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ABSTRACT

We present the Python Classroom Response System, a web-
based tool that enables instructors to use code-writing and
multiple choice questions in a classroom setting. The system
is designed to extend the principles of peer instruction, an
active learning technique built around discussion of multiple-
choice questions, into the domain of introductory program-
ming education. Code submissions are evaluated by a suite
of tests designed to highlight common misconceptions, so
the instructor receives real-time feedback as students submit
code. The system also allows an instructor to pull specific
submissions into an editor and visualizer for use as in-class
examples. We motivate the use of this system, describe its
support for and extension of peer instruction, and offer use
cases and scenarios for classroom implementation.

Categories and Subject Descriptors

K.3.2 [Computer Science Education]: Computer and In-
formation Science Education

Keywords

CS1, pair programming, peer investigation, active learning

1. INTRODUCTION

Peer Instruction (PI) is a pedagogical technique devel-
oped by the physics education community that has recently
been applied to the teaching of computing courses. Physics
educators realized that standard lectures are ineffective for
teaching core concepts and addressing misconceptions [2],
so PI was developed to introduce active, peer-based inter-
action to the classroom and to focus student attention on
key misconceptions. Multiple research projects described
in physics education journals demonstrate that PI-students
outperform lecture-students on various grade-based and af-
fective measures. For example, PI advantages have been
demonstrated on final exams and standard concept inven-
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tories [2]. PI also tends to reduce student attrition and
improve problem-solving ability [9].

Recent research in computing education suggests that PI
may also be valuable as a pedagogical approach to teaching
computing. Its focus on conceptual knowledge is appealing
to computing educators who seek to confront misconceptions
and help students understand core CS material [15]. How-
ever, PI focuses on in-class discussions of multiple-choice
questions, and such a focus suggests a mismatch between
PI and the skill-based practice required of CS1 students.
Many of the skills typically expected of CS1 students relate
to code-investigation and code-writing [5], and code-writing
is disproportionately used to gauge student skill on final ex-
ams [12].

In this paper, we introduce a new tool, the Python Class-
room Response System (PCRS), that can be used by com-
puting teachers in classroom settings to administer both PI
(multiple choice) and code-writing questions. Our goal is to
enable PI educators to additionally ask code-writing ques-
tions and hence further adapt PI to our disciplinary context.

2. BACKGROUND

A PI course can be described by the pre-class, in-class,
and post-class features that differentiate it from a lecture
offering. Prior to each lecture, students are expected to read
a section of the textbook and complete an associated reading
quiz. We then replace the lecture with several iterations of
the following four-step loop body:

Presage. Each PI iteration begins with a mini-lecture: a
couple of slides that act as a refresher for what students
read before class. The mini-lecture lasts at most a few
minutes.

Engage. We next pose a ConcepTest [2] — a multiple choice
question designed both to focus attention on and raise
awareness of the key course concept from the mini-
lecture [1]. After individually thinking about and vot-
ing on the correct answer (the solo vote), students dis-
cuss the question in small groups, reach a consensus,
and vote again (the group vote). Students are encour-
aged to discuss each answer, verbalizing why it is cor-
rect or incorrect [15].

Gauge. While student voting data can be estimated us-
ing flashcards [8], the effectiveness of the “gauge” step
is substantially enhanced by using electronic response
systems. Clickers are a popular choice, as they provide
immediate, accurate vote counts to the instructor and



compelling graphical displays for the students. Ide-
ally, each response option for a ConcepTest will cor-
respond to a common student misconception, so that
the instructor can identify the range of understand-
ings present among the students [4]. Seeing the his-
togram of results, students come to realize that they
are not alone in their confusion [7], which may make
them more comfortable voicing their concerns in sub-
sequent, class-wide discussion.

Age. Having engaged students in collaborative debate and
gauged their progress and understanding, the instruc-
tor leads a class discussion meant to solidify a mature
conception of the lessons learned. The results of this
discussion can be used by the instructor to adapt the
lecture in real-time, filling gaps in student knowledge
before progressing to the next topic and ConcepTest.

Using PI in combination with clickers provides an impor-
tant pedagogical benefit to instructors in terms of response
data. Following the lecture, the teacher can use this data to
shape upcoming class meetings, as analyzing the responses
to PI questions may expose points of confusion or difficulty
that would benefit from extra class time.

Simon et al.’s paper at SIGCSE 2010 [15] began the in-
vestigation into the applicability and effectiveness of PI in
CS. This original paper was primarily interested in the fol-
lowing question: do more students answer correctly after a
group discussion compared to before the group discussion?
To quantify such gains, the authors computed normalized
gain (NG) on each question. NG captures the proportion
of students who answer incorrectly in the solo vote but cor-
rectly in the group vote. For example, if 60% of students
answer correctly in the solo vote and 80% answer correctly
in the group vote, the NG for the question is 50% (i.e. 50% of
“potential learners” demonstrated new understanding). The
authors found an NG of 41% in a CS1 course and 35% in
a CS1.5 course. Similarly, [17] used PI in a remedial CS1
course and found an NG of 29%.

End-of-course surveys consistently find that students and
instructors value PI. A survey reported in [17] found, for
example, that 100% of students believed that individually
thinking about and responding to a PI question helped them
learn the course material. In addition, 100% agreed that
group discussion was helpful, and 94% strongly agreed that
PI should be used in other courses. Other surveys corrob-
orate these findings [11, 15]. A unique reflection of four
instructors’ use of PI [13] suggests other observed benefits,
including a focus on teamwork and communication; flexi-
ble, demand-driven lectures; and opportunities for improv-
ing proof-reasoning abilities.

What kinds of questions can be asked using PI? Some of
the papers cited above [15, 17] contain examples of questions
where students must read and understand code. It is also
possible to approach code-writing through the use of Parsons
puzzles [17] that involve the rearrangement of existing code.
In an analysis of a semester’s worth of PI questions [3], three
levels of abstraction were prominent: English, CS-speak,
and code. Most prominently, questions often transitioned
from one category to another; for example, a student might
be asked for the code-equivalent of an English statement.
Other questions were restricted to only one level of abstrac-
tion. Within coding, for example, many questions asked
students to trace code to determine the code’s output or pur-

pose. However, despite this focus on code, multiple-choice
questions inherently cannot require students to generate new
code from scratch.

We acknowledge PI’s utility in targeting various sought-
after skills, such as code-reading, explaining code in English,
and translating between levels of abstraction. However, we
seek to extend the reach of PI into the domain of code-
writing. We believe that having students write code, even
small portions of code, is crucially important for success in
CS1. Literature shows that code-writing is not equivalent
to other code-related tasks such as code-reading or explain-
ing code in plain English. Code-writing is argued to be
at the top of a hierarchy with other code-related tasks be-
low [16]. Furthermore, Zingaro et al. examined integrative
code-writing questions and a corresponding set of “concept”
questions on a final exam. Concept questions are small code-
writing questions developed to target single concepts rather
than multiple concepts, as is typical of code-writing ques-
tions. They found that concept questions were highly pre-
dictive of performance on the exam as a whole, suggesting
that the ability to write small pieces of code from scratch is a
valued outcome in CS1 [18]. This further suggests that code-
based ConcepTests, which also focus on a small number of
expected misconceptions, may also be effective performance
evaluators. Validating this claim is the subject of ongoing
work.

3. USE CASES

The design of the Python Classroom Response System
(PCRS) emerges directly from our experience with PI ped-
agogy. Our goal was to extend PI to deal with discipline-
specific needs while remaining faithful to the PI philosophy
and 4-step cycle. As such, it was important not to lose
the Pl-support functionality that was previously available
through the use of clickers. Therefore, assuming the avail-
ability of a wireless network and student handheld devices
(e.g., laptop, phone, or tablet), the PCRS’s multiple choice
question support replaces the functionality of clicker soft-
ware. Of course, clickers are low-cost devices much more
affordable than the devices supported by the PCRS, but we
anticipate that many students will already own a phone or
other mobile device that will suffice.

Beyond traditional PI support, the PCRS can be used to
support lecture-based code reading and code writing exer-
cises. For example, we can use the PCRS to support code-
writing exercises. In the past, we would insert programming
exercises into lecture by asking students to discuss design
issues in small groups and then to write pseudocode on pa-
per. Later, we would implement one possible solution to a
problem. However, during these exercises, students lacked
many typical debugging resources, and in large classes, the
instructor lacked feedback, as it is not feasible to review
many students’ code. Therefore, we were often unaware
of the number of students answering correctly or exactly
where students became stuck. The PCRS makes these ex-
ercises more effective by providing students and instructors
with the support they require: students work interactively
with a dynamic visualization tool that supports debugging
and program understanding [14, 10], and instructors receive
real-time feedback on their students progress.

The PCRS can also support a range of other code-writing
exercises. For example, it supports partial-code exercises
where students are provided with starter code that they



must read and then extend. In this case, the debugging tools
aid the students in the code understanding task. In terms
of debugging, the PCRS can also support defect triage ex-
ercises that are otherwise difficult to conduct in lecture. In
this activity, we present students with incorrect or incom-
plete code that may pass some (but not all) test cases. We
then ask students to determine why the specific tests fail and
to correct the code using test-driven debugging techniques.

4. TOOL DESCRIPTION

The PCRS is a freely available, open-source system de-
signed to support Pl-style multiple choice questions as well
as submission and analysis of live coding exercises in a class-
room system (link omitted). It consists of administrator
and student modules backed by a shared database. The ad-
ministrator module contains functionality for creating ques-
tions and analyzing submissions in real-time or outside of
class. The student module allows students to view ques-
tions, submit answers written in Python, and debug sub-
missions to programming problems. The student module is
built around the Online Python Tutor (OPT) developed by
Philip Guo [6]. As shown in Figure 3, the OPT supports
tracing and debugging activities by providing a visualiza-
tion of the Python memory model and allowing students to
step both forward and backward through the code.

The PCRS is entirely web-based, so it can be accessed
through a browser on a laptop or tablet. Submitted code
is executed on a server which returns an execution log to
be visualized on the client machine. For security reasons,
the code that can be executed and visualized is restricted:
several built-in Python functions are disabled, and external
modules cannot be imported. With the exception of file
operations, which cannot be executed, the subset of Python
that is supported is sufficient for exercises in a CS1 or CS2
course.

“L1=[1, 2, 3]
L2 = L1
L2.append(4)
L2=1/0 1,2 3

After the preceding code has executed, what is the
value associated with the variable L1%”

A. [0, 1,2 3]
B.[1, 2, 3]
C.lo, 1,2 3 4]
D. [1, 2, 8, 4]

Figure 1: An example ConcepTest-style multiple
choice question.

4.1 Multiple Choice Questions

To directly support PI, the PCRS allows instructors to de-
fine ConcepTest-style multiple choice questions like the one
in Figure 1. Before class, the instructor enters the question
and defines the possible answers. During class, the instruc-
tor logs into the administrator module of the PCRS and
“enables” the problem when she wants students to respond
to the question. At that point, it becomes visible to students
who are logged into the PRS website, and they can submit
responses. The instructor can display a response histogram

“Given a number n and a Python list L, return the index
(position) of the first occurrence of n in the list or -1 if n
is not in the list.”

.n=0,L =]

n=0,L=]1,2 3]

n=0,L=1]1,2,0, 3

n=0,L=[123,0]

n=0,L=1]12,0,0, 3

T 010

Figure 2: An example coding problem with the test
cases defined by the instructor.

in real-time and can “disable” the problem to stop submis-
sions. The histogram displayed is very similar to the one
displayed for programming questions illustrated by Figure
4.

In most cases, PI questions are carefully crafted to uncover
specific issues that the instructor anticipates will be misun-
derstood by students. For example, the question in Figure
1 evaluates whether students understand how assignment of
mutable objects works in Python. Option (A) aligns with
a common misunderstanding related to assigning variables
(rather than the referenced object) and option (B) uncovers
a misunderstanding about aliasing.

However, PI instructors often feel the need to quickly poll
the students on unanticipated topics or questions raised dur-
ing the flow of the class. The PCRS also provides instructors
with the opportunity to ask a “snap question”. From the ad-
ministrator interface, a single click creates a new, enabled
multiple choice question with 5 possible responses. The in-
structor has the choice of filling in text for the question or
any of the responses, but none are required.

4.2 Programming Problems

The PCRS also allows programming instructors to ask
Pl-inspired programming questions. Like PCRS support for
multiple choice questions, the instructor will usually define
the problem before class and use real-time analysis function-
ality to identify misconceptions that are present. To create
a coding question, the instructor must formulate the prob-
lem and, as in PI, specify a set of expected misconceptions.
However, instead of encoding the misconceptions as mul-
tiple choice answers, the instructor implements them as a
set of test cases. Each student submission is run through
the test suite, and as illustrated in Figure 3, the instructor
can identify the specific test cases that are proving trouble-
some for the class. Since each test case represents a typical
misconception, the instructor can immediately identify the
concepts on which to focus for the next part of the lecture.

Consider the code problem and corresponding test cases
in Figure 2. In our experience, students often have difficulty
solving it using a conditional (“while”) loop. When we build
the problem, we consider what problems students might en-
counter, and we build a test case for each one. We anticipate
that students will attempt to access elements before check-
ing the list’s length (test case 1), continue iteration beyond
the end of the list (case 2), terminate one comparison too
early (case 4), or return the later index in cases with dupli-
cate entries (case b).

Before class, we quickly review the problem: test cases
1, 2, and 4 are related to understanding of list indices, and
cases 3 and 5 check for correctness related to the problem



Use left and right arrow keys to step through this code: Stack grows Heap

def find_index(L, n=0): FUNCTION (id=1):
i=0 Global L |
ind = -1 variables
while i < len(L) and L[i] != n: find index 'Go‘('d=2)= .
) L _ | i
: i+=1 input INT INT INT
6 difLfl=n: (d=3;: | (d=a): | (d=s):

— EENEN
return ind find_index

N L INT (id=5):
10 # Everything below here is test code i Lr%-_a| 3 |
11 dpput = [1, 2, 3]

ind
12 result = find_index(input) \INT(‘::;);
n| | =1
Edit code | Submit answer

About o do step 15 of 16 (EEEIEED

INT (id=6):
[0 |

Figure 3: Encountering an error in Python code that iterates over a list.

Find Index

"Given a Python list and a number n, return the position index of the first occurrence of n in the list, or -1
if n is not in the list. Use a while loop."

total submissions: 4
total correct: 1
at least one test failed: 3

IN: )
OuUT: -1

IN: [1, 2, 3]
OuT: -1

IN: 1,2, 0, 3]
OUT: 2

IN: [1, 2, 3,0]
OUT: 3

student submissions

IN:[1,2,0,0, 3]
OouT: 2

2 3
# of tests passed/failed

Figure 4: The instructor’s view: monitoring submissions to a programming exercise. The graph on the left
illustrates the number of submissions that passed all tests, while the graph on the right identifies the success
and failure rate on particular tests.



specification. Then, after the problem is introduced, we can
use real-time histograms produced by the PCRS to quickly
identify the issues that are causing the students the most
trouble. In response, we can issue verbal hints or pause the
class and use a student submission to demonstrate why a
particular test case is failing.

In the meantime, students are receiving feedback on their
submissions directly from the system. Each submission is
evaluated against the test cases, and the students are told
which test cases pass (and fail). If they wish, they can use
the visualizer to trace through a failing (or passing) test case,
as demonstrated in Figure 3. In that example, the bottom
two lines of code (11 and 12) tell the student exactly what
test case was run; the top 8 lines are the student’s submis-
sion. If the instructor desires, she can turn off this feedback
feature. In that case, the students are told the number of
test cases that fail but are not provided information about
the contents of the test case. This might be desirable if an
instructor uses the PCRS for marked work.

4.3 Analyzing Submissions

The PCRS provides several real-time and offline tools for
analyzing student submissions. The real-time tools keep
submissions anonymous, to protect student privacy, but the
offline tools generally allow the instructor to identify the stu-
dent in order to enable marking or credit for participation.

In real-time, the instructor can display a histogram of sub-
missions. By default, each student’s most recent submission
is counted in the histogram, but all submissions are stored.
To follow-up on a misconception, the instructor has access
to a rich set of tools. The PCRS allows the instructor to
browse submissions that pass (or fail) specific test cases and
to display, modify, and trace through selected submissions in
the same visualizer environment that the students use. This
allows the instructor to find relevant examples submitted by
students in the class and to use them in demonstrations. The
PCRS also allows the instructor to filter submissions using
a regular expression; this allows the instructor to identify
submissions that use a specific syntactic structure.

Offline, the instructor can view student-specific informa-
tion. On request, the PCRS can generate a comma-separated-
value file that provides data for each student in the system.
The instructor may specify which problems are included in
the report; for the problems that are included, the correct
(and incorrect) submission counts and pass/fail information
for each test is provided.

The students are also provided facilities for analyzing their
submissions. Each submission is stored in the database, and
students can browse their history and send specific submis-
sions to the visualizer for further investigation. Each sub-
mission is annotated with information on the tests that were
passed and failed.

5. DISCUSSION

We believe that the PCRS is an effective means of im-
plementing active, Pl-inspired activities in a programming
classroom. The tool is designed to give the students the
opportunity to practice key code writing skills — problem
solving, code production, and debugging — in class. At
the same time, the instructor is obtaining rapid and rich
feedback from the students and has the tools necessary to
identify and use relevant student submissions in examples.

However, deploying this system requires planning. While

most students have phones that can load the PCRS website,
mobile phones do not have sufficient screen real estate to
make visualization effective, and beyond that, coding on a
phone keyboard is not feasible. While phones can easily be
used for multiple-choice questions, we recommend that pro-
gramming activities be performed on devices, like tablets or
laptops, with larger screens and better text input function-
ality. In our own classes, only about 1 of 3 students normally
bring a laptop to class, but we believe that when this tool is
integrated into a class and students see its benefit, more will
bring appropriate devices to lecture. Furthermore, since we
prefer to structure the activities using a pair-programming
or small-group model to get students involved in discussions,
only 1/3 to 1/2 of the students need to be equipped with
mobile devices.

Network resources are another issue that requires fore-
thought. The local wireless point can become overwhelmed
by connections if everyone in the classroom is using a de-
vice, so the network administrators need to be involved in
the deployment of the PCRS in a large course.

Work on the PCRS is progressing in three directions. First,
the interface and the analysis features of the tool are being
improved based on instructor and student feedback. Sup-
port is also envisioned for languages other than Python.
Second, we are performing a qualitative study investigat-
ing how the availability of tools like the PCRS change how
students interact with the material, their peers, and their
instructor. Third, we are preparing a set of pre-packaged
programming exercises and multiple-choice questions to ac-
company the PCRS, so that new adopters can quickly deploy
the tool.

6. CONCLUSION

While PI has been adopted in computing education con-
texts, such adoptions have tended to ignore the differences
between computing and physics. In particular, recognition
of the importance of code-writing exercises in CS1 as a key
activity, assessment technique, and outcome measure has
been lacking. We suggest that an active learning pedagogy
used in a programming context should naturally support
code-writing in addition to problem-solving, code-reading,
and other valued CS1 skills. Our PCRS efforts seek to adapt
PI to this unique disciplinary context to increase the breadth
of questions and feedback that move between teacher and
student during lectures. We make this tool freely available
to the community, will continue development, and will re-
port on its use by teachers that have previously used and
not used PL.
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