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ABSTRACT
The mobile computing experience would improve if users
could switch seamlessly from one device to another, with
both data and computation state preserved across the switch
without apparent delay. This paper proposes VMsync, a
system for synchronizing the state of live virtual machines
(VMs) among mobile devices. VMsync seeks to incremen-
tally transfer changes in an active VM on one device to
standby VMs in other devices, so as to maintain a consistent
VM image and minimize switching latency. However, con-
straints of the mobile environment make these goals difficult
to achieve and raise many research questions. We present
our preliminary design for VMsync and a feasibility study
aimed at determining how much data would need to be
transferred under different mobile workloads and synchro-
nization policies. For example, through experiments with
a Xen VM running Android and playing a YouTube video,
we show that sending dirty memory pages transfers 3 times
more data than sending only the bytes that actually changed
in those pages. Overall, we conclude that VMsync is a fea-
sible approach deserving of further research.

1. INTRODUCTION
People increasingly rely on mobile devices in their every-

day lives, often multiple devices such as a smartphone and
a tablet. The utility of these devices would improve if users
could switch seamlessly from one device to another, in par-
ticular if they could continue using applications on the sec-
ond device exactly where they left off on the first device,
with both data and computation state preserved across the
switch without apparent delay. For example, a user who
starts watching a video on a smartphone may want to con-
tinue watching the video on the larger display provided by
a tablet.

A limited form of such device switching is currently avail-
able through per-application data synchronization. For ex-
ample, Apple’s iCloud service synchronizes changes to calen-
dars, address books, and a few other supported applications.
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Some other applications provide their own synchronization
facilities. However, this approach requires separate and of-
ten specific support to be built into each application. A gen-
eral solution that works for all applications would scale bet-
ter to the rapidly growing set of mobile applications, which
already number in the hundreds of thousands [9].

This paper proposes VMsync, a system for synchroniz-
ing the state of live virtual machines (VMs) among mobile
devices. System-level VMs have been widely proposed to
improve the security, manageability, and other aspects of
mobile computing [3, 5, 6, 8, 12]. In the context of de-
vice switching, VMs encapsulate both data and computa-
tion state for a complete operating system and all its appli-
cations. Therefore, synchronizing VM state between mobile
devices automatically synchronizes all application state.

VMsync seeks to incrementally transfer changes in an ac-
tive VM on one device to standby VMs on other devices, so
as to maintain a consistent VM image and minimize switch-
ing latency. This way, when a user switches between devices,
there should only be a small amount of data left to trans-
fer before the VMs on both devices become fully consistent,
and the switch can be made quickly enough that the user
will not notice any delay.

However, constraints of the mobile environment make these
goals difficult to achieve and raise many research questions.
For example, intermittent connectivity may delay dissemina-
tion of changes. Similarly, bandwidth, processing, storage,
and energy limitations introduce challenging tradeoffs be-
tween simple schemes that transfer complete memory pages
or disk blocks, and more sophisticated schemes that trans-
fer only the portions of those pages and blocks that have
actually changed.

This paper presents our early efforts towards a complete
VMsync design, implementation, and evaluation. After dis-
cussing the most relevant prior work, we describe our prelim-
inary design. The VMsync architecture involves a daemon
running outside the guest VM on the active device. This
daemon inspects the memory and file-system state of the
VM and sends recent changes to a server in the cloud. The
server then forwards the changes to standby devices.

Finding appropriate policies for how to represent changes
and when to send them are central research issues in this
work. For example, should the device send whole dirty
pages and blocks, or only the changed portions? Should
the device send periodic checkpoints or wait for contextual
hints? Should the server forward changes as it receives them,
or post-process them to reduce the amount of data sent to
standby devices?



We also present a feasibility study aimed at determining
how much data would need to be transferred to maintain
a consistent VM image across devices, under different mo-
bile workloads and synchronization policies. We use the size
of these data transfers as a rough proxy of various costs in-
curred during VM synchronization: bandwidth, latency, and
energy. We believe that bandwidth, latency, and energy
costs will be to some degree proportional to data transfer
size. We plan to explicitly measure these different costs in
a future full-fledged implementation of VMsync.

In the current work, we measure changes to the memory
and file-system images of a Xen virtual machine running the
Android operating system. We drive the experiments with
popular Android applications, and report how many bytes
would be transferred for a range of policies. For example,
when playing a YouTube video, we show that sending dirty
memory pages transfers 3 times more data than sending only
the bytes that actually changed in those pages. These mea-
surement results constitute a modest research contribution,
as we are not aware of previous measurements of VM-image
changes using such mobile-specific workloads.

Overall, we conclude that VMsync is a feasible approach
deserving of further research. Our measurements show that
there are significant opportunities to save costs by choosing
certain synchronization policies over others. At the same
time, many questions remain to be answered before we know
which policies are most appropriate in which situations.

2. RELATED WORK
System-level virtualization of mobile devices has been pro-

posed and implemented by both researchers [5, 8, 3] and
commercial entities [6, 12]. We agree with their conclusions
that virtualization improves the security and manageability
of mobile computing, and add our insight that virtualization
would also enable seamless switching between devices.

There are several established techniques for migrating VM
state between hardware hosts, but we find them unsuitable
for our purposes. For example, live migration [4] transfers
a VM image while the VM continues to run in the origi-
nating host, only suspending the VM for an imperceptible
period while control is finally switched to the receiving host.
However, live migration transfers the complete VM memory
image each time, an operation that generally involves hun-
dreds of megabytes if not gigabytes of data, which would
be prohibitive over a slow wireless link. In addition, live
migration assumes a high-speed shared storage medium be-
tween the hosts involved, so that file-system state need not
be transferred at migration time. Mobile devices do not
enjoy such high-speed shared storage.

A recent refinement on live migration uses delta compres-
sion to reduce the amount of data transferred in the later
stages of migration [10]. However, it still sends the complete
contents of memory at least once before beginning to apply
differencing techniques to the pages that have changed in the
course of the migration. It also still assumes a high-speed
shared storage medium.

Work on opportunistic replay [2] proposes an approach for
decreasing the amount of data transferred during VM mi-
gration in low-bandwidth environments. This approach logs
user-input events (e.g., keyboard presses and mouse clicks)
during VM execution, then transmits and replays this log
on a second identically-configured VM to produce nearly the
same VM state. Because only user events are logged, events

Sync	
  
Daemon	
  

Guest	
  VM	
  

Memory 

Disk 

Active Device 

Checkpoints 

Synchronization Server 

Hypervisor 

Checkpoint	
  Engine	
  

Standby Devices 

Merged 
Checkpoints Checkpoints 

Figure 1: VMsync Architecture

triggered by additional hardware devices or background net-
work connections may produce unmonitored state changes.
These changes remaining after replay are also transferred
and applied, resulting in a final identical VM. Though op-
portunistic replay is a potential mechanism for synchroniz-
ing multiple VMs in the VMsync scenario, there are many
policy decisions left to explore to create a mobile VM syn-
chronization solution that is imperceptible to the user. Fur-
ther studies on opportunistic replay using today’s network-
intensive mobile applications and operating systems would
also be needed to determine how well the approach would
work in the VMsync scenario.

The Kimberley system [13] introduced the concept of pre-
distributing a base VM image to relevant hosts, then sending
only the differences from the base when wanting to move a
VM from one host to another. It calls for suspending the
VM on the originating host, calculating differences, transfer-
ring them, and applying them, before resuming the VM at
the destination host. We adopt the idea of pre-distributing
a base VM, but go further in pursuing incremental synchro-
nization of live VM state among multiple devices without
perceptibly suspending the VM.

3. PRELIMINARY DESIGN
The goal of VMsync is to maintain a consistent VM image

across multiple devices while minimizing the time it takes for
users to switch between devices. We consider this time the
switch penalty. The simplest approach would perform a live
migration of the guest VM at the time the user would like to
switch devices, though this would incur a data transfer cost
on the order of the VM size. For example, live migration of
a Xen VM with 800 MB of memory can transfer as much as
960 MB (1.2x) [4].

In the case of wireless networks, VM state changes could
occur faster than bandwidth allows, leading to higher switch
penalties. Even with delta compression [10], live migration
transfers on the order of the VM memory size during its
initial stages, limiting its use in networks confined by data
caps and bandwidth limitations. Therefore, along with re-
ducing the switch penalty, we must also minimize the total
amount of data transferred between devices. In VMsync we
propose an incremental synchronization method to migrate
a VM across mobile devices that attempts to minimize both
the switch penalty and the data transferred.

Figure 1 represents the architecture of VMsync, a system
made up of multiple host devices with virtualization support



Figure 2: Memory contents change significantly with
each new web page loaded.

and a resource-rich server in the cloud, used as a synchro-
nization point between devices. Devices registered with a
VMsync instance are provisioned with a single base guest
VM, like in Kimberley [13], containing a typical mobile de-
vice operating system such as Android. The hypervisor of
each device handles syncing operations through a privileged
daemon which monitors the guest VM state.

In our initial design of VMsync, only one active VM will
be running at any given point in time to ensure that VMs
do not diverge. This active device will propagate changes
of both memory and file system state to the synchroniza-
tion server over the period of time in which the device is
active. We consider this process a checkpoint. Every other
VM, considered standby VMs, will be paused and period-
ically updated via the synchronization server if the device
is online. Devices which are not connected to the network
or have not been synchronized will be considered to be in
a stale state and must be synchronized before a user can
switch to that device. The longer a device is offline or not
updated, due to limited bandwidth or policy decisions, the
higher the switch penalty.

The synchronization daemon running on the end device,
which monitors the guest VM for changes, must be designed
in such a way that balances the tradeoff between data trans-
ferred and computational overhead. For example, a naive
low-computation approach would be similar to live migra-
tion, e.g., simply propagate every memory page and disk
block that has been changed since the last checkpoint. Dur-
ing our feasibility study in the subsequent section, we show
that this method would propagate a large amount of data
that has not actually changed. This raises the question
of how to efficiently synchronize only the bytes that have
changed since the previous checkpoint.

Since mobile devices contain an increasing amount of file-
system storage, 64 GB or more, it would be feasible to main-
tain a snapshot of the previous memory checkpoint on disk.
Today’s mobile devices, such as smart phones and tablets,
contain a limited amount of memory, typically maxing out
at around 2 GB. This would allow a byte by byte comparison
or an on-device differencing algorithm to identify the bytes
that have changed since the last checkpoint. Alternatively, a
network-based differencing algorithm such as rysnc could be
used, though this may require additional network and com-
putational overhead. Due to the large size of the file system,
a copy-on-write disk image or customized block driver could

Figure 3: File-system contents change when the web
browser caches data.

be used to efficiently monitor file-system changes and syn-
chronize file-system state. Previous work on opportunistic
replay [2] and delta compression [10] could also be adapted
for use during VMsync’s checkpointing step.

Though the above update mechanisms are not novel, VM-
sync introduces many policy questions that can only be an-
swered with a thorough design, implementation, and evalu-
ation of the system. For example, in order to minimize the
switch penalty, should the active device propagate changes
periodically over time, use specific operating system events
to infer the best time to propagate changes, or use a mix of
these two policies? An event, such as putting the phone to
sleep via the hardware power button, may be a good indica-
tor that the device will no longer be used for some time and
the user could potentially switch to another device. On the
other hand, if the user switches devices before this event,
the state change from the last checkpoint may be large and
will thus increase the switch penalty. In this case, a periodic
checkpoint would have helped. We can also use other fac-
tors such as location, nearby device presence, battery life,
CPU utilization, network bandwidth, bandwidth caps, etc.,
as triggers for state propagation.

There are also various policy decisions that must be made
on the synchronization server. For example, when should
devices be updated with the latest state information? One
policy may decide that only devices connected to a network
with sufficient bandwidth can receive changes. For devices
that have been offline for some time, the server can merge
multiple checkpoints from the active VM to minimize the
amount of data transferred. In some cases it may also be
possible to bypass the synchronization server by using local
wireless links such as Wi-Fi Direct, Bluetooth, or NFC to
migrate changes directly between devices.

Finally, the variety of hardware configurations in mobile
devices introduces challenges when migrating a VM from
one device to another. We have not fully addressed this de-
vice heterogeneity issue, but we note that it is common to
other mobility schemes based on VM migration [7, 11]. On
the positive side, modern mobile operating systems such as
Android and Windows Phone 8 are designed for extensibil-
ity, thus providing support for many types of hardware built
by different manufacturers. Therefore, it seems feasible in
the future to extend these operating systems to detect and
adapt to hardware changes at runtime.



Figure 4: Most changes to memory occur during the
initial loading of the video, with some final changes
when the application closes.

4. FEASIBILITY STUDY
To measure the feasibility of VMsync, we analyzed changes

to memory and the file system under various mobile work-
loads. Our goal was to determine how much data would be
required to maintain a consistent VM state across multiple
devices. As workloads, we chose applications that we believe
are representative of current mobile phone use: web brows-
ing, video playback, audio playback, and audio recording.

We performed our study on the Android platform. Our
VM is an Android-x86 4.0.4 (Ice Cream Sandwich) [1] guest
domain running above the Xen 4.1.1 hypervisor. The An-
droid VM uses an Android Open Source Project (AOSP)
3.0.8 kernel compiled for x86 and with Xen paravirtualiza-
tion support enabled. The guest domain is allocated with
512 MB of memory, 1 virtual CPU, a 512 MB read-only sys-
tem image that contains the Android software stack and is
pre-distributed to all devices, and a 512 MB read/write data
partition that is monitored for changes during experiments.
The host machine is a desktop-class machine with a quad-
core Intel Core i7 860 processor executing at 2.8 GHZ and
12 GB of RAM. Though this host system is in no way rep-
resentative of a mobile device, we are measuring changes to
memory and file-system usage under mobile workloads, not
computation overheads or other effects influenced by host
capacity.

Our synchronization daemon executes outside of the guest
domain within Domain0, and uses xenctrl APIs to map the
guest domain’s memory prior to starting a workload. At the
beginning of the workload, we pause the VM and save a copy
of both memory and the data partition. This represents the
original state of the VM prior to running a workload. Over
the course of a workload, we analyze the memory and file
system states across various checkpoints. For each check-
point, we pause the VM and compare the current memory
and file system state with the original copy we saved in the
beginning of the workload. We also save the state of each
previous checkpoint to measure changes over specified inter-
vals of time. This procedure simulates an implementation of
VMsync, where a device would periodically sync the current
changes with all devices. We can thus understand the vol-
ume of data changed across an entire workload for different
VMsync policies.

Figure 5: File-system contents change continuously
during audio recording.

Measuring Checkpoint Sizes
In each of Figures 2–5, we show four curves, each corre-
sponding to a different checkpointing policy. The top curve,
labeled Dirty Orig, represents the case where each memory
page or disk block that was changed from the beginning
of the workload is synced. The second curve, labeled Diff
Orig, only counts the bytes changed from the beginning of
the workload, simulating a differencing syncing mechanism.
The third and bottom curves, Dirty Prev and Diff Prev, fol-
low similarly, but are measured with respect to the system
state of the previous checkpoint. For example, Figures 2
and 3 shows the number of megabytes that would be trans-
ferred while executing a checkpoint every second during a
web browsing session using the default Android browser.

Our web browsing workload navigates through a popular
news article on m.cnn.com. The workload sleeps a predeter-
mined number of seconds (45) before scrolling down the page
as a normal user would. Then the workload sleeps again (25
seconds) to simulate reading the end of a page before mov-
ing to the next page of the article. Each time the browser
loads a new web page, we see a significant change in both
memory and file system activity. The changes in the file sys-
tem are due to the fact that the Android browser maintains
a cache of previously viewed web pages and thus there are
additional changes each time a new page is loaded.

Figure 4 shows the checkpointing effects during a stream-
ing video using the YouTube app for Android. In the case
of YouTube, the application is launched and the video is
buffered during the beginning of the workload. During video
playback, many pages are modified but the overall change
in the system remains steady. An important observation
is that throughout all our workloads, the most significant
overall change to memory (Diff Orig curve) also occurs at
the beginning of the workload. After this initial change, the
changes following are fairly minor. For this reason, if there
is enough time to propagate the changes caused by start-
ing an application, migrating to a different device later in
the use of an application should only incur a small switch
penalty. On the other hand, if a user switches to a second
device within a few seconds of starting an application, the
amount of time needed to sync the system state would be
much longer and possibly noticeable by the user.

To observe the effects of a file-system intensive workload,
we used the Hi-Q MP3 Voice Recorder app to record 3 min-



Figure 6: Transferring complete dirty memory pages
involves three times more data than necessary.

utes of audio within our VM. This workload continuously
writes to the file system and finishes with a final 1.3 MB
change to the file system. Figure 5 shows the results when
executing a file system checkpoint every 1 second. When
compared to the original system image, the changes over
the course of the workload are continuously increasing over
time. Every checkpoint, the changes between the previous
state are consistently minimal, but add up to the final total
change at the end of the workload. Though a user may not
switch devices while recording an audio session, this repre-
sents the feasibility of switching between devices when data
is being constantly written to the file system.

Measuring the Total Bytes Required for Sync
For each workload, we vary the time between checkpoints
from 1 second to 5, 10, 30, and 60 seconds. Due to the
fact that each workload runs for a fixed amount of time,
the number of checkpoints decreases as the amount of time
between checkpoints increases. Because of this, the over-
all shape of each checkpoint curve is similar, but smoother
and less fine grained over time. Figures 6, 7, 8, and 9 com-
pare the total amount of data required for each checkpoint-
ing policy against the time interval between checkpoints.
While we are not measuring the switch penalty directly in
units of time, the size of data transfers under various poli-
cies gives us some indication of which policies would have
higher or lower switch penalties. Final Diff represents the
exact number of megabytes changed at the end of the work-
load, where Final Dirty is the total number of megabytes
required if you synced each dirty page or block. When us-
ing a policy that compares against each previous checkpoint,
we sum the number of megabytes changed for each check-
pointing round and report the result as the total number of
megabytes changed for that policy. Incr Diff represents the
total number of bytes changed, where Incr Dirty represents
the total number of complete pages that have changed over
incremental checkpoints.

In all cases, the Final Diff and Final Dirty results re-
main constant (within a standard deviation of the work-
load) across varying time intervals. As the time interval
between checkpoints increases, the number of checkpoints
decreases, lowering the total number of megabytes for incre-
mental checkpoints. Because memory state changes very fre-
quently while a workload is running, checkpointing memory
state often, such as every second, transfers large amounts

Figure 7: Transferring only the bytes that have
changed is also advantageous in the file-system case.

of data. In the case of video playback, shown in Figure
6, propagating each memory page that has changed would
require three times the amount of data compared to prop-
agating the difference of each page. In fact, propagating
dirty pages could use up to 35 times the amount of data
than necessary in the worst case, measured from our audio
recording workload. In all cases, propagating only the bytes
that have changed at the end of the workload uses the least
amount of data, but could cause a severe delay if the user
decides to switch devices while running an application. It
is also important to note that both differencing policies, fi-
nal and incremental, may incur significant time and space
overhead. We plan to measure these overheads and explore
the trade off between each in a full-fledged implementation
of VMsync.

Compared to memory state, the changes in file system
state are fairly minimal, even in a file-system intensive work-
load such as audio recording (Figure 8). As the time between
checkpoints increases, propagating dirty blocks every check-
point converges closely to the actual number of megabytes
changed. This is because during sequential writes, data is
written to a single block at a time and the number of dirty
blocks ends up being proportional to the total number of
bytes changed. For writes spread out across multiple differ-
ent blocks, such as in the web browsing workload in Figure
7, propagating dirty blocks incurs a cost about five times
higher than performing a final diff.

Since mobile devices users can perform multiple tasks at
once, we performed a combined workload which added back-
ground music, using the default Android music player, to
our web browsing workload. In general, playing audio in
the background has minimal effect on the system state. As
shown in Figure 9, the size of changes to both the memory
and file system state are nearly the same as web brows-
ing alone, leading us to infer that audio playback continu-
ously modifies a fixed number of memory pages and does
not change the file system.

Following are some overall findings from this study. One,
naive policies that only propagate dirty pages or blocks trans-
fer large amounts of data and would not be feasible for mo-
bile devices and networks. Two, large savings result from
performing differences of previous checkpoints in order to
propagate only the bytes that have changed. We also see
that increasing the amount of time between checkpoints will
save bytes but may require a higher switch latency if a user



Figure 8: Waiting before propagating dirty file-
system blocks approaches the cost of a differencing
policy for apps that perform sequential writes.

Figure 9: Playing music in the background of a web
browsing session has minimal effect on the overall
system state.

switches devices during that time. With regards to mem-
ory, the most significant changes occur in the beginning of
a workload and subsequent changes are somewhat minimal.

5. CONCLUSION
We have presented our early work on VMsync, a system

for incrementally synchronizing live virtual machine state
among mobile devices. VMsync aims to enable users to
seamlessly switch between devices with both data and com-
putation state preserved across the switch without apparent
delay. We described our initial design for identifying changes
to the memory and file-system images of an active VM on
one device, then propagating those changes to standby VMs
on other devices via a synchronization server in the cloud.
We also presented our measurements study of how much
data would need to be transferred to maintain a consistent
VM image across devices under different workloads and syn-
chronization policies. From our efforts to date, we conclude
that VMsync is a feasible approach with many open issues
deserving of further research.
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