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XML data projection (or pruning) is a natural optimization for main
memory query engines: given a queryQ over a documentD, the sub-
trees ofD that are not necessary to evaluateQ are pruned, thus produ-
cing a smaller documentD′; the queryQ is then executed onD′, hence
avoiding to allocate and process nodes that will never be reached byQ.
In this article, we propose a new approach, based on types, that greatly
improves current solutions. Besides providing comparableor greater
precision and far lesser pruning overhead, our solution —unlike current
approaches— takes into account backward axes, predicates,and can be
applied to multiple queries rather than just to single ones.A side con-
tribution is a new type system for XPath able to handle backward axes.
The soundness of our approach is formally proved. Furthermore, we
prove that the approach is also complete (i.e., yields the best possible
type-driven pruning) for a relevant class of queries and Schemas. We
further validate our approach using the XMark and XPathMarkbench-
marks and show that pruning not only improves the main memoryquery
engine’s performances (as expected) but also those of stateof the art
native XML databases.

1 Introduction

Main-memory XML query engines are often the primary choice for applications that do not
wish or cannot afford to build secondary storage indexes or load a database before query
processing. One of the main optimisation techniques recently adopted in this context is
XML data projection (or pruning) [27, 13].

The basic idea behind document projection is very simple andpowerful at the same
time. Given a queryQ over a documentD, sub-trees ofD that are not necessary to evaluate
Q are pruned, thus yielding a smaller documentD′. ThenQ is executed overD′, hence
avoiding to allocate and process nodes that will never be reached by navigational specifica-
tions inQ. This ensures that evaluation overD′ is equivalent to and more efficient than the
evaluation overD.

As shown in [27, 13], XML navigation specifications expressed in queries tend to be
very selective, especially in terms of document structure.Therefore, pruning may yield
significant improvements both in terms of execution time andin terms of memory usage:
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as a matter of facts, for main-memory XML query engines, verylarge documents can not
be queried without pruning.

1.1 State of the art

Marian and Siméon [27] propose that the actual data-needs ofan XQuery queryQ (that is,
the part of data that is necessary to the execution of the query) is determined by statically
extracting all paths inQ. These paths are then applied toD at load time, in a SAX-event
based fashion, in order to prune unneeded parts of data. The technique is powerful since:
(i) it applies to most of XQuerycore, (ii) it can be applied to a set of queries over the same
document, and(iii ) it does not require anya priori knowledge of the structure ofD. How-
ever, this technique suffers some limitations. First, the document loader-pruner can manage
neitherbackward axesnor path expressions with predicates (sometimes called “qualifiers”)
which, especially the latter, can contain precious information to optimise pruning. Second,
the advantage described in point(iii ) becomes a big drawback when “//” occur in paths
since, in that case, the technique does not behave efficiently in terms of loading time and
pruning precision (hence, memory allocation). Indeed, when a// is present in a projec-
tion path, the pruning process requires to visit all descendants of a node in order to decide
whether the node contains a useful descendant. What is worstis that pruning time tends
to be quite high and it drastically increases (together withmemory consumption) when the
number of// augments in the pruning path-set. As a matter of fact, in thistechnique, prun-
ing corresponds to computing a further query whose time and memory occupation may
be comparable to those required to compute the original query. In particular, in this tech-
nique every occurrence of// may yield a full exploration of the tree (e.g., see in [27] the
test for the XMark [32] query Q7 which only contains three// steps and for which just
computing the pruning takes longer than executing the queryon the original document).
Therefore, pruning execution overhead and its high memory footprint may jeopardise the
gains obtained by using the pruned document. Third and finally, as we explain in Section 7,
the precision of pruning drastically degrades (down to being nullified) for queries contain-
ing the XPath expressionsdescendant ::node[cond], which are very useful and used in
practice.

Bressanet al. [13] introduce a different and quite precise XML pruning technique for a
subset of XQuery FLWR expressions. The technique is based onthea priori knowledge of
a data-guide forD. The documentD is first matched against an abstract representation of
Q. Pruning is then performed at run time, it is very precise, and, thanks to the use of some
indexes over the data-guide, it ensures good improvements in terms of query execution
time. However, the technique is one-query oriented—in the sense that it cannot be applied
to multiple queries—, it does not handle XPath predicates, and cannot handle backward
axes (recall that the encodings of [31] are defined for XPath,and no extension to XQuery-
like languages is known). Also, the approach requires the construction and management of
the data-guide and of adequate indexes.

Motivated by efficient XML stream processing, Greenet al. [23] introduced a frame-
work for discarding sequences of SAX events in an XML data stream. Although their
approach allows them to prune an input stream with respect tosets of queries, the language
they handle is restricted to forward linear XPath expressions (that is, XPath expressions
with only child anddescendant axes and without predicates).

1.2 Our contribution

In this article, we present a new pruning approach that is applicable in the presence of
typed XML data. This is often the case, as most applications require that data are valid
with respect to some external schema (e.g., DTD [19] or XML Schema [37]).

Our technique combines the advantages of the previously mentioned works while re-
laxing their limitations. Unlike [27, 13, 23], our approachaccounts for backward axes, per-
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forms a fine-grained analysis of predicates, allows (unlike[13]) for dealing with bunches
of queries, and (unlike [27]) cannot be jeopardised by pruning overhead. Our solution
provides in all cases comparable or greater precision than the other approaches, while it
requires always negligible or no pruning overhead. Moreover, contrary to [27, 13], our
approach is formally proved to besound(i.e., pruning does not alter the result of queries)
and, furthermore, we can also prove it to becomplete(i.e., it produces the best possible
type-driven pruning) for a substantial class of queries andDTDs.

For the sake of presentation we introduce our framework in three steps. In the first
step, we consider a simplified version of XPath, we dub XPathℓ, which includes only up-
ward/downward axes and unnested disjunctive predicates. We define for XPathℓ a static
analysis that determines a set of type names, atype projector, that is then used to prune the
document(s). One of the particular features of this approach is that our pruning algorithm is
characterised by a constant (and low) memory consumption and by an execution time linear
in the size of the document to prune. More precisely, a pruning based on type projectors
is equivalent to a single buffer-less one-pass traversal ofthe parsed document (it simply
discards elements not generated by any of the names in the projector). So if embedded in
query processors, pruning can be executed during parsing and/or validation and brings no
overhead at all, while if used as an external tool it requiresa time always smaller than or
equal to the time used to parse the queried document. Soundness and (partial) completeness
results for the static analysis are stated.

The second step consists of extending the analysis to the whole XPath (more precisely,
to XPath 1.0), that is, we need to show how to deal with missingaxes and with general
predicates as defined in the XPath specification. This is doneby associating to each XPath
queryQ a XPathℓ queryP that soundly approximatesQ, in the sense that the projector
inferred forP by the static analysis developed at the first step is also a sound projector for
Q.

The final step of our process is to extend the approach to XQuery (hence, to XPath 2.0).
This is obtained in the same way as done in [27], by defining a path extraction algorithm.
Our path extraction algorithm improves and extends in several aspects (in particular, in
terms of extracted paths’ selectivity) the one of [27]. It also computes the XPathℓ approx-
imation of the extracted paths so that the static analysis ofthe first step can be directly
applied to them.

We prove some important closure properties that guarantee that type projections can
always be performed at load time during the validation process, and this without any over-
head. In particular for XML documents typed with DTDs or XML Schemas the document
can be pruned in streaming.

We gauged and validated our approach by testing it both on theXPathMark [21] and on
the XMark [32] benchmarks. The result of this validation confirmed what was expected:
thanks to the handling of backward axes and of predicates theprecision of our pruning is
in general noticeably higher than that of current approaches; the pruning time is linear in
the size of the queried document and has a very low memory footprint; the time of the
static analysis is always negligible (lower than half a second on the hardware we used for
our benchmarks described in Section 9) even for complex queries and DTDs. But bench-
marks also brought unexpected (and quite pleasant) results. In particular, they showed that
type-based pruning brings benefits that go beyond those of the reduced size of the pruned
document: by excluding a whole set of data structures (thosewhose type names are not
included in the type projector), the pruning may drastically reduce the resources that must
be allocated at run-time by the query processor. For instance, our benchmarks show that
for several XMark and XPathMark queries our pruning yields adocument whose size is
two thirds of the size of the original document, but the querycan then be processed using
three times less memory than when processed on the original document. This is a very im-
portant gain, especially for DOM-based processors, or memory sensitive processors. Not
only our approach is relevant in the case of main memory queryengines such as Saxon but
it is also shown to be useful for native query engines as efficient as MonetDB [12]. Even in
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the latter case our experiments demonstrate the relevance of type projection as a comple-
mentary optimisation technique. Indeed, this not totally surprising as type projection can
be thought of as a way of defining clustering policies in the same line as what was done in
the context of object-oriented databases [8, 4, 7]. Clustering and indexing are well-known
complementary tools used in the context of query optimisation.

As an aside we want to stress that our technique relies on the definition of a new type
system for XPath able to handle backward axes which, alone onits own, constitutes a
contribution of this work. In particular the precision of type inference for backward axes
goes beyond what is proposed in the XQuery Static Semantic recommendation ([18]).

Finally, we presented a preliminary version of this work at the VLDB 2006 confer-
ence [5]. The work in this article, besides including full proofs and having been cleaned
up, improves and extends the work in [5] in several importantaspects. First and foremost
we generalized the definition of type projectors by using as projectors sets of production
rules (as opposed to the sets of non-terminals used in [5]) ofregular tree grammars (as
opposed to the DTDs used in [5]). This generalization was far from being straightfor-
ward. In particular, we had to prove the applicability of ourtechnique to the more general
framework under consideration (cf. Section 3.2). However the result is worth the effort
since the advantages of this generalization are twofold. Onthe one hand using regular tree
grammars allows us to compute type projectors for every kindof XML schema formalism
we are aware of as, for instance, DTDs, XMLSchemas,CDuce and XDuce types, Relax-
Core and TREX schemas. On the other hand, inferring grammar production rules rather
than grammar non-terminals allows us to compute context-aware and, thus, more precise
projectors. More precisely, the new type projectors introduced in this work can prune a
subtree not only based on its tag (as it was done in [5]), but also on any structural condition
expressible by a regular tree language. So for instance our pruning process may decide
to prune just one of two trees generated by the same non-terminal, because they appear
in different contexts (in [5] either both trees were pruned or they were both preserved).
Therefore these new projectors are both more general and canperform much finer-grained
pruning. Second, although we develop the theory of type projection for a simplified data-
model and restricted forms of XPath expressions, we thoroughly detail how to tackle many
of the peculiarities of the XML and XPath specifications [34,35], including the handling of
attributes, the presence of absolute axes in XPath predicates or a wide range of predefined
XPath functions (all absent in [5]). The path language we formally study extends the one
in [5] with top-level unions of paths, predicate conjunctions (“and”) and arbitrarily nested
predicates (our previous work formally treated only non-nested predicates and resorted to
an approximation in the case of nested predicates). Third, we provide an extensive list of
experiments showing the overall benefits of type projectionfor a wide range of queries and
query engines. These experiments supersede the early benchmarks realised in [5] and show
that despite the advances in XML query technologies in the recent years, our static analysis
can significantly improve the performances (both in time andmemory consumption) of
many different XML query engines.

1.3 Plan of the article

The article is organised as follows. Section 2 introduces basic definitions and notations:
data model, types, validation. Section 3 presents type projectors, type-based projection, and
several theoretical (closure) properties. In Section 4 we define XPathℓ and its semantics,
and formally describe how general XPath predicates can be soundly approximated in it. In
Section 5 we present our type projectors inference algorithm for XPathℓ and state its formal
properties. In Section 6 we extend our approach to full XPathand in Section 7 to XQuery.
In Section 8 we discuss how to apply our technique to other typing policies as well as to
un-typed documents. Section 9 presents our implementationand reports the results of our
benchmarks. We finally conclude in Section 10 by presenting the perspectives of this work.
Last, for the sake of clarity, all the proofs for the stated results are given in Appendix A.
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2 Notations

2.1 Data Model

For the sake of concision and clarity we present our solutionfor a simplified version of the
XQuery data model where we do not consider node attributes. However, attributes are fully
supported in our implementation through a trivial encoding, documented in Section 6. An
instance of the XQuery data model can then be generated by thefollowing grammar:

Definition 2.1 (Data model)

Tree t ::= si | l i [ f ]
Forest f ::= () | f , f | t �

Essentially, an instance of the XQuery data model is an ordered sequence of labelled
orderedtrees (ranged over byt). That is, an orderedforest (ranged over byf ), where
each node has a uniqueidentifier(ranged over byi) and where() denotes the empty forest.
Tree nodes are labelled byelement tags(ranged over byl ) while, without loss of generality,
we consider only leaves that are text nodes (that is, strings, ranged over bys) or empty trees
(that is, elements that label the empty forest).

We define a complete partial order� on forests (and thus on trees) by relating a forest
with the forests obtained either by adding or by deleting subforests:

Definition 2.2 (Projection (�)) Given two forests f and f′ we say that f′ is a projection
of f , noted as f′ � f , if f ′ is obtained by replacing some subforests of f by the empty forest.
In other terms� is the smallest pre-congruence on forests that contains()� f for all f .�

We also define a notion of good formation, with respect to the data model given in
Definition 2.1:

Definition 2.3 (Good formation) A forest iswell formed if every identifieri occurs in it
at most once. Given a well-formed forest f and an identifieri occurring in it, we denote by
f @i the unique subtree t of f such that t= si or t = l i [ f ′]. The set of identifiers of a forest
f is then defined asIds( f ) = {i | ∃ t. f @i = t} �

Henceforth we will consider only well-formed forests and confound the notions of a node
with that of the identifier of the node.

Definition 2.4 (Root id) Let t be a tree. If t= si or t = l i [ f ], we defineRootId(t) = i.

2.2 Types and validation

In this work, we present our approach for an abstract model oftypes, namelyregular tree
grammars. It is well known that regular tree grammars encompass most of the features
of well established and standardized schema specificationssuch as DTDs, XMLSchemas,
RelaxNG definitions, XDuce andCDuce’s regular expression types. This is for instance
documented in [29], from where we borrow the definition of regular tree grammar:

Definition 2.5 (Regular tree grammar) A regular tree grammar is a pair(S ,E) where
S is a set of distinguished names (actually, non-terminal meta-variables) and E is a set of
productions rules of the form{X1 → R1, . . . ,Xn → Rn} such that:

1. each Ri is either the terminal String—denoting string content—, orthe terminal
Any—denoting any tree—, or l[ r ] where l ranges over valid element names and
r is a regular expression on the non-terminal symbols X1,. . . , Xn, that is:

RegExp r ::= ε (empty sequence)
| r r (sequence)
| r|r (alternation)
| r∗ (Kleene star)
| Xi (non-terminal)
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(henceforth, we use r+ for r r∗ and r? for ε|r);

2. S ⊆ {X1, . . . ,Xn} is the set of start symbols;

3. for any two production rules with the same left hand side Xi → l [r] and Xi → l ′[r ′],
we have l6= l ′; �

The intuition is that a regular tree grammar describes (i.e., it “types”) a set of trees of the
data-model. Notice that the left-hand sides of the rules inE do not need to be pairwise
distinct. Indeed, production rules such asX → R1,X → R2 are necessary if one wants to
encode complex schemas. Furthermore, given a regular tree grammar, it is always possible
to equivalently rewrite it so that condition 3 holds: if there are two rulesXi → l [r] and
Xi → l [r ′] then they can be merged into a single rule,Xi → l [r|r ′].

Definition 2.6 (Names of a regular expression)Given a regular expression r we denote
byNames(r) the set of non-terminals occurring in it, namely:

Names(ε) = ∅

Names(r1 r2) = Names(r1)∪Names(r2)
Names(r1 | r2) = Names(r1)∪Names(r2)
Names(r∗) = Names(r)
Names(X) = {X} �

By extension, given a setE = {X0 → R0, . . . ,Xn → Rn}, we define

Names(E) =
⋃

i∈0..n

Names(Ri)

andDn(E) for the set of names defined inE (that is,{X1 . . .Xn}). While for all types(S ,E)
we haveNames(E) = Dn(E), we handle incomplete sets of rules during the formalisation
of the algorithms, whence the need for both notations. We also say thatr is a regular
expression over(S ,E), if r is a regular expression over names inDn(E). We will denote
by L(r) the language recognized by the regular expressionr. We will useW, X,Y, Z to
range overnames. We use Greek letters to range over sets of rules. As(S ,E) represents
a regular tree grammar we shall useπ to stress that the set of rules is atype projector[cf.
Definition 3.1] andκ andτ to stress that the set is used as a context or as a type, respectively
[cf. Section 5.1]. Last, we shall useS to range over sets of (node) identifiers.

We illustrate the syntax of regular tree grammars with the following example:

Example 2.7 (A regular tree grammar for the bibliography DTD) The well known bib-
liography DTD (taken from the XML Query use cases [15]) can bewritten as a regular tree
grammar({X},E), with unique start symbolX and the following setE of rules:

X → bib[Book∗]
Book → book[Title,(Author+ |Editor+),Publ]
Title → title[String]

Author → author[String]
Editor → editor[String]

Publ → publisher[String]

This regular tree grammar “types” all XML documents (i.e., trees of the data model) that
are rooted in abib element, that contains a possibly empty list ofbook elements, each one
containing a list starting with atitle element containing a string, followed by a non-empty
homogeneous list formed either byauthor elements oreditor elements, and ended by a
publisher element.

The concept of typing an XML document by a regular tree grammar is formalized by
the notion ofvalidity defined as follows:
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Definition 2.8 (Valid Trees) A tree t isvalid with respect to a type(S ,E), if there exists
a mapping (interpretation)I from Ids(t) to Names(E) such that:

1. I(RootId(t)) ∈ S

2. for eachi in Ids(t), if t@i = si then eitherI(i)→ Any∈ E or I(i)→ String∈ E

3. for eachi in Ids(t), if t@i = l i [t1, ..., tn], then either we haveI(i) → Any∈ E or we
haveI(i)→ l [r] ∈ E andI(RootId(t1)), . . . ,I(RootId(tn)) ∈ L(r).

In this case we say that t isI-valid with respect to(S ,E) and write t∈I (S ,E) to indicate
it. �

For instance the following tree (in which we omit the node identifiers)

bib[

book[

title["Divina Commedia"],

author["Dante"],

publisher["Ludovico Dolce"]

]

]

is valid with respect to the type({X},E) defined in Example 2.7. There exist various tech-
niques and algorithms to validate XML trees against regulartree grammars (for instance,
by using tree automata: cf. Algorithm 4.4 in [29]). Note however that due to our use of reg-
ular tree grammars, the interpretationI might not be unique and that a validating algorithm
will generate—for a documentt and a type(S ,E)—onepossible interpretation such that
t is I-valid with respect to(S ,E).

Given a treet valid with respect to a type(S ,E), we can use subsets ofE to project
that tree. Essentially, from the rules inE we compute another set of “simpler” rules which
denotes only the nodes to be kept. In order to define formally this notion we need to define
the reachability relation⇒E, that we introduce below together with several other definitions
that we use later in the article.

Definition 2.9 (Forward Reachability) Given a type(S ,E) and Z∈ Dn(E), we write
Z ⇒E Y if and only if Z→ R∈ E and Y∈ Names(R). We use⇒+

E and⇒∗
E to denote

respectively the transitive closure and the transitive andreflexive closure of⇒E. �

Strings of names are calledchainsand ranged over byc, ci , c′,. . . In particular we use
Chains(X,E)(Y) to denote the set of all chains rooted atY, and defined as{Y X1 . . . Xn |Y⇒E

X1 ⇒E . . .⇒E Xn,n≥ 0}. We useNames(c) to denote the set of all names occurring in a
chainc.

At the beginning of the section we defined the projection of a forest as a forest obtained
by replacing some subforests by the empty tree. Here we definean analogous concept for
types, callederasureaccording to which a type is obtained from another by replacing some
non-terminals by the empty regular expression.

Definition 2.10 (Erasure of a regular expression)Let r be a regular expression and N a
set of names. We define the erasure of r with respect to N and we note r|N the regular
expression inductively defined as:

ε|N = ε
(r1 r2)|N = r1|N r2|N

(r1 | r2)|N = r1|N | r2|N
(r∗)|N = (r|N)∗

X|N = X if X ∈ N
X|N = ε if X /∈ N �
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We generalize this notion to production rules of a grammar:

Definition 2.11 (Erasure of a rule) Let X→R be a production rule, and N a set of names.
We define theerasureof X → R with respect to N, noted(X → R)|N, as:

(X → l [ r ])|N = X → l [ r|N ]
(X → String)|N = X → String
(X → Any)|N = X → Any �

We recall thatString andAny are specialterminalsdenoting string and any content, re-
spectively. We can finally define the erasure of a grammar:

Definition 2.12 (Erasure of a tree grammar) Let(S ,E) and(S ′,E′) be tree grammars.
We say that(S ′,E′) is anerasureof (S ,E), noted(S ′,E′) <: (S ,E), if and only if all
the following conditions hold

1. S
′ ⊆ S ;

2. if X → String∈ E′, then X→ String∈ E;

3. if X → Any∈ E′, then X→ Any∈ E;

4. for all rules X→ l [ r ′ ] ∈ E′, there exists a rule X→ l [ r ] ∈ E such that r′ = r|N for
some N⊆ Names(r). �

In summary, an erasure of a type grammar erases some rules andsome non-terminals in the
regular expressions.

Finally, we conclude this section by recalling few definitions taken from [29] that will
be useful for establishing further results.

Definition 2.13 (Competing non-terminals) Let (S ,E) be a tree grammar. Let A,B∈
Names(E) be two non-terminals such that A6= B. A and B arecompetingif and only if
there exist A→ l [ r ] ∈ E and B→ l ′[ r ′ ] ∈ E such that l= l ′. �

The definitions that are actually interesting are those oflocalandsingle-type treegrammars,
which can by defined in terms of competing non-terminals:

Definition 2.14 (local tree grammar) A regular tree grammar(S ,E) is a localtree gram-
mar if and only if:

• |S | ≤ 1

• E does not contain any competing non-terminals

• For all Y ∈ Names(E) there is exactly one rule in E whose left-hand-side is Y .

Definition 2.15 (single-type tree grammar)A regular tree grammar(S ,E) is a single-
type treegrammar if and only if:

1. For all X → l [ r ]∈E, if A, B inNames(r) and A6=B, then A and B are not competing
and

2. no pair of distinct non-terminals inS is competing. �

The interest of these two definitions is that—as shown in [29]—they characterize the struc-
tural constraints that can be expressed by the two most widespread schema formalisms,
namely DTDs (which roughly correspond to local tree grammars) and XML Schemas
(which are, essentially, single-type tree grammars).
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3 Type projectors

In this section we shall first precisely define what type projectors are and then establish
some useful closure results on type projectors.

3.1 Definition

Definition 3.1 (Type Projector) Given a type (S ,E), a
(possibly empty) set of rulesπ ⊆ E is a type projectorif and only if(S ∩Names(π),π) is
a regular tree grammar erasure of(S ,E).

A type projector is thus a set of rules obtained from the type(S ,E) by erasing some rules
and some non-terminals in the remaining rules.

A type projector for a given type describes a particular pruning for XML documents of
that type, that is, atype driven projection:

Definition 3.2 (Type Driven Projections) Let π be a type projector for(S ,E) and t a
forest such that t∈I (S ,E). Theπ-projection of t, noted as t\Iπ , is defined as follows:

()\Iπ = ()
si\Iπ = si if I(i)→ String∈ π or I(i)→ Any∈ π
si\Iπ = () if I(i)→ String 6∈ π andI(i)→ Any 6∈ π

l i [ f ]\Iπ = l i [ f ] if I(i)→ Any∈ π
l i [ f ]\Iπ = l i [ f\Iπ ] if I(i)→ l [r] ∈ π andI(i)→Any 6∈ π
l i [ f ]\Iπ = () if I(i)→ l [r] /∈ π andI(i)→Any 6∈ π

( f , f ′)\Iπ = ( f\Iπ),( f ′\Iπ)

�

In words, pruning erases (by replacing it by an empty forest)every node that cannot be
derived by a rule inπ .

Lemma 3.3 Letπ be a type projector for(S ,E). Then for every tree t∈I (S ,E) it holds
(t\Iπ)� t.

As the knowledgeable reader might have already noticed, validation (as in Definition 2.8)
and type-driven projection are quite similar. Given a treet and a type(S ,E), a validation
algorithm builds an interpretationI of t with respect to that type. More precisely, the
algorithm associates to each node oft a non terminal ofE. If it cannot find at least one,
validation fails and the tree is not valid with respect to(S ,E). A type-driven projecting
algorithm worksexactly in the same waybut when a node cannot be associated with a
name it is simply discarded together with the associated subtree. Projecting a document
can be seen as an instance of validation. This observation isprecious to determine the
complexity of type-driven projection, given a particular type projectorπ . If π is a local tree
grammar or a single-type tree grammar (that is, a DTD or an XML-Schema, see [29]) then
projection can be performed in streaming. On the contrary, if π ends-up being an general
tree grammar, then projection might require in the worst case to keep the whole tree in
memory (see our remark at the end of Section 3.2, for how to usetype projection in this
particular setting).

3.2 Closure properties

The fact thatif a type projector is a DTD or an XMLSchema, then type-driven projection
can be done efficiently is already a good thing. However, we can show a stronger result:
a type projector inherits the properties of the type it was deduced from. This is important
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since in practice if someone chooses to use DTDs or XML-Schemas to specify their docu-
ments, the projection process should not be more expensive than the validation process.

Indeed, a nice property of theerasureof a type is that it preserves both the local tree
and single type property. In other words, the erasure of a DTDremains a DTD and the
erasure of an XML-Schema remains an XML-Schema. This is stated by the two following
lemmas.

Lemma 3.4 (Erasure preserves locality)Let(S ,E) be a local tree grammar and(S ′,E′)
a regular tree grammar. If(S ′,E′)<: (S ,E) then(S ′,E′) is a local tree grammar.

Lemma 3.5 (Erasure preserves single-typedness)Let(S ,E) be a single-type tree gram-
mar and(S ′,E′) a regular tree grammar. If(S ′,E′)<: (S ,E) then(S ′,E′) is a single-
type tree grammar.

Last but not least, we show that if two projectors coming fromthe same type enjoy the
local (resp. single-type) property, then their union is also local (resp. single-type). This
property of type projectors is instrumental to our approach. Indeed, given a set of paths,
we will compute a type projector for it by taking the union of all the type projectors of the
individual paths. However, if taking the union of type projectors caused the loss of local or
single-type properties, the interest of extending our approach to sets of paths (and thus to
XQuery or to bunches of queries) would be quite limited.

The key observation here is that, while in general local and single-type tree gram-
mars are not closed under union, two type-projectors thatcome from the same typeshare
a common structure and therefore are not completely independent one from the other. In
particular we can show that the union of two type projectors for the same type cannot in-
troduce competing non-terminals in the resulting type projector. In terms of term-rewrite
systems, we can say that the union of two type projectors doesnot introduce a critical pair
(of non-terminals).

Lemma 3.6 (Union closure of local type projectors)Let (S ,E) be a local tree gram-
mar. Let(S1,E1) and (S2,E2) be two tree grammars such that(S1,E1) <: (S ,E) and
(S2,E2)<: (S ,E). Then(S1∪S2,E1∪E2) is a local tree grammar.

Lemma 3.7 (Union closure of single-type type projectors)Let (S ,E) be a single-type
tree grammar. Let(S1,E1) and (S2,E2) be two tree grammars such that(S1,E1) <:
(S ,E) and(S2,E2)<: (S ,E). Then(S1∪S2,E1∪E2) is a single-type tree grammar.

To conclude this presentation of the formal properties of type-projectors we could note
that a third category of deterministic regular tree grammars, namelyrestrained-compe-
tition tree grammars(see [29]), is not closed under erasure. Therefore, for thiskind of
schemas (and associated type-projectors) pruning might require a full buffering of the input
document. However this is only of mild importance since, to the best of our knowledge, no
well-known schema specification relies on it. All the other schema specifications that we
are aware of (XDuce andCDuce regular expression types, TREX, Relax Core,. . . ) possess
the full expressive power of regular tree languages which, as it is well-known, are closed
under erasure and union (see for instance [16]). This means that type driven projection
proposed here can be applied to these kinds of schemas, as well. However, projection
remains as expensive as validation which, for these particular schemas, implies that the
whole document might need to be loaded into memory to actually decide which subtrees
must be pruned. Practical solutions to this problem are discussed in Section 8.2

4 XPathℓ

In XPath, queries are expressed by defining a path of steps separated by “/”. For instance,

Q= /descendant::author/child ::text[self ::node= ”Dante” ]/
parent ::book/child :: title
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is the query that returns all titles of books whose author is "Dante". First, the navigational
part instructs to descend to all text nodes whose parent is anauthor (by following the path
/descendant::author/child :: text), then the predicate selects those nodes that are the
string "Dante" (with the testself ::node ="Dante"), and finally the navigation ascends to
thebookelement and descends to thetitle.

The inference rules we define in Section 5 do not work directlyon queries such asQ.
The rules are defined for a subset of XPath that we dub XPathℓ and introduce in this sec-
tion. XPathℓ (for XPathℓight) includes forward and backward axes and a special kind of
predicates. In order to statically analyseQ (or any other XPath query that is not in XPathℓ),
we will find a XPathℓ query that approximatesQ soundly with respect to the pruning in-
ferred (Section 6), and use it to deduce the pruning forQ. Of course, these approximations,
as well as those we introduce later on, will only be used to determine the pruning: the
pruned document will be queried by the original query. Therefore we are going to proceed
as follows. In this section we define XPathℓ, which is roughly equivalent to the structural
subset of positive XPath Core, without absolute paths. Thenin Section 5, we introduce our
type and type-projector inference algorithms, which work on XPathℓ queries. To complete
the treatment of XPath we show in Section 6 how to compute a sound approximation of a
queryQ with respect to type projection. In other words, given a (full) XPath queryQ, we
will compute an XPathℓ queryQ′ such that the type projector inferred fromQ′ preserves
the semantics ofQ.

Let us start with defining XPathℓ paths and their semantics. From now on, “path” refers
to an XPathℓ query as defined hereafter unless otherwise specified.

Definition 4.1 (XPathℓ path) An XPathℓ path is a term inductively generated by the fol-
lowing grammar:

Path ::= Step| Path/Path| Path Path
Step ::= Axis::Test| Axis::Test[Cond]
Axis ::= self |child |descendant|parent |ancestor
Test ::= tag | node | text

Cond ::= Condor Cond| Condand Cond| Path

where tag is a meta-variable ranging over element tags. �

As customary, “and” takes precedence over “or” and the path delimiter “/” takes preced-
ence over the top-level union “”. We will also use the (possibly indexed) meta-variables
P andC to range over paths and conditions, respectively.

The formal semantics of paths is inductively defined on the productions of Defini-
tion 4.1. First, we formaliseTestfiltering as the set of nodes that satisfy a given test. Then
Axis selection as the set of nodes reachable from some context nodes by following some
Axis. Finally, we combine these notions to define the semantics of paths. The definitions
comply with the semantics of XPath 1.0 (see [35]).

Definition 4.2 (Node test semantics)Given a tree t and a set of nodes S⊆ Ids(t) we
define:

S::t l = S∩{i ∈ Ids(t) | t@i = l i [ f ]}
S::tnode = S
S::ttext = S∩{i ∈ Ids(t) | ∃s, t@i = si} �

Definition 4.3 (Axes selection)Given a tree t and a set of nodes S⊆ Ids(t) (called context
nodes), we defineJAxisKt (S) as the set of nodes obtained by applying Step to each node in
S:

JselfKt(S) = S
JchildKt(S) =

⋃

i∈S{i′ | (i, i′) ∈ Edg(t)}
JparentKt(S) =

⋃

i∈S{i′ | (i ′, i) ∈ Edg(t)}
JdescendantKt(S) =

⋃

i∈S{i′ | (i, i′) ∈ Edg(t)+}
JancestorKt(S) =

⋃

i∈S{i′ | (i ′, i) ∈ Edg(t)+}
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whereEdg(t) is theedgerelation of t, that is

Edg(t) = {(i, i ′) | t@i = l i [ f , t
′, f ′] ∧ RootId(t ′) = i′}

andEdg(t)+ denotes its transitive closure. �

Since predicates may contain paths and conversely, path andpredicate semantics are mutu-
ally defined.

Definition 4.4 (XPathℓ semantics) Given t, a set S⊂ Ids(t) and a path P, we define the
evaluation of path P over the set of context nodes S as the function JPKt (S) defined as:

JAxis::TestKt (S) = (JAxisKt (S))::tTest

JAxis::Test[C]Kt (S) = (JAxisKt (S))::tTest∩{i ∈ S | Checkt [C](i)}

JPath1/Path2Kt (S) = JPath2Kt (JPath1Kt (S))

JPath1 Path2Kt (S) = JPath2Kt (S)∪ JPath1Kt(S)

whereCheck_[_](_) is the Boolean function defined as:

Checkt [Path](i) = JPathKt ({i}) 6=∅

Checkt [C1 orC2](i) = Checkt [C1](i)∨Checkt [C2](i)
Checkt [C1 andC2](i) = Checkt [C1](i)∧Checkt [C2](i) �

It is easy to see that the last definition is well founded sinceterms are inductively generated
by the productions of the grammar in Definition 4.1.

Although the paths in XPathℓ are quite simple, the definition of their static analysis can
result quite complex: the simultaneous presence in a singlestep of axes, tests, and predic-
ates can cause a case explosion in the definition of the analysis. This is not a problem for
a static analyzer, but it is a problem for a human reader. Fortunately, for the human reader,
XPathℓ paths can be further simplified and transformed into equivalent normal forms in
which all non trivial axes, tests and predicates are distributed over different steps. The idea
is then to normalize paths before passing them to the static analyzer so that the definition
of the latter can result much simpler. The normal forms that will be analyzed by the static
analysis of Section 5 are defined as follows

Definition 4.5 (Single step normal form) Let P be an XPathℓ query. Thesingle step nor-
mal formof P, notedSnf(P), is defined as:

Snf(Axis:: node) = Axis:: node

Snf(self ::Test) = self :: Test

Snf(self ::node[C]) = self ::node[Dnf(C)]

Snf(Axis:: Test) = Axis:: node/self ::Test (if Axis 6= self∧Test6= node)

Snf(Axis:: Test[C]) = Axis:: node/self ::Test/self ::node[Dnf(C)]
(if Axis 6= self∧Test6= node)

Snf(P1/P2) = Snf(P1)/Snf(P2)

whereDnf(C) is a disjunctive normal form of the Boolean proposition C (whose atoms are
paths). �

It is clear from this definition thatP andSnf(P) have the same semantics. Indeed, if we
have a step

Axis:: Test[C]

then its single step normal form

12



Axis:: node/self ::Test/self ::node[Dnf(C)]

only makes the order of node selection more explicit1. For a given set of context nodes
S, we first select all nodes that can be reached by theAxis. Then we keep only nodes that
match theTest. Finally we further refine the result by filtering the nodes that satisfy the pre-
dicateC, put in disjunctive normal form. The disjunctive normal form of our predicates is
obtained by distributing the “or” over the “and” yielding a formula of the formOri And j Pi j

(wherePi j are paths). Although this may yield an exponential blow-up of the formula, re-
member that we introduce this simplification only to providea concise and human readable
presentation of the static type inference algorithms. An actual implementation can work
directly on the abstract syntax tree of the formula without resorting to this transformation.

5 Static Analysis

In this section we define deduction rules to statically inferfrom a XPathℓ pathP and a type
(S ,E) a type-projector for any input document valid with respect to (S ,E). We show that
the analysis is sound, and that it enjoys completeness for a large class of queries whenE is
a∗-guarded and non-recursive local tree grammar (see Definition 5.7 later on). Soundness
means that executing the query on the original document and on the document pruned
by the inferred projector yields the same result. Completeness means that the analysis
infers the best correct projector, that is, that if we take a type projector smaller (i.e., more
selective) than the inferred one, then there exists a document validating(S ,E) for which
the result of the two executions is not the same. When the conditions on schemas or on
queries are relaxed, then the analysis is still sound but it may be not complete. Nevertheless,
as we will formally illustrate, it is still very precise.

In order to define our static type-projector inference algorithm we proceed in two steps.

1. Given a pathP and a regular expression grammar(S ,E) the rough idea is to use a
type system to associateP with the set of all trees that may appear in the result of
applyingP to a document validating(S ,E). In order to achieve a great precision,
we then “type”P by the set of all rules ofE thatvalidateany tree in the result.2 This
is done in Section 5.1.

2. Next, we use the type system defined in the previous point todefine inference of type
projectors. In particular we use the cases in which the previous type system returns
an empty set of rules to determine the points in which pruningmust be performed.
This is done in Section 5.2.

5.1 Type inference

Given a pathPath and a schema(S ,E) we want to find a subset of rules inE that can
generate all the trees that can occur in the result ofPathwhen applied to a tree validating
(S ,E). Formally, we want to infer a setτ ⊆ E such that

∀t ∈I (S ,E), I(JPathKt(RootId(t)))⊆ Dn(τ) (1)

The equation above states the soundness of the analysis. In words it says that if we take
any treet valid for (S ,E) and we apply the pathPath to it, then the typeτ inferred in the
type systems defines every symbol interpreting a node in the result. As usual, soundness
alone is not interesting since there always are sets that trivially satisfy it (notably, the set

1 As an aside, note that this kind of equivalence does not hold for full XPath because of theposition()
function. Indeed,descendant ::a[position() = 1] and descendant ::node/self ::a[position() = 1]
do not return, in general, the same result. The former returns the first “a”-node in pre-order while the latter returns
all the “a”-nodes of the document.

2This yields a finer-grained analysis since different rules may generate the same tree but in different contexts.
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of all rules inE). What we aim at is an analysis that is as selective as possible, that is, an
analysis that is precise enough to guarantee, on a large class of types and for a large class of
queries, that whenever the path semantics is empty over all possible instances of the input
type, then the inferred typeτ is empty, as well:

∀t ∈I (S ,E), I(JPathKt(RootId(t)))=∅ =⇒ τ=∅ (2)

(the converse is a consequence of (1) ). In other terms we wantthat if there does not exist
any instance of the type that matches the path, then the path is typed by the empty set.

The precision described by (2) will then be used during the inference of type-projectors
to discard elements that are useless in the evaluation ofPath, that is, all the sub-trees of the
original document that cannot be matched byPath.

We start by inferring types for single-step paths without predicates.

Definition 5.1 (Unconditional Single Step Typing)The type of an unconditional single-
step query Axis::Test for the schema(S ,E) is given by:

TE(AE(S ,Axis),Test)

where axes are typed as:

AE(τ,ancestor) =
⋃

Y∈Dn(τ)

{Z → R∈ E | Z ⇒+
E Y}

AE(τ,child) =
⋃

Y∈Dn(τ)

{Z → R∈ E |Y ⇒E Z}

AE(τ,parent) =
⋃

Y∈Dn(τ)

{Z → R∈ E | Z ⇒E Y}

AE(τ,descendant) =
⋃

Y∈Dn(τ)

{Z → R∈ E |Y ⇒+
E Z}

AE(τ,self) = τ
and tests are typed as:

TE(τ,node) = τ
TE(τ,a) = {Y → R | Y∈Dn(τ),R=a[R′] or R=Any}

TE(τ,text) = {Y → R | Y∈Dn(τ),R=String or R=Any}

�

This definition introduces two typing operators, one for axes, A_(_,_), and one for
tests,T_(_,_). Firstly, AE(τ,Axis) returns all the rules that can be reached from names in
τ following Axis. If Axis is self, child or descendant, our definition coincide with the
static semantics of XQuery and XPath, as defined by Draperet al. in [18]. However, Draper
et al.’s static semantics is much less precise than ours in case of backward axis. Translated
in our formalism, the type ofparent andancestor for anyτ would be{X → Any} for
some nameX.3

Secondly,TE(τ, test) restrict the rules inτ to only rules which type elements compatible
with test.

The soundness of this definition, that is, the property stated by Formula (1) is given by
the following lemma.

Lemma 5.2 Let t be a treeI-valid with respect to the schema(S ,E). For every S⊆ Ids(t)
and typeτ, if I(S)⊆ Dn(τ), then

1. I(JAxisKt (S))⊆ Dn(AE(τ,Axis))

3More preciselyparent :: testandancestor :: testreturn the union typeelement()|document() independ-
ently of test; whereelement() is the type of any element node anddocument() is the type of the document
node which we don’t consider in our data-model.
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2. I(S::tTest)⊆ Dn(TE(τ,Test))

It is easy to check that the property stated by Formula (1) is adirect consequence of Defin-
ition 4.4 and the composition of the two properties of the lemma above.

The presence of upward axes makes the typing of composed paths much more difficult.
To ensure precision, that is the property stated by Formula (2), we have to be careful in
dealing with types in which an element may occur in the content of different elements.
The naive solution consisting of inferring a type for composed paths by composing the
functions we just defined for single steps, works only in the absence of upward axes. This
can be illustrated by an example. Consider the following grammar rooted atX:

X → a[Y], X → b[Z], Y → c[ ], Z → d[ ]
and observe thatX yields two possible definitions. Now consider the path

self ::a/child ::c/parent ::node

applied to documents of the above type, then the precise typethat this path should have
is {X → a[Y]}. However if we naively iterate Definition 5.1, we obtain at the first step
{X → a[Y]}, onto which we applychild ::c, which yields{Y → c[ ]} to which we finally
applyparent ::nodewhich gives us{X → a[Y], X → b[Z]}, which is sound but imprecise.
This is due to the fact that the single step typing blindly selects all rules associated with a
name which can generateY, here all the rules associated withX.

To solve this problem we introduce particular sets of rules,calledcontexts, to be up-
dated at each step and containing rules already encounteredin previous steps. We then use
them to refine type inference for upward axes. In the previousexample, when typing the
first two steps we build acontext

{X → a[Y], Y → c[ ]}

indicating that for the moment the two rules are the only onesvisited by the traversal.
Then, we use Definition 5.1 to typeparent ::node thus obtaining{X → a[Y], X → b[Z]},
as before, but this time we intersect it with the context thusobtaining the precise answer
{X → a[Y]}. We now formalize this idea:

Definition 5.3 (Type inference) Let(S ,E) be a type and P an XPathℓ query in single step
normal form. Letτ and κ be two sets of rules of E. If the deduction system in Figure 1
deduces for a path P the judgment,

(τ,κ) ⊢E P : (τ ′,κ ′)

then we say that P has type(Dn(τ ′),τ ′). �

The idea underlying the judgments of the definition is that ifthe system proves(τ,κ) ⊢E P :
(τ ′,κ ′), then from an input set of rulesτ and an input contextκ the application ofP returns
an output set of rulesτ ′ and an updated contextκ ′. In other termsτ is (the production
part of) a type that approximates the current nodes,κ is the context that was visited to type
them,τ ′ is (the production part of) a type that approximates the set of nodes reachable from
the current ones by followingP, andκ ′ is the additional context visited to reach them. In
Figure 1 environments—that is pairs of sets of rules—are ranged over byΣ for concision.
Σ being a pair(τ,κ), we useΣtyp to denote its first projection (i.e., the “type” component
τ) andΣctx to denote the second projection (i.e., the “context” componentκ).

Definition 5.4 (Environment well-formedness)Let (τ,κ) be an environment and E a set
of rules. Ifτ ⊆ E andκ ⊆ τ ∪AE(τ,ancestor), then we say that(τ,κ) is well formed
with respect to E. �

In other words, a context is well-formed if it contains only rules from which the names in
Dn(τ) are reachable. We say that a judgmentΣ ⊢E P : Σ′ is well formed if bothΣ andΣ′
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Primitive Single Step

Axis∈ {self,child,descendant}
(down-axis)

Σ ⊢E Axis:: node : (AE(Σtyp,Axis) , Σctx∪AE(Σtyp,Axis))

Axis∈ {parent,ancestor}
(up-axis)

Σ ⊢E Axis:: node : (AE(Σtyp,Axis))∩Σκ , AE(Σctx,Axis)∩Σctx

Test6= node
(test) (*)

Σ ⊢E self :: Test: (τ,(Σctx ∩AE(τ,ancestor))∪ τ)

(*) whereτ = TE(Σtyp,Test)

(∀Xi → Ri ∈ Σtyp) ({Xi → Ri},Σctx) ⊢E Pjk : Σi jk

(predicate) (**)
Σ ⊢E self :: node[Or

j
And

k
Pjk] : (τ , (Σctx ∩AE(τ,ancestor))∪ τ)

(**) where τ = {Xi → Ri |
⋃

i

⋂

j

Σi jk
typ 6=∅}

Composed paths

Σ ⊢E Step: Σ′′ Σ′′ ⊢E Path: Σ′

(sequence)
Σ ⊢E Step/Path: Σ′

Σ ⊢E Path1 : (τ1,κ1) Σ ⊢E Path2 : (τ2,κ2)(union)
Σ ⊢E Path1 Path2 : (τ1∪ τ2,κ1∪κ2)

Figure 1: Inference rules for XPathℓ queries

are well formed with respect toE. We can remark that the rules in Figure 1 are syntax
directed —at most one rule apply for a given judgment— and they preserve context well-
formedness.

The rules are relatively simple to understand. The first two rules implement our main
idea: when we follow an axisAxis, we compute the type byAE(Σtyp,Axis); if the axis is
a downward one, then we add this type to the current context, otherwise if the axis is an
upward one, then we intersect it with the current context (both for the type part and for
the context part). The rule for(test) is slightly more difficult since it discards from the
current set of rules those that do not satisfy the test: the type is computed byTE(Σtyp,Test),
while the context is obtained by removing all the rules that were in there just because they
generated one of the discarded nodes; to do so it generates (the type of) all ancestors of
the nodes satisfying the test, and intersects them with the current context. The fourth rule,
(predicate), is the most difficult one. Recall that we work with single step normal forms
and, therefore, that the predicates are Boolean formulas over paths in disjunctive normal
form; the typeτ is obtained by discarding fromΣtyp all rules for which the predicate never
holds; thus for eachXi →Ri in Σtyp we compute the type of all the pathsPjk in the predicate,
and keep inτ only rules for which at least one path may yield a non-empty result; the
context is then computed as in the deduction rule(test), by discarding from the context all
rules that generated only rules discarded fromΣtyp. The deduction rule(sequence)chains
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the result of one step to the following one. Lastly, the rule(union) handles the top-level
union operator “”.

Let us illustrate how the algorithm works on an example. Consider the grammar with
rules

{A→ a[B|C|E],B→ b[D],C→ c[ ],D → d[],E → b[ ]}

and rooted inA, and the path

child ::node/self ::b/self ::node[child ::node/self ::d]

Notice that the path above is nothing but the single step normal form of

child ::b[child ::d]

We start from an initial environment

Σ = ({A→ a[B|C|E]},{A→ a[B|C|E]})

in which both the context and the type component contain all the rules whose left hand side
is a root of the grammar (in this case we have just one rule). The first step is typed with the
(down-axis)rule, giving the resultΣ1 where

Σ1
typ = {B→ b[D],C→ c[ ],E → b[ ]}

and
Σ1

ctx = {A→ a[B|C|E],B→ b[D],C→ c[ ],E → b[ ]}

The second step is typed by applying the rule(test), which returnsΣ2:

Σ2
typ = {B→ b[D],E → b[ ]}

and more interestingly, the context

Σ2
ctx = {A→ a[B|C|E],B→ b[D],E → b[ ]}

Indeed, the intersection ofΣ1
ctx with the name generated by the ancestors ofB, namelyA

yields exactly{A→ a[B|C|E]} to which we add the result of the current step:

{B→ b[D],E → b[ ]}

As we said, this intersection ensures that we only keep in thecontext rules from which we
can derive the current type. In this example, the rules forC which was introduced by the
wildcard stepchild ::node is removed by the typing of the more restrictive stepself ::b.
The third step is typed by the(predicate)rule. Intuitively, this rule types independently the
pathchild ::node/self ::d and keeps in the result only the input rules for which the path
yields a non-empty result which, in this case, is the rule forB:

Σ3
typ = {B→ b[D]}

As before, the context is purged from rules that do not generate the current type:

Σ3
ctx = {A→ a[B|C|E],B→ b[D]}

Before proving the main theorems of type inference, namely soundness and completeness,
let us first show that the inference rules of Figure 1 form indeed an algorithm.

Lemma 5.5 (Termination of type inference) Let(S ,E) be a type, P a path, andΣ andΣ′

two environments. If there is a derivation for the judgmentΣ ⊢E P : Σ′, then this derivation
is unique and finite.
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We can now proceed to prove the soundness of the type system.

Theorem 5.6 (Soundness of type inference)Let(S ,E) be a type and P a path. Let E0 =
{X → R | X → R∈ E,X ∈ S }. If (E0,E0) ⊢E P : (τ,κ) then:

Dn(τ)⊇
⋃

t∈I(S,E)

I(JPKt (RootId(t)))

The type system is sound. It is also complete for a particularclass of schemas, namely local
tree grammars that are∗-guarded, non-recursive, and parent-unambiguous. Intuitively, a
type is∗-guarded when every union occurring in its productions is guarded by∗ (or by +),
it is non recursive if the depth of all documents validating it is bounded, while it is parent-
unambiguous if no rule types both the parent and a strict ancestor of the parent of another
name. Formally, we have the following definition:

Definition 5.7 Let (S ,E) be a local tree grammar.

1. E is ∗-guardedif for each Y→ l [r] in E, the regular expression is a product r=
r1 · · · rn and whenever ri contains a union, then ri = (r ′)∗;

2. E isnon-recursiveif it is never the case that Y⇒+
E Y, for any name Y∈ Names(E);

3. E is parent-unambiguous if for all chains c and names Y,Z such that
cYZ∈ Chains(S ,E)(X) the implication

cYc′Z ∈ Chains(S ,E)(X) =⇒ c′ = ε

holds (ε denotes the empty chain). �

Non-recursiveness and∗-guardedness are properties enjoyed by a large number of com-
monly used DTDs. As an example, the reader can consider the DTDs of the XML Query
Use Cases [15]: among the ten DTDs defined in the Use Cases, seven are both non-
recursive and∗-guarded, one is only∗-guarded, one is only non-recursive, and just one
does not satisfy either property. Furthermore our personalexperience is that most of the
DTDs available on the web are∗-guarded. Concerning the parent-unambiguous property,
although DTDs satisfying this property are less frequent (five on the ten DTDs in [15]), its
absence is in practice not very problematic since, as we willsee, only the presence of the
parent axis may hinder completeness in that case.

Before proving the completeness of type inference, we illustrate on simple examples
what happens when one of the conditions is not fulfilled. For∗-guardedness, consider the
grammar

X → a[ B|C ], B→ b[ ], C→ c[ ]

rooted inX, together with the path:

child ::node/self ::b/parent::node/child ::node

For the first two steps, our algorithm would determine the exact type and context:

Σ2 = ({B→ b[ ]},{X → a[ B|C ],B→ b[ ]})

For theparent step, the type and context are:

Σ3 = ({X → a[B|C ]},{X → a[ B|C ]})

which are also exact. However, the last step induces the finaltype:

Σ4
typ = {B→ b[ ],C→ c[ ]}
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and the context:
Σ4

ctx = {X → a[ B|C ],B→ b[ ],C→ c[ ]}

This is not exact because a document matching the first part,child ::node/self ::b does
not have any “c” tag and therefore the ruleC in the output type is superfluous: this query
will never return a node with typeC for a document of the considered type. Note that
the condition that unions in regular expressions must be guarded must also hold for rules,
namely that there must not be two rulesY → l [r1] andY → l ′[r2] in the input type. Indeed
these two rules behave like an un-guarded union and therefore jeopardize completeness.
Local tree grammars forbid such rules and are thus an essential condition of the input type
for completeness to hold.

The recursiveness of the schema also interacts with theparent axis in a way that
prevents completeness of type inference. Consider the grammar:

{A→ a[ B ], B→ b[ B? ]}

and the path expression:

child ::node/self ::b/child ::node/self ::b/parent ::node

Our type inference algorithm deduces on the secondself ::b step that the output type is be
{B→ b[B?]}. However, the last step,parent ::node is typed with a type

{A→ a[ B ], B→ b[ B? ]}

this is because in the grammar,A is a name reachable fromB with a parent axis. However,
consider any document valid with respect to this grammar. Either it has only oneb element,
in which case the result is empty, since we try to match two levels ofb’s with the query. Or
it has at least twob’s and then the output is always ab node (the topmost one). Therefore,
ana node is never part of the result, while the typeA is returned by our algorithm.

Lastly, with the following parent-ambiguous grammar:

{A→ a[ B | C ],B→ b[ ],C→ c[B]}

the algorithm fails to typeexactly(but the output type is still sound) the query:

child ::node/self ::c/child ::node/self ::b/parent ::node

By a similar reasoning, we can see that the algorithm returnsthe rules

{A→ a[B|C],C→ c[B]}

while only nodes with tagc can be returned by this query.
Intuitively, the reason why completeness does not hold in the three previous examples

is that there are chains in the grammar that may not reflect actual paths in a document.
For instance in the last example, in a document “a[ b[] ]”, the chain “ACB” has no
interpretation (since there are noc-nodes). In this case, there exists avalid document
which does not contain all the paths described by the possible chains in its type. Therefore,
the type inference algorithm will use chains and rules whichare actually not part of the
interpretation of some documents of the type at issue. Fortunately, if a local tree grammar
is ∗-guarded, non-recursive, and parent-unanbiguous, then there always exists a document
in which all the chains in the grammar are instanciated by some path. We call such a
document awitnessof the grammar. We prove the existance of such a witness before
stating the completeness theorem.

Lemma 5.8 (Witness of a grammar)Let (S ,E) be a non-recursive,∗-guarded, parent-
unambiguous local tree grammar. There exists a document t,I-valid with respect to(S ,E)
such that:

∀X ∈ Dn(E),∃i ∈ Ids(t) such thatI(i) = X

we call such a document awitnessof the schema(S ,E).
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Corollary 5.9 Let ({X},E) be a non-recursive,∗-guarded, parent-unambiguous local tree
grammar and t be its witness. Let{Y1 . . . ,Yn} ⊆ Dn(E). If Y1 ⇒E . . . ⇒E Yn, then there
exists{i1, . . . , in} ⊆ Ids(t) such that

∀i ∈ {2. . .n},((i i−1, i i) ∈ E (t))∧I(idi−1) =Yi−1∧I(i i) =Yi

We are now equipped to state (and prove) the completeness theorem:

Theorem 5.10 (Completeness of type inference)Let(S ,E) be a∗-guarded non-recursive
and parent unambiguous local tree grammar, and P a path. Let

E0 = {X → R | X → R∈ E, X ∈ S }.

If (E0,E0) ⊢E P : (τ,κ) then:

Dn(τ) ⊆
⋃

t∈IE

I(JPKt (RootId(t)))

One of the main reasons why completeness does not hold in general is because the
intersections operated by the type rule forparent are not powerful enough to guarantee
precision for recursive or parent-ambiguous grammar. In a nutshell, this happens because
in the presence of parent-ambiguous grammar the type analysis may produce contexts con-
taining false parent types (with respect the current typeτ). This suggests that in order to be
extremely precise, instead of sets of rules, contexts should rather be sets ofchainsof names,
computed and opportunely managed by the type analysis. However (i) managing sets of
chains instead of simple sets of rules dramatically complicates the treatment, due to the in-
teraction of recursive axes likedescendant and recursive grammars,(ii) the problem may
arise only for queries that use parent axis and the concomitance of parent-ambiguity make
the event rare in practice,(iii ) the loss of precision looks in most cases negligible,(iv) even
though it would be possible to obtain more precise results for a larger class of grammars, it
is well known that exact type-inference for XPath routinelyescapes regular tree languages
and therefore all existing formalisms to type XML: at some point, an approximation in
the type inference process is necessary to remain in the realm of regular types. Therefore
we considered that such a small gain (remember that completeness is just some icing on
the cake since, while it helps to gauge the precision of the approach, its absence does not
hinder its application) did not justify the dramatic increase in complexity needed to relax
the condition on the type for completeness to hold.

Of course, the completeness theorem is only stated for XPathℓ queries and does not
account for full XPath queries. Yet it illustrates how precise our type system is in the
best case. We will show on various example that on less favorable cases for schemas or
for XPathℓ queries which need to be approximated, the type inference still remains very
precise.

5.2 Type-Projection inference

In this section we use the type inference of the previous section to infer type-projectors.
Once more, naive solutions do not work. For instance, for simple pathsStep1/. . ./Stepn,
we may consider as type projector with respect to(S ,E) the set

⋃

i=1...n

τi ∪{Xi → Ri | Xi ∈ S }

where fori = 1. . .n:
Σ ⊢E Step1/. . ./Stepi : (τi ,−)

with Σ = {Xi → Ri | Xi ∈ S },{Xi → Ri | Xi ∈ S } (we use “−” as a placeholder for un-
interesting parameters). This definition is sound but not precise at all, as can be seen by
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considering the querydescendant :: node/Path: the use of the above union yields a set
containingτ1 defined as

Σ ⊢E descendant :: node : (τ1,−)

that is, all descendants of the root start symbols inS (no pruning is performed). Instead,
we would like to discard, at least, all rules that are descendants ofS but that are not
ancestors of a node matchingPath. These are the rules
Y → R ∈ TE(AE(S ,descendant),node) such that

({Y → R},κ) ⊢E descendant :: node/Path: (∅,−)

for some appropriate contextκ . A similar reasoning applies toancestor.
As for the type inference, we define type-projector inference by a judgment and asso-

ciated inference rules:

Definition 5.11 (Type-projector inference) Let (S ,E) be a type and P an XPathℓ query
in simple step normal form, andτ andκ be subsets of E. If the deduction system in Figure 2
proves the judgment

(τ,κ) 
E P : π

then thetype-projectorinduced byπ is the grammar:

(S ∩Dn(π),{(X → R)|Dn(π) | X → R∈ π})

.

�

Obtaining a type projector from a set of rules returned by thejudgment is straightforward.
In essence, the derivation collects inπ the rules ofE that are sufficient to answer the query.
Since in general not all rules inE are kept, then the rule inπ may use names that are not
defined inπ . Therefore, the erasure operation (defined in Definition 2.10) simply removes
references to names not defined by any rule inπ (the definition ofR|S is straightforward:
it is R where every occurrence of a name inS is replaced byε).

The rules in Figure 2 reflect the intuition we gave earlier. Ateach step, we execute the
type inference algorithm on the current set of rules and accumulate only those for which
the resulting type is not empty. Informally, each rule preserves the following properties:

well-formedness: if a ruleY → R is added to the type projectorπ then there must be a ruleX → R′ ∈ π
such thatY ∈ Names(R′).

precision: given a pathP and a ruleY → R. If ({Y → R},−) ⊢E P : (∅,−) thenY → R must
not be added to the projector.

Let us explain how the different rules preserve these properties. The easiest case is the
one of a query consisting of a single step, handled by the Rule(p-step). In this rule, we
just apply the type inference algorithm to determine the output type of the results. The
resulting projector is the set of rules in the results to which we add their upward contextκ ,
that is the rules linking the results to a start symbol. The rules(p-union) and(p-iterate) are
only inductive cases which allows us to handle respectivelytop-level union and projectors
applied to a set of rules. In particular,(p-iterate) splits the checking of a path over all
the possible rules specified in the type component of the environment (each one identifies a
different set of current nodes). This allows us to define the so-called “Path Rules” in much a
simpler way since they can be written for environments in which the type component is just
a singleton. The Path Rules actually perform the projectionand they all follow the same
scheme. The Rule(p-test) handles a simple node test. If the type inference returns some
non-emptytypeΣtyp for the step, then we can compute the projector for the continuationP
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and add its result to the rule for the current node. The Rule(p-predicate)is similar: the type
Σtyp returned by the type inference is the set of nodes for which the predicate is satisfied.
We then recursively compute the projector for the continuationP as well as for the pathsPi j

occurring in the predicate. In the end, we return the union ofall the computed projectors
to which we add the rule for the current node. Again we only do this if the type inference
returned a non-empty type. The following rules handle the actual navigation. They are
split in two sets, one for theparent andchild axes another for their recursive variant,
ancestor anddescendant. Since they are the most delicate rules let us explain them in
details. The two cases are similar. In the Rule(p-single), the algorithm first retrieves all the
rules matching the axis (child or parent). These rules are collected inτ and the analysis
yields a current contextκ ′. Then, by usingn calls to the type inference algorithm (n being
the number of rules inτ), it collects amongτ only the rules which are a suitable starting
point for the rest of the path, that is all the rules yielding anon-empty result type when
typed againstP. These rules are collected inτ ′ which, as it can be easily seen, a subset of
τ. Finally, τ ′ andκ ′ are used as the environment to infer the projection with the rest of the
path. The(p-many) rule handles the recursive axes,descendant andancestor. The rule
is almost the same as Rule(p-single)with the exception that it does not test whether the
continuationP yields a non empty result on the node but on adescendant (or ancestor)
of the node, to ensure that we put not only the correct rules inthe projector but also the
rules leading to them, and therefore that we maintain well-formedness. If for any of these
rules one of the side conditions does not hold, then the rule(p-erase)is applied and returns
an empty projector for the current path.

Before proving the formal properties of the type-projection inference, we illustrate its
behavior by unrolling it on an example. Consider the grammar:

{A→ a[(B|C)∗], B→ b[D],C→ c[E], D → d[E], E → e[ ]}

with start symbolA and the pathP:

descendant::node/self ::e/ancestor::node/self ::b

which is the single step normal form of

//e/ancestor::b

To ease the reading, we identify every rule with the non-terminal it defines. Therefore in
what follows when we write, say,A in types or contexts, we actually meanA→ a[(B|C)∗].
The algorithm computes the type projector forP as follows. The initial environment is
({A},{A}). We apply the rule(p-many) for the first step. The first premise computes
the type ofdescendant ::node applied toA, which returns the type and context (these
instantiate the(τ ′,κ ′) of the rule):

({B,C,D,E},{A,B,C,D,E})

Then the second premise filters out the unwanted names and keeps only those for which the
whole path may succeed. This gives us an intermediary type:{B,D,E} (and unchanged
context) onto which we can compute the projector for the path:

child ::node/self ::e/ancestor ::node/self ::b

the final result for this rule will be the projector for the above path to which we add{A} (i).
At this point, since the input type contains many rules, we can apply the rule(p-iterate)
which will apply the continuation path on{B}, {C} and{D}. It is easy to see that on{B}
the side condition for the rule(p-single) is not fulfilled, since the type inference returns
empty. The rule(p-erase)applies and returns an empty projector. The projection continues
with only {C} and{D} left (the context is unchanged until now,{A,B,C,D,E}). First let’s
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consider the derivation for{D}. The current step ischild ::node which was introduced by
the previous(p-many) rule. On this step, we apply the rule(p-single). This rule adds{D}
(ii) in the final projector and continues by computing a projectorfrom {E} using the path:

self ::e/ancestor ::node/self ::b

When we apply the same rule to{C} however, while the first premise returns a non empty
type, the second one returns an empty result, since from a node with typeC the path

child ::node/self ::e/ancestor ::node/self ::b

yields an empty result. Thus the rule is not applied and the result of the projector for the
remaining path for the node type{C} is the empty projector. We continue with our only
set,{E}. We compute the projector forself ::e which adds{E} to the final projector(iii)
and computes the projector for the path:

ancestor ::node/self ::b

It is easy to to see that these will return{B} as a projector(iv). If we summarize, we obtain
from (i, ii, iii, andiv) the set of rules

π = {A→ a[(B|C)∗], B→ b[D],D → d[E], E → e[ ]}

The actual type projector is:

(S ∩Dn(π),{(X → R)|Dn(π) | X → R∈ π})

that is:
({A},{A→ a[B∗], B→ b[D],D → d[E], E → e[ ]})

This example shows how the two properties of precision and well-formedness are pre-
served:

well-formedness: what we obtained at the end is a valid type without unneeded rules.

precision: although the query referencese nodes explicitly, we do not naively keep all thee
nodes but only those that are useful to compute the query, namely those occurring
belowab node.

We can now present the formal properties of type-projectioninference

Lemma 5.12 (Termination of type-projector inference) Let (S ,E) be a type, P a path,
andΣ andΣ′ environments. The judgmentΣ 
E P : Σ′ has a unique and finite derivation.

The lemma above states that the rules in Figure 2 describe a terminating algorithm. We
show now that they compute a type-projector by formalizing the “well-formedness” prop-
erty that we outlined above. The intuition is that when the output type for a step is computed
(e.g., in the first premise of the rule(p-predicate)), then thecontextcorresponding to this
computation is kept and passed as a parameter for the inference of the remainder of the
path. On the last step, (rule(p-step)) the context is added to the type projector. There, it
ensures that whenever a ruleY → R is added to the type-projector, all the rules needed to
deriveY → R from the start symbols are added to the type-projector as well. This is what
we formally state by the following lemma:

Lemma 5.13 (Well-formedness of type-projector inference)Let(S ,E) be a type,τ, τ ′,
and κ sets of rules, and P a path. If(τ,κ) 
E P : τ ′, then(τ,κ) ⊢E P : (τ ′′,κ ′′) implies
κ ′′ ⊆ τ ′.

We can now state the soundness of type-projection inference:
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Theorem 5.14 (Soundness of type-projector inference)Let (S ,E) be a type and P an
XPathℓ query. Let S be the set of rules: S= {X → R | X ∈ S }. If

(S,S)
E P : τ

thenτ is a type-projector for(S ,E) and for every t∈I (S ,E) we have:

JPKt\Iτ(RootId(t)) = JPKt(RootId(t))

In words, ifτ is the projector inferred for a queryP and a grammar(S ,E), then for every
treet validating the grammar, the result of executingP on t or on its pruned versiont\Iτ
is the same.

Completeness requires not only completeness of the type system (∗-guarded, non-
recursive, and parent-unambiguous DTDs), but also the following condition on queries:

Definition 5.15 An XPath query Q isstrongly-specifiedif:

i. its predicates do not use backward axes,

ii . along Q and along each path in the predicates of Q there are no two consecutive
(possibly conditional) steps whose Test part isnode

iii . each predicate in Q contains at most one path and this does notterminate by a step
whose Test isnode. �

For instance, among the following queries, only the first twoare strongly-specified:

– descendant::node/self ::a/ancestor::node
– descendant::node[child ::b]/self ::a/parent ::node
– descendant::node/ancestor::node/self ::a
– descendant::node[child ::b/child::node]/self ::a
– child ::a[descendant::node/parent::b/child::c]

In the third query, there are two consecutive steps with a “node” test, which violates condi-
tion (ii). In the fourth query the predicate contains a path ending with “node”—failing to
satisfy condition(iii )—and for the last query, the predicate contains backward axes, which
violates condition(i).

Once more, we are in presence of a very common class of queries: for instance, almost
all paths in the XMark and XPathMark benchmarks are stronglyspecified.

If all the conditions are met, then we can show that our algorithm is complete, in the
sense that it infers the best possible sound projector. In words, if we remove any rule
(and its consequences) from a projector inferred for a pathP and a grammar(S ,E), then
we obtain a projector for which there exists a treet validating the grammar for which the
execution ont and on its pruned version yield different results. Formally:

Theorem 5.16 (Completeness of projector inference)Let (S ,E) be a∗-guarded, non-
recursive, and parent-unambiguous local tree grammar, andP a strongly-specified XPathℓ

path. Let S be the set of rules: S= {X → R | X ∈ S }. If

(S,S)
E P : τ

then there exists t∈I (S ,E) such that for each Y→ R∈ τ, if π = τ \ ({Y → R}∪
AE({Y → R},descendant)), then:

JPKt\Iπ (RootId(t)) 6= JPKt (RootId(t))
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The fact that completeness may not hold for not∗-guarded, non-recursive, or parent-
ambiguous local tree grammar, is a consequence of the analogous property of the type
system. To see that also strong-specification is a necessarycondition consider documents
valid with respect to the following grammar rooted atX:

{X → a[Y,W], W → c[ ],Y → b[Z], Z → d[ ]}

If we query a document of that type with the following non strongly-specified query (it
does not satisfy(iii ))

self ::a[child ::node],

then{X,Y} is an optimal projector for this query (once more, we use a name to denote the
rule that defines it), but the presence of the conditionchild ::node forces the system to
include alsoW in the inferred projector, thus breaking completeness. A similar reasoning
applies forself :: a[child :: bor child :: c], which does not satisfy condition(iii ) because
of the presence of multiple path in the predicate. Concerning the presence of backward axes
in predicates, consider the query

self ::a[descendant::node/ancestor::a]

which does not satisfy condition(i). An optimal projector for this query on the same
grammar is{X,Y}. However, since theancestor condition is true for all descendants ofa
nodes,{W,Z} is included in the projector as well. Finally, with a similarreasoning on the
same grammar, it is clear that the query

descendant::node/ancestor::node/self ::a

for which condition(ii) does not hold, jeopardises completeness. The first step selects all
the rules in the grammar that can be derived from the start symbol (that is, all the rules).
None of these rule are discarded by the projector-inferencesince for none of them the
output type of

ancestor::node/self ::a

is empty. The point here is that for the given grammar, there is no need to keep all the
nodes, but only one child of the root. Indeed, having one element below the root guaranties
that the sequencedescendant::node, ancestor::node is not empty and therefore that
the root can be selected.

Of course, it is possible to state completeness for other classes of queries but, once
more, this seems a satisfactory compromise between simplicity and generality.

6 Extension to full XPath

The formal developments of the previous section only deal with the XPathℓ language. This
language allows one to expressstructural queries, that is, queries whose predicates contain
only conjunctions or disjunctions of paths. In this sectionwe show how to translate a (full)
XPath query into a (set of) XPathℓ queries and perform type-projection inference for the
latter that is sound for the former. In other terms, we show that our translation is a sound
approximation with respect to type-projection. Finally, we also show how to encode the
XPath axes not present in XPathℓ and how to extend our theoretical framework to handle
most XML and XPath peculiarities (attributes, absolute paths,. . . )

6.1 Handling XPath predicates

We extend Definition 4.1 to XPath 1.0 paths ([35]):

25



Definition 6.1 A path is a finite production of the following grammar:

Path ::= Step| Path/Path| Path Path
Step ::= Axis::Test| Axis::Test[Cond]
Axis ::= self | child | descendant | parent | ancestor
Test ::= tag | node | text
Cond ::= Condor Cond| Condand Cond| Expr
Expr ::= Expr cmp Expr| Arith
Arith ::= Arith op Arith | Atom
Atom ::= f (Expr, . . . ,Expr) | Path| v

where:

tag ranges over element tags

cmp ∈ {=,!=,<=,<,>,>=}

op ∈ {+,-,*,div,mod}

f ranges over a set of built-in functions of the Core FunctionLibrary.

v ranges over values: strings, sequences, integers,. . .

�

We wish to provide a safe translation from an XPath queryQ to an XPathℓ queryP that
approximatesQ and use it to infer a type projector. By safe we mean that the type-projector
inferred forP must not change the semantics ofQ.

What exactly is an approximating query in this context? A naive approach to define
query approximation is to consider inclusion of the results. According to it the queryP
translation ofQ should always select more nodes thanQ. However this works only as long
as we do not use non-structural conditions (that is, predicates that make a query be non-
structural). This is clear for example when we use the negation functionnot. Consider the
query

descendant::a[not(child ::b)]

For all documents, the querydescendant ::a returns more results than the query above.
However, a projector inferred fordescendant ::a would discardb nodes not occurring
before ana node, and therefore possibly also someb nodes children of ana node. In this
way it would change the result of the original query. What theapproximating query needs
to reflect cannot be defined in terms of inclusion of results but rather in terms ofdata-need.
We must ensure that the approximation traverses at least thesame nodes as the original one
to ensure that the former will not be pruned. However, we wantthe approximation also
to be as precise as possible. For instance “descendant ::node” is a sound approximation
for any XPath query but the projector we infer from it is utterly imprecise: it performs no
pruning.

As the reader will have understood, the tricky part is to approximate non-structural
conditions. We do it as follows:

Definition 6.2 (Approximation of a path) Let P and S respectively denote a path and a
set of paths of XPathℓ. Let P/S denote the set of XPathℓ paths defined as

⋃

P′∈S{P/P′}.
Given an XPath expression Q, itsapproximationP(Q) is the set of XPathℓ paths defined as:

P(Q1 Q2) = P(Q1)∪P(Q2)
P(Axis::Test/Q) = Axis::Test/P(Q)

P(Axis::Test[C]/Q) = Axis::Test[C(C)]/P(Q)∪Axis::Test/S(C)
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where:
C(P) = P if P(P) = {P}
C(P) = self ::node if P(P) 6= {P}

C(C1 orC2) = C(C1) or C(C2)
C(C1 andC2) = C(C1) and C(C2)

C(C) = self ::node otherwise

and:
S(P) = ∅ if P(P) = {P}
S(P) = P(P) if P(P) 6= {P}

S(C1 orC2) = S(C1)∪S(C2)
S(C1 andC2) = S(C1)∪S(C2)

S(C1 op C2) = S(C1)∪S(C2)
S(C1 cmp C2) = S(C1)∪S(C2)

S( f (C1, . . . ,Cn)) = F( f (C1, . . . ,Cn))

andF(_) is the approximation of built-in functions (see Figure 3 foran excerpt). �

The most technical point in the definition above is, as expected, the approximation of con-
ditions, implemented by the auxiliary functionsC() andS(). To be precise, we differentiate
between purely structural paths and non structural paths. For a structural path,P() does not
introduce any approximation and returns the singleton containing the path itself. Otherwise,
a non-structural path is approximated by a set of paths. The translation is non trivial when
the path contains non structural conditions. Let us illustrate the rationale of the definition
first by an example. The path

descendant ::a[(count(child ::b)>3 and child ::c) or descendant ::b]/child ::d

is approximated by the following set of two paths

{ descendant ::a[self ::node and child ::c or descendant ::b]/child ::d,
descendant ::a/child ::b}

The first is generated by an application of the functionC(), while the second derives from
the application ofS(). As we see, the arithmetic expressioncount(child ::b)>3 is ap-
proximated by the functionC() into theself ::node path occurring in the first path of the
set. This condition is always true and therefore it is a soundapproximation of the Boolean
value of the expression (since the result is always true the type-inference algorithm will
never be able to deduce an empty output type for this sub-pathand therefore the type-
projector inference algorithm will keep the rules associated with this node). However this
is not sufficient to ensure the safety of type projection. Indeed for this test to be possible
at run-time, the projected document must have the “b” nodes that were belowa nodes in
the original document. This approximation is made via the second path by theS() func-
tion and, in particular, by theF(count(child ::b)). Of course, what the function actually
does depends on the semantics of the built-in function. For instance,count(P) returns the
number of nodes selected byP, thus a projector keeping the type of the nodes selected by
P is sound. On the contrary, the functionstring(P) when applied to a node set returns
the concatenation of the string-value of all the nodes in theset. The string-value of a node
is the concatenation of all thePCDATA elements occurring below it. Therefore a suitable
approximation forstring(P) is not P but ratherP/descendant ::text. Giving an ap-
proximation for all the functions of the XPath Core Library is a tedious task. Although our
prototype implements approximation for all functions, in Figure 3 we just give an excerpt
that completely covers all the different techniques we usedin our prototype to approximate
built-in functions.
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6.2 Other XPath features

We purposely left out from our definitions some features of XPath that would have led to
a much more intricate formalization process, in particularfor what concerns definitions of
the algorithms and the proofs of the theorems. Here we illustrate how these features can be
either encoded or approximated within our framework.

6.2.1 descendant-or-self and ancestor-or-self axes

These axes—that we used in Figure 3—can be encoded exactly byusing the “ ” operator.
Precisely

P/descendant-or-self ::Test[Cond]/P′

can be equivalently written as

P/(descendant ::Test[Cond] self ::Test[Cond])/P′

6.2.2 Sibling axes

We could have defined a sibling relation over node identifiersin the same way as we defined
the edge relationEdg in Section 4, and used it to deal with thefollowing-sibling and
preceding-sibling axes natively. However we can also approximate these axes using
only “vertical” moves. So for instance

P/following-sibling ::Test[Cond]/P′

becomes:
P/parent ::node/child ::Test[Cond]/P′

The transformation above approximates the following siblings of a node by all its siblings,
including itself. Our experiments showed that, as far as type-projection is concerned, this
kind of approximation does not yield any noticeable loss of precision in practice.

6.2.3 preceding and following axes

For these axes, we can directly use the W3C recommendation [35] and encodefollowing
accordingly. That is,

P/following ::Test[Cond]/P′

becomes

P/ancestor ::node/following-sibling ::node/descendant-or-self ::Test[Cond]/P′

6.2.4 Document node

The XPath data model enforces the presence of adocument node, the real root of the doc-
ument which has no label and is selected by the initial “/” of an XPath expression. It is
of course possible to represent such documents in our framework but we preferred to omit
it here since it would cause many presentation issues with little theoretical interest. In
particular, the document node is never referenced by the schema of the document.

6.2.5 Absolute paths

Absolute paths are paths with a leading/. They do not start their evaluation from the
current context node but from the root of the document. Our formalism easily allows us to
encode absolute paths. First, if an absolute path occurs outside of a predicate, as in:

P/(P1 /P2)/P′
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then we can simply rewrite it as:

(P/P1/P′) (P2/P′)

Second, if the path/P occurs in a predicate, then we can replace it withself ::node
(as if it was a non structural condition) and addP(/P) to the global approximation. Direct
treatment of absolute paths would have further complicatedDefinition 6.2, where we would
have had to maintain a set of absolute approximations, modified only by absolute paths and
propagated at each function call. We chose not to clutter this definition (but absolute paths
are handled by our implementation).

6.2.6 attribute axis and attributes in the data-model and schema

Conceptually, theattribute axis is not very different from thechild axis, and could be
encoded as such. For instance a possible solution would be toencode an element

<e att="value" id="34" ><a/><b/></e>

as the tree:
e[ @[att[”value” ] id[”34” ] ] a[ ] b[ ] ]

by introducing a phony node with label @. If such a solution were retained then we would
also need to update the definitions ofchild anddescendant to ignore @ nodes, and add
anattribute axis selecting only the content of such nodes.

As far as schemas are concerned, they need to reflect theuniquenessandunorderedness
of a sequence of attributes within an element node. This can be done with a union type.
For instance, the document above could have type:

E → e[ ATTS A B]
ATTS → @[(ATT ID) | (ID ATT)]
ATT → att[String]

ID → id[String]
A → a[ ]
B → b[ ]

this encoding however incurs an exponential blow-up in the size of the sequence of at-
tributes. Our implementation follows a much more pragmaticapproach. Precisely, even
though attributes could be encoded in our approach we preferred to add an unordered attrib-
ute construct directly at the grammar level and specialize type-inference and type-projector
inference rules for attributes.

6.2.7 id() function

Theid() function of XPath is peculiar in the sense that unlike other functions, it does not
take the context node as implicit argument (e.g. theposition() function returns the posi-
tion of the context node within the current result set). Rather, the expression “id("foo")”
returns the node whoseid is "foo" if it exists (a node hasid "foo" if it has an attribute
namedid whose value is"foo" and if this attribute has been declared with typeID in the
Schema, [35]). We choose to approximate this function in twosteps. First, we rewrite it
as an absolute path. Then we can let our approximation algorithm handle the absolute path
(with the technique described in Section 6.2.5). For instance an expression such as

id("item34")/child ::name

can be rewritten has

/descendant:: ∗[@id="item34"]/child ::name

This rewrite technique was used in particular to handle queries C5-C7 of the XPathMark
benchmark (see Section 9).
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7 Extension to XQuery

In this section we extend our technique to XQuery.

Definition 7.1 (XQuery)

FLOWR ::= FORLETreturn ExprS| ExprS
FORLET ::= FOR| LET
FOR ::= for $x in ExprS
LET ::= let $x := ExprS
ExprS ::= if ExprSthen Condelse Cond| Cond
Cond ::= Condor Cond| Condand Cond| Expr
Expr ::= Expr cmp Expr| Arith
Arith ::= Arith op Arith | Atom
Atom ::= f (Expr, . . . ,Expr) | FLOWR/P | x | v

| FLOWR,FLOWR| <tag>FLOWR</tag> | ()
P ::= Step[Cond]/P | Step/P | Path

wherex ranges over identifier names,v ranges over values (such as integer and strings),
cmpranges over {=, != ,<, >, >=, <=}, op ranges over {+,-,*, div, mod} and Path and
Stepare the same as in Definition 6.1, that is they denote step and path expressions free of
any XQuery construct.

�

For the sake of clarity and concision we only considered formally a subset of the XQuery
grammar ([36]). In a nutshell, the definition ofAtom(given in Section 6) is extended with
two new constructs:variables(ranged over byx, y, z in what follows) and path applications
FLOWR/P.

Note that XQuery constructs may occur inside a path expression (productionP) or
not (productionPath). Also, we consider neither queries that first construct newele-
ments and then navigate on them (these are rarely used in practice) nor queries containing
“order by”, “ switch case”, etc. constructs. XQuery queries are ranged over byq. In
order to apply the previous analysis to infer a projector foran XQuery queryq, we first ex-
tract a set of full XPath expressions fromq, denoting the data needs forq. Then, we apply
to each of these extracted paths the approximation functionP(_) given in Definition 6.2 to
obtain an XPathℓ expression. We can finally use the projector inference algorithm of Sec-
tion 5.2 on the set of approximated paths, which is a sound type projector for the original
XQuery queryq.

Path extraction is performed by the extraction functionE(_,_,_), whose definition is
given in Figure 4. The extraction function has the formE(q,Γ,m) and performs a straight-
forward recursive descent over its first parameterq which is the query at issue. The second
parameterΓ is an environment, that keeps track of bindings of the form(x;P) in whose
scopeq occurs. Finally,m is a flag indicating whetherq is a query that serves to mater-
ialise the full content of the queried elements (m= 1) or if the query just selects a set of
nodes whose descendants are not needed (m= 0). Before explaining in details the rules in
Figure 4, we introduce two auxiliary functions. The first oneis M(_,_) (Figure 5) which
given a built-in XPath function and the position of one of itsarguments, returns a suitable
value for the parameterm (intuitively, M( f , i) returns 1 if f needs the full content of its
itharguments and 0 otherwise). This function is similar to the functionF(_) introduced in
Section 6, Figure 3.

The second one,E’ (_,_,_) is defined mutually, together withE(_,_,_) and allows to
recursively traverse XQuery expressions and resolves the variable names they contain. It
works similarly toE(_,_,_) but do not returns sets of XPath paths, but sets of particular
XQuery expressions which do not contain any variables.
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Now that we have introduced environments and the auxiliary functions, we can easily
describe the rules in Figure 4 First, rules 1 and 2 form the basic case of the recursive
descent and return the empty set if the whole query consists of a constant. Rules 3 and
4 straightforwardly apply the extraction recursively for the content of sequence (Rule 3)
and element (Rule 4) constructors. Rules 5 and 6 handle the case of variable bound in the
environment Rules 7 and 8 add a constant path to the set of extracted path, according to the
value of the parameterm. Note that in those rules,Path refers to the corresponding entry
in the grammar of Definition 6.1, that is it does not contain any XQuery construct and only
pure XPath ones. Path containing XQuery expressions are handled in the subsequent rules.
Rule 9 handles the application of a pathFLOWRexpression with a pathP. Note that as
previously the notationsS1/S2 whereS1 andS2 are sets of paths stands for:

⋃

P∈S1

⋃

P′∈S2

{P/P′}

The case of a simple step composed with a path expression is handled similarly by Rule 10
and we recall that the notationStep/SwhereS is a set of path is syntactic sugar for the set:

⋃

P∈S

{Step/P}

Rule 11 is more intricate, but its complexity is only bureaucratic. This rule, which did not
exist in the previous version of our work ([5]), allows the extraction process to extract Full
XPath expressions. In the present work, path extraction andpath approximation are two
separate processes. Path extraction only occurs at the level of XQuery terms and returns
sets of full XPath expressions (which reflects the exact paththat may be evaluated during
query execution). Approximation from XPath to XPathℓ is handled at the XPath level. The
issues solved by Rule 11 is to recursively traverse an XQueryexpression, using a recursive
call to the auxiliary functionE’ (_,_,_) which builds a set of XPath conditions into which
all variable bindings have been resolved. Therefore what weobtain afterE’ (_,_,_) is a
set of XPath conditions free of any XQuery construct (especially variables). We can now
explain howE’ (_,_,_) works. In Rules 1′ to 3′ use a recursive descent into the production
of the XQuery grammars, starting at the condition levels andreconstruct Boolean XPath
condition (1′), relational XPath expressions (2′) or arithmetic XPath expressions (3′). More
interesting is Rule 4′ which traverses the arguments of a function call and uses theauxiliary
functionM(_) to determine a suitable value form. Lastly, if the input matches any other
constructs Rule 5′ applies and recursively appliesE(_,_,_) to construct a set of XPath paths.

We can resume our description ofE(_,_,_) for the remaining cases, the high level con-
structs “if then else”, “ let return” and “for return” handled by Rules 12, 13 and
14 respectively. Rule 12 recursively extracts paths on the Boolean testq, the “then” case
q1 and the “else” caseq2. The only point of interests is that the Boolean test cannot gen-
erate a result and therefore can be called with parameterm= 0. Thelet binding handled
by Rule 13 augments the environmentΓ with the path extracted fromq1 and extracts the
paths of queryq2 in this augmented environment. Note that the path bound tox are added
to the final results by Rule 5 or 6 only if the variable is used. On the contrary in Rule 14,
for loops will perform their iterations even if the bound variable is never used, as long as
the paths extracted fromq1 yield a non-empty result. It is therefore mandatory to add the
paths extracted fromq1 to the final result.

These rules subsume and enhance the technique of Marian and Siméon [27]. In par-
ticular,(i) the technique we use to exclude useless intermediate paths is simpler and more
compact,(ii) we do not need to distinguish between two kinds of extracted paths but, more
simply, we always manage a unique set of path expressions, and last but not least,(iii )
our path extractor can be used even if the user cannot access an XQuery to XQuery-Core
compiler, which is necessary for [27].

Before applying the extraction functionE(_,_,_) to some queryq we apply some heur-
istics that rewriteq so as to improve the pruning capability of the inferred paths. Among
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these heuristics the most important is the one that rewrites

for y in Q/descendant-or-self::node
return if C(y) then q else ()

into

for y in

Q/descendant-or-self::node[C(self :: node)]
return q

wheneverC(y) is a condition referring only toyand does not use external functions (C(self ::
node) is obtained by replacingself :: node for all occurrences ofy free inC). If we apply
E(_,_,_) to the first query, then a path ending by the stepdescendant-or-self ::node is
extracted thus annulling further pruning: the entire forest selected byQ is loaded in main
memory. This also happens with the approaches of Bressanet al. [13] and of Marian
and Siméon [27]. In ours and Marian and Siméon’s approach thequery can be rewritten
as above, while this is not possible with Bressanet al. formalisms since their subset of
XQuery does not include predicates. However, Marian and Siméon’s path based pruning
degenerates (no further pruning is performed) also for the second query, since the step

descendant-or-self ::node
ends up in the set of pruner paths, thus selecting all nodes. This is because their approach
cannot manage predicates. In our approach instead predicates are taken into account and
therefore only nodes satisfyingC(y) are kept by the projector, thus yielding a very precise
pruning.

It is important to stress that despite their specific form thefirst kind of queries is very
common in practice since they are generated from XQuery→XQuery-Core compilation of
a non negligible class of queries or when rewriting upward axes into downward ones. This
latter observation shows that the application of rewritingrules of [31] to extend Marian
and Siméon’s approach to upward axes is not feasible since the rewriting may completely
compromise pruning.

8 Extension to other typing policies

8.1 Handling un-typed documents

Although the usage of schema is being more and more wide-spread, it still is interesting
to see how to perform type-based projection in an untyped world. A first, rather blunt,
approach is to consider a fixed corpus of un-typed documents.For such sets of documents
it is possible toinfer a DTD. For instance, Bexet. al. propose several automata-based
methods to infer DTDs [10] and even XMLSchemas ([11, 9]). Once a schema is inferred,
our technique can be applied as-is.

More interestingly, this untyped problem can be reduced to aprecise typing problem.
Indeed, an un-typed document is nothing but a document of type ({X},{X → Any}). If
we apply the type inference-algorithm of Section 5.1 to suchan input type, then the result
would be({X},{X → Any}) itself (meaning that the nodes selected by the query have type
Any). Therefore in this case, since none of the intermediary steps of the query results in
an empty-type, the type-projector inference algorithm of Section 5.2 cannot remove any
rule from the input type which remains({X},{X → Any}): the input document cannot be
pruned. However, even though the input type does not containany meaningful information,
the query itself might. Imagine a query “//a/b”. It is easy to deduce, by a simple exam-
ination of the query a projector which keeps only “b” nodes occurring below “a”-nodes.
While the solution in this case is straightforward, solvingthis problem in general is a tricky
issue. The solution for a forward fragment of XPath can be found in the last author’s PhD.
thesis (see Chapter 7 of [30]). Let us briefly outline it on ourexample. The first issue is the
representation of types. For such precise algorithms, regular tree grammars are not well
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suited. Indeed instead of the type({X},{X → Any}), it is more desirable to have a type
({X},E) whereE is the set of rules:

{X → String, X → _[ X∗ ]}

where _ denotes the set of all possible tree labels. Then the result of a query//a/b applied
to a a tree of the above type (i.e., any XML tree) would be the type projector:

{X → _[ X+ ], X → a[ B+ ], B→ b[Y∗ ], Y → String, Y → _[ Y∗ ]}

Note that this type-projector is non-deterministic top-down. It matches (and therefore
keeps) any subtreet if and only if there is a subtreet ′ of t with tag “a” which itself has
a non-empty sequence of children tagged “b”. Nodes that are children of an “a” node but
whose tag is not “b” do not have any interpretation and therefore are discarded.

In [30], in order to achieve such a precise typing, the inference algorithm makes a heavy
use ofCDuce’s type algebra (see [22]) in particular of intersection and negation types. Also
note that the projector above is not obtained by erasing someof the rules of the original
type but by the mean of set theoretic operations . In fact, three new rules were created and
intuitively they were obtained by intersecting the initial“X → _[ X∗ ]” rules with a type
“a[ B+]” which is the constraint represented by the XPath query. Note also that contrary
to our approach where new rules are only erasures of existingones (of which there only
exists a finite number), special care must be taken to not introduce infinitely many refined
rules or, said differently, in this context even guarantying the termination of the algorithm
is a very delicate issue.

8.2 Using regular tree languages as schemas

While our formal development remains in the very general case of regular tree grammars,
our implementation only focuses on DTDs. The main reason is that for DTDs pruning is
efficient memory-wise. For regular tree languages instead,validation (and pruning) may
need to visit the whole tree before deciding which node to prune. At first, it seems that
this completely defeats the purpose of pruning, but we arguethat pruning can still be of
practical use in these cases.

Indeed, a way of addressing this problem is to temporarily store the document in
memory in the form of a succinct tree data-structure (based for instance on balanced paren-
thesis: a survey of the most popular succinct tree representations can be found in [2]). The
final data-structure (e.g., a DOM representation) of the document can then be built from
the temporary one, by replaying a sequence of SAX events while traversing the temporary
data-structure and by not synthesizing events for pruned sub-trees. An alternative solution
is to store on disk the sequence of SAX events and process it backward, thus simulating a
bottom-up evaluation (validation of regular tree grammarsand therefore projection can be
done in a deterministic bottom-up fashion). Such a technique was used in [26] to efficiently
evaluate node selecting queries bottom-up on documents up to 1 GB of size.

9 Experiments

9.1 Prototype

To gauge the benefits of type-based projection, we have implemented our pruning algorithm
into a prototype. Our prototype takes as input an XQuery query, a DTD, and a document.
It then performs the path extraction described in Section 7 and computes for each extracted
path its XPathℓ approximation, applying the rewriting rules given in Section 6. Based on
this set of paths, our program performs the static analysis described in Section 5.2 and com-
putes a type projector. Once this is done, the prototype parses the input document, prunes
it according to the inferred type-projector and serializesthe result in a new document.
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Besides what is included in the formal description of our algorithm, our prototype is
extended also to support the full set of XPath axes as well as attributes. If we callD the
input document andS the input DTD, then, assuming thatD is well-formed, the pruning
process is performed inO(|D|) time andO(|S|) memory, where|D| and|S| denote the size
of D andS respectively. Indeed, the type projector associated with aDTD is at most as
big as the original schema (when no pruning is performed) andO(|S|) space is required to
store it in memory. Our prototype can also perform well-formedness check and validation
while pruning, in which case time complexity remainsO(|D|) and memory complexity be-
comesO(|S|+ log(|D|)) (it is well-known that checking well-formedness during validation
requires to keep a stack whose is size at most the height of thedocument, see e.g. [33]).

Our prototype is implemented in OCaml, using the PXP libraryfor XML and DTD

parsing.

9.2 Benchmark suite

We used the XPathMark ([21, 20]) and XMark ([32]) benchmark suites. The former con-
sists of a large set of XPath queries while the latter provides XQuery queries to test against.

9.2.1 Data-set

Both XPathMark and XMark use the XMark document generators.These documents com-
ply with the “auction” DTD representing an auction web-site. It defines 77 element types
and 15 attributes. This size and complexity is comparable to“real-life” type definitions
(for instance the XHTML transitional DTD also features 77 element definitions). Because
the “auction” DTD falls outside the conditions of our completeness theorem (it features
recursion and unguarded union), it is a very good test-case to illustrate the precision we
achieve in practice even when completeness does not hold. The scalability of our approach
was tested by using documents of varying size, ranging from 12MB to 3GB. An important
aspect of the XMark generator is that the proportion of textual data versus tree structure
stays the same, for all size of documents. We report here somestatistics of interest which
we use later-on to gauge the precision of our pruning algorithm. An XMark generated file
consists of:

• 74% of text content (as PCDATA element or attribute value)

• 65% of all the text content (that is, 49% of the total file size)resides in adescription
element or one of its descendant.

9.2.2 XPathMark queries

Since its original publication ([21]), the XPathMark benchmark suite has evolved to provide
a very complete set of XPath queries. It is composed offunctional testqueries, aiming at
ensuring the correctness of an XPath implementation andperformance testqueries which
provide computationally difficult queries. We highlight some of the main design goals of
this test suite (the complete rationale can be found in [20]):

1. queries simulaterealistic query needs of a potential user of the the auction site;

2. queries are divided into groups according to the intrinsic computational complexity
of the corresponding evaluation problem. XPath language can be stratified in a num-
ber of fragments for which different complexity bounds are known [3]. Comparing
the theoretical computational complexity of the query evaluation problem with the
actual amount of resources consumed during query evaluation might be, at least, a
stimulating and instructive exercise;
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3. queries are defined to challenge data scalability of the XML processing system, that
is the performance of the system as the data complexity (document size) grows. In
particular, the queries talk about document sections (likeopen and closed auctions,
items, people, descriptions) that become bigger when the XMark document scaling
factor increases. Moreover, the results of the queries are small compared to the size
of the target document. This avoids that the time taken to serialize the results (that
may be relevant) obfuscates the pure query processing time.

These three points are exactly those we aim to address with the present work. Indeed
our approach drastically increases the data scalability (3.) of XML processing systems for
realistic queries (1.) and potentially complex ones (2.). XPathMark queries are divided in
5 groups, labeled fromA to E that we briefly describe now.

Group A contains unary tree pattern queries. These queries use onlychild and descendant
axes, node tests equal to* or to a tag name, and filters (predicates). Conjunctive and
disjunctive Boolean operators are allowed, but negation isnot. Relational and arithmetic
operators and functions are disallowed. These queries falltherefore in the category of
queries that we handle without any approximation.

Group B contains the so-called core or navigational XPath queries.This fragment ex-
tends XPath-A by admitting all XPath axes and negation. It mostly corresponds to queries
for which our algorithm introduces a very lightweight approximation (we only need to
approximate negations and those axes we did not treat formally such aspreceding).

Group C extends GroupB with relational operators (=, !=, <, >, >=, <=) and theid()
function.

Group D extends GroupC by allowing all arithmetic operators (+, -, *, div, mod) and
functionssum() andcount().

Group E contains all XPath 1.0 queries. In particular, it extends GroupD by allowing
all functions (likeposition() andcontains()).

XPathMark also provides a sixth group, which uses non-standard features of XPath,
such that the transitive closure of a path expression. We excluded this group from our
test, since neither our implementation nor the query engines that we used supported these
extensions.

9.2.3 XMark test suite

To validate the extension of our approach to XQuery and in particular the path extraction
algorithm, we use queries from the XMark benchmark suite ([32]). These queries feature
“for” expressions guarded by “where” conditions and make use of element constructor to
format their results. The corresponding code for the queries under consideration is given in
Appendix B.

9.3 Protocol

We have designed two experiments, based on two different XQuery engine to validate
our approach. For each engine and each query we described in the previous section we
applied the following protocol. First, we tested the engineagainst original documents of
increasing size and stopped when the query engine could not handle the input document
anymore. Then we repeated the experiment a second time but used document pruned by
our prototype as input for the query engine. We detail now ourexperimental settings for
the two engine we considered: Saxon-b/XQuery and MonetDB/XQuery.
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9.3.1 Test machine

The experiments where performed on an desktop PC, with an Intel Core 2 Xeon 3Ghz CPU,
3.5 GB of RAM and a S-ATA hard-drive. We used Ubuntu Linux 9.1064bits (featuring a
2.6.31 kernel) as operating system. The file-system used wasext3, with default settings.
The OS was allocated 6 GB of swap space and tests where done in areduced environment,
where only essential services were running concurrently with our experiments. In what
follows, when timings are reported they are obtained by removing the best and worst timing
of 5 runs and averaging the remaining three. Also, all the parameters we measured (running
time, memory consumption, I/O operations, . . . ) were measured in independent runs in
order to have as little impact as possible on the experiments. The memory consumption of
a running program was measured by monitoring the so-called “resident set size” field of the
/proc/pid/statm pseudo file (this fields summarizes the amount of private datamapped
in physical memory by the process, excluding shared segments such as shared libraries or
shared mmaped files). I/O operations where monitored using theiotop utility.

9.3.2 Saxon-b/XQuery

Saxon [25] is a popular XML library which implements variousW3C standards (XPath,
XQuery and XSLT) and has full schema support. We used version9.0 of the Saxon-b
XQuery engine (which is the Open Source one). Saxon being a main-memory query engine
we focused on the following measurement both for pruned and unpruned documents: query
answering time (excluding the parsing time of the document and serialization of the results,
as reported by Saxon’s debugging flags) and memory consumption. Saxon being written in
Java, we used the latest version of the Sun’s JVM available (1.6.0, 64 bit version) and set
the amount of memory available to the JVM to the total physical memory of the machine.

9.3.3 MonetDB/XQuery

MonetDB/XQuery [12] is a well established native XML database with full XQuery sup-
port. Contrary to Saxon, MonetDB storeson diskan index allowing fast navigation and
query answering. In particular since it uses the disc as secondary storage, MonetDB is not
limited by the amount of physical memory (it uses as much memory as possible to answer
a query efficiently and performs its own page management by mapping memory pages to
the disk and reading them back when needed). Therefore for such query engine, speed is
directly proportional to memory: the more memory is available, the less swapping occurs
between pages on disk and pages in main memory. The three parameters we measured for
MonetDB were the query answering time (again we did not consider document parsing or
serialization time), the size of the generated index on diskfor a given document and the
amount of I/O performed to answer the query. Indeed since MonetDB tries to max out
its memory use to favour query answering time, measuring memory consumption does not
reflect the actual scalability improvement one could expectwhen pruning documents. Disk
access on the contrary are the bottleneck for such an engine and their frequency directly
impacts query answering time.

9.4 Experimental results

9.4.1 Pruning precision

We gauged the precision of our pruning algorithm for the fullset of XPathMark and XMark
queries by comparing the size of the pruned document (serialized on disk) with the size of
the corresponding original document. We report in Figure 6 the pruning ratio in percent of
the original file size for XPathMark (labelled A1 to E8) and XMark (labelled M1 to M20)
queries.
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9.4.2 Saxon-b/XQuery

In our testing environment the biggest un-pruned document that the Saxon engine could
handle was 671 MB large. We report in Figure 7 the original size of the largestpruned
document Saxon could handle and the size of its projection (both in MB). Also, for a
document of size 671 MB, we report the running time and memoryconsumption for the
original and pruned version (as well as the size of the pruning). Lastly, we report the
speed-up factor obtained thanks to pruning and the memory improvement we achieved (in
percent of the original memory consumption) for the projected document. Due to the lack
of space, we do not detail all of the XPathMark and XMark queries but rather for each
category we give the “best performing query” –that is, the one for which we could achieve
biggest speed-up– and the “worst performing query”, the onefor which the speed-up was
the smallest.

9.4.3 MonetDB/XQuery

Since MonetDB makes use of the secondary storage (disk) to query arbitrarily large docu-
ments, we chose a different approach to validate our pruningalgorithm. We fixed the size
of the input document to 3363 MB and then indexed it into the MonetDB document repos-
itory, yielding an index (on disk) of 4644 MB (as reported by the MonetDB administrative
interface). Then for each query, we pruned the 3363 MB document with respect to the
input query and indexed it. We summerize the results in Figure 8. The first line in the table
reports the size in MB of the index corresponding to the pruned document. The second line
reflects the ratio between the amount of I/O operation performed by the MonetDB server
for the pruned file and the amount of I/O performed on the original file. We only take into
account of amount of dataread from disk which helps us gauge the amount of data fetched
from the index on disk into main-memory. In this same figure, the graphics represent the
absolute query answering time in seconds for the original and pruned document.

Finally, the third line gives the speed-up in query answering achieved through pruning.
We were not able to run the query E5 on our version of MonetDB (the server segfaulted at
some point during the query computation).

9.5 Interpretation

9.5.1 Pruning precision

The results from Figure 6 shows that, for the vast majority ofthe queries we considered,
the document can be pruned to less than 10% of its original size. More precisely on the 58
queries we considered (20 XMark queries and 38 XPathMark queries):

• 47 queries yielded a projected document whose size was less than 5% of the original

• 5 queries (M10, B3, B4, D2, E4) had a pruning ratio between 5% and 10% of the
original file size

• 2 queries (B2, E3) had a pruning ratio of 17.035%

• 4 queries (M14, E6, E7, E8) had a pruning ratio of 27.35%

It should be noted that queries such as M14% return the content of adescriptionelement,
consisting of almost all the textual data contained in the original XMark document. Since
in these queries the value of the whole element is needed at runtime to perform string
searching operations, there is little that can be done from the point of view of static pruning.
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9.5.2 Saxon-b/XQuery

As we can see from the results in Figure 7 pruning the documentbefore querying it always
yields a speed-up and a reduction in memory use for a main memory engine such as Saxon.

On the one hand, for queries whose main bottleneck are stringoperations (such as calls
to thecontains function in M14 and E7), document projection gives very little speed-up.
On the other hand, query A1 or C3 see a dramatic speed-up (20 and 17 times faster than
the original respectively). This shows that despite the various optimizations built into the
engine, a significant amount of time is often spent by iterating over “non-relevant” nodes
which are discarded by the pruning process.

On the side of memory consumption, pruning the document unsurprisingly reduces
memory usage drastically. Indeed, document projection reduces the number of elements
and therefore simplifies the tree-structure of the XML document. This aspect is critical
for main-memory engines which often (as in the case of Saxon)represent the document
as a pointer-based data-structure (e.g., following the DOMmodel [17] where each element
is represented as a node which contains a pointer to its first child to the next sibling, and
to its parent). Indeed, we experienced for Saxon (but we observed similar behaviour in
other main-memory query engines) a 112MB XMark document would occupy 430MB of
RAM while the same document stripped of its data—amounting to only 36MB on disk—
would occupy 340MB of memory. As Figure 7 illustrates, our pruning technique precisely
addresses this issue, reducing in most cases the memory consumption to a few percents of
what is needed to handle an un-pruned file.

9.5.3 MonetDB/XQuery

MonetDB is known to be one of the fastest XML database available. The efficiency of the
MonetDB/XQuery engine is essentially due to the stair-casejoin operation ([24]) which
minimizes the amount of intermediate sets constructed to answer an XPath query. Even
so, the use of type-based document projection often improves query answering time. In
particular, as shown in Figure 8, a smaller index often yields less I/O operations which in
turn increases the speed of the query engine. On the contraryfor queries such as D2, M14
and M15, the document is already optimally indexed and reducing the size of the index
does not reduces the amount of I/O which explains why for these queries the gain in speed
is null. Yet for some queries the speed-up can be up to twenty-folds (D1).

9.5.4 Comparison with related work

These results are a clear-cut improvement over current technology. While we cannot dir-
ectly compare processing performances since no implementation of the other pruning ap-
proaches is publicly available, we want to stress two points. First, for XMark queries the
pruning precision we achieve is equal or better than what is obtained with other approaches
(with the exception of query M10 for which [27] achieves a pruning ratio of 4.5% where
we could only prune the document down to 9.2% of its original size). Second, performing
pruning never is a bottleneck in our case thanks to the fact that our solution consists of
a single buffer-less traversal of the input document (on ourtest machine we were able to
efficiently prune arbitrary large documents, while in case of [27] pruning can end up using
as much memory as the execution of the query).

The experiments also illustrate that our approach retains avery high precision even in
the presence of complex XPath features (like backward axes and external functions). While
it is true that the technique of [31] could be used to allow Marian and Simeon’s work to
handle backward axes, it would still not be, to our sense, a satisfactory solution. The first
reason is that the rewrite rules given in [31] do not support the use of data-value or negation
in the filters of the original query (see [3]). For instance the query

descendant::keyword[not(ancestor:: item)]
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cannot be written without backward axis. Second the query generated may be exponentially
bigger than the original one (and its computation takes exponential time in the size of
the original) and may introduce several predicates as well asdescendant-or-self axes.
Both features degrades the pruning precision of [27].

10 Conclusion and future work

Our experiments show the clear advantages of applying our optimisation technique to query
XML documents, and the characteristics of our solution makeit profitable in all application
scenarios. We discussed several aspects for which our approach improves the state of the
art: for performances (better pruning, more speedup, less memory consumption), for the
analysis techniques (linear pruning time, negligible memory and time consumption), for
its generality (handling of all axes and of predicates), and, last but not least, for the formal
foundation it provides (correctness formally proved, limits of the approach formally stated).

The present work extends and improves the preliminary version presented at VLDB
2006 [5] in several aspects. From a formal point of view, the use of regular tree grammars
as schema model makes the technique applicable to the various kind of schemas currently
in use. Furthermore, the closure properties that we proved ensure that type-based projection
is at most as expensive as validation for a given class of schema language. We also handle a
richer set of queries formally (in particular we handle nested predicates in XPathℓ) and took
special care to document how to encode or approximate several important XPath idioms
that were lacking from the formal presentation. On a practical level, we have validated
our approach against state of the art query engines, using realistic queries and data sets. In
particular, not only did we test against an efficient main memory query engine (Saxon) but
also demonstrated that our approach can be used to improve, sometimes by a double digit
factor, the performances of an already very optimized disk-based XML database such as
MonetDB/XQuery.

Future work will be pursued both at a formal and practical level. At a formal level,
one of the main shortcoming of our approach is its reliance onXPath syntax. Indeed, even
though we managed to isolate a fragment of XPath that we couldformally reason with, it
still leaves us with a syntax-directed approach. The problem with this is twofold. First, it
makes the proofs and the specification of algorithms quite tedious and unnecessarily intric-
ate. Second and more importantly, our pruning inference algorithm might yield different
type projectors depending on the syntax of the original query. For future work, we would
like to tackle a semantic based approach. In particular it seems worthwhile to consider
more theoretically sound formalisms for tree queries such as, for instance, MSO formula
or tree automata. The latter in particular would allow us to reuse our pruning algorithm for
pattern-matching based languages (such as theCDuce language [1] and its pattern-based
query languageCQL [28, 6, 14]). It is also known that tree-automata (as well as MSO
formula) have better closure properties than XPath expressions and support fine-grained
set-theoretic operations (intersection, union, complement) that have been used with suc-
cess to devise very precise type-systems for XML [22].

At a practical level we would like to see a tighter integration between document-
projection and query engines. Firstly, although quite crude, our experiments show that
even a carefully designed indexed system such as MonetDB canbenefit from document
pruning. It seems interesting to develop further such preliminary results and design a pro-
jection aware XML index. In other words we would like to be able to equip any native
XML query engine optimizer with a type-projector component. In particular, one could
think of an index consisting of the original document together with its projected versions.
Textual data could be shared between the main document and the projected ones which
would merely become a projected view of the tree structure ofthe document. We make the
hypothesis that the overhead of such pruned tree structureswould be quite small compared
to the size of an XML index while providing significant speed-up in query answering time.
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Secondly, coupling our projection algorithm with early query answering techniques
would allow us to achieve further pruning, especially when runtime conditions are involved.
For instance we could use our type-inference algorithm to determine on what type of ele-
ments a given built-in function is applied to; for instance in an expression such as

contains(.//*, "foo").
This information could then be used at loading time to discard elements that do not match
the predicate.
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A Detailed proofs

LEMMA ((3.3)) Let π be a type projector for(S ,E). Then for every tree t∈I (S ,E) it
holds(t\Iπ)� t.

Proof 1 The proof is a straightforward induction on t.

LEMMA (ERASURE PRESERVES LOCALITY(3.4)) Let (S ,E) be a local tree gram-
mar and(S ′,E′) a regular tree grammar. If(S ′,E′) <: (S ,E) then(S ′,E′) is a local
tree grammar.

Proof 2 By contradiction, suppose that(S ′,E′) is not a local tree grammar. By Defini-
tion 2.12,S ′ ⊆ S therefore,|S ′| ≤ |S | ≤ 1.

• Then, either there exist two competing rules A→ l [r ′a] and B→ l [r ′b] in E′. Then
by definition of erasure, there exist two rules A→ l [ra] and B→ l [rb] in E such
that r′a = ra|Na and r′b = rb|Nb for some Na ⊆Names(ra) and Nb ⊆Names(rb). But
then these two rules share the same label l, and therefore arecompeting one with
the other, which contradicts the fact that(S ,E) is a local tree grammar.

• Or there exists two rules C→ l [r1] and C→ l ′[r2] in E′ with the same left hand-
side (and distinct labels). But then, by definition of erasure, there exists two cor-
responding rules in E, C→ l [r ′1] and C→ l ′[r ′2] such that ri = r ′i |Ni , i ∈ {1,2} for
some names Ni . Therefore there are two rules in E with the same left-hand side,
which contradicts the fact that(S ,E) is a local-tree grammar.

�

LEMMA (ERASURE PRESERVES SINGLE-TYPEDNESS(3.5)) Let (S ,E) be a single-
type tree grammar and(S ′,E′) a regular tree grammar. If(S ′,E′) <: (S ,E) then
(S ′,E′) is a single-type tree grammar.

Proof 3 By contradiction suppose that(S ′,E′) is not a single-type tree grammar and
proceed by case analysis:

• either there exist two competing non terminals A and B inS ′. But by definition of
erasure,S ′ ⊆S and(S ,E) has two competing start symbols, which contradicts
the hypothesis that(S ,E) enjoys the single-type property.

• or there exists a rule X→ l [ r ′ ] and there exist two competing non terminals A and
B in Names(r ′). Since(S ′,E′) <: (S ,E), then there exists X→ l [ r ] such that
r ′ = r|N for some N⊆ Names(r). But that means that A and B are inNames(r),
which implies that(S ,E) is not a single-type tree grammar, thus contradicting
our hypothesis. �
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LEMMA (UNION CLOSURE OF LOCAL TYPE PROJECTORS(3.6)) Let (S ,E) be a
local tree grammar. Let(S1,E1) and(S2,E2) be two tree grammars such that(S1,E1)<:
(S ,E) and(S2,E2)<: (S ,E). Then(S1∪S2,E1∪E2) is a local tree grammar.

Proof 4 Consider(S1∪S2,E1∪E2) and suppose, by contradiction, that it is not local.
First, remark that by definition of erasure,S1 ⊆ S andS2 ⊆ S , thereforeS1∪S2 ⊆
S and consequently|S1∪S2| ≤ |S | ≤ 1. Second:

• either we have two rules A→ l [ra] and B→ l [rb] (with A and B distinct). By
Lemma 3.4 we know that(S1,E1) and(S2,E2) are local tree grammars. Then it
must be that one of two rules at issue is in(S1,E1) and the other in(S2,E2), oth-
erwise one of the two grammars would not be local (it would have the competing
pair in its rules). Without loss of generality we can supposethat A→ l [ra] ∈ E1

and B→ l [rb] ∈ E2. Since(S1,E1)<: (S ,E), then by definition of erasure there
exists a rule A→ l [r ′a] ∈ E with ra = r ′a|N for some N⊆ Names(r ′a). Similarly,
there exists B→ l [r ′b] ∈ E with rb = r ′b|N′ for some N′ ⊆ Names(r ′b). But then, this
means that we have two competing rules in E, which contradicts the hypothesis
that (S ,E) is a local tree grammar.

• or, there are two rules C→ l [r1] and C→ l ′[r2] with the same left-hand side and
distinct labels in E1∪E2. Similarly to the previous case, we must have C→ l [r1]∈
E1 and C→ l ′[r2] ∈ E2, otherwise(S1,E1) or (S2,E2) would not be local. But
then by definition of erasure, it means that there exists two rules, C→ l [r ′1] ∈ E
and C→ l ′[r ′2] ∈ E such that ri = r ′i |Ni , i ∈ {1,2} for some names Ni . This means
that there are two rules in E with distinct labels and the sameleft-hand side, which
contradicts the assumption that(S ,E) is a local tree grammar.

�

LEMMA (UNION CLOSURE OF SINGLE-TYPE TYPE PROJECTORS(3.7))
Let(S ,E) be a single-type tree grammar. Let(S1,E1) and(S2,E2) be two tree gram-

mars such that(S1,E1)<: (S ,E) and(S2,E2)<: (S ,E). Then(S1∪S2,E1∪E2) is a
single-type tree grammar.

Proof 5 Consider(S1∪S2,E1∪E2) and suppose by contradiction that it does not en-
joy the single-type property. This implies that there exists a rule X→ l [r], such that
Names(r) contains two competing non-terminals A and B. Moreover, by Lemma 3.5
we know that(S1,E1) and(S2,E2) are single-type tree grammars. Therefore X→ l [r]
cannot be in E1 nor in E2 because they have the single-type property. The only solution
is that there exists a rule X→ l [r1] in E1 with A∈ Names(r1) and X→ l [r2] in E2 with
B ∈ Names(r2), and that r= r1|r2 (remember that we identify two rules with the same
left-hand side and the same label by merging them into a single rule). Therefore, by
the definition of erasure, there exists a rule X→ l [r ′1] in E such that A∈ Names(r ′1).
Similarly, there exists a rule X→ l [r ′2] in E such that B∈ Names(r ′2). Since we identify
such rules, there is a rule X→ l [r ′1|r

′
2] in E. But then, this rule contains both A and B

which are competing. This contradict the hypothesis that(S ,E) is a single-type tree
grammar. �

LEMMA (ERASURE PRESERVES LOCALITY(3.4) Let(S ,E) be a local tree grammar
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and (S ′,E′) a regular tree grammar. If(S ′,E′) <: (S ,E) then(S ′,E′) is a local tree
grammar.

Proof 6 By contradiction, suppose that(S ′,E′) is not a local tree grammar. By Defini-
tion 2.12,S ′ ⊆ S therefore,|S ′| ≤ |S | ≤ 1.

• Then, either there exist two competing rules A→ l [r ′a] and B→ l [r ′b] in E′. Then
by definition of erasure, there exist two rules A→ l [ra] and B→ l [rb] in E such
that r′a = ra|Na and r′b = rb|Nb for some Na ⊆Names(ra) and Nb ⊆Names(rb). But
then these two rules share the same label l, and therefore arecompeting one with
the other, which contradicts the fact that(S ,E) is a local tree grammar.

• Or there exists two rules C→ l [r1] and C→ l ′[r2] in E′ with the same left hand-
side (and distinct labels). But then, by definition of erasure, there exists two cor-
responding rules in E, C→ l [r ′1] and C→ l ′[r ′2] such that ri = r ′i |Ni , i ∈ {1,2} for
some names Ni . Therefore there are two rules in E with the same left-hand side,
which contradicts the fact that(S ,E) is a local-tree grammar.

�

LEMMA (ERASURE PRESERVES SINGLE-TYPEDNESS(3.5))
Let (S ,E) be a single-type tree grammar and(S ′,E′) a regular tree grammar. If

(S ′,E′)<: (S ,E) then(S ′,E′) is a single-type tree grammar.

Proof 7 By contradiction suppose that(S ′,E′) is not a single-type tree grammar and
proceed by case analysis:

• either there exist two competing non terminals A and B inS ′. But by definition of
erasure,S ′ ⊆S and(S ,E) has two competing start symbols, which contradicts
the hypothesis that(S ,E) enjoys the single-type property.

• or there exists a rule X→ l [ r ′ ] and there exist two competing non terminals A and
B in Names(r ′). Since(S ′,E′) <: (S ,E), then there exists X→ l [ r ] such that
r ′ = r|N for some N⊆ Names(r). But that means that A and B are inNames(r),
which implies that(S ,E) is not a single-type tree grammar, thus contradicting
our hypothesis. �

LEMMA (UNION CLOSURE OF LOCAL TYPE PROJECTORS(3.6)) Let (S ,E) be a
local tree grammar. Let(S1,E1) and(S2,E2) be two tree grammars such that(S1,E1)<:
(S ,E) and(S2,E2)<: (S ,E). Then(S1∪S2,E1∪E2) is a local tree grammar.

Proof 8 Consider(S1∪S2,E1∪E2) and suppose, by contradiction, that it is not local.
First, remark that by definition of erasure,S1 ⊆ S andS2 ⊆ S , thereforeS1∪S2 ⊆
S and consequently|S1∪S2| ≤ |S | ≤ 1. Second:

• either we have two rules A→ l [ra] and B→ l [rb] (with A and B distinct). By
Lemma 3.4 we know that(S1,E1) and(S2,E2) are local tree grammars. Then it
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must be that one of two rules at issue is in(S1,E1) and the other in(S2,E2), oth-
erwise one of the two grammars would not be local (it would have the competing
pair in its rules). Without loss of generality we can supposethat A→ l [ra] ∈ E1

and B→ l [rb] ∈ E2. Since(S1,E1)<: (S ,E), then by definition of erasure there
exists a rule A→ l [r ′a] ∈ E with ra = r ′a|N for some N⊆ Names(r ′a). Similarly,
there exists B→ l [r ′b] ∈ E with rb = r ′b|N′ for some N′ ⊆ Names(r ′b). But then, this
means that we have two competing rules in E, which contradicts the hypothesis
that (S ,E) is a local tree grammar.

• or, there are two rules C→ l [r1] and C→ l ′[r2] with the same left-hand side and
distinct labels in E1∪E2. Similarly to the previous case, we must have C→ l [r1]∈
E1 and C→ l ′[r2] ∈ E2, otherwise(S1,E1) or (S2,E2) would not be local. But
then by definition of erasure, it means that there exists two rules, C→ l [r ′1] ∈ E
and C→ l ′[r ′2] ∈ E such that ri = r ′i |Ni , i ∈ {1,2} for some names Ni . This means
that there are two rules in E with distinct labels and the sameleft-hand side, which
contradicts the assumption that(S ,E) is a local tree grammar.

�

LEMMA (UNION CLOSURE OF SINGLE-TYPE TYPE PROJECTORS(3.7)) Let (S ,E)
be a single-type tree grammar. Let(S1,E1) and(S2,E2) be two tree grammars such that
(S1,E1)<: (S ,E) and(S2,E2)<: (S ,E). Then(S1∪S2,E1∪E2) is a single-type tree
grammar.

Proof 9 Consider(S1∪S2,E1∪E2) and suppose by contradiction that it does not en-
joy the single-type property. This implies that there exists a rule X→ l [r], such that
Names(r) contains two competing non-terminals A and B. Moreover, by Lemma 3.5
we know that(S1,E1) and(S2,E2) are single-type tree grammars. Therefore X→ l [r]
cannot be in E1 nor in E2 because they have the single-type property. The only solution
is that there exists a rule X→ l [r1] in E1 with A∈ Names(r1) and X→ l [r2] in E2 with
B ∈ Names(r2), and that r= r1|r2 (remember that we identify two rules with the same
left-hand side and the same label by merging them into a single rule). Therefore, by
the definition of erasure, there exists a rule X→ l [r ′1] in E such that A∈ Names(r ′1).
Similarly, there exists a rule X→ l [r ′2] in E such that B∈ Names(r ′2). Since we identify
such rules, there is a rule X→ l [r ′1|r

′
2] in E. But then, this rule contains both A and B

which are competing. This contradict the hypothesis that(S ,E) is a single-type tree
grammar. �

LEMMA (5.2) Let t be a treeI-valid with respect to the schema(S ,E). For every
S⊆ Ids(t) and typeτ, if I(S)⊆ Dn(τ), then

1. I(JAxisKt (S))⊆ Dn(AE(τ,Axis))

2. I(S::tTest)⊆ Dn(TE(τ,Test))

Proof 10 The proof is done by case analysis on the possible axes (for (1.)) and tests (for
(2.)).
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1. We only need to consider theself anddescendant axes. Indeedchild is an
instance ofdescendant, andancestor andparent are the dual ofdescendant
andchild respectively.

self: By Definition 4.3, we have thatJselfKt(S) = S, thereforeI(JselfKt(S)) =
I(S). By Definition 5.1,AE(τ,self) = τ. SinceI(S) ⊆ Dn(τ) by hypo-
thesis, we can conclude that

I(JselfKt(S))⊆ Dn(AE(τ,self))

descendant: we supposei′ ∈ JdescendantKt(S). Let us show thatI(i′) ∈
Dn(AE(τ,descendant)). If i′ ∈ JdescendantKt (S) then by Definition 4.3:

∃i ∈ Ids(t) such that(i, i ′) ∈ Edg(t)+

By definition ofEdg this means that there exists a sequencei0, i1, . . . , in such
that t@ik = l [. . . t ′ . . .] and RootId(t ′) = ik+1, with i0 = i and in = i′. Said
differently,i0, i1, . . . , in is the path fromi to its descendanti′ in the tree t that
we consider.

Let us now call Xk = I(ik). For all k, there is a rule Xk → Rk ∈ E such that
Xk+1∈Names(Rk) (since t isI-valid with respect to E and by Definition 2.8).
Hence, there exists a chain X0 ⇒E . . .⇒E Xn with X0 in I(S). By hypothesis,
I(S)⊆ Dn(τ), therefore X0 ∈ τ. Since X0 ⇒E . . .⇒E Xn, by Definition 4.3
we have Xn → Rn ∈ AE(τ,descendant). But since, Xn = I(i′), we have

I(i′) ∈ Dn(AE(τ,descendant))

and therefore

I(JdescendantKt(S))⊆ Dn(AE(τ,descendant))

2. By case on the test:

node: By Definition 4.2 we have:

node::tS= S

By Definition 5.1 we haveTE(τ,node) = τ. SinceI(S) ⊆ Dn(τ) by hypo-
thesis, we have that:

I(S::tnode)⊆ Dn(TE(τ,node))

a (for some element namea): supposei ∈ a::tS. Let us show thatI(i) ∈
Dn(TE(τ,a)). By Definition 4.2, we know that t@i = a[ f ] for some forest
f . Since t isI-valid with respect to E, thenI(i) =Y and there exists a rule
Y → a[R] in E. Sincei ∈ S, we also have thatI(i) ∈ Dn(τ) (by hypothesis).
By Definition 5.1, since Y→ a[R] ∈ τ, then Y→ a[R] ∈ TE(τ,a) and there-
foreI(i) =Y ∈ Dn(TE(τ,a), hence

I(S::ta⊆ Dn(TE(τ,a))

text: similar to the previous case.

�
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LEMMA (TERMINATION OF TYPE INFERENCE(5.5)) Let (S ,E) be a type, P a path,
andΣ andΣ′ two environments. If there is a derivation for the judgmentΣ ⊢E P : Σ′, then
this derivation is unique and finite.

Proof 11 Uniqueness of the derivation is immediate, since the rules are syntax-directed:
at each step, at most one of the rules applies (if no rule applies, there is no derivation
and the output type is∅). Finiteness can be shown by a simple induction on the length
of the path, noted l(P), that we define as follows:

l(Axis::Test) = 1
l(Axis::Test[C]) = 1+ ∑

P∈C

l(P)

l(P/P′) = l(P)+ l(P′)
l(P P′) = l(P)+ l(P′)

Basic case:The query has length 1, meaning it is a single step without predicate. Then
the only rules we can apply are(down-axis), (up-axis) or (test). These rules have
no premise, therefore the derivation is finite and has length1.

Inductive case: If the query has several steps, then the rule(sequence) applies. The
lengths of the queries in the premises of the rule are strictly less than the length of
the query in the goal, by definition of l(_). By induction hypothesis both premises
have a finite derivation, therefore the goal can be derived with a finite derivation.

Similarly, if the query is a top-level union, the typing rule(union) applies.

If the query is a single step with a predicate, then rule(predicate) applies. We
should first remark that there is a finite set of rules inΣtyp and a finite number
of path n in Cond. Thus, there are exactly|Σtyp| × n premises for this rule. For
each one of these premises, the path Pjk is such that l(Pjk) < l(P), by definition
of l(_). By induction hypothesis, every premise has finite derivation, therefore the
judgment in the goal of the rule has a finite derivation.

�

THEOREM (SOUNDNESS OF TYPE INFERENCE(5.6)) Let (S ,E) be a type and P a
path. Let E0 = {X → R | X → R∈ E,X ∈ S }. If (E0,E0) ⊢E P : (τ,κ) then:

Dn(τ)⊇
⋃

t∈I(S,E)

I(JPKt (RootId(t)))

Proof 12 We consider the following, more general judgment:

(τ,κ) ⊢E P : (τ ′,κ ′)

We show simultaneously the following properties:

1. Soundness : for all tree tI-valid with respect to(S ,E) and all set S⊆ Ids(t), if
I(S)⊆ Dn(τ) then:

I(JPKt(S))⊆ Dn(τ ′)

2. Context well-formedness, if

κ = {Y → R | ∀Z ∈ Dn(τ),X ⇒∗
E Y ⇒∗

E Z}
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then
κ ′ = {Y → R | ∀Z ∈ Dn(τ ′),X ⇒∗

E Y ⇒∗
E Z}

Property 1 is a generalization of the soundness property we are proving. Given a set of
context nodes S whose types are inτ, the type ofJPKt (S) is in τ ′. Property 2 states that
the algorithm preserves the well-formedness of contexts. We prove both properties by
induction on the depth of the typing derivation, which is finite by Lemma 5.5:

Base case:

(down-axis): Property 1 is true by a direct application of Lemma 5.2. Property 2
holds by definition ofAE(_,_)

(up-axis): By Lemma 5.2:

I(JAxis::nodeKt(S))⊆ Dn(AE(τ,Axis))

We must now show thatI(JAxis::nodeKt (S)) is in Σctx, for it to be in the
intersection of both. Sinceκ is a well-formed context:

κ = {Y → R | ∀Z ∈ Dn(τ),X ⇒∗
E Y ⇒∗

E Z}

Let us first consider the case Axis= ancestor. By Definition 4.3:

Jancestor ::nodeKt(S) = {i′ | i ∈ S∧ (i′, i) ∈ Edg+(t)}

Thus

I({i′ | i ∈ S∧ (i′, i) ∈ Edg+(t)}) = {Y|Z ∈ I(S)∧Y ⇒+
E Z}

Since we supposedI(S)⊆ Dn(τ), then clearly:

{Y → R|Z ∈ I(S)∧Y ⇒+
E Z} ⊆ κ

thus
I(JAxis:: nodeKt (S))⊆ Dn(AE(τ,Axis)∩κ)

which proves Property 1. The case for the “parent” axis is a particular
instance of “ancestor”. As for Property 2,κ is the set of rules used to
derive the context node typeτ. AE(κ ,Axis) is the set of all the parent rules
(or ancestor rules) of the rules inκ . Consequently, the intersection is still a
well formed context.

(test) : Similarly to the case of Rule(down-axis), Property 1 is a direct applica-
tion of Lemma 5.2. For Property 2, we can remark that

κ ′ = κ ∩AE(TE(τ,Test),ancestor)

contains all the rules leading to a node inτ for which Test succeeds (includ-
ing the ones of the selected node), therefore it is a well-formed context.

Inductive case:

(predicate) : Let us consider:

Jself ::node[ Or j Andk Pjk ]Kt (S)

By Definition 4.4, we have

Jself ::node[ Or j Andk Pjk ]Kt(S) =
⋃

i∈T

i
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where T is the set of ids satisfying the predicate:

T = {i|i ∈ S∧
∨

j

∧

k

JPjkKt({i}) 6=∅}

Let us consideri ∈ T. We have thati ∈ S, and sincei is part of anI-valid
tree t, there exists Xi = I(i) and an associated rule Xi → Ri . We apply the
induction hypothesis on:

({Xi → Ri},Σctx) ⊢E Pjk : Σi jk

therefore we have
I(JPjkKt({i}))⊆ Σi jk

typ

Consequently,Σi jk
typ is not empty: Xi → Ri ∈ τ ′ (the output type). So

I(Jself ::node[ Or j Andk Pjk ]Kt (S))⊆ Dn(τ ′)

which proves Property 1. Property 2 holds for the same argument as in rule
(test).

(sequence): Property 1 is true by induction hypothesis on both premises. Prop-
erty 2 is true for the first premise, by induction hypothesis.In particular,Σ′′

ctx

is a well-formed context. We can then apply the induction hypothesis onΣ′′

and we have thatΣ′
ctx is a well-formed context too.

(union) : is similar to the previous case.

�

LEMMA (WITNESS OF A GRAMMAR(5.8)) Let(S ,E) be a non-recursive,∗-guarded,
parent-unambiguous local tree grammar. There exists a document t,I-valid with respect
to (S ,E) such that:

∀X ∈ Dn(E),∃i ∈ Ids(t) such thatI(i) = X

we call such a document awitnessof the schema(S ,E).

Proof 13 Since the tree grammar is non recursive and parent unambiguous, we can
prove the lemma by induction (I) on the height of the grammar, seen as a DAG.

Basic case:the grammar has height 1. It consists therefore of a single rule. The rule is
either X→ String and a document si is a suitable witness; or the rule is X→ a[ ]
for some label a and the document ai [ ] is a witness of the grammar.

Inductive case: Consider({X},E). The rule for the start symbol X is X→ a[r1 · · · rn]
for some label a (since E is∗-guarded, the rule must have this shape). We show
by induction (II) on the structure of the regular expression ri that there is witness
for this regular expression.

Basic case:Either ri = ε, and therefore the empty forest() is a suitable wit-
ness. Or ri = Z. Then consider the grammar({Z},E′) where E′ = {Y →
R |Y →R∈E,Z ⇒∗

E Y}, that is the restriction of E to Z. Then, height(E′)<
height(E) since at least the rule associated with X is not in E′ (and because
E is not recursive and parent unambiguous). Therefore, by induction hypo-
thesis (I) there exists a witness tz for Z.
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Inductive case: Either ri = (r ′i |r
′′
i )∗ and by induction hypothesis (II), there is a

witness t′i for r ′i and t′′i for r ′′i . Then, the forest t′i , t
′′
i is a witness for ri (the

first iteration of∗ matches ti and the second one matches t′′
i ).

Or r i = (r ′i)∗ and r′i is not a union. Then by induction hypothesis (II), there
is a witness t′i and t′i is also a witness for ri . Or ri = r ′i r

′′
i . By induction

hypothesis (II), there is a witness t′i for r ′i and t′′i for r ′′i . Then, the forest t′i , t
′′
i

is a witness for ri .

Therefore, for each ri there is a witness ti . Then the tree a[t1 . . . tn] is a witness of
the rule X→ a[r1 . . . rn].

�

COROLLARY (5.9) Let ({X},E) be a non-recursive,∗-guarded, parent-unambiguous
local tree grammar and t be its witness. Let{Y1 . . . ,Yn} ⊆ Dn(E). If Y1 ⇒E . . .⇒E Yn, then
there exists{i1, . . . , in} ⊆ Ids(t) such that

∀i ∈ {2. . .n},((i i−1, i i) ∈ E (t))∧I(idi−1) =Yi−1∧I(i i) =Yi

Proof 14 This is a direct application of Lemma 5.8. We know that for allY ∈
Dn(E),∃i ∈ Ids(t)such thatI(i) = Y. This is true in particular for{Y1, . . . ,Yn}. Con-
sider Yi and Yi+1. We have Yi ⇒E Yi+1 which means that in E, there is a rule Yi → a[r i ]
for some label a and with Yi+1 ∈ r i . Consequently, t@i i = a[. . . , idi+1, . . .]. Therefore,
(i i , i i+1) ∈ E (t). �

THEOREM(COMPLETENESS OF TYPE INFERENCE(5.10)) Let(S ,E) be a∗-guarded
non-recursive and parent unambiguous local tree grammar, and P a path. Let

E0 = {X → R | X → R∈ E, X ∈ S }.

If (E0,E0) ⊢E P : (τ,κ) then:

Dn(τ) ⊆
⋃

t∈IE

I(JPKt (RootId(t)))

Proof 15 Like for the proof of Theorem 5.6, we consider the following,more general
judgment:

(τ,κ) ⊢E P : (τ ′,κ ′)

let t be the witness of E. We show that ifDn(τ) ⊆ I(S) then,Dn(τ ′) ⊆ I(JPKt (S)). If
this holds for the witness t then it holds for the union of all treesI-valid w.r.t to E (which
contains t). Informally, this means that if the typeτ “describes precisely” the nodes in
S, that is, if there are no unneeded rules inτ, then the typeτ ′ describes exactly the result
of the query: for each rule inτ ′, there is a node in the result of the query typed by that
rule. We proceed by induction on the depth of the typing derivation:
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Basic case:

(down-axis): self axis: We supposedDn(τ) ⊆ I(S). We haveτ ′ = AE(τ,self) = τ.
We also have:

Jself ::nodeKt(S) = S

by Definition 4.1. Therefore,Dn(τ ′)⊆ I(S) and so

Dn(τ ′)⊆ I(Jself ::nodeKt (S))

descendant axis: Let us consider names, X∈ Dn(τ) and Y ∈
AE({X},descendant).By Definition 5.1, we have that X⇒∗

E Y. By using
Corollary 5.9, we have that there exists a sequence:i1, . . . , in in t such that
X = I(i1) and Y= I(in). We also have that

∀i ∈ {1. . .n−1}, (i i , i i+1) ∈ E (t))

thus(i1, in) ∈ E +(t) and therefore that

in ∈ Jdescendant ::nodeKt({i1})

Subsequently:

AE({X},descendant)⊆ I(Jdescendant ::nodeKt ({i1}))

child axis: is a particular instance of the previous case.

(up-axis) We only treat the case of theancestor axis, of which theparent axis is
a particular instance. This case is the symmetric of thedescendant axis. Let
X ∈ Dn(τ). Let Y∈ AE({X},ancestor)∩ κ . By Definition 5.1, we have that
Y ⇒∗

E X (and becauseκ is a well-formed context). By using Corollary 5.9, we
have that there exists a sequence:i1, . . . , in in t such that Y= I(i1) and X= I(in).
We also have

∀i ∈ {1. . .n−1},(ii , i i+1) ∈ E (t))

thus(i1, in) ∈ E +(t) and therefore

in ∈ Jancestor ::nodeKt({i1})

Thus, we have

AE({X},ancestor)⊆ I(Jancestor ::nodeKt ({in}))

We must also show that if Y∈ κ then
Y ∈ I(Jancestor ::nodeKt({in}))
(because the output type is intersected with the context forthis rule). This is an
immediate consequence of the well-formedness of contexts.κ is well-formed only
if κ ∈ τ ∪AE(τ,ancestor).

(test): is similar to the caseself of Rule(down-axis).

Inductive case:

(predicate) Suppose Xi ∈ Dn(τ) (there is a unique rule with Xi as left hand side, since
we consider a local tree grammar). We consider the premise:

({Xi → Ri},κ) ⊢E Pjk : Σi jk
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Let us consider a set Si ⊆ S. By induction hypothesis, if{Xi} ⊆ I(Si) thenΣi jk
typ ⊆

I(JPjkKt (Si)). There are two cases.

Either
⋃

j
⋂

k Σi jk
typ =∅. Then, Xi /∈ Dn(τ ′) (the output type). But if this is the case,

because the type-system is sound (cf. Theorem 5.6), then:
∀i i such thatI(i i) = Xi , JPjkKt ({ii}) =∅ and therefore

Σi jk
typ = JPjkKt({i i}) =∅

Or
⋃

j
⋂

k Σi jk
typ 6=∅ and sinceΣi jk

typ ⊆ I(JPjkKt (Si)), this means thatJPjkKt(Si) 6=∅

and therefore that
Si ⊆ Jself ::node[Cond]Kt(S)

Since Xi ∈ I(Si), Xi ∈ I(Jself ::node[Cond]Kt(S)). Lastly, we remark that for
each Xi the set Si is not empty. This is a consequence of Lemma 5.8, for each name
Xi , there is a nodei i in the witness.

(sequence): By applying straightforwardly the induction hypothesis on the premises.

(union) : By applying straightforwardly the induction hypothesis on the premises.

�

LEMMA (TERMINATION OF TYPE-PROJECTOR INFERENCE(5.12)) Let (S ,E) be a
type, P a path, andΣ and Σ′ environments. The judgmentΣ 
E P : Σ′ has a unique and
finite derivation.

Proof 16 The uniqueness of the derivation follows from the fact that all the rules are
mutually exclusive (although not strictly syntax directed) thanks to their side conditions.

To prove termination, we need some more care than for the typeinference algorithm.
For the judgment:

Σ 
E P : Σ′

we give it as weight the triple(l(P), r(P), |Σtyp|) ordered lexicographically, where:

l(P) is the length of the path P, as defined previously

r(P) is the number of occurrences of a recursive step, that is the number of occurrences
of descendant ::node or ancestor ::node in the P

|Σtyp| is the number of rules in the input

The proof is straightforward and consists that for every rule the weight strictly decreases
in the premises:

Basic case:the base of induction is an application of(p-step) or (p-erase) does not have
any premises.

Inductive case: For the rules(p-union), (p-test) and (p-predicate), the weight strictly
decreases in l(P) in the premises. For the rule(p-iterate), |Σtyp| strictly decreases
in the premises, since in the conclusion the weight has at least two for this compon-
ent and exactly one in each of the premises. Also, P is unchanged in the premises
therefore l(P) and r(P) do not increase. For the rule(p-many), the l(P) part is un-
changed in the premises since l(descendant ::node/P) = l(child ::node/P) =
1+ l(P) and r(P) decreases strictly.

�
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LEMMA (WELL-FORMEDNESS OF TYPE-PROJECTOR INFERENCE(5.13)) Let(S ,E)
be a type,τ, τ ′, andκ sets of rules, and P a path. If(τ,κ) 
E P : τ ′, then(τ,κ) ⊢E P :
(τ ′′,κ ′′) impliesκ ′′ ⊆ τ ′.

Proof 17 We use a structural induction on the derivation of(τ,κ) 
E P : τ ′ which is
finite by Lemma 5.12.

Basic case:The property is trivially true for the rule(p-step) since the result is the union
of the output type and its associated context.

Rule (p-erase) can only be applied if the side conditions of the other rules fail,
which means in the case where the judgment(τ,κ) ⊢E P : (τ ′′,κ ′′) does not hold.
Therefore the lemma is true too in that case.

Inductive case:

(p-union) We suppose(τ,κ)⊢E P1 P2 : (τ ′′,κ ′′). This means that the typing rule(union)
(cf. Figure 1) holds and that:

(τ,κ) ⊢E P1 : (τ ′′1 ,κ
′′
1 )

and
(τ,κ) ⊢E P2 : (τ ′2,κ

′′
2 )

let P1 produce a type-projectorτ ′1 and P2 produceτ ′2; by induction hypothesis
κ ′′

1 ⊆ τ ′1 andκ ′′
2 ⊆ τ ′2. But sinceκ ′′ = κ ′′

1 ∪κ ′′
2 , we haveκ ′′ ⊆ τ ′1∪ τ ′2 = τ ′

(p-iterate) similar to the previous case.

(p-test) we suppose
({Y → R},κ) ⊢E self ::Test/P : (τ ′′,κ ′′)

According to the(test) typing rule, this means that:

({Y → R},κ) ⊢E self ::Test: (τ1,κ1)

and
(τ1,κ1) ⊢E P : (τ ′′,κ ′′)

the induction hypothesis can be applied on the second premise of the rule(p-test)
and we have(τ1,κ1) 
E P : τ ′ with κ ′′ ⊆ τ ′. Sinceτ ′ ⊆ {Y → R}∪ τ ′, we have
κ ′′ ⊆ {Y → R}∪ τ ′ which proves this case.

(p-predicate) similar to the previous case, we can observe that the contextresulting of
the typing of the first step is passed as argument for the inference of the projector
of the remainder of the path.

(p-single) similar to the previous case.

(p-many) we only treat the case for Axis= descendant, the case forancestor being
similar. We suppose:

({Y → R},κ) ⊢E descendant ::node/P : (τ0,κ0) (*)

and we want to show thatκ0 ⊆ {Y → R}∪ τ ′∪ τ ′′. Let us write:

({Y → R},κ) ⊢E descendant ::node : (τ1,κ1) (1)
({Y → R}∪ τ1,κ) ⊢E child ::node : (τ2,κ2) (2)
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thenτ1 = τ2 an κ1 = κ2. Indeed:

(1)
{

τ1 = AE({Y → R},descendant)
κ1 = τ1∪κ

(2)
{

τ2 = AE({Y → R}∪ τ1,child)
κ2 = τ2∪κ

by definition ofA_(_,_):

(1)
{

τ1 = {Y′ → R′ | Y ⇒+
E Y′}

κ1 = τ1∪κ

(2)







τ2 =
⋃

{Y′′ → R′′ | Y′ ⇒E Y′′

{Y′→R′ | Y⇒+
EY′}∪{Y→R}

}

κ2 = τ2∪κ

by transitivity of⇒E, (2) becomes:

τ2 =
⋃

{Y′′ → R′′ |
{Y′→R′ | Y⇒∗

EY′}

Y′ ⇒E Y′′}

τ2 = {Y′ → R′ | Y ⇒+
E Y′}= τ1

κ2 = τ2∪κ = τ1∪κ = κ1

therefore, for the path P

({Y → R}∪ τ1,κ) ⊢E child ::node/P : (τ0,κ0)

by application of the(sequence) typing rule. We can finally remark that

(({Y → R}∪ τ1)∩ τ ′,κ) ⊢E child ::node/P : (τ0,κ0)

all the rules insτ1 \ τ ′ yield an empty projector. Therefore

(τ ′,κ) ⊢E child ::node/P : (τ0,κ0)

which allows us to apply the induction hypothesis on the third premise of(p-
many), which gives usκ0 ⊆ τ ′′, and therefore:κ0 ⊆ {Y → R}∪ τ ′∪ τ ′′

�

THEOREM (SOUNDNESS OF TYPE-PROJECTOR INFERENCE(5.14)) Let (S ,E) be a
type and P an XPathℓ query. Let S be the set of rules: S= {X → R | X ∈ S }. If

(S,S)
E P : τ

thenτ is a type-projector for(S ,E) and for every t∈I (S ,E) we have:

JPKt\Iτ(RootId(t)) = JPKt(RootId(t))

Proof 18 By simple structural induction on the path. �
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THEOREM (COMPLETENESS OF PROJECTOR INFERENCE(5.16)) Let (S ,E) be a
∗-guarded, non-recursive, and parent-unambiguous local tree grammar, and P a strongly-
specified XPathℓ path. Let S be the set of rules: S= {X → R | X ∈ S }. If

(S,S)
E P : τ

then there exists t∈I (S ,E) such that for each Y→ R∈ τ, if π = τ \ ({Y → R}∪
AE({Y → R},descendant)), then:

JPKt\Iπ (RootId(t)) 6= JPKt (RootId(t))

Proof 19 By induction on the length of the typing derivation which is finite. We use The-
orem 5.10 to show that if we remove a name Y inferred by the typeinference algorithm,
then we remove nodes from the result of the query applied to the projected document.
The fact that P is strongly specified is used for the treatmentof predicates. Indeed, it
forces any path in a predicate to be matched exactly by one node. If a path in a predicate
could be matched by two (or more) nodes, then removing one of the nodes would not
change the semantics of the query, since there would still bea node present to make the
predicate succeed. We illustrate this in the example hereafter. �

B Text of the XMark and XPathMark queries
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Base and induction

Σ ⊢E Step: (τ,κ)
(p-step) if τ 6=∅

Σ 
E Step: τ ∪κ
Σ 
E P1 : τ1 Σ 
E P2 : τ2(p-union)

Σ 
E P1 P2 : τ1∪ τ2

(p-erase) if no other rule applies
Σ 
E P : ∅

({X1 → R1},κ) 
E P : τ1 . . . ({Xn → Rn},κ) 
E P : τn
(p-iterate) if n≥ 2

({X1 → R1, . . . ,Xn → R1} , κ)
E P :
⋃

i=1..n

τi

Path Rules

({Y → R},κ) ⊢E self ::Test: Σ Σ 
E P : τ
(p-test) if Σtyp 6=∅

({Y → R},κ) 
E self ::Test/P : {Y → R}∪ τ

({Y → R},κ) ⊢E self ::node[Or
i
And

j
Pi j ] : Σ

Σ 
E P : τ
Σ 
E Pi j : τi j if Σtyp 6=∅

(p-predicate)
({Y → R},κ)
E self ::node[Or

i
And

j
Pi j ]/P : {Y → R}∪ τ ∪

⋃

i

⋃

j

τi j

({Y → R},κ) ⊢E Axis:: node : (τ,κ ′)
(p-single)

(for i = 1..n) ({Xi → Ri},κ ′) ⊢E P : Σi (τ ′,κ ′) 
E P : τ ′′
(*)

({Y → R},κ)
E Axis:: node/P : {Y → R}∪ τ ′ ∪ τ ′′

(*) whereAxis∈ {parent,child}, τ = {X1 → R1, . . . ,Xn → Rn},
τ ′ = {Xi → Ri | i = 1..n, Σi

typ 6=∅}, τ 6=∅, andτ ′ 6=∅

({Y → R},κ) ⊢E Axis:: node : (τ,κ ′)
(p-many)

(for i = 1..n) ({Xi → Ri},κ ′) ⊢E Axis:: node/P : Σi (τ ′,κ ′) 
E s(Axis) :: node/P : τ ′′
(**)

({Y → R},κ)
E Axis:: node/P : {Y → R}∪ τ ′ ∪ τ ′′

(**) where Axis∈ {ancestor,descendant},
τ = {X1 → R1, . . . ,Xn → Rn}, τ ′ = {Y → R}∪ {Xi → Ri | i =
1..n, Σi

typ 6=∅},τ 6=∅, τ ′ 6=∅, s(descendant) = child, and
s(ancestor) = parent.

Figure 2: Inference rules for type-projectors
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F(count(Q)) = P(Q)
F(last(Q)) = P(Q)
F(position(Q)) = P(Q)
F(string(Q)) = P(Q)/descendant-or-self :: node[text()]
F(number(Q)) = P(Q)/descendant-or-self :: node[text()]
F(not(Q)) = P(Q)
F(true()) = {self ::node}
F(false()) = {self ::node[self ::a and self ::b]}
F( f (v1, . . . ,vn)) = {self ::node} wherevi is a value

Figure 3: Approximation of XPath functions

1. E((),Γ,m) = ∅

2. E(v,Γ,m) = ∅

3. E((q1,q2),Γ,m) = E(q1,Γ,m)∪E(q2,Γ,m)
4. E(<tag>q</tag>,Γ,m) = E(q,Γ,m)
5. E(x,Γ,1) =

⋃

(x;P)∈Γ
{P/descendant-or-self :: node}

6. E(x,Γ,0) =
⋃

(x; P)∈Γ
{P}

7. E(Path,Γ,1) = {Path/descendant-or-self :: node}
8. E(Path,Γ,0) = {Path}
9. E(FLOWR/P,Γ,m) = E(FLOWR,Γ,m)/E(P,Γ,m)
10. E(Step/P,Γ,m) = Step/E(P,Γ,m)
11. E(Step[Cond]/P,Γ,m) = (

⋃

q∈E’ (Cond,Γ,m)

Step[q]) /E(P,Γ,m)

12. E(if q then q1 else q2,Γ,m) = E(q,Γ,0)∪E(q1,Γ,m)∪E(q2,Γ,m)
13. E(let $x := q1 return q2,Γ,m) = E(q2,Γ∪Γ′,m)

whereΓ′ = {(x;P) | P∈ E(q1,Γ,0)}

14. E(for $x in q1 return q2,Γ,m) = E(q1,Γ,0)∪E(q2,Γ∪Γ′,m)
whereΓ′ = {(x;P) | P∈ E(q1,Γ,0)}

1′. E’ (Cond1 op Cond2,Γ,m) =
⋃

q∈E’ (Cond1,Γ,m)

⋃

q′∈E’ (Cond2,Γ,m)

{q op q′}

whereop∈ {and, or}

2′. E’ (Expr1 cmp Expr2,Γ,m) =
⋃

q∈E’ (Expr1,Γ,m)

⋃

q′∈E’ (Expr2,Γ,m)

{q cmp q′}

wherecmp∈ {=,!=,<,>,>=,<=}

3′. E’ (Arith1 op Arith2,Γ,m) =
⋃

q∈E’ (Arith1,Γ,m)

⋃

q′∈E’ (Arith2,Γ,m)

{q op q′}

whereop∈ {+,-,*,div,mod}

4′. E’ ( f (Expr1, . . . , Exprn ),Γ,m) =
⋃

q1∈E’ (Expr1,Γ,M( f ,1))

. . .
⋃

qn∈E’ (Exprn,Γ,M( f ,n))

{ f (q1, . . . ,qn)}

5′. E’ (Atom,Γ,m) = E(Atom,Γ,m) Atom6= f (q1, . . . ,qn)

Figure 4: XQuery path extraction
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M(count,1) = 0
M(last,1) = 0
M(position,1) = 0

M(string,1) = 1
M(number,1) = 1
M(not,1) = 0

Figure 5: Value of the parameterm for various built-in XPath functions
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A 1 A 6 B 1 B 2 C 3 C 4 D 1 D 2 E 5 E 7 M 3 M 6 M 7 M 14 M 15
(i) 3363 3363 3363 3363 3363 3363 3363 3363 3363 2242 3363 3363 3363 2242 3363
(ii) 447 67.6 50.5 571 68.3 137 65.5 297.25 60.8 605 92.8 9 121 605 67.6

(iii) 10 9 3 113 9 23 13 59 12 190 18 2 24 190 65
(iv) 20 17 22 2.9 17 5.8 12.1 5.6 12.3 2.1 9 15.8 14.3 2.19 7.5
(v) 3.7 5.5 2.2 22.2 3.7 8 5.4 9.7 7.44 22 9 1.8 4.9 29 15.2

(i): Largest queryable document (MB). We stopped our testing at3363 MB
(ii) : Pruned size (MB)
(iii) : Pruned size for 671 MB (MB)
(iv): Speed up (× faster)
(v): Memory use in % of original
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Figure 7: Experimental results for the Saxon-b/XQuery engine

A1 A6 B1 B2 C3 C4 D1 D2 E5 E7 M3 M6 M7 M14 M15
(i) 675 119 95 843 117 232 93 443 116 1073138 14 111 1073 436
(ii) 0.5 0.5 0.3 24.8 0.5 45.4 10.0100.0 - 59 1.1 84.750.8 54.0 94.0
(iii) 6.8 10.5 8.5 3.3 18.1 2.1 21.6 1.0 - 1.7 5.0 2.8 1.7 2.06 1.0

(i): Size of the index (MB)
(ii) : Amount of I/O (% of the original)
(iii) : Speed up (× faster)
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Figure 8: Experimental results for the MonetDB engine
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A 1 /site/closed_auctions/closed_auction/annotation/description/text/keyword

A 6 /site/people/person[profile/gender and profile/age]/name

B 1 /site/regions/*/item[parent::namerica or parent::samerica]/name

B 2 //keyword/ancestor::listitem/text/keyword

C 3 /site/people/person[profile/@income =

/site/open_auctions/open_auction/current]/name

C 4 /site/people/person[watches/watch/id(@open_auction)/seller/@person = @id]/name

D 1 /site/open_auctions/open_auction[(count(bidder) mod 2) = 0]/interval

D 2 count(//text) + count(//bold) + count(//emph) + count(//keyword)

E 5 /site/regions/*/item[preceding::item[100] and following::item[100]]/name

E 7 /site/regions/*/item[contains(substring-before(description,’eros’),’passion’)

and contains(substring-after(description, ’eros’), ’dangerous’)]/name

M 3 for $b in $doc/site/open_auctions/open_auction

where zero-or-one($b/bidder[1]/increase/text()) * 2

<= $b/bidder[last()]/increase/text()

return

<increase

first="$b/bidder[1]/increase/text()"

last="$b/bidder[last()]/increase/text()"/>

M 6 for $b in $doc//site/regions return count($b//item)

M 7 for $p in $doc/site

return

count($p//description) + count($p//annotation) + count($p//emailaddress)

M 14for $i in $doc/site//item

where contains(string(exactly-one($i/description)), "gold")

return $i/name/text()

M 15for $a in

$doc/site/closed_auctions/closed_auction/annotation/description/parlist/

listitem/parlist/listitem/text/emph/keyword/text()

return <text>$a</text>

Figure 9: XPathMark (A-E) and XMark (M) queries
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