared to

Figure 2: OpenMP’s fork-join model. In GUI appli-
cations, OpenMP’s fork-join model results in unre-
sponsiveness because GUI thread assumes the role
of Master thread in the parallel region rather than
residing in the event loop.

manually using a threading library.
OpenMP uses a fork-join parallelism model, as illustrated

in figure 2, which is a standard way of parallelising in shared-
memory programs [15]. Initially only one thread, called
the master thread, executes sequential portions of a pro-
gram until it encounters a parallel construct, at which point
it switches to parallel mode with the creation of multiple
threads (known as the fork). This team of threads (the
master thread and the created threads) execute the par-
allel region. At the end of the parallel region, execution
control switches back to sequential mode by returning the
control flow to the master thread and the other threads are
destroyed or suspended (known as the join).

If the fork-join model is used in the application develop-
ment, it essentially presents two problems shown in figure 2.
First, the GUI thread assumes role of master thread and is
immediately part of the thread team. As a consequence, the
application becomes unresponsive throughout this time; it
is not until the entire event handler completes that the GUI
thread will return to the event loop. The second problem is
that some GUI-related processing within the (now parallel)
region will be executed by non-GUI threads. In addressing
either of these issues, the programmer will be required to sig-
nificantly restructure the code; such code restructuring goes
against OpenMP’s incremental parallelisation approach that
maintains the original sequential code.

4. PYJAMA COMPILER-RUNTIME SYSTEM
Pyjama supports an incremental parallelisation approach

that is suitable for GUI applications. It follows the OpenMP
philosophy and its shared memory fork-join model. More
importantly, it addresses the two essential problems identi-
fied in section 3.3: maintaining a responsive user interface
during execution of parallel regions and allowing correct ex-
ecution of GUI-related code within those regions. As in
OpenMP, this is achieved incrementally while maintaining
the original sequential code without restructuring it.

4.1 Directive syntax
Pyjama provides compiler directives which target the OpenMP

2.5 standards. There is no specification for OpenMP direc-
tives in Java, so Pyjama specifies directives formats which
are close to the OpenMP specification. There are two salient
points to be noted:

• Java does not support pragma, so there is no tradi-



tional way of using conditional compilation.

• Any non-compliant compiler will ignore the directives
and treat the programs as normal sequential programs.

In keeping with above points, each Pyjama directive begins
with “//#omp”. A program line beginning with //#omp is
treated as compiler directives by the Pyjama compiler and
ignored as inline comments by the other compilers. Generic
syntax is as follows:

//#omp directiveName[clause[[,]clause]..]

Alternatively, an object oriented syntax to support OpenMP-
like directives can be designed using the Java annotations.
However, a non-conforming compiler will not be able to iden-
tify such annotations and will generate compiler time errors.
This behaviour is contrary to the OpenMP philosophy to en-
able the OpenMP code run on non-confirming compilers too,
where the directives get ignored and serial behaviour of the
code is preserved.

4.2 Conventional OpenMP directives
Conventional OpenMP directives include the parallel di-

rective, worksharing directives, combined directives, syn-
chronisation directives (single, critical, barrier and atomic)
and master directive. We present some selected code exam-
ples to illustrate the syntax and usage of these directives,
first of them is the customary Hello World example:

int nThID;
//#omp parallel private(nThID)
{

nThID = Pyjama.omp get thread num();
System.out.println

(“Hello World, I’m thread ”+nThID);
}

As in the program above, a programmer can use OpenMP-
like directives with the same expressiveness of OpenMP pro-
gramming, in Pyjama. This introduces parallelism without
the need to add major re-structuring. We illustrate the us-
age of a worksharing directive below:

//#omp parallel
{

//#omp sections
{

//#omp section
{

System.out.println(”1st part”);
task1();

}
//#omp section
{

System.out.println(”2nd part”);
task2();

}
}

}

Furthermore, Pyjama supports the OpenMP synchronisa-
tion directives like barrier, critical, atomic and ordered. Here
too, the these directives have identical semantics as that of
OpenMP on C/C++.

4.2.1 Execution semantics of conventional directives
The execution semantics follow the same fork-join paral-

lelism as that of OpenMP. Pyjama directives are syntacti-
cally close to OpenMP specifications. The code within par-
allel region is converted to explicitly multi-threaded code by
Pyjama compiler, where the directive-encountering thread
is treated as the master thread.

4.3 GUI directives
In addition to bringing directive based incremental par-

allelism to Java, our research aims at identifying the limi-
tations of OpenMP for application development and to ad-
dress them. The biggest limitation of using an OpenMP
approach in a GUI application is that OpenMP has a fork-
join model that violates GUI application structure. Con-
sider the EDT inside an event handler, and it encounters an
OpenMP construct. The master thread (MT) would be the
EDT in OpenMP and MT would be part of the processing
being done in OpenMP region (see Figure 2). But in a GUI
application this is a problem, because the EDT will remain
busy processing and in effect, it will block the GUI.

The thinkable solution would be a GUI-aware OpenMP
solution. It would employ a thread-model (say GUI-aware
model), which is indicated in the code by an extended OpenMP-
like directive (more on that in section 4.3.1). This model
will determine if the EDT is the master thread, and if so,
it will create a GUI-aware region. The GUI-aware region
will handle the execution on behalf of EDT and allow the
EDT to return to the event loop. When execution of this re-
gion is completed, the model will notify the EDT; the EDT
will return to the end of the region and continue execution.
This way, the background execution will be processed by the
GUI-aware region, and the EDT will remain free for event
handling. But, this model seems to be breaking the master-
thread model because the master-thread (EDT in this case),
which encounters the directive, is let free and is not part of
the processing. So, who is the master now?

To keep the master-thread model intact, a substitute thread
(ST ) is created by the model and the ST can act as the mas-
ter for GUI-aware region. This model preserves the master-
thread model by creating a ST and maintains responsive-
ness in GUI applications. Pyjama implements this model by
introducing the GUI-aware model and introduces two new
GUI-aware directives, freeguithread and gui.

Responsiveness can be maintained in the application us-
ing the freeguithread directive (more in section 4.3.1).The
syntactic format of freeguithread directive is illustrated be-
low:

//#omp freeguithread
structured-block

Application code can use this directive from the GUI thread
(EDT in Java). If it is not used on a GUI thread, the direc-
tive is ignored and compiler generates a warning.

For responsiveness, there may arise a need to update the
GUI when the application code is still busy in the back-
ground processing. This may be related to conveying the
partial results of the background processing or it may be
just a GUI update to convey the completion of background
processing. It may be one of common tasks such a progress-
bar update or message box update, or it may be conveying
results of execution such as rendering a part of processed im-



age. This way, the application need not wait for the whole
processing to complete. In application development, this
is achieved by implementing a way to provide periodic up-
dates to the GUI. Generally, it involves careful synchroni-
sation methods or shared global flags. Additionally, a pro-
grammer will have to add major restructuring to spawn the
computational work to other thread(s) and then again to ex-
ecute GUI code, commonly encapsulated within runnables
and posted to the GUI thread. These methods have their
own limitations and complexities and make it difficult to in-
volve any OpenMP-like programming. It also opposes the
the OpenMP philosophy of maintaining the program’s orig-
inal sequential structure when the OpenMP directives are
ignored.

Keeping into account the above perspective, Pyjama pro-
vides the gui directive. This directive is used to execute a
region on the GUI thread and it shines when used in com-
bination with the freeguithread directive. The format of gui
directive is as below:

//#omp gui [nowait]
structured-block

4.3.1 Execution semantics of freeguithread directive
Pyjama’s GUI-aware thread model addresses the respon-

siveness related bugs. The basic principle is that an ap-
plication will not have the tendency to become unrespon-
sive, or block, if the GUI thread is free to process user in-
puts. Pyjama’s GUI-aware thread model incorporates this
basic principle by using the freeguithread directive to be-
gin a GUI-aware region. This region involves creating a
substitute thread (ST) to replace the GUI thread in the re-
gion. The GUI thread is released to return back to the event
loop, while ST performs the processing on behalf of the GUI
thread. The end of the GUI-aware region serves as a con-
tinuation point and execution control is handed back to the
GUI thread at this point. Once done, the GUI thread may
continue execution in the same method or may return to the
event loop. In effect, freeguithread introduces concurrency
into the application by releasing the GUI thread back to
event loop. Figure 3 illustrates Pyjama’s GUI-aware thread
model.

When the GUI-aware region is busy processing, it may
start another GUI-aware region (i.e. another GUI-aware re-
gion begins while one is already executing). For example,
in Java, suppose that EDT started a GUI-aware region in
actionPerformed( ) and since it remains responsive to more
inputs, it performs another call to actionPerformed( ). In
fact, this would be a common scenario in responsive applica-
tions. In such cases, the execution of GUI-aware regions are
queued up and handled in the linear order. The execution
semantics ensures that the same ST is used in all GUI-aware
regions and no new threads are spawned. Effectively, this
amounts to a responsive application with no impact on the
overall performance.

4.3.2 Execution semantics of gui directive
Using the gui directive, a program can execute part of

the code on the GUI thread from a background-processing
region. This eliminates the need to maintain complexities
of synchronisation or global memory to share information.
The combination of freeguithread and gui directives enable

Figure 3: Pyjama’s GUI-Aware thread model. Point
1. Event handler method begins (actionPerformed(
) ). Point 2. Directive freeguithread is used and
GUI-aware region is created where ST takes con-
trol. Point 3. End of GUI-aware region, continua-
tion point is inserted. Control given back to GUI
thread. Point 4. End of event handler, GUI thread
returns to event loop.

programmers to achieve responsive application development
and the threading model still adheres to the OpenMP model.

The program below shows a typical example of event han-
dling in application code, and how these GUI directives can
be used.

public void actionPerformed(ActionEvent e)
{

//#omp freeguithread
{

for(File file: list){
processImage(file);
done++;
//#omp gui
progressBar.setValue

(done*100/todo);
}

}//implicit continuation point
}

Let us look into the contents of this program and un-
derstand how GUI-aware directives aid application devel-
opment. The program needs to perform a potentially time
consuming computation: process a list of image files. Under
normal execution, the GUI thread would become busy and
the application is unresponsive to any new inputs.

The programmer may use the freeguithread directive in
such a scenario. At this juncture, a substitute-thread is cre-
ated and it assumes the role of master-thread and the GUI
thread can return back to handle other events. An implicit
continuation point is placed after the end of freeguithread
region. When execution of the region is completed, i.e. the
substitute-thread reaches this point, control is given back to
the GUI thread. To provide feedback to the user, e.g. in



form of progress bars, wait icons etc., the gui directive is
used here. In this program, the gui region is executed on
the event loop and progress bar is updated.

The gui directive by default contains a barrier (this may
be compared to Java’s SwingUtilities.invokeAndWait()) Nev-
ertheless, there may be scenarios when execution control
need not wait at the barrier after processing gui directive re-
gion (this may be compared to Java’s SwingUtilities.invokeLater()).
The barrier for the gui directive may be dropped by using
nowait clause, as shown in code snippet below:

//#omp freeguithread
{

for(File file: list){
processImage(file);
done++;
//#omp gui nowait
progressBar.setValue

(done*100/todo);
doSomeOtherTask();

}
}//implicit continuation point

In summary, the continuation point is always enforced for
the freeguithread directive, but the barrier for the gui di-
rective is optional. It can be seen that the GUI-awareness
model of Pyjama introduces concurrency and addresses two
quintessential requirements of the application development:
responsiveness and application GUI update from background
process. The incremental use of these directives and resul-
tant introduction of concurrency leads to the practice of in-
cremental concurrency with Pyjama. These directives com-
bine the expressiveness of OpenMP usage and the essence
of object-orientation.

4.4 Combined GUI and conventional directives
The GUI-aware directives can also be combined with con-

ventional OpenMP-like directives. For example, we can add
a small change in the example code shown for the GUI-aware
directives, as shown below, and it will make the GUI-aware
thread region parallel:

//#omp parallel freeguithread
{

...

Here, the programmer uses a parallel directive to spawn
a number of threads. As per OpenMP threading model, the
substitute thread becomes master-thread (due to the free-
guithread directive) and shares the work. The freeguithread
directive introduces concurrency for application responsive-
ness, conventional OpenMP-like directives are used to intro-
duce parallelism.

5. IMPLEMENTATION
In this section, we describe the Pyjama compiler and a

brief overview of how directives are supported. In the last
part of the section, we will discuss the Pyjama runtime.

5.1 Pyjama Compiler
The Pyjama compiler is a hybrid implementation. On one

hand, it handles program normalisation, program optimisa-
tion and generates destination code in the same language as

the source code (*.javamp files get converted to *.java), thus
falling into rephrasing category [16]. On the other hand,
it provides program translation of directives by converting
source code into explicitly multi-threaded destination code,
thus falling into translation category. In the following sec-
tions we discuss the important units in the Pyjama compiler.

5.1.1 Front End
An OpenMP compiler must recognise and validate the di-

rectives and translate them according to the semantics [6].
It must also compile the associated language. The Pyjama
compiler front-end performs these tasks. Syntactical errors
in directives are identified here and notified. After that,
normalisation of directives is done, for example, splitting of
combined directives into worksharing/GUI directives, con-
version of sections directive and single directive into parallel
loop and loop with one iteration respectively to simplify the
translation.

5.1.2 Back End
This unit of compiler transforms the sequential regions

into multi-threaded code. Pyjama uses its runtime library
to add the thread pool implementation, scheduling mech-
anisms (as per schedule clause: static, dynamic or guided),
work queuing and notify mechanism (in the case of gui-aware
regions).

Code generation involves moving the syntactical code con-
tained in a parallel region to a new method (called workshar-
ing method) and is replaced by a Pyjama parallel region.
This parallel region enques the worksharing method on a
task-queue. A barrier is placed after this parallel region
to implement the join model. The runtime environment re-
trieves methods from the task-queue and uses Java reflection
to execute the worksharing method.

Similarly, for GUI-aware directives, the code present in
the freeguithread directive is moved to a new method and
is enqueued to be executed in parallel. For a gui direc-
tive, Java’s SwingUtilities.invokeAndWait( ) (or SwingUtil-
ities.invokeLater( ) in the case of a nowait clause) is used,
with the user’s code being moved to the run( ) method. The
code example below illustrates such transformation (the user
code within Pyjama directives is shown in italics red, the
generated code is shown in bold blue):

/input code
public void actionPerformed(){

//#omp parallel freeguithread
{

processImage(file);
//#omp gui
updateProgressBar();

}
showImage(file); // user code

}



//transformed code
public void actionPerformed(){

ompEnqueue(“ omp workRegion 0”,
“ omp cont pt 0”);

}

private void omp workRegion 0(){
processImage(file);
if(false == EventQueue.

isDispatchThread()){
SwingUtilities.invokeAndWait(

new Runnable() {
public void run() {

updateProgressBar();
}

});
}

}

private void omp cont pt 0(){
showImage(file); // user code, remains intact

}

Two important aspects of these transformations are the
adherence to OpenMP semantics for OpenMP-like direc-
tives and object-oriented approach for GUI-aware directives.
Data variables in data clauses are managed as mentioned in
[6].

5.2 Pyjama Runtime
Pyjama provides runtime support for the thread-pool and

queue implementations and it implements runtime routines
conforming to OpenMP 2.5. The execution environment
routines and timing routines are provided through static
methods of a class called Pyjama. They follow the OpenMP
naming, e.g. Pyjama.omp get num threads(),
Pyjama.omp set num threads( ), and more.

6. PERFORMANCE EVALUATION
The Pyjama system was evaluated using a subset of the

JGF benchmarks [5]. We used the Series Benchmark from
Section II of the benchmark suite, MonteCarlo Benchmark
and RayTracer Benchmark from Section III of the bench-
mark suite. For measuring the speedup, the baseline was the
speedup using a single CPU for the sequential version of the
benchmarks. The performance was compared to JOMP [3]
and benchmarks with Java native threads [17] and we used
the same data sets (size A, size B, size C, where C is the
largest and A the smallest) as used by JOMP benchmarks.
The benchmarks were run on hardware with 4 Quad-Core
Intel Xeon processors, total of 16 cores, running at 2.4GHz
with 64GB of RAM.

To evaluate the GUI directives, we implemented a fractal-
generating application which renders Mandelbrot. The per-
formance was tested against sequential, Java thread, Swing-
Worker and ExecutorService (cached and fixed pool) ver-
sions of the same application.

6.1 JGF Section II Benchmark
Section II of the JGF benchmarks consists of simple ker-

nels which implement the commonly occurring computa-
tions. They provide us an opportunity to evaluate the scal-
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Figure 4: Series Benchmark

ability and the performance.

6.1.1 Series Benchmark
This set of benchmarks computes the first N Fourier coef-

ficients of the function f(x) = (x + 1)x. The computationally
intensive main loop is easily parallelised using parallel for.
Figure 4 exhibits the Pyjama performance over three data
sets, and compares them to JOMP and native threads.

It is seen that a near linear speedup and scalability is
achieved. Using varying sizes of data shows that the per-
formance improves as the data size increases. This can be
attributed to the fact that the parallelisation overhead grad-
ually becomes smaller when compared to the increased per-
formance, with the increasing data size. When comparing
the three system, Pyjama environment is better performing.
It should be noted that the Pyjama and the JOMP systems
require mere additions of the directives, whereas usage of
native concurrency involves restructuring efforts.

6.2 JGF Section III Benchmark
Section III of the JGF benchmark suite represents the

real world applications. These benchmarks do not consist of
many “embarrassingly parallel” code. This suite of bench-
mark provides the opportunity to evaluate conventional con-
struct like the parallel, the parallel for construct and the crit-
ical directives along with the data clauses (private, shared)
and the reduction clause.

6.2.1 MonteCarlo Benchmark
MonteCarlo benchmark implements a financial applica-

tion simulation, where it uses the Monte Carlo methods
to calculate product prices deduced from an underlying re-
source. Figures 5 and 6 illustrate the performance com-
parisons of Pyjama implementation with JOMP and Java
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Figure 5: MonteCarlo Benchmark - Size A

threads.
The results show that the speedup is linear up to 8 pro-

cessors and then levels up. The evident reason behind this
is the way in which Monte Carlo method is typically paral-
lelised; the results are computed in a parallelised loop but
synchronisation (using the critical directive) is needed to
store the partial results. Nevertheless, the processing with
the larger data set is able to overcome the loss due to the
expensive syncronisation and provides a better performance.

6.2.2 RayTracer Benchmark
This benchmark provides the opportunity to evaluate the

usage of the data clauses and the reduction clause, apart
from the conventional directives.

RayTracer benchmark implements a ray tracer that ren-
ders a scene containing 64 spheres and is rendered at N x N
pixels. The main loop is parallelised using the Pyjama di-
rective and each thread renders a part of the scene. Figures
7 and 8 show the benchmarking results.

In this evaluation, the trends are similar to the Monte-
Carlo benchmark but the speedup increases for the large
data sets. There is little differentiating the three environ-
ments but increasing data sets presents an opportunity to
compensate for parallelisation overheads. However, Pyjama
and JOMP do not perform as good as Java thread, and this
can be attributed to the presence of global shared copy of
scene and environment data. Java thread benchmark has
private copies of these and allow for sequential optimisa-
tions.

6.3 Fractal Application
To evaluate the GUI-aware directives, we developed a

Fractal generating application. Specifically, this applica-
tion evaluates the freeguithread and the gui directives for
responsiveness and performance. The tests were repeated
with different load granularity.

This application’s UI renders a Mandelbrot pattern on the
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Figure 6: MonteCarlo Benchmark - Size B
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Figure 7: RayTracer Benchmark - Size A
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Figure 8: RayTracer Benchmark - Size B

Figure 9: Snapshots from Fractal Application. Left
to Right: 1.Sequential Behaviour, application is
blocked till all calculations are completed. 2. Py-
jama Application Behaviour(same as SwingWorker),
calculations and rendering are done simultaneously.
3. Render complete.

screen. The back-end consists of a central loop whose each
iteration represents a column of the rendering, and the com-
putations done in the iteration is the workload. In figure 9,
we present a small gallery of snapshots from the application.
The application involves creating a 400x400 screen panel at
10000 iterations for each pixel rendering. The application
GUI involves rendering a single complete column of marked
pixels in one task. We implemented sequential, Java thread,
ExecutorService (fixed and cached pool) and SwingWorker
versions of the same application. Thereafter, we incremen-
tally added GUI directives to sequential version and got a
Pyjama version and observed the performance, as illustrated
in figure 10.

The first set of tests involved course grained load with
10000 iterations per pixel. We repeated the benchmarks
with a 10000X10000 screen panel with 20 iterations per
pixel. In this case, we have more tasks but finer grained
per pixel. Figure 11 illustrates the performance.

These benchmarks were concentrated on observing appli-
cation responsiveness and evaluating the ease of incremen-
tal parallelisation and incremental concurrency. As shown
in figure 9, the responsiveness in Pyjama version is at par
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Figure 10: Performance in Fractal Application for
coarse-grained load.
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Figure 11: Performance in Fractal Application for
very fine-grained load.



with Swing Worker implementation. The GUI was updated
continuously and the application was not blocked. The ap-
plication was responsive to user actions, such as the user
action to close the application.

None of the systems scale very well for a very fine grained
load. Java native threads produce the least speedup and
this can be due to the repeated thread creations. In thread
pool based systems, this overhead is minimised. For the
same reason, the other systems perform better. Neverthe-
less, even for the other systems the overheads of the con-
text switching between the threads, the contentions and the
scheduling remain expensive. Pyjama produces better per-
formance than Java threads, cached pool Executor service
and SwingWorker.

From the productivity aspect, converting the sequential
code to the Pyjama version did not need require any code
restructuring or new implementation, as shown in the code
below:

public void generateSequential(BufferedImage image){
...
//#omp parallel for freeguithread
for (int i = 0; i < width; i++)
{

Boolean[] columnPixels = calculateColumn(i);
//#omp gui

colorColumn(i, columnPixels);
}

}

7. CONCLUSION
We presented an OpenMP-like directive support for Java

and provided the GUI application development specific ex-
tensions. We presented methods to introduce concurrency
for application responsiveness using GUI-aware directives
and to introduce parallelism using conventional directives.
This provides a complete solution to create parallelised GUI
applications. The programmer can generate object-oriented
application code by using GUI directives and can save code
restructuring and re-implementation efforts.

We discussed the Pyjama compiler and runtime and illus-
trated our implementation. Pyjama was used in JGF bench-
marks and in application development and we presented the
results. The performance was found comparable to JOMP
environment and to traditional parallelisation tools such as
Java thread, ExecutorService (fixed and cached pool) and
SwingWorker. In the future, we plan to upgrade the Py-
jama runtime for more efficient handling of fine-grained par-
allelism and introduce more object-oriented features in the
spirit of OpenMP.
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