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XML data projection (or pruning) is a natural optimizatiocor fmain
memory query engines: given a quépyover a documenb, the sub-
trees ofD that are not necessary to evalu@are pruned, thus produ-
cing a smaller documei’; the queryQ is then executed ob’, hence
avoiding to allocate and process nodes that will never behehbyQ.
In this article, we propose a new approach, based on typatsgthatly
improves current solutions. Besides providing comparablgreater
precision and far lesser pruning overhead, our solution like@iourrent
approaches— takes into account backward axes, predieatksan be
applied to multiple queries rather than just to single ofeside con-
tribution is a new type system for XPath able to handle baciwaes.
The soundness of our approach is formally proved. Furthesmee
prove that the approach is also complete (i.e., yields tis¢ jpessible
type-driven pruning) for a relevant class of queries ande8ws. We
further validate our approach using the XMark and XPathMzekch-
marks and show that pruning not only improves the main memuoeyy
engine’s performances (as expected) but also those of citdbe art
native XML databases.

1 Introduction
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Main-memory XML query engines are often the primary choaregpplications that do not
wish or cannot afford to build secondary storage indexesad b database before query
processing. One of the main optimisation techniques rgcedbpted in this context is
XML data projection (or pruning)[27,13].

The basic idea behind document projection is very simple@owerful at the same
time. Given a query over a documeriD, sub-trees oD that are not necessary to evaluate
Q are pruned, thus yielding a smaller documBht ThenQ is executed oved’, hence
avoiding to allocate and process nodes that will never beheshby navigational specifica-
tions inQ. This ensures that evaluation o\&ris equivalent to and more efficient than the
evaluation oveD.

As shown in[[27[ 18], XML navigation specifications exprabsge queries tend to be
very selective, especially in terms of document structurkerefore, pruning may yield
significant improvements both in terms of execution time Bnkrms of memory usage:
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as a matter of facts, for main-memory XML query engines, Varge documents can not
be queried without pruning.

1.1 State of the art

Marian and Siméon[27] propose that the actual data-neeais ¥Query quen@ (that is,
the part of data that is necessary to the execution of theyjjissdetermined by statically
extracting all paths ilQ. These paths are then appliedQaat load time, in a SAX-event
based fashion, in order to prune unneeded parts of data.ethaitue is powerful since:
(i) it applies to most of XQuergore, (ii ) it can be applied to a set of queries over the same
document, andiii ) it does not require ang priori knowledge of the structure &. How-
ever, this technique suffers some limitations. First, theutnent loader-pruner can manage
neitherbackward axesor path expressions with predicates (sometimes callealifeprs”)
which, especially the latter, can contain precious infdiometo optimise pruning. Second,
the advantage described in pofiit) becomes a big drawback whep/” occur in paths
since, in that case, the technique does not behave efficiertitrms of loading time and
pruning precision (hence, memory allocation). Indeed,wag/ is present in a projec-
tion path, the pruning process requires to visit all desaatglof a node in order to decide
whether the node contains a useful descendant. What is wsdtsit pruning time tends
to be quite high and it drastically increases (together widmory consumption) when the
number of// augments in the pruning path-set. As a matter of fact, intéabknique, prun-
ing corresponds to computing a further query whose time aadchony occupation may
be comparable to those required to compute the originalyqueparticular, in this tech-
nigue every occurrence g/ may yield a full exploration of the tree (e.g., seelinl[27] the
test for the XMark|[[32] query Q7 which only contains thréé steps and for which just
computing the pruning takes longer than executing the qaerthe original document).
Therefore, pruning execution overhead and its high memaoypfint may jeopardise the
gains obtained by using the pruned document. Third andyiraslwe explain in Sectidn 7,
the precision of pruning drastically degrades (down to ¢peinllified) for queries contain-
ing the XPath expressior®scendant ::node cond], which are very useful and used in
practice.

Bressaret al.[13] introduce a different and quite precise XML pruningheijue for a
subset of XQuery FLWR expressions. The technique is baséukanpriori knowledge of
a data-guide fob. The documenb is first matched against an abstract representation of
Q. Pruning is then performed at run time, it is very precisel, dimanks to the use of some
indexes over the data-guide, it ensures good improvemaerterins of query execution
time. However, the technique is one-query oriented—in #mss that it cannot be applied
to multiple queries—, it does not handle XPath predicatad, @annot handle backward
axes (recall that the encodings bf [31] are defined for XPail,no extension to XQuery-
like languages is known). Also, the approach requires tinstcoction and management of
the data-guide and of adequate indexes.

Motivated by efficient XML stream processing, Grestral. [23] introduced a frame-
work for discarding sequences of SAX events in an XML dataastr. Although their
approach allows them to prune an input stream with respesgttoof queries, the language
they handle is restricted to forward linear XPath expressighat is, XPath expressions
with only child anddescendant axes and without predicates).

1.2  Our contribution

In this article, we present a new pruning approach that isiGdge in the presence of
typed XML data. This is often the case, as most applicatieqsire that data are valid
with respect to some external schema (e.g.p[L9] or XML Schemal[37]).

Our technique combines the advantages of the previouslyiomen works while re-
laxing their limitations. Unlike[[2[7, 13, 23], our approaatcounts for backward axes, per-



forms a fine-grained analysis of predicates, allows (urfiid) for dealing with bunches
of queries, and (unlike [27]) cannot be jeopardised by prgroverhead. Our solution
provides in all cases comparable or greater precision thamther approaches, while it
requires always negligible or no pruning overhead. Moreosentrary to [27[113], our
approach is formally proved to lund(i.e., pruning does not alter the result of queries)
and, furthermore, we can also prove it to cmmplete(i.e., it produces the best possible
type-driven pruning) for a substantial class of querieszmnols.

For the sake of presentation we introduce our framework ieetsteps. In the first
step, we consider a simplified version of XPath, we dub XRathich includes only up-
ward/downward axes and unnested disjunctive predicatesdafine for XPatha static
analysis that determines a set of type namégpa projector that is then used to prune the
document(s). One of the particular features of this apgréathat our pruning algorithm is
characterised by a constant (and low) memory consumptidibgan execution time linear
in the size of the document to prune. More precisely, a pgbEsed on type projectors
is equivalent to a single buffer-less one-pass traversti®parsed document (it simply
discards elements not generated by any of the names in tieefmg. So if embedded in
guery processors, pruning can be executed during parsoifgravalidation and brings no
overhead at all, while if used as an external tool it requéréisne always smaller than or
equal to the time used to parse the queried document. Sossdnd (partial) completeness
results for the static analysis are stated.

The second step consists of extending the analysis to thiewiath (more precisely,
to XPath 1.0), that is, we need to show how to deal with missixes and with general
predicates as defined in the XPath specification. This is Bgrassociating to each XPath
queryQ a XPath queryP that soundly approximate, in the sense that the projector
inferred forP by the static analysis developed at the first step is also ladsprojector for

The final step of our process is to extend the approach to ¥Q@bence, to XPath 2.0).
This is obtained in the same way as doné€_in [27], by definingtla @etraction algorithm.
Our path extraction algorithm improves and extends in saspects (in particular, in
terms of extracted paths’ selectivity) the one[ofI[27]. Batomputes the XPdtlapprox-
imation of the extracted paths so that the static analysthefirst step can be directly
applied to them.

We prove some important closure properties that guarahtgetytpe projections can
always be performed at load time during the validation psscand this without any over-
head. In particular for XML documents typed withrDs or XML Schemas the document
can be pruned in streaming.

We gauged and validated our approach by testing it both oXfreghMark [21] and on
the XMark [32] benchmarks. The result of this validation fioned what was expected:
thanks to the handling of backward axes and of predicateprésion of our pruning is
in general noticeably higher than that of current approsctiee pruning time is linear in
the size of the queried document and has a very low memoryfiotit the time of the
static analysis is always negligible (lower than half a selcon the hardware we used for
our benchmarks described in Sectidn 9) even for complexiemiand Drbs. But bench-
marks also brought unexpected (and quite pleasant) resufarticular, they showed that
type-based pruning brings benefits that go beyond thosesaftiiuced size of the pruned
document: by excluding a whole set of data structures (tidgese type names are not
included in the type projector), the pruning may drasticedduce the resources that must
be allocated at run-time by the query processor. For instamer benchmarks show that
for several XMark and XPathMark queries our pruning yieldsogaument whose size is
two thirds of the size of the original document, but the quEag then be processed using
three times less memory than when processed on the origioahtent. This is a very im-
portant gain, especially for DOM-based processors, or nigisensitive processors. Not
only our approach is relevant in the case of main memory geegjnes such as Saxon but
it is also shown to be useful for native query engines as efft@as MonetDB[12]. Even in



the latter case our experiments demonstrate the relevdrigpeoprojection as a comple-
mentary optimisation technique. Indeed, this not totaligpsising as type projection can
be thought of as a way of defining clustering policies in theaséine as what was done in
the context of object-oriented databas$e$ 8] 4, 7]. Cliusjeand indexing are well-known
complementary tools used in the context of query optintisati

As an aside we want to stress that our technique relies onetfigitcbn of a new type
system for XPath able to handle backward axes which, aloniésomwn, constitutes a
contribution of this work. In particular the precision opty inference for backward axes
goes beyond what is proposed in the XQuery Static Semamticrramendation ([18]).

Finally, we presented a preliminary version of this work fs ¥/LDB 2006 confer-
ence [5]. The work in this article, besides including fulbpfs and having been cleaned
up, improves and extends the work fin [5] in several imporgspects. First and foremost
we generalized the definition of type projectors by using ragegptors sets of production
rules (as opposed to the sets of non-terminals used in [Si¢gdlar tree grammars (as
opposed to the Dbs used in[[5]). This generalization was far from being stufiy-
ward. In particular, we had to prove the applicability of éechnique to the more general
framework under consideration (cf. Section]3.2). Howeter rtesult is worth the effort
since the advantages of this generalization are twofoldth®@ne hand using regular tree
grammars allows us to compute type projectors for every &indVIL schema formalism
we are aware of as, for instanceTDs, XMLSchemas{CDuce and XDuce types, Relax-
Core and TREX schemas. On the other hand, inferring gramnagiuption rules rather
than grammar non-terminals allows us to compute contestr@and, thus, more precise
projectors. More precisely, the new type projectors inticetl in this work can prune a
subtree not only based on its tag (as it was donlelin [5]), Isat@h any structural condition
expressible by a regular tree language. So for instance rowing process may decide
to prune just one of two trees generated by the same nonrtakniecause they appear
in different contexts (in[[5] either both trees were prunedhey were both preserved).
Therefore these new projectors are both more general angecéorm much finer-grained
pruning. Second, although we develop the theory of typesgtimjn for a simplified data-
model and restricted forms of XPath expressions, we thdrigjwdgtail how to tackle many
of the peculiarities of the XML and XPath specifications| [38], including the handling of
attributes, the presence of absolute axes in XPath predicata wide range of predefined
XPath functions (all absent inl[5]). The path language wenfdty study extends the one
in [5] with top-level unions of paths, predicate conjunod“and”) and arbitrarily nested
predicates (our previous work formally treated only nostad predicates and resorted to
an approximation in the case of nested predicates). Thiedynevide an extensive list of
experiments showing the overall benefits of type projediom wide range of queries and
guery engines. These experiments supersede the earlyrbariarealised i [5] and show
that despite the advances in XML query technologies in theneyears, our static analysis
can significantly improve the performances (both in time axm@mory consumption) of
many different XML query engines.

1.3 Plan of the article

The article is organised as follows. Sectidn 2 introducesdbdefinitions and notations:
data model, types, validation. Sectidn 3 presents typeptois, type-based projection, and
several theoretical (closure) properties. In Sedilon 4 afind XPath and its semantics,
and formally describe how general XPath predicates can lneddp approximated in it. In
Sectiori b we present our type projectors inference alguoritt XPatH and state its formal
properties. In Sectidd 6 we extend our approach to full XRaithin Sectiofl7 to XQuery.
In Sectior8 we discuss how to apply our technique to othentypolicies as well as to
un-typed documents. Sectibh 9 presents our implementatidireports the results of our
benchmarks. We finally conclude in Sectior 10 by presentiagerspectives of this work.
Last, for the sake of clarity, all the proofs for the stateslites are given in AppendixIA.



2 Notations
2.1 Data Model

For the sake of concision and clarity we present our soliftioa simplified version of the
XQuery data model where we do not consider node attributeseMer, attributes are fully
supported in our implementation through a trivial encodh@rumented in Sectidd 6. An
instance of the XQuery data model can then be generated ligltb@ing grammar:

Definition 2.1 (Data model)

Tree t = s | |i[f]
Foret f == ()| f,f |t 0O

Essentially, an instance of the XQuery data model is an edlesequence of labelled
orderedtrees(ranged over byt). That is, an orderefbrest (ranged over byf), where
each node has a unigidentifier(ranged over by) and wherg) denotes the empty forest.
Tree nodes are labelled kjement tagéranged over by) while, without loss of generality,
we consider only leaves that are text nodes (that is, striagged over bg) or empty trees
(that is, elements that label the empty forest).

We define a complete partial orderon forests (and thus on trees) by relating a forest
with the forests obtained either by adding or by deletingergsts:

Definition 2.2 (Projection (x)) Given two forests f and’ fwe say that fis a projection
of f, noted as f= f, if f’ is obtained by replacing some subforests of f by the empagtior
In other terms= is the smallest pre-congruence on forests that contgins f for all .

We also define a notion of good formation, with respect to tat dnodel given in
Definition[2.3:

Definition 2.3 (Good formation) A forest iswell formedif every identifieri occurs in it
at most once. Given a well-formed forest f and an identifaacurring in it, we denote by
f @i the unique subtree t of f such thatts ort = Ij[f’]. The set of identifiers of a forest
f is then defined ads(f) = {i | 3t. f@i =t} O

Henceforth we will consider only well-formed forests anchfmund the notions of a node
with that of the identifier of the node.

Definition 2.4 (Root id) Lett be atree. If =5 or t =I;[f], we defindRootld(t) =i.

2.2 Types and validation

In this work, we present our approach for an abstract modsipes, namelyegular tree
grammars It is well known that regular tree grammars encompass miosteofeatures

of well established and standardized schema specificaticeisas DTDs, XMLSchemas,
RelaxNG definitions, XDuce an@Duce’s regular expression types. This is for instance
documented if [29], from where we borrow the definition ofuleg tree grammar:

Definition 2.5 (Regular tree grammar) A regular tree grammar is a paif.,E) where
. is a set of distinguished names (actually, non-terminabaweiriables) and E is a set of
productions rules of the forfiX; — Ry,..., Xy — Ry} such that:

1. each Ris either the terminal String—denoting string content—,tloe terminal
Any—denoting any tree—, of it | where | ranges over valid element names and
r is a regular expression on the non-terminal symbals X, X, that is:

RegExp r 1= ¢ (empty sequence)
| rr (sequence)
| rr (alternation)
[ rx (Kleene star)
[ X (non-terminal)



(henceforth, we usetr for r r+ and r? for €|r);
2. S C{Xy,...,%n} is the set of start symbols;

3. for any two production rules with the same left hand sidesX[r] and X — I'[r'],
we have £ I; O

The intuition is that a regular tree grammar describes (t.&ypes”) a set of trees of the
data-model. Notice that the left-hand sides of the ruleE ito not need to be pairwise
distinct. Indeed, production rules suchXs—+ Ry, X — R, are necessary if one wants to
encode complex schemas. Furthermore, given a regularriaesgar, it is always possible
to equivalently rewrite it so that condition 3 holds: if theare two rules — I[r] and
X; — |[r'] then they can be merged into a single rides> 1[r|r’].

Definition 2.6 (Names of a regular expression)Given a regular expression r we denote
by Names(r) the set of non-terminals occurring in it, namely:

Names(¢) = O

Names(rirp) = Names(r1) UNames(rz)
Names(r; | r2) = Names(r1) UNames(rz)
Names(r ) = Names(r)

Names(X) = (X} 0

By extension, given a s& = {Xp — Ry,...,Xn — R}, we define

Names(E) = | ] Names(R)

i€0..n

andDn(E) for the set of names definedih(thatis,{X; ... Xy }). While for all types.#,E)
we haveNames(E) = Dn(E), we handle incomplete sets of rules during the formalisatio
of the algorithms, whence the need for both notations. We sdy thatr is a regular
expression ovet.,E), if r is a regular expression over name®in(E). We will denote
by £(r) the language recognized by the regular expressiowe will useW, X,Y, Z to
range ovenames We use Greek letters to range over sets of rules(.AsE) represents
a regular tree grammar we shall ugéo stress that the set of rules isygpe projectorcf.
Definition[3.1] anck andT to stress that the set is used as a context or as a type, ligepect
[cf. Sectior[5.1]. Last, we shall u&to range over sets of (node) identifiers.

We illustrate the syntax of regular tree grammars with thiefdng example:

Example 2.7 (A regular tree grammar for the bibliography DTD) The well known bib-
liography DTD (taken from the XML Query use cases|[15]) cambigten as a regular tree
grammar({X},E), with unique start symbof and the following seE of rules:

X — Dbib[Book]
Book — book|[Title, (Author+ |Editor+), Publ
Title — title[String
Author — author([String
Editor — editor[String
Publ — publisher[String

This regular tree grammar “types” all XML documents (i.eeeis of the data model) that
are rooted in &ib element, that contains a possibly empty lisbobk elements, each one
containing a list starting with&it1e element containing a string, followed by a non-empty
homogeneous list formed either bythor elements oeditor elements, and ended by a
publisher element.

The concept of typing an XML document by a regular tree granmimiéormalized by
the notion ofvalidity defined as follows:



Definition 2.8 (Valid Trees) A tree t isvalid with respect to a typé¥,E), if there exists
a mapping (interpretationy from1ds(t) to Names(E) such that:

1. 3(Rootld(t)) € .7
2. foreachi in Ids(t), if t@i = 5 then eitherJ(i) — Anye E or 3(i) — Stringe E

3. for eachi in Ids(t), if t@i = li[ty, ...,ts], then either we hav@(i) — Anye€ E or we
haveJ(i) — I[r] € E andJ(Rootld(t1)),...,J(Rootld(ty)) € £(r).

In this case we say thatt {svalid with respect tq., E) and write te; (., E) to indicate
it. O

For instance the following tree (in which we omit the nodenitiféers)

bib[
book [
title["Divina Commedia"],
author ["Dante"],
publisher["Ludovico Dolce"]
]
]

is valid with respect to the typg X}, E) defined in Example2l7. There exist various tech-
nigues and algorithms to validate XML trees against reginése grammars (for instance,
by using tree automata: cf. Algorithm 4.4 in29]). Note heeethat due to our use of reg-
ular tree grammars, the interpretatidmight not be unique and that a validating algorithm
will generate—for a documentand a typg., E)—onepossible interpretation such that
t is J-valid with respect td.7,E).

Given a tred valid with respect to a typé¥,E), we can use subsets Bfto project
that tree. Essentially, from the rulesihwe compute another set of “simpler” rules which
denotes only the nodes to be kept. In order to define formhailyrtotion we need to define
the reachability relation>g, that we introduce below together with several other déding
that we use later in the article.

Definition 2.9 (Forward Reachability) Given a type(.,E) and Z< Dn(E), we write
Z=¢Y ifand only if Z— R€ E and Y& Names(R). We use=¢ and = to denote
respectively the transitive closure and the transitive seftéxive closure of>g. O

Strings of names are callezhainsand ranged over by, ¢, c,...In particular we use
Chainsx g (Y) to denote the set of all chains rootedaaind defined afy X... Xn | Y =€

X1 =€ ... = Xn,n > 0}. We useNames(c) to denote the set of all names occurring in a
chainc.

At the beginning of the section we defined the projection afradt as a forest obtained
by replacing some subforests by the empty tree. Here we dafir@malogous concept for
types, callecerasureaccording to which a type is obtained from another by reptsbme
non-terminals by the empty regular expression.

Definition 2.10 (Erasure of a regular expression)Let r be a regular expression and N a
set of names. We define the erasure of r with respect to N andteer|n the regular
expression inductively defined as:

En = €
(rirg)in = rinreln
(refr2)[n = ran|r2in
()N = (rln)*
Xn = X if X € N
Xy = € ifX ¢ N O



We generalize this notion to production rules of a grammar:

Definition 2.11 (Erasure of a rule) Let X— R be a production rule, and N a set of names.
We define therasureof X — R with respect to N, noteX — R)|n, as:

X=IrhIn = X=1[r|n]
(X — Stringln = X — String
X—=Anyln = X—=Any 0O

We recall thatString and Any are speciaterminalsdenoting string and any content, re-
spectively. We can finally define the erasure of a grammar:

Definition 2.12 (Erasure of a tree grammar) Let(.*,E) and(.#’,E’) be tree grammars.
We say thaf.’,E’) is anerasureof (.,E), noted(.’,E’) <: (./,E), if and only if all
the following conditions hold

S C.
. if X — Stringe E/, then X— Stringe E;
. if X — Anye E’, then X— Anye E;

AW N P

. forallrules X— [ 1" ] € E/, there exists arule X |[r | € E such thatt=r|y for
some NC Names(r). O

In summary, an erasure of a type grammar erases some rulgsmecon-terminals in the
regular expressions.

Finally, we conclude this section by recalling few definitiadaken from[[29] that will
be useful for establishing further results.

Definition 2.13 (Competing non-terminals) Let (.#,E) be a tree grammar. Let A,B
Names(E) be two non-terminals such thatAB. A and B arecompetingif and only if
there exist A~ I[r ] € Eand B— I'[r"] € E such that = I". O

The definitions that are actually interesting are thodeal andsingle-type tregrammars,
which can by defined in terms of competing non-terminals:

Definition 2.14 (local tree grammar) A regular tree grammaf.” . E) is alocaltree gram-
mar if and only if:

o |7 <1
e E does not contain any competing non-terminals

e ForallY € Names(E) there is exactly one rule in E whose left-hand-side is Y.

Definition 2.15 (single-type tree grammar) A regular tree gramma¢.”, E) is a single-
type treegrammar if and only if:

1. Forall X —I[r] €E,ifA, BinNames(r) and A+ B, then A and B are not competing
and

2. no pair of distinct non-terminals it¥’ is competing. O

The interest of these two definitions is that—as showh inH2®ley characterize the struc-
tural constraints that can be expressed by the two most pidad schema formalisms,
namely DTDs (which roughly correspond to local tree granghand XML Schemas
(which are, essentially, single-type tree grammars).



3 Type projectors

In this section we shall first precisely define what type prtges are and then establish
some useful closure results on type projectors.

3.1 Definition

Definition 3.1 (Type Projector) Given a type (7,E), a
(possibly empty) set of rulgsC E is atype projectoif and only if (. N Names(), 1) is
a regular tree grammar erasure 0f” E).

A type projector is thus a set of rules obtained from the tyge E) by erasing some rules
and some non-terminals in the remaining rules.

A type projector for a given type describes a particular prgfior XML documents of
that type, that is, &pe driven projection

Definition 3.2 (Type Driven Projections) Let 1T be a type projector fof.,E) and t a
forest such that €5 (., E). Ther-projection of t, noted as\t; 7, is defined as follows:

O\sm = ()
s\sm = § if 3(i) — Stringe mor J(i) — Anye 1t
s\sm = () if 3(i) — String¢ mandJ(i) — Any¢ 1t
i[f\sm = [[f] if 3(i) » Anye i
[f\sm = L[f\s7 if 3(i)—1[r] € mand3(i)—Any¢ it
[f\sm = () if 3(i)—1[r] ¢ mand3(i)—Any¢ it
()0 = (f\am), (f\am)

O

In words, pruning erases (by replacing it by an empty foregéry node that cannot be
derived by a rule irm.

Lemma 3.3 Let iTbe a type projector fo(.#,E). Then for every tree¢; (-, E) it holds
(t\sm) =t.

As the knowledgeable reader might have already noticedtjatadn (as in Definitio_2]8)
and type-driven projection are quite similar. Given a treed a typd.#, E), a validation
algorithm builds an interpretatiol of t with respect to that type. More precisely, the
algorithm associates to each nodéd @f non terminal oE. If it cannot find at least one,
validation fails and the tree is not valid with respec{14,E). A type-driven projecting
algorithm worksexactly in the same walyut when a node cannot be associated with a
name it is simply discarded together with the associatettrseb Projecting a document
can be seen as an instance of validation. This observatipreous to determine the
complexity of type-driven projection, given a particulgpé projectort. If rris a local tree
grammar or a single-type tree grammar (that is, a DTD or an X3¢hema, seé¢ [29]) then
projection can be performed in streaming. On the contrény,énds-up being an general
tree grammar, then projection might require in the worsedaskeep the whole tree in
memory (see our remark at the end of Secfion 3.2, for how tdyyseprojection in this
particular setting).

3.2 Closure properties

The fact thaif a type projector is a DTD or an XMLSchema, then type-drivesjgation
can be done efficiently is already a good thing. However, westeow a stronger result:
a type projector inherits the properties of the type it waduted from. This is important



since in practice if someone chooses to use DTDs or XML-Sasamspecify their docu-
ments, the projection process should not be more expettgvehe validation process.

Indeed, a nice property of trexasureof a type is that it preserves both the local tree
and single type property. In other words, the erasure of a BarBains a DTD and the
erasure of an XML-Schema remains an XML-Schema. This isdtay the two following
lemmas.

Lemma 3.4 (Erasure preserves locality)Let (., E) be alocal tree grammar and””’,E’)
aregular tree grammar. I{.’,E’) <: (./,E) then(.#’,E’) is a local tree grammar.

Lemma 3.5 (Erasure preserves single-typednest)et(., E) be a single-type tree gram-
mar and(.”’,E’) aregular tree grammar. I, E’) <: (¥,E) then(',E’) is a single-
type tree grammar.

Last but not least, we show that if two projectors coming fribia same type enjoy the
local (resp. single-type) property, then their union idtscal (resp. single-type). This
property of type projectors is instrumental to our approdcldeed, given a set of paths,
we will compute a type projector for it by taking the union dfthe type projectors of the
individual paths. However, if taking the union of type prdjers caused the loss of local or
single-type properties, the interest of extending our apgin to sets of paths (and thus to
XQuery or to bunches of queries) would be quite limited.

The key observation here is that, while in general local andle-type tree gram-
mars are not closed under union, two type-projectors¢bate from the same tyhare
a common structure and therefore are not completely incp#rone from the other. In
particular we can show that the union of two type projectorglie same type cannot in-
troduce competing non-terminals in the resulting typegutyr. In terms of term-rewrite
systems, we can say that the union of two type projectors WoEeistroduce a critical pair
(of non-terminals).

Lemma 3.6 (Union closure of local type projectors)Let (.#,E) be a local tree gram-
mar. Let(.”1,E;) and (.2, E;) be two tree grammars such thats,E;) <: (/,E) and
(S, Ep) <: (S,E). Then(1U.¥2,E; UEy) is a local tree grammar.

Lemma 3.7 (Union closure of single-type type projectors).et (.#,E) be a single-type
tree grammar. Le{(.1,E;) and (2, E;) be two tree grammars such thatv,E;) <:
(,E) and (.72, E) <: (<,E). Then(#1U.%2,E1 UEy) is a single-type tree grammar.

To conclude this presentation of the formal properties pétprojectors we could note
that a third category of deterministic regular tree gransnaamelyrestrained-compe-
tition tree grammargsee [29]), is not closed under erasure. Therefore, forkimd of
schemas (and associated type-projectors) pruning migbiresa full buffering of the input
document. However this is only of mild importance sincehtlbest of our knowledge, no
well-known schema specification relies on it. All the othelnema specifications that we
are aware of (XDuce an@Duce regular expression types, TREX, Relax Core,...) passe
the full expressive power of regular tree languages whisht & well-known, are closed
under erasure and union (see for instafncé [16]). This mdwisytpe driven projection
proposed here can be applied to these kinds of schemas, kasHa@lever, projection
remains as expensive as validation which, for these péatimehemas, implies that the
whole document might need to be loaded into memory to agtai@itide which subtrees
must be pruned. Practical solutions to this problem areudised in Section 8.2

4 XPath!

In XPath, queries are expressed by defining a path of stepsaged by 7”. For instance,

Q = /descendant::author/child::text[self::node ="Dant€ ]/
parent::book/child::title
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is the query that returns all titles of books whose authobiarite'. First, the navigational
part instructs to descend to all text nodes whose parentasitnor (by following the path
/descendant::author/child::text), then the predicate selects those nodes that are the
string "Dante" (with the testself ::node ="Danté"), and finally the navigation ascends to
thebookelement and descends to tiitée.

The inference rules we define in Sectidn 5 do not work diremtlygueries such &d.
The rules are defined for a subset of XPath that we dub XRaith introduce in this sec-
tion. XPath (for XPath/ight) includes forward and backward axes and a special kind of
predicates. In order to statically analy@¢or any other XPath query that is not in XP§th
we will find a XPatH query that approximate® soundly with respect to the pruning in-
ferred (Sectiofil6), and use it to deduce the pruningXo®f course, these approximations,
as well as those we introduce later on, will only be used temeine the pruning: the
pruned document will be queried by the original query. Tfeewe are going to proceed
as follows. In this section we define XP4tiwhich is roughly equivalent to the structural
subset of positive XPath Core, without absolute paths. Ti&ectiorl b, we introduce our
type and type-projector inference algorithms, which womk@Patt queries. To complete
the treatment of XPath we show in Sectidn 6 how to compute acsapproximation of a
queryQ with respect to type projection. In other words, given al{f{Path queryQ, we
will compute an XPathqueryQ' such that the type projector inferred fraf preserves
the semantics ad.

Let us start with defining XPattpaths and their semantics. From now on, “path” refers
to an XPath query as defined hereafter unless otherwise specified.

Definition 4.1 (XPath’ path) An XPatH path is a term inductively generated by the fol-
lowing grammar:

Path = Step| Path/Path| Path] Path
Step = Axis: : Test| Axis: : Tes{Cond
Axis = self|child|descendant|parent|ancestor
Test ;= tag|node|text
Cond := Condor Cond| Condand Cond| Path
where tag is a meta-variable ranging over element tags. O

As customary, &nd” takes precedence ovest” and the path delimiter /” takes preced-
ence over the top-level union". We will also use the (possibly indexed) meta-variables
P andC to range over paths and conditions, respectively.

The formal semantics of paths is inductively defined on thedpctions of Defini-
tion[4.1. First, we formalis@estfiltering as the set of nodes that satisfy a given test. Then
Axis selection as the set of nodes reachable from some contegsrimydfollowing some
Axis. Finally, we combine these notions to define the semartf paths. The definitions
comply with the semantics of XPath 1.0 (skel[35]).

Definition 4.2 (Node test semantics)Given a tree t and a set of nodesCSIds(t) we
define:

Sl = sSn{ields(t) |t@i =I;[f]}
S::tnode = S
S:itext = Sn{ieldst)|3s t@i=s} O

Definition 4.3 (Axes selection)Given a tree t and a set of nodes-3ds(t) (called context
nodes), we definpAxig); (S) as the set of nodes obtained by applying Step to each node in
S:

[self]i(S) = S
[child]t(S) = Uiesli’| (i,i") € Edg(t)}
[parent]t(S) = Uies{i’| (i",i) € Edg(t)}
[descendant]i(S) = Uies{i’| (i,i") € Edg(t)*}
[ancestor]t(S) = Uis{i’| (i’,i) € Edg(t)*}
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whereEdg(t) is theedgerelation of t, that is
Edg(t) = {(i,i") | t@i = ;[ f,t’, f'] A Rootld(t") =i"}
andEdg(t)" denotes its transitive closure. O

Since predicates may contain paths and conversely, patpraditate semantics are mutu-
ally defined.

Definition 4.4 (XPath’ semantics) Given t, a set  1ds(t) and a path P, we define the
evaluation of path P over the set of context nodes S as th&darf®]; (S) defined as:
[Axis: : Test: (S) ([Axig(S)): :t Test
[Axis: : Tes{C][: (S) = ([Axid(S)): ;¢ Test{i € S| Check:[C](i)}
[Pathy/Pathp]i (S) = [Pathu]:([Pathu]:(S))
[Pathy | Pathp](S) = [Pathy]:(S) U [Pathi](S)

(
(
whereCheck [_](_) is the Boolean function defined as:

Checl[Pathi(i) = [Path({i}) # @
Checki[C1 orCy](i) — Checki[Ca(i)VCheck: [Cal (i)
Cheth[Cl anng](i) = Cheth[Cl](i)/\Cheth[Cg](i) O

Itis easy to see that the last definition is well founded steces are inductively generated
by the productions of the grammar in Definitionl4.1.

Although the paths in XPattare quite simple, the definition of their static analysis can
result quite complex: the simultaneous presence in a sgigfeof axes, tests, and predic-
ates can cause a case explosion in the definition of the analysis is not a problem for
a static analyzer, but it is a problem for a human readeruRately, for the human reader,
XPatH paths can be further simplified and transformed into egeivahormal forms in
which all non trivial axes, tests and predicates are disteith over different steps. The idea
is then to normalize paths before passing them to the stadityzer so that the definition
of the latter can result much simpler. The normal forms thifithe analyzed by the static
analysis of Sectiol] 5 are defined as follows

Definition 4.5 (Single step normal form) Let P be an XPathquery. Thesingle step nor-
mal formof P, notedSnf(P), is defined as:

Snf(Axis::node) = AXis::node
Snf(self::Tes) = self:: Test
Snf(self:inode[C]) = self:node[Dnf(C)]
Snf(Axis:: Tes) = Axis::inode/self::Test (if AXis# self A Test# node)
Snf(Axis:: TesfC]) = AXis::node/self::Tes¥self : inode[Dnf(C)]

(if Axis# self A Test# node)
Snf(P/P,) = Snf(Pr)/Snf(P,)

whereDnf(C) is a disjunctive normal form of the Boolean proposition C ¢a& atoms are
paths). O

It is clear from this definition thal? and Snf(P) have the same semantics. Indeed, if we
have a step

Axis:: Tes C]

then its single step normal form
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AXis::node/self :: Tes¥self::node [Dnf(C)]

only makes the order of node selection more exﬂichor a given set of context nodes
S, we first select all nodes that can be reached byAtkis Then we keep only nodes that
match theTest Finally we further refine the result by filtering the nodesttbatisfy the pre-
dicateC, put in disjunctive normal form. The disjunctive normalrfoof our predicates is
obtained by distributing theot” over the “and” yielding a formula of the fornf)r; And; B;
(whereR; are paths). Although this may yield an exponential blow-tifhe formula, re-
member that we introduce this simplification only to provédeoncise and human readable
presentation of the static type inference algorithms. Ama@dmplementation can work
directly on the abstract syntax tree of the formula with@siorting to this transformation.

5 Static Analysis

In this section we define deduction rules to statically ififem a XPatl pathP and a type
(., E) atype-projector for any input document valid with respedt¥’, E). We show that
the analysis is sound, and that it enjoys completeness &ga tlass of queries whénis
ax-guarded and non-recursive local tree grammar (see Defiffifif later on). Soundness
means that executing the query on the original document anth® document pruned
by the inferred projector yields the same result. Compktsemmeans that the analysis
infers the best correct projector, that is, that if we takgpetprojector smaller (i.e., more
selective) than the inferred one, then there exists a dostuwadidating(.~, E) for which
the result of the two executions is not the same. When theittonsl on schemas or on
gueries are relaxed, then the analysis is still sound buaytibe not complete. Nevertheless,
as we will formally illustrate, it is still very precise.

In order to define our static type-projector inference athar we proceed in two steps.

1. Given a patlP and a regular expression gramngaf, E) the rough idea is to use a
type system to associakewith the set of all trees that may appear in the result of
applyingP to a document validatings,E). In order to achieve a great precision,
we then “type”P by the set of all rules o thatvalidateany tree in the resuft. This
is done in Sectioh 511.

2. Next, we use the type system defined in the previous poitgfine inference of type
projectors. In particular we use the cases in which the ptsdype system returns
an empty set of rules to determine the points in which pruningt be performed.
This is done in Sectidn3.2.

5.1 Type inference

Given a pathPathand a schemé&¥’,E) we want to find a subset of rules i that can
generate all the trees that can occur in the resuRadfiwhen applied to a tree validating
(-,E). Formally, we want to infer a setC E such that

Wt €5 (S,E), J([Path];(Rootld(t))) C Dn(T1) (1)

The equation above states the soundness of the analysisortfs W says that if we take
any treet valid for (.,E) and we apply the patRathto it, then the type inferred in the
type systems defines every symbol interpreting a node ingbdtr As usual, soundness
alone is not interesting since there always are sets thvéllyi satisfy it (notably, the set

1 As an aside, note that this kind of equivalence does not raldull XPath because of thgosition()
function. Indeeddescendant ::a[position() =1] anddescendant ::node/self:alposition() =1]
do not return, in general, the same result. The former retimafirst “a”-node in pre-order while the latter returns
all the “a™-nodes of the document.

2This yields a finer-grained analysis since different rules menerate the same tree but in different contexts.
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of all rules inE). What we aim at is an analysis that is as selective as pes#itat is, an
analysis that is precise enough to guarantee, on a largeaflgges and for a large class of
queries, that whenever the path semantics is empty oveosdiilple instances of the input
type, then the inferred typeis empty, as well:

vt €5 (V,E), J([Pathi(Rootld(t)))=0 — 1=92 (2)

(the converse is a consequenceldf (1)). In other terms we thvanif there does not exist
any instance of the type that matches the path, then thepatped by the empty set.
The precision described byl (2) will then be used during tifer@nce of type-projectors
to discard elements that are useless in the evaluatiBatbf that is, all the sub-trees of the
original document that cannot be matchedHayh
We start by inferring types for single-step paths withodicates.

Definition 5.1 (Unconditional Single Step Typing) The type of an unconditional single-
step query Axis: Test for the schem@”,E) is given by:

Te(Ae(,Axig), Tesh

where axes are typed as:

Ag(T,ancestor) = UZ% ReE|Z=LY}
YeDn(T)

Ag(T,child) = [(JZ—ReE|Y=¢Z}
YeDn(1)

Ag(T,parent) = UZ —ReE|Z=¢Y}
YeDn(T)

Ag(T,descendant) = UZ —ReE|Y=¢Z}
YeDn(1)

Ag(T,self) = 1

and tests are typed as:

Te(T,node) = T
Te(r,a) = {Y—R|YeDn(1),R=aR] or R=Any}
Te(t,text) = {Y — R|YeDn(1),R=String or R=Any}

O

This definition introduces two typing operators, one forsaxe (_,_), and one for
tests,T (_,_). Firstly, Ag(1,Axis) returns all the rules that can be reached from names in
T following Axis If Axisis self, child or descendant, our definition coincide with the
static semantics of XQuery and XPath, as defined by Drefrin [18]. However, Draper
et al’s static semantics is much less precise than ours in casgc&flard axis. Translated
in our formalism, the type opfarent andancestor for any T would be{X — Any} for
some name

SecondlyTe(1,test restrict the rules i to only rules which type elements compatible
with test

The soundness of this definition, that is, the property dtayeFormulal(lL) is given by
the following lemma.

Lemma 5.2 Lett be a tre€j-valid with respect to the scheni&”,E). For every SC 1ds(t)
and typer, if 3(S) C Dn(1), then

1. 3([Axidt(S)) € Dn(Ag(1,Axis))

3More preciselyparent :: testandancestor :: testreturn the union typelement () | document () independ-
ently of test whereelement () is the type of any element node addcument () is the type of the document
node which we don’t consider in our data-model.
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2. J(S: :tTesh C Dn(Te(1, Tesh)

It is easy to check that the property stated by Fornidla (1)isext consequence of Defin-
ition[4:4 and the composition of the two properties of therearabove.

The presence of upward axes makes the typing of composesipaith more difficult.
To ensure precision, that is the property stated by Fornf)lawe have to be careful in
dealing with types in which an element may occur in the cantérdifferent elements.
The naive solution consisting of inferring a type for compdpaths by composing the
functions we just defined for single steps, works only in theesmce of upward axes. This
can be illustrated by an example. Consider the followingrgrear rooted aX:

X —alY], X=b[Z],Y—c[], Z—d[]

and observe tha( yields two possible definitions. Now consider the path

self::a/child::C/parent::node

applied to documents of the above type, then the precisethgiethis path should have
is {X — a[Y]}. However if we naively iterate Definitidn 3.1, we obtain aé tfirst step
{X — a[Y]}, onto which we applyhild::c, which yields{Y — c[ ]} to which we finally
applyparent ::node which gives ug X — alY], X — b[Z]}, which is sound but imprecise.
This is due to the fact that the single step typing blindlyestd all rules associated with a
name which can genera¥e here all the rules associated wih

To solve this problem we introduce particular sets of rutedled contextsto be up-
dated at each step and containing rules already encouritgpeglious steps. We then use
them to refine type inference for upward axes. In the prevéxasnple, when typing the
first two steps we build aontext

{X—=alY],Y =[]}

indicating that for the moment the two rules are the only ovisged by the traversal.
Then, we use Definition 5.1 to tygarent ::node thus obtainingd X — a[Y], X — b[Z]},
as before, but this time we intersect it with the context tbioining the precise answer
{X — a[Y]}. We now formalize this idea:

Definition 5.3 (Type inference) Let (., E) be a type and P an XPdtljuery in single step
normal form. Letr and k be two sets of rules of E. If the deduction system in Figlre 1
deduces for a path P the judgment,

(T7K> FeP: (T/aK,)
then we say that P has typBn(1'), 7'). O

The idea underlying the judgments of the definition is th#iéfsystem proved, k) g P:
(1',k’), then from an input set of rulesand an input context the application oP returns
an output set of rules’ and an updated context. In other termsr is (the production
part of) a type that approximates the current nog&ds,the context that was visited to type
them, 7’ is (the production part of) a type that approximates the fsevdes reachable from
the current ones by followinB, andk’ is the additional context visited to reach them. In
Figureld environments—that is pairs of sets of rules—argedmver by for concision.

2 being a pail(1,K ), we useX,,, to denote its first projection (i.e., the “type” component
T) andX . to denote the second projection (i.e., the “context” congmr).

Definition 5.4 (Environment well-formedness) Let (1, k) be an environment and E a set
of rules. IfT C E andk C TUAg(T,ancestor), then we say thaft, k) is well formed
with respectto E. O

In other words, a context is well-formed if it contains onlyle@s from which the names in
Dn(T) are reachable. We say that a judgmEnte P : X' is well formed if bothZ and¥’
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| Primitive Single Step

AXxise {self,child,descendant}
2 g AXis:inode : (Ag(Ziyp, AXIS) , Zctx UAE(Ziyp, AXIS))

(down-axis)

Axis€ {parent,ancestor}

up-axis
P S AKis node T (Ag (Zug, AXIS)) N Tx , Ae(Zenr, AXIS) N Zer

Test£ node
> Fg self : Test: (T, (Zex NAE(T,ancestor))UT)

(test) *)

(*) where T = T (Zp, Tes)

(VX| — R‘ € Ztyp) ({xl — Ri};zctx) FE ij . Zijk

redicate
P ) ShEgself: nOde[O.I‘AIkldek] (T, (Zcex NAE(T,ancestor))UT)
J

)

(*)where T = {X — R [ J =0 # 2}
i

Composed patds

> g Step: 2 " g Path: &/
> g Step/Path: ¥’

(sequence)

> g Pathy : (11,K1) >t Pathy : (12,K2)
3 Fg Pathy|Pathy : (11U T2, K1 U K2)

(union)

Figure 1: Inference rules for XPdthjueries

are well formed with respect th. We can remark that the rules in Figlide 1 are syntax
directed —at most one rule apply for a given judgment— ang greserve context well-
formedness.

The rules are relatively simple to understand. The first tles implement our main
idea: when we follow an axiéxis we compute the type big (%, Axis); if the axis is
a downward one, then we add this type to the current contéx¢rwise if the axis is an
upward one, then we intersect it with the current contexth{for the type part and for
the context part). The rule fdtest) is slightly more difficult since it discards from the
current set of rules those that do not satisfy the test: the iycomputed b¥ g (2, Tesd,
while the context is obtained by removing all the rules thatenin there just because they
generated one of the discarded nodes; to do so it generaget/fte of) all ancestors of
the nodes satisfying the test, and intersects them withuhemt context. The fourth rule,
(predicate), is the most difficult one. Recall that we work with singlepsteormal forms
and, therefore, that the predicates are Boolean formulesmaths in disjunctive normal
form; the typer is obtained by discarding fro&,,, all rules for which the predicate never
holds; thus for eack; — R in Z;,, we compute the type of all the patRg in the predicate,
and keep int only rules for which at least one path may yield a non-empsylte the
context is then computed as in the deduction (tést), by discarding from the context all
rules that generated only rules discarded figp. The deduction rul¢sequencerhains
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the result of one step to the following one. Lastly, the ruieion) handles the top-level
union operator {'.
Let us illustrate how the algorithm works on an example. @erghe grammar with
rules
{A— a[B|C|E],B — b[D],C —c[],D —d[],E — b[]}

and rooted im, and the path
child::node/self::b/self::node[child::node/self::d]
Notice that the path above is nothing but the single step abfonm of
child::b[child::d]
We start from an initial environment
> = ({A— a[BC|E]}, {A— aBIC|E]})

in which both the context and the type component contairfalttiles whose left hand side
is a root of the grammar (in this case we have just one ruled.first step is typed with the
(down-axis)rule, giving the resulE! where

5t»=1{B—b[D],C—c[],E—Db[]}

typ

and
31 ={A— a[B|C|E],B— b[D],C—c[],E —b[]}

The second step is typed by applying the riéest), which returns?:
>%,=1{B—b[D],E—b[]}
and more interestingly, the context
32, = {A— a[B|C|E],B — b|D],E — b[ |}

Indeed, the intersection a,, with the name generated by the ancestorB,afiamelyA

yields exactly{ A — a[B|C|E]} to which we add the result of the current step:
{B—b[D],E = Db[]}

As we said, this intersection ensures that we only keep icdinéext rules from which we
can derive the current type. In this example, the rule<farhich was introduced by the
wildcard stepchild::node is removed by the typing of the more restrictive ste f ::b.

The third step is typed by tHeredicate)rule. Intuitively, this rule types independently the
pathchild::node/self ::d and keeps in the result only the input rules for which the path
yields a non-empty result which, in this case, is the ruleBfor

Z5p = {B—bD]}
As before, the context is purged from rules that do not geadh& current type:
2% = {A— a[BIC|E],B — b[D]}

Before proving the main theorems of type inference, nanmyndness and completeness,
let us first show that the inference rules of Figure 1 form adtlan algorithm.

Lemma 5.5 (Termination of type inference) Let(.”,E) be a type, P a path, artdand%’
two environments. If there is a derivation for the judgn®ht P: ¥/, then this derivation
is unique and finite.
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We can now proceed to prove the soundness of the type system.

Theorem 5.6 (Soundness of type inferencel)et (., E) be atype and P a path. LepE
{X—=R|X—=ReE,Xe .} If (Eg,Ep) Fe P: (T,K) then:

Dn(7) 2 (JI([P:(Rootld(t)))

t€3(-}/},E)

The type system is sound. It is also complete for a partialéess of schemas, namely local
tree grammars that aseguarded, non-recursive, and parent-unambiguous. ivelyit a
type isx-guarded when every union occurring in its productions isrdad by« (or by +),

it is non recursive if the depth of all documents validating bounded, while it is parent-
unambiguous if no rule types both the parent and a strictstocef the parent of another
name. Formally, we have the following definition:

Definition 5.7 Let(.,E) be a local tree grammar.

1. E isx-guardedif for each Y— I[r] in E, the regular expression is a productr
ri --- rp and wheneverjrcontains a union, then = (r')x;

2. E isnon-recursivéf it is never the case that ¥>¢£ Y, for any name ¥ Names(E);

3. E is parent-unambiguous if for all chains ¢ and names ,¥ such that
cY Ze Chains y g)(X) the implication

cYCZ € Chains yg)(X) =— Cd=¢
holds ¢ denotes the empty chain). O

Non-recursiveness andguardedness are properties enjoyed by a large number of com
monly used DTDs. As an example, the reader can consider tis®Tthe XML Query
Use Cased [15]: among the ten DTDs defined in the Use Case=n seg both non-
recursive andk-guarded, one is only-guarded, one is only non-recursive, and just one
does not satisfy either property. Furthermore our persexgérience is that most of the
DTDs available on the web areguarded. Concerning the parent-unambiguous property,
although DTDs satisfying this property are less frequene @in the ten DTDs iri [15]), its
absence is in practice not very problematic since, as wesed| only the presence of the
parent axis may hinder completeness in that case.

Before proving the completeness of type inference, wetitlittie on simple examples
what happens when one of the conditions is not fulfilled. s~guardedness, consider the
grammar

X—a[B|C],B—Db[],C—C[]

rooted inX, together with the path:
child:inode/self::b/parent:inode/child::inode
For the first two steps, our algorithm would determine thecegpe and context:
2?=({B—b[]},{X —~a[B[C],.B—b[]})
For theparent step, the type and context are:
3= ({X ~a[BIC]},{X —a[BC]})
which are also exact. However, the last step induces thetfipal

Sap={B—Db[],C—c[]}
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and the context:
>4 ={X—>aBIC],B—b[],C—[]}

This is not exact because a document matching the firstqlairld::node/self::b does
not have any ¢” tag and therefore the rulg in the output type is superfluous: this query
will never return a node with typ€ for a document of the considered type. Note that
the condition that unions in regular expressions must bedgabmust also hold for rules,
namely that there must not be two ruks- I[r1] andY — I'[r2] in the input type. Indeed
these two rules behave like an un-guarded union and thergfopardize completeness.
Local tree grammars forbid such rules and are thus an eabkeatidition of the input type
for completeness to hold.

The recursiveness of the schema also interacts withp#frent axis in a way that
prevents completeness of type inference. Consider thergeaim

{A—a[B], B—b[B?]}
and the path expression:
child:inode/self::b/child:inode/self::b/parent::node

Our type inference algorithm deduces on the secaid :: b step that the output type is be
{B — b[B?]}. However, the last steparent ::node is typed with a type

{A—a[B], B— b[B?]}

this is because in the grammaris a name reachable froBwwith a parent axis. However,
consider any document valid with respect to this grammahneEit has only onb element,
in which case the result is empty, since we try to match twelkewofb’s with the query. Or
it has at least twd's and then the output is alwaysanode (the topmost one). Therefore,
ananode is never part of the result, while the tyfpés returned by our algorithm.

Lastly, with the following parent-ambiguous grammar:

{A—a[B|C],B—Db[],C—c[B]}
the algorithm fails to typexactly(but the output type is still sound) the query:
child:inode/self::Cc/child::inode/self::b/parent:inode
By a similar reasoning, we can see that the algorithm retin@sules
{A— a[B|C|,C — c[B]}

while only nodes with tag can be returned by this query.

Intuitively, the reason why completeness does not holdérthinee previous examples
is that there are chains in the grammar that may not refleaahptaths in a document.
For instance in the last example, in a documenf b[] 17, the chain ‘ACB’ has no
interpretation (since there are rmenodes). In this case, there existvalid document
which does not contain all the paths described by the p@ssiidins in its type. Therefore,
the type inference algorithm will use chains and rules wiaich actually not part of the
interpretation of some documents of the type at issue. Ratély, if a local tree grammar
is x-guarded, non-recursive, and parent-unanbiguous, theza Hiways exists a document
in which all the chains in the grammar are instanciated by some path. Weuch a
document awitnessof the grammar. We prove the existance of such a witness defor
stating the completeness theorem.

Lemma 5.8 (Witness of a grammar) Let (., E) be a non-recursives-guarded, parent-
unambiguous local tree grammar. There exists a documé&ni4/id with respect td., E)
such that:

vX € Dn(E),Ji € lds(t) such thati(i) = X

we call such a documentwitnessof the schem& | E).
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Corollary 5.9 Let ({X},E) be a non-recursive;guarded, parent-unambiguous local tree
grammar and t be its witness. LéY;...,Yq} C Dn(E). If Y1 =g ... = Yy, then there
exists{is,...,in} C lds(t) such that

Vie{2...n},((ii-1,0i) € £(1)) AT(idi—1) = Yi-1 AT(ii) =¥
We are now equipped to state (and prove) the completenes®the

Theorem 5.10 (Completeness of type inferencd)et (.7, E) be ax-guarded non-recursive
and parent unambiguous local tree grammar, and P a path. Let

Eo={X >R|X >ReE, Xe.7}.

If (Eo,Eo) Fe P: (1,K) then:

Dn(t) C Lﬁ([[P]]t(Rootld(t)))

tesE

One of the main reasons why completeness does not hold iralesdecause the
intersections operated by the type rule farrent are not powerful enough to guarantee
precision for recursive or parent-ambiguous grammar. latahell, this happens because
in the presence of parent-ambiguous grammar the type asatgy produce contexts con-
taining false parent types (with respect the current )p& his suggests that in order to be
extremely precise, instead of sets of rules, contexts slratter be sets @hainsof names,
computed and opportunely managed by the type analysis. ¥owie managing sets of
chains instead of simple sets of rules dramatically comapdis the treatment, due to the in-
teraction of recursive axes likkiescendant and recursive grammar@i) the problem may
arise only for queries that use parent axis and the concoogtaf parent-ambiguity make
the event rare in practicéii ) the loss of precision looks in most cases negligifie, even
though it would be possible to obtain more precise resuita farger class of grammars, it
is well known that exact type-inference for XPath routinesgapes regular tree languages
and therefore all existing formalisms to type XML: at soménpoan approximation in
the type inference process is necessary to remain in the @falegular types. Therefore
we considered that such a small gain (remember that compledds just some icing on
the cake since, while it helps to gauge the precision of tipeageh, its absence does not
hinder its application) did not justify the dramatic incsedn complexity needed to relax
the condition on the type for completeness to hold.

Of course, the completeness theorem is only stated for XRatiries and does not
account for full XPath queries. Yet it illustrates how pseciour type system is in the
best case. We will show on various example that on less fal®@ses for schemas or
for XPath queries which need to be approximated, the type infereniteeshains very
precise.

5.2 Type-Projection inference

In this section we use the type inference of the previous@etd infer type-projectors.
Once more, naive solutions do not work. For instance, fop&mpathsStep /... /Step,
we may consider as type projector with respedt 0, E) the set

U nu{X—=R|Xecs}
i=1.n

where fori=1...n:
Stg Step/.../Step: (1i,—)

withZ={X - R | Xi € Z},{X = R | X € .} (we use " as a placeholder for un-
interesting parameters). This definition is sound but netige at all, as can be seen by
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considering the quergescendant :: node/Path the use of the above union yields a set
containingr; defined as

> g descendant inode : (T1,—)

that is, all descendants of the root start symbols/ir{no pruning is performed). Instead,
we would like to discard, at least, all rules that are desaatslof.” but that are not
ancestors of a node matchiRgth These are the rules

Y - R € Te(Ag(¥,descendant),node) such that

({Y = R},K) g descendant :: node/Path: (&, —)

for some appropriate context A similar reasoning applies tmcestor.
As for the type inference, we define type-projector infeeebg a judgment and asso-
ciated inference rules:

Definition 5.11 (Type-projector inference) Let (.7, E) be a type and P an XPdltlquery
in simple step normal form, ardandk be subsets of E. If the deduction system in Fifiire 2
proves the judgment

(T,K)FeP: 1T

then thetype-projectoinduced byrtis the grammar:

(«NDn(m),{(X = R)|pn(m | X = Re m})

O

Obtaining a type projector from a set of rules returned byjaldgment is straightforward.
In essence, the derivation collectsririhe rules oft that are sufficient to answer the query.
Since in general not all rules & are kept, then the rule ir may use names that are not
defined inmt. Therefore, the erasure operation (defined in Definfflo@Psimply removes
references to names not defined by any rule ithe definition ofR| ~ is straightforward:
it is Rwhere every occurrence of a namedhis replaced by).

The rules in Figur€l2 reflect the intuition we gave earliereAth step, we execute the
type inference algorithm on the current set of rules and mectate only those for which
the resulting type is not empty. Informally, each rule press the following properties:

well-formedness if aruleY — Ris added to the type projectarthen there mustbe arue— R € T
such that € Names(R').

precision: given a pattP and a ruleY — R. If ({Y -+ R},—) kg P: (@, —) thenY — R must
not be added to the projector.

Let us explain how the different rules preserve these pi@gserThe easiest case is the
one of a query consisting of a single step, handled by the Ru#ep). In this rule, we
just apply the type inference algorithm to determine thgoutype of the results. The
resulting projector is the set of rules in the results to Whie add their upward contekt
that is the rules linking the results to a start symbol. Thes{p-union) and(p-iterate) are
only inductive cases which allows us to handle respectitaylevel union and projectors
applied to a set of rules. In particuldp-iterate) splits the checking of a path over all
the possible rules specified in the type component of the@mwvient (each one identifies a
different set of current nodes). This allows us to define thealed “Path Rules” in much a
simpler way since they can be written for environments inchithe type componentis just
a singleton. The Path Rules actually perform the projecios they all follow the same
scheme. The Rulfp-test) handles a simple node test. If the type inference return&som
non-emptytype %, for the step, then we can compute the projector for the coatianP
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and add its result to the rule for the current node. The Rutleredicate)is similar: the type
>4, returned by the type inference is the set of nodes for whietptiedicate is satisfied.
We then recursively compute the projector for the contiimmeR as well as for the patt;
occurring in the predicate. In the end, we return the unioallahe computed projectors
to which we add the rule for the current node. Again we onlytds if the type inference
returned a non-empty type. The following rules handle theamavigation. They are
split in two sets, one for thparent andchild axes another for their recursive variant,
ancestor anddescendant. Since they are the most delicate rules let us explain them in
details. The two cases are similar. In the Rglesingle), the algorithm first retrieves all the
rules matching the axighild or parent). These rules are collected imand the analysis
yields a current context’. Then, by usingn calls to the type inference algorithm Being
the number of rules i), it collects among only the rules which are a suitable starting
point for the rest of the path, that is all the rules yieldingan-empty result type when
typed againsP. These rules are collected Mwhich, as it can be easily seen, a subset of
7. Finally, T’ andk’ are used as the environment to infer the projection with ¢ise af the
path. Thg(p-many) rule handles the recursive axéescendant andancestor. The rule
is almost the same as Rule-single) with the exception that it does not test whether the
continuatiorP yields a non empty result on the node but adeacendant (Or ancestor)
of the node, to ensure that we put not only the correct rulékerprojector but also the
rules leading to them, and therefore that we maintain welhkdness. If for any of these
rules one of the side conditions does not hold, then the(patrase)is applied and returns
an empty projector for the current path.

Before proving the formal properties of the type-projectioference, we illustrate its
behavior by unrolling it on an example. Consider the grammar

{A— a[(B|C)%],B— b[D],C — c|[E],D —d[E],E — €[ |}
with start symboA and the patte:
descendant::node/self::.e/ancestor::node/self::b
which is the single step normal form of
//€/ancestor::b

To ease the reading, we identify every rule with the non-teafit defines. Therefore in
what follows when we write, say in types or contexts, we actually mea&n- a[(B|C)x].
The algorithm computes the type projector @imas follows. The initial environment is
({A},{A}). We apply the rulgp-many) for the first step. The first premise computes
the type ofdescendant::node applied toA, which returns the type and context (these
instantiate thé€1’, k") of the rule):

({B,C,D,E},{A/B,C,D,E})

Then the second premise filters out the unwanted names apsd &rby those for which the
whole path may succeed. This gives us an intermediary tyBeD,E} (and unchanged
context) onto which we can compute the projector for the:path

child:node/self::e/ancestor:node/self::b

the final result for this rule will be the projector for the alegath to which we ad@A} (i).
At this point, since the input type contains many rules, we @gply the rulg(p-iterate)
which will apply the continuation path ofB}, {C} and{D}. Itis easy to see that ofB}
the side condition for the rul-single)is not fulfilled, since the type inference returns
empty. The rulép-erase)applies and returns an empty projector. The projectionicoas
with only {C} and{D} left (the context is unchanged until nog#, B,C,D,E}). First let's
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consider the derivation faiD}. The current step ishild::node which was introduced by
the previougp-many) rule. On this step, we apply the rule-single). This rule addgD}
(i) in the final projector and continues by computing a projefrtum {E} using the path:

self: e/ancestor:node/self::b

When we apply the same rule {€} however, while the first premise returns a non empty
type, the second one returns an empty result, since fromawih typeC the path

child:inode/self::e/ancestor:node/self::b

yields an empty result. Thus the rule is not applied and teelref the projector for the
remaining path for the node tyd€} is the empty projector. We continue with our only
set,{E}. We compute the projector fere1f ::e which adds{E} to the final projectofiii)
and computes the projector for the path:

ancestor::node/self::b

Itis easy to to see that these will retuB} as a projectogiv). If we summarize, we obtain
from (i, ii, iii, andiv) the set of rules

m={A— a[(B|C)«],B— b[D],D — d[E], E — €[]}
The actual type projector is:
(" NDn(m), {(X = R)[pn(m | X =+ Re m})

that is:
({A},{A—aB«],B— b[D],D — d[E], E — €[ ]})

This example shows how the two properties of precision aniiifamenedness are pre-
served:

well-formedness what we obtained at the end is a valid type without unneediegr

precision: although the query referenceshodes explicitly, we do not naively keep all tee
nodes but only those that are useful to compute the queryglyaimse occurring
belowab node.

We can now present the formal properties of type-projedtierence

Lemma 5.12 (Termination of type-projector inference) Let (., E) be a type, P a path,
andX and’ environments. The judgment-g P : ¥’ has a unique and finite derivation.

The lemma above states that the rules in Filire 2 describenintging algorithm. We
show now that they compute a type-projector by formalizimg ‘well-formedness” prop-
erty that we outlined above. The intuition is that when thipatitype for a step is computed
(e.g., in the first premise of the ru{p-predicate)), then thecontextcorresponding to this
computation is kept and passed as a parameter for the ist@the remainder of the
path. On the last step, (ru(p-step)) the context is added to the type projector. There, it
ensures that whenever a ride— R is added to the type-projector, all the rules needed to
deriveY — R from the start symbols are added to the type-projector ak Whis is what

we formally state by the following lemma:

Lemma 5.13 (Well-formedness of type-projector inference)Let (., E) be a typez, T/,
andk sets of rules, and P a path. (f,k) I-g P: 7/, then(t,Kk) g P: (7,Kk”) implies
K" C 1.

We can now state the soundness of type-projection inference
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Theorem 5.14 (Soundness of type-projector inferencellet (., E) be a type and P an
XPatH query. Let S be the set of rules=S{X — R| X € .7}. If

(SSIFeP:t1
thenT is a type-projector fof.”,E) and for every €5 (., E) we have:
[[P]}t\jr(Rootld(t)) = [PJi(Rootld(t))

In words, ifT is the projector inferred for a queR/and a gramma(., E), then for every
treet validating the grammar, the result of execut@nt or on its pruned versioth 5T
is the same.

Completeness requires not only completeness of the typgemy&-guarded, non-
recursive, and parent-unambiguous DTDs), but also theviilg condition on queries:

Definition 5.15 An XPath query Q istrongly-specifiedf:
i. its predicates do not use backward axes,

ii. along Q and along each path in the predicates of Q there arewnmdonsecutive
(possibly conditional) steps whose Test patidgle

iii . each predicate in Q contains at most one path and this doetenoinate by a step
whose Test isode. O

For instance, among the following queries, only the first &m® strongly-specified:

—descendant::inode/self::a/ancestor::node
—descendant::node[child::b]/self:a/parent::node
—descendant::node/ancestor::node/self::a
—descendant::node[child::b/child:inode]/self::a
—child::a[descendant::node/parent::b/child::c]

In the third query, there are two consecutive steps witheaé” test, which violates condi-
tion (ii). In the fourth query the predicate contains a path endinlg \ritde"—failing to
satisfy conditior(iii )—and for the last query, the predicate contains backwarsl, axtaich
violates conditior{i).

Once more, we are in presence of a very common class of quériésstance, almost
all paths in the XMark and XPathMark benchmarks are stroagécified.

If all the conditions are met, then we can show that our atgoriis complete, in the
sense that it infers the best possible sound projector. Imdsyaf we remove any rule
(and its consequences) from a projector inferred for a Pathd a grammat.,E), then
we obtain a projector for which there exists a ttealidating the grammar for which the
execution ort and on its pruned version yield different results. Formally

Theorem 5.16 (Completeness of projector inferencelet (., E) be ax-guarded, non-
recursive, and parent-unambiguous local tree grammar, Rradstrongly-specified XPdth
path. Let S be the set of rules=S{X — R| X € Z}. If

(SSIFeP:1

then there exists €5 (., E) such that for each Y»> Re 1, if m=1\ ({Y - R}U
Ae({Y — R},descendant)), then:

[Plt\, n(Rootld(t)) # [P]t (Rootld(t))
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The fact that completeness may not hold for nejuarded, non-recursive, or parent-
ambiguous local tree grammar, is a consequence of the analqgoperty of the type
system. To see that also strong-specification is a necessadjtion consider documents
valid with respect to the following grammar rootedxat

{X = alY,W], W—=c[],Y = b[Z], Z—d[]}

If we query a document of that type with the following non sigty-specified query (it
does not satisfYiii ))
self:;alchild::node],

then{X,Y?} is an optimal projector for this query (once more, we use aagmnaenote the
rule that defines it), but the presence of the conditiatild::node forces the system to
include alsoV in the inferred projector, thus breaking completeness.nfilar reasoning
appliesforself ::ajchild:: bor child:: ¢], which does not satisfy conditidfii ) because
of the presence of multiple path in the predicate. Conceyrtiia presence of backward axes
in predicates, consider the query

self::aldescendant:inode/ancestor::al

which does not satisfy conditiofi). An optimal projector for this query on the same
grammar is{X,Y}. However, since thencestor condition is true for all descendantsaf
nodes{W,Z} is included in the projector as well. Finally, with a simil@@asoning on the
same grammar, it is clear that the query

descendant:..node/ancestor:.node/self: a

for which condition(ii) does not hold, jeopardises completeness. The first stegisele
the rules in the grammar that can be derived from the starbsy(that is, all the rules).
None of these rule are discarded by the projector-infersitoge for none of them the
output type of

ancestor: node/self:.a

is empty. The point here is that for the given grammar, thenmeoi need to keep all the
nodes, but only one child of the root. Indeed, having one etdgrbelow the root guaranties
that the sequenc@escendant::node, ancestor::node is not empty and therefore that
the root can be selected.

Of course, it is possible to state completeness for othesselof queries but, once
more, this seems a satisfactory compromise between sityitd generality.

6 Extension to full XPath

The formal developments of the previous section only det thie XPath language. This
language allows one to exprestsuctural queriesthat is, queries whose predicates contain
only conjunctions or disjunctions of paths. In this sectismshow how to translate a (full)
XPath query into a (set of) XPdtlyueries and perform type-projection inference for the
latter that is sound for the former. In other terms, we shaat tur translation is a sound
approximation with respect to type-projection. Finallye wlso show how to encode the
XPath axes not present in XPathnd how to extend our theoretical framework to handle
most XML and XPath peculiarities (attributes, absolutépat .)

6.1 Handling XPath predicates
We extend Definitiof 4]1 to XPath 1.0 patHs {([35]):
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Definition 6.1 A path is a finite production of the following grammar:

Path := Step| Path/Path| Path| Path

Step = Axis::Test| Axis: : TesfCond

Axis = self|child|descendant | parent | ancestor
Test := tag|node|text

Cond := Condor Cond| Condand Cond| Expr

Expr ::= Exprcmp Expt Arith

Arith  ::= Arith op Arith | Atom

Atom = f(Expr,...,Expr) | Path|v

where:
tag ranges over element tags
cmp € {=,!=<=<, > >=}
op € {+, -, * div,mod}
f ranges over a set of built-in functions of the Core Functidrary.

V ranges over values: strings, sequences, integers,. . .
O

We wish to provide a safe translation from an XPath qu@rp an XPath queryP that
approximate®) and use it to infer a type projector. By safe we mean that the-fyrojector
inferred forP must not change the semanticaf

What exactly is an approximating query in this context? Avaapproach to define
guery approximation is to consider inclusion of the resukscording to it the query
translation ofQ should always select more nodes tlgarHowever this works only as long
as we do not use non-structural conditions (that is, preelicénat make a query be non-
structural). This is clear for example when we use the negdtinctionnot. Consider the

query
descendant::alnot(child::b)]

For all documents, the quetescendant ::a returns more results than the query above.
However, a projector inferred fatescendant ::a would discardb nodes not occurring
before ana node, and therefore possibly also someodes children of aa node. In this
way it would change the result of the original query. Whatdpgroximating query needs
to reflect cannot be defined in terms of inclusion of resultg#ther in terms oflata-need
We must ensure that the approximation traverses at leasaithe nodes as the original one
to ensure that the former will not be pruned. However, we wheatapproximation also
to be as precise as possible. For instankestendant ::node” is a sound approximation
for any XPath query but the projector we infer from it is ulgemprecise: it performs no
pruning.

As the reader will have understood, the tricky part is to agjpnate non-structural
conditions. We do it as follows:

Definition 6.2 (Approximation of a path) Let P and S respectively denote a path and a
set of paths of XPath Let P/S denote the set of XPatpaths defined agjp.s{P/P'}.
Given an XPath expression Q, @pproximatiorP(Q) is the set of XPathpaths defined as:

P(Q1lQ2) P(Q1) UP(Q2)
P(Axis: TesfQ) = Axis:Tes{/P(Q)
P(Axis: Tes{C]/Q) = Axis:Tes{C(C)]/P(Q)UAXxis:: TesyS(C)
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where:

ClP) = P if P(P) = {P}
C(P) = selfinode if P(P) # {P}
C(CyorCy) = C(C1) orC(Cy)
C(C1 andCy) = C(C;) and C(Cy)
C(C) = self:inode otherwise
and:
S(P) = o if P(P) = {P}
S(P) = P(P) if P(P) # {P}
S(C1 orCy) = S(C1)US(Cyp)
S(Cj_ and Cz) = S(Cl) U S(Cz)
(Cj_ op Cz) = S(Cl) U S(Cz)
S(CiempG) = S(C)US(Cy)
S(f(Cl, 7Cn)) = F(f(CLaCn))
andF(_) is the approximation of built-in functions (see Figlite 3 éorexcerpt). O

The most technical point in the definition above is, as exgakdhe approximation of con-
ditions, implemented by the auxiliary functio@¢) andS(). To be precise, we differentiate
between purely structural paths and non structural pathrsa Btructural pati() does not
introduce any approximation and returns the singletonainimg the path itself. Otherwise,
a non-structural path is approximated by a set of paths. fEmskation is non trivial when
the path contains non structural conditions. Let us ilkistthe rationale of the definition
first by an example. The path

descendant::a[(count(child::b)>3 and child::C) or descendant::b] /child::d
is approximated by the following set of two paths

{ descendant ::a[self::node and child::C or descendant::b] /child::d,
descendant::a/child::b}

The first is generated by an application of the funct@y, while the second derives from
the application ofS(). As we see, the arithmetic expressiosunt(child::b)>3 is ap-
proximated by the functiof() into theself ::node path occurring in the first path of the
set. This condition is always true and therefore it is a s@appuroximation of the Boolean
value of the expression (since the result is always trueytpe-inference algorithm will
never be able to deduce an empty output type for this subguadhtherefore the type-
projector inference algorithm will keep the rules ass@dawith this node). However this
is not sufficient to ensure the safety of type projection.ekuifor this test to be possible
at run-time, the projected document must have thifenbdes that were below nodes in
the original document. This approximation is made via treonrd path by th&() func-
tion and, in particular, by thE(count(child::b)). Of course, what the function actually
does depends on the semantics of the built-in function.istancecount (P) returns the
number of nodes selected By thus a projector keeping the type of the nodes selected by
P is sound. On the contrary, the functiemring (P) when applied to a node set returns
the concatenation of the string-value of all the nodes irstte The string-value of a node
is the concatenation of all tHRCDATA elements occurring below it. Therefore a suitable
approximation forstring (P) is notP but ratherP/descendant ::text. Giving an ap-
proximation for all the functions of the XPath Core Librasya tedious task. Although our
prototype implements approximation for all functions, igure[3 we just give an excerpt
that completely covers all the different techniques we uisedir prototype to approximate
built-in functions.
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6.2 Other XPath features

We purposely left out from our definitions some features o&tkRhat would have led to
a much more intricate formalization process, in particidamwhat concerns definitions of
the algorithms and the proofs of the theorems. Here weiilitsshow these features can be
either encoded or approximated within our framework.

6.2.1 descendant-or-self and ancestor-or-self axes

These axes—that we used in Figlife 3—can be encoded exaailsity the ‘|” operator.
Precisely
P/descendant-or-self::Tesf Cond] /P’

can be equivalently written as

P/(descendant ::Test Cond] | self:: Test Cond])/P’

6.2.2 Sibling axes

We could have defined a sibling relation over node identifietise same way as we defined
the edge relatioftdg in Sectior[#, and used it to deal with thellowing-sibling and
preceding-sibling axes natively. However we can also approximate these axeg us
only “vertical” moves. So for instance

P/following-sibling::Test Cond] /P’

becomes:
P/parent :inode/child:: Test Cond] /P’

The transformation above approximates the following siggiof a node by all its siblings,
including itself. Our experiments showed that, as far ag{gmjection is concerned, this
kind of approximation does not yield any noticeable lossretfsion in practice.

6.2.3 precedingand following axes

For these axes, we can directly use the W3C recommendabpaifigl encod€ollowing
accordingly. That is,
P/following::Tesf Cond] /P’

becomes

P/ancestor:node/following-sibling:node/descendant-or-self ::Tesf Cond] /P

6.2.4 Document node

The XPath data model enforces the presencedfament nodehe real root of the doc-
ument which has no label and is selected by the initial “/” of&Path expression. It is
of course possible to represent such documents in our frankdwat we preferred to omit
it here since it would cause many presentation issues wtth theoretical interest. In
particular, the document node is never referenced by thensalof the document.

6.2.5 Absolute paths

Absolute paths are paths with a leadifig They do not start their evaluation from the
current context node but from the root of the document. Oumé&dism easily allows us to
encode absolute paths. First, if an absolute path occusgleutf a predicate, as in:

P/(PL] /P)/P
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then we can simply rewrite it as:
(P/P/P) | (P/P)

Second, if the path/P occurs in a predicate, then we can replace it véi#if ::node
(as if it was a non structural condition) and &l P) to the global approximation. Direct
treatment of absolute paths would have further complicBtfahition[6.2, where we would
have had to maintain a set of absolute approximations, nealddfinly by absolute paths and
propagated at each function call. We chose not to clutterdéfinition (but absolute paths
are handled by our implementation).

6.2.6 attribute axis and attributes in the data-model and schema

Conceptually, thettribute axis is not very different from thehild axis, and could be
encoded as such. For instance a possible solution woulddrectude an element

<e att="value" id="34" ><a/><b/></e>

as the tree:
e| @[att["value'] id["34"] ] a[ ] b[] ]

by introducing a phony node with label @. If such a solutiomemetained then we would
also need to update the definitionsodfild anddescendant to ignore @ nodes, and add
anattribute axis selecting only the content of such nodes.

As far as schemas are concerned, they need to refleahteenesandunorderedness
of a sequence of attributes within an element node. This eadome with a union type.
For instance, the document above could have type:

E — e ATTSAB

ATTS — @[(ATTID)|(IDATT)]

ATT — att[String
ID — id[String
A — @[]

B — Db[]

this encoding however incurs an exponential blow-up in tlze sf the sequence of at-
tributes. Our implementation follows a much more pragmagiproach. Precisely, even
though attributes could be encoded in our approach we peefes add an unordered attrib-
ute construct directly at the grammar level and speciajipe-inference and type-projector
inference rules for attributes.

6.2.7 4d() function

Theid () function of XPath is peculiar in the sense that unlike otlueictions, it does not
take the context node as implicit argument (e.g.gbeition () function returns the posi-
tion of the context node within the current result set). Ratthe expressionid("foo")”
returns the node whosé is "foo" if it exists (a node ha&l "foo" if it has an attribute
namedid whose value ig foo" andif this attribute has been declared with tyfiein the
Schema,[[35]). We choose to approximate this function in $veps. First, we rewrite it
as an absolute path. Then we can let our approximation #hgofiandle the absolute path
(with the technigue described in Section 62.5). For instean expression such as

id("item34")/child::name
can be rewritten has
/descendant:: * [@id="item34"]/child::name

This rewrite technique was used in particular to handleigaeZ5-C7 of the XPathMark
benchmark (see Sectigh 9).
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7 Extension to XQuery

In this section we extend our technique to XQuery.

Definition 7.1 (XQuery)

FLOWR := FORLETreturn ExprS|ExprS
FORLET := FOR|LET

FOR = for $xin EXprS

LET = let $x:= EXprS

ExprS ;= if ExprSthen Condelse Cond| Cond
Cond == Condor Cond| Condand Cond| Expr
Expr = Exprcmp Expt Arith

Arith = Arith op Arith | Atom

Atom f(Expr,...,Expr) | FLOWR/P | x| v

FLOWRFLOWR| <tag>FLOWR/tag> | ()
StefiCond/P | Step/P | Path

P

wherex ranges over identifier namesgranges over values (such as integer and strings),
cmpranges over &, != <, >, >=, <=}, op ranges over {+,-,*, div, mod} and Path and
Stepare the same as in Definition .1, that is they denote step atideppressions free of
any XQuery construct.

O

For the sake of clarity and concision we only considered &lyra subset of the XQuery
grammar ([36]). In a nutshell, the definition Afom(given in Sectiof ) is extended with
two new constructsrariables(ranged over by, y, zin what follows) and path applications
FLOWR/P.

Note that XQuery constructs may occur inside a path expreggiroductionP) or
not (productionPath). Also, we consider neither queries that first construct redsy
ments and then navigate on them (these are rarely used itice)awor queries containing
“order by”, “switch case”, etc. constructs. XQuery queries are ranged oveg.bin
order to apply the previous analysis to infer a projectoioXQuery query, we first ex-
tract a set of full XPath expressions fraqndenoting the data needs fgr Then, we apply
to each of these extracted paths the approximation funBtjohgiven in Definitiol 6.2 to
obtain an XPathexpression. We can finally use the projector inference #hyorof Sec-
tion[5.2 on the set of approximated paths, which is a soune pypjector for the original
XQuery queryg.

Path extraction is performed by the extraction functif(n, , ), whose definition is
given in Figurd . The extraction function has the fdgia,",m) and performs a straight-
forward recursive descent over its first paramegtesich is the query at issue. The second
parameterl” is an environment, that keeps track of bindings of the f¢xn®) in whose
scopeq occurs. Finallymis a flag indicating whethey is a query that serves to mater-
ialise the full content of the queried elements=€ 1) or if the query just selects a set of
nodes whose descendants are not neealed (). Before explaining in details the rules in
Figure[4, we introduce two auxiliary functions. The first da#/ (_, ) (Figure[) which
given a built-in XPath function and the position of one ofatguments, returns a suitable
value for the parameten (intuitively, M (f,i) returns 1 iff needs the full content of its
iharguments and 0 otherwise). This function is similar to tectionF(_) introduced in
Sectior 8, FigurEl3.

The second onet’(_, , ) is defined mutually, together with(_, , ) and allows to
recursively traverse XQuery expressions and resolvesahable names they contain. It
works similarly toE(_,_, ) but do not returns sets of XPath paths, but sets dicp&ar
XQuery expressions which do not contain any variables.
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Now that we have introduced environments and the auxiliangtions, we can easily
describe the rules in Figufd 4 First, rules 1 and 2 form thechesse of the recursive
descent and return the empty set if the whole query consisisconstant. Rules 3 and
4 straightforwardly apply the extraction recursively foetcontent of sequence (Rule 3)
and element (Rule 4) constructors. Rules 5 and 6 handle #eeafavariable bound in the
environment Rules 7 and 8 add a constant path to the set afcéadtpath, according to the
value of the parameten. Note that in those rule®athrefers to the corresponding entry
in the grammar of Definition @8l 1, that is it does not contaip X@uery construct and only
pure XPath ones. Path containing XQuery expressions addthim the subsequent rules.
Rule 9 handles the application of a p&hOWRexpression with a patR. Note that as
previously the notationS; /S, whereS; andS; are sets of paths stands for:

U U {rP}

PES PES

The case of a simple step composed with a path expressiondédussimilarly by Rule 10
and we recall that the notati®tepy SwhereSis a set of path is syntactic sugar for the set:

| {StepP}

PeS
Rule 11 is more intricate, but its complexity is only buretic. This rule, which did not
exist in the previous version of our work([5]), allows theraction process to extract Full
XPath expressions. In the present work, path extractionpatiol approximation are two
separate processes. Path extraction only occurs at theoleX&®uery terms and returns
sets of full XPath expressions (which reflects the exact gethmay be evaluated during
query execution). Approximation from XPath to XPaishandled at the XPath level. The
issues solved by Rule 11 is to recursively traverse an XQemgpyession, using a recursive
call to the auxiliary functiorE’(_,_, ) which builds a set of XPath conditions into which
all variable bindings have been resolved. Therefore whabhtain afterE’(_, , ) is a
set of XPath conditions free of any XQuery construct (esgdgcvariables). We can now
explain howE’(_, , ) works. In Rules’to 3 use a recursive descent into the production
of the XQuery grammars, starting at the condition levels mudbnstruct Boolean XPath
condition (1), relational XPath expressions)@r arithmetic XPath expressions).3More
interesting is Rule’dwhich traverses the arguments of a function call and usesmtkiéary
functionM (_) to determine a suitable value for. Lastly, if the input matches any other
constructs Rule’applies and recursively applie$ , , ) to construct a set of XPath paths.

We can resume our description®f_,_, ) for the remaining cases, the high level con-
structs if then else”,“let return”and“for return”handled by Rules 12,13 and
14 respectively. Rule 12 recursively extracts paths on theldan test, the “then” case
g1 and the ¢1se” caseqy. The only point of interests is that the Boolean test caneat g
erate a result and therefore can be called with paramete. Thelet binding handled
by Rule 13 augments the environmé&ntvith the path extracted fromy and extracts the
paths of queryy, in this augmented environment. Note that the path bounxdaie added
to the final results by Rule 5 or 6 only if the variable is used. te contrary in Rule 14,
for loops will perform their iterations even if the bound vat@&ls never used, as long as
the paths extracted frouy, yield a non-empty result. It is therefore mandatory to add th
paths extracted from, to the final result.

These rules subsume and enhance the technique of Marianimédr8[27]. In par-
ticular, (i) the technique we use to exclude useless intermediate gagirapler and more
compact(ii ) we do not need to distinguish between two kinds of extracékgpbut, more
simply, we always manage a unique set of path expressiodslaahbut not leastyiii )
our path extractor can be used even if the user cannot acce§Query to XQuery-Core
compiler, which is necessary faor [27].

Before applying the extraction functidf(_, , ) to some quergwe apply some heur-
istics that rewriteg so as to improve the pruning capability of the inferred pa#siong
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these heuristics the most important is the one that rewrites

for y in Q/descendant-or-self::node
return if C(y) then ( else ()

into
for y in
Q/descendant-or-self: :node[C(self ::node)]
return Q

wheneve€(y) is a condition referring only tpand does not use external functiof$gelf :
node) is obtained by replacingelf :: node for all occurrences of free inC). If we apply
E(_,_, ) to the first query, then a path ending by the stefrendant-or-self:node is
extracted thus annulling further pruning: the entire fosedected byQ is loaded in main
memory. This also happens with the approaches of Bressah [13] and of Marian
and Siméon[[27]. In ours and Marian and Siméon'’s approaclytieey can be rewritten
as above, while this is not possible with Bressdral. formalisms since their subset of
XQuery does not include predicates. However, Marian andé8iris path based pruning
degenerates (no further pruning is performed) also forélgersd query, since the step
descendant-or-self:inode
ends up in the set of pruner paths, thus selecting all nodds.i§ because their approach
cannot manage predicates. In our approach instead presliaed taken into account and
therefore only nodes satisfyiriyy) are kept by the projector, thus yielding a very precise
pruning.

It is important to stress that despite their specific formfiret kind of queries is very
common in practice since they are generated from XQuet@Query-Core compilation of
a non negligible class of queries or when rewriting upwarekarto downward ones. This
latter observation shows that the application of rewritinlps of [31] to extend Marian
and Siméon'’s approach to upward axes is not feasible sigceetiriting may completely
compromise pruning.

8 Extension to other typing policies

8.1 Handling un-typed documents

Although the usage of schema is being more and more widedpitestill is interesting
to see how to perform type-based projection in an untypeddwoh first, rather blunt,
approach is to consider a fixed corpus of un-typed documEgntssuch sets of documents
it is possible toinfer a DTD. For instance, Bext. al. propose several automata-based
methods to infer Dbs [10] and even XMLSchemas (11, 9]). Once a schema is irderre
our technique can be applied as-is.

More interestingly, this untyped problem can be reducedpceaise typing problem.
Indeed, an un-typed document is nothing but a document & )}, {X — Any}). If
we apply the type inference-algorithm of Section 5.1 to sarclinput type, then the result
would be({X}, {X — Any}) itself (meaning that the nodes selected by the query haee typ
Any). Therefore in this case, since none of the intermedianyssté the query results in
an empty-type, the type-projector inference algorithm e€t®n[5.2 cannot remove any
rule from the input type which remairi$X},{X — Any}): the input document cannot be
pruned. However, even though the input type does not coataimeaningful information,
the query itself might. Imagine a query/a/b". It is easy to deduce, by a simple exam-
ination of the query a projector which keeps only “b” nodeswcing below “a’-nodes.
While the solution in this case is straightforward, solvihig problem in general is a tricky
issue. The solution for a forward fragment of XPath can bafbin the last author’s PhD.
thesis (see Chapter 7 6f[30]). Let us briefly outline it on example. The first issue is the
representation of types. For such precise algorithms laegnee grammars are not well
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suited. Indeed instead of the typgX},{X — Any}), it is more desirable to have a type
({X},E) wherekE is the set of rules:

{X = String X — _[Xx]}

where _ denotes the set of all possible tree labels. Thergudtiof a query /a/b applied
to a a tree of the above type (i.e., any XML tree) would be tipe fyrojector:

{X—= _[X+],X—=aB+],B=b[Yx],Y—=String Y — _[Yx]}

Note that this type-projector is non-deterministic topwdo It matches (and therefore
keeps) any subtreeif and only if there is a subtreg of t with tag “a” which itself has
a non-empty sequence of children tagged “b”. Nodes thatlsitéren of an “a” node but
whose tag is not “b” do not have any interpretation and tlueecére discarded.

In[30], in order to achieve such a precise typing, the infeesalgorithm makes a heavy
use ofCDuce’s type algebra (s€e]22]) in particular of intersattiad negation types. Also
note that the projector above is not obtained by erasing suritee rules of the original
type but by the mean of set theoretic operations . In factetimew rules were created and
intuitively they were obtained by intersecting the initiad — _[ X« ]” rules with a type
“al B+]” which is the constraint represented by the XPath query.eNdgo that contrary
to our approach where new rules are only erasures of existieg (of which there only
exists a finite number), special care must be taken to natdotre infinitely many refined
rules or, said differently, in this context even guarangyiine termination of the algorithm
is a very delicate issue.

8.2 Using regular tree languages as schemas

While our formal development remains in the very genera¢ @isegular tree grammars,
our implementation only focuses ontDs. The main reason is that fortDs pruning is
efficient memory-wise. For regular tree languages instealifjation (and pruning) may
need to visit the whole tree before deciding which node toeruAt first, it seems that
this completely defeats the purpose of pruning, but we atigatepruning can still be of
practical use in these cases.

Indeed, a way of addressing this problem is to temporarityesthe document in
memory in the form of a succinct tree data-structure (bageith§tance on balanced paren-
thesis: a survey of the most popular succinct tree repragens can be found in[2]). The
final data-structure (e.g., a DOM representation) of theudent can then be built from
the temporary one, by replaying a sequence of SAX eventgwuiaiversing the temporary
data-structure and by not synthesizing events for prunkdraes. An alternative solution
is to store on disk the sequence of SAX events and processkitMaad, thus simulating a
bottom-up evaluation (validation of regular tree gramnzard therefore projection can be
done in a deterministic bottom-up fashion). Such a tectmigas used i [26] to efficiently
evaluate node selecting queries bottom-up on documents LiBB of size.

9 Experiments

9.1 Prototype

To gauge the benefits of type-based projection, we have mgaiéed our pruning algorithm
into a prototype. Our prototype takes as input an XQueryy#ebrD, and a document.
It then performs the path extraction described in Se¢fiond’c@mputes for each extracted
path its XPath approximation, applying the rewriting rules given in SenfB. Based on
this set of paths, our program performs the static analysisribed in Sectidn 5.2 and com-
putes a type projector. Once this is done, the prototypeepdhe input document, prunes
it according to the inferred type-projector and serialitesresult in a new document.
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Besides what is included in the formal description of ouoalpm, our prototype is
extended also to support the full set of XPath axes as welttabiges. If we callD the
input document ané the input Drp, then, assuming thd? is well-formed, the pruning
process is performed i@(|D|) time andO(|S|) memory, wheréD| and|S| denote the size
of D and Srespectively. Indeed, the type projector associated willTa is at most as
big as the original schema (when no pruning is performed)@(i§|) space is required to
store it in memory. Our prototype can also perform well-fedness check and validation
while pruning, in which case time complexity rema®gD|) and memory complexity be-
comesO(|S +log(|DJ)) (it is well-known that checking well-formedness duringidation
requires to keep a stack whose is size at most the height aiihement, see e.d. [33]).

Our prototype is implemented in OCaml, using the PXP libraryXML and DTD
parsing.

9.2 Benchmark suite

We used the XPathMark(([21,20]) and XMark([32]) benchmarites. The former con-
sists of a large set of XPath queries while the latter pravXl@uery queries to test against.

9.2.1 Data-set

Both XPathMark and XMark use the XMark document generafbinese documents com-
ply with the “auction” DrD representing an auction web-site. It defines 77 elemenstype
and 15 attributes. This size and complexity is comparabledal-life” type definitions
(for instance the XHTML transitional D also features 77 element definitions). Because
the “auction” Drp falls outside the conditions of our completeness theorereéitures
recursion and unguarded union), it is a very good test-cadustrate the precision we
achieve in practice even when completeness does not hoddsdaiability of our approach
was tested by using documents of varying size, ranging framB.to 3GB. An important
aspect of the XMark generator is that the proportion of taktlata versus tree structure
stays the same, for all size of documents. We report here statistics of interest which
we use later-on to gauge the precision of our pruning algaritAn XMark generated file
consists of:

e 74% of text content (as PCDATA element or attribute value)

e 65% of all the text content (that s, 49% of the total file siz=ides in @escription
element or one of its descendant.

9.2.2 XPathMark queries

Since its original publication(([21]), the XPathMark bentérk suite has evolved to provide
a very complete set of XPath queries. It is composefilin€tional testqueries, aiming at
ensuring the correctness of an XPath implementationp@ntbrmance tesgueries which
provide computationally difficult queries. We highlightrse of the main design goals of
this test suite (the complete rationale can be found'ih [20])

1. queries simulateealistic query needs of a potential user of the the auction site;

2. queries are divided into groups according to the intciceimputational complexity
of the corresponding evaluation problem. XPath languagéesstratified in a num-
ber of fragments for which different complexity bounds an@kn [3]. Comparing
the theoretical computational complexity of the query esibn problem with the
actual amount of resources consumed during query evafuatight be, at least, a
stimulating and instructive exercise;
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3. queries are defined to challenge data scalability of thé. Xkbcessing system, that
is the performance of the system as the data complexity (denusize) grows. In
particular, the queries talk about document sections @jen and closed auctions,
items, people, descriptions) that become bigger when tharkMocument scaling
factor increases. Moreover, the results of the queriesmaedl sompared to the size
of the target document. This avoids that the time taken talses the results (that
may be relevant) obfuscates the pure query processing time.

These three points are exactly those we aim to address véthrésent work. Indeed
our approach drastically increases the data scalab8ijyof XML processing systems for
realistic queriesk.) and potentially complex one&.J. XPathMark queries are divided in
5 groups, labeled frorA to E that we briefly describe now.

Group A contains unary tree pattern queries. These queries uselttdyand descendant
axes, node tests equal toor to a tag name, and filters (predicates). Conjunctive and
disjunctive Boolean operators are allowed, but negatiarots Relational and arithmetic
operators and functions are disallowed. These querieshaikfore in the category of
gueries that we handle without any approximation.

Group B contains the so-called core or navigational XPath querléss fragment ex-
tends XPath-A by admitting all XPath axes and negation. Istiga@orresponds to queries
for which our algorithm introduces a very lightweight apyiroation (we only need to
approximate negations and those axes we did not treat fyrmath apreceding).

Group C extends GrouB with relational operators=( !=, <, >, >=, <=) and theid ()
function.

Group D extends Groug by allowing all arithmetic operators-{ -, *, div, mod) and
functionssum () andcount ().

Group E contains all XPath 1.0 queries. In particular, it extendeupD by allowing
all functions (likeposition() andcontains()).

XPathMark also provides a sixth group, which uses non-stahtbatures of XPath,
such that the transitive closure of a path expression. Wkieéed this group from our
test, since neither our implementation nor the query ersginat we used supported these
extensions.

9.2.3 XMark test suite

To validate the extension of our approach to XQuery and itiqdar the path extraction
algorithm, we use queries from the XMark benchmark suiit2]j[3These queries feature
“for” expressions guarded bylere” conditions and make use of element constructor to
format their results. The corresponding code for the gsenwler consideration is given in
AppendiX{B.

9.3 Protocol

We have designed two experiments, based on two differentexyQengine to validate
our approach. For each engine and each query we describbd prévious section we
applied the following protocol. First, we tested the engagainst original documents of
increasing size and stopped when the query engine couldamatida the input document
anymore. Then we repeated the experiment a second time déditdegument pruned by
our prototype as input for the query engine. We detail nowesyorerimental settings for
the two engine we considered: Saxon-b/XQuery and MonetQBiety.
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9.3.1 Test machine

The experiments where performed on an desktop PC, with ahQotre 2 Xeon 3Ghz CPU,
3.5 GB of RAM and a S-ATA hard-drive. We used Ubuntu Linux 96Ubits (featuring a
2.6.31 kernel) as operating system. The file-system usedex&s with default settings.
The OS was allocated 6 GB of swap space and tests where domedn@ed environment,
where only essential services were running concurrently wiir experiments. In what
follows, when timings are reported they are obtained by reéngthe best and worst timing
of 5 runs and averaging the remaining three. Also, all thampaters we measured (running
time, memory consumption, 1/O operations, ...) were measim independent runs in
order to have as little impact as possible on the experim@iigs memory consumption of
a running program was measured by monitoring the so-calk=ident set size” field of the
/proc/pid/statmpseudo file (this fields summarizes the amount of private miataped
in physical memory by the process, excluding shared segnseich as shared libraries or
shared mmaped files). 1/0 operations where monitored ubgjott op utility.

9.3.2 Saxon-b/XQuery

Saxon [25] is a popular XML library which implements vario83C standards (XPath,
XQuery and XSLT) and has full schema support. We used ve&i0rof the Saxon-b
XQuery engine (which is the Open Source one). Saxon beingramemory query engine
we focused on the following measurement both for pruned apduned documents: query
answering time (excluding the parsing time of the documedtserialization of the results,
as reported by Saxon'’s debugging flags) and memory consom@axon being written in
Java, we used the latest version of the Sun’s JVM availabe(;164 bit version) and set
the amount of memory available to the JVM to the total physitamory of the machine.

9.3.3 MonetDB/XQuery

MonetDB/XQuery [12] is a well established native XML databawith full XQuery sup-
port. Contrary to Saxon, MonetDB storeas diskan index allowing fast navigation and
qguery answering. In particular since it uses the disc asskny storage, MonetDB is not
limited by the amount of physical memory (it uses as much nrgras possible to answer
a query efficiently and performs its own page management kpping memory pages to
the disk and reading them back when needed). Therefore ébr guery engine, speed is
directly proportional to memory: the more memory is avd#althe less swapping occurs
between pages on disk and pages in main memory. The threm@@rs we measured for
MonetDB were the query answering time (again we did not a®rsiocument parsing or
serialization time), the size of the generated index on thsla given document and the
amount of 1/O performed to answer the query. Indeed sincedif@B tries to max out
its memory use to favour query answering time, measuring enggonsumption does not
reflect the actual scalability improvement one could expédnetn pruning documents. Disk
access on the contrary are the bottleneck for such an engthéhair frequency directly
impacts query answering time.

9.4 Experimental results
9.4.1 Pruning precision

We gauged the precision of our pruning algorithm for thegetlof XPathMark and XMark
gueries by comparing the size of the pruned document (e&riabn disk) with the size of
the corresponding original document. We report in Figlineesdruning ratio in percent of
the original file size for XPathMark (labelled Al to E8) and X (labelled M1 to M20)

queries.
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9.4.2 Saxon-b/XQuery

In our testing environment the biggest un-pruned docuntettthe Saxon engine could
handle was 671 MB large. We report in Figlile 7 the originad ©% the largespruned
document Saxon could handle and the size of its projectioth(m MB). Also, for a
document of size 671 MB, we report the running time and menconsumption for the
original and pruned version (as well as the size of the pgnirLastly, we report the
speed-up factor obtained thanks to pruning and the memaowement we achieved (in
percent of the original memory consumption) for the pradaocument. Due to the lack
of space, we do not detail all of the XPathMark and XMark geethut rather for each
category we give the “best performing query” —that is, the for which we could achieve
biggest speed-up— and the “worst performing query”, thefonghich the speed-up was
the smallest.

9.4.3 MonetDB/XQuery

Since MonetDB makes use of the secondary storage (disk)exy@ubitrarily large docu-
ments, we chose a different approach to validate our pruagngyithm. We fixed the size
of the input document to 3363 MB and then indexed it into thexBt®B document repos-
itory, yielding an index (on disk) of 4644 MB (as reported bg MonetDB administrative
interface). Then for each query, we pruned the 3363 MB dootiwéh respect to the
input query and indexed it. We summerize the results in [Ei@uriThe first line in the table
reports the size in MB of the index corresponding to the pdufecument. The second line
reflects the ratio between the amount of I/O operation peréar by the MonetDB server
for the pruned file and the amount of I/0O performed on the pabjfile. We only take into
account of amount of dateadfrom disk which helps us gauge the amount of data fetched
from the index on disk into main-memory. In this same figuhe, graphics represent the
absolute query answering time in seconds for the origindlmnned document.

Finally, the third line gives the speed-up in query answgdohieved through pruning.
We were not able to run the query E5 on our version of MonetDB §erver segfaulted at
some point during the query computation).

9.5 Interpretation
9.5.1 Pruning precision

The results from Figurgl 6 shows that, for the vast majorityhef queries we considered,
the document can be pruned to less than 10% of its original 8ore precisely on the 58
gueries we considered (20 XMark queries and 38 XPathMarkieg)e

e 47 queries yielded a projected document whose size washlas$86 of the original

e 5 queries (M10, B3, B4, D2, E4) had a pruning ratio between 5% E% of the
original file size

e 2 queries (B2, E3) had a pruning ratio of 17.035%
e 4 queries (M14, E6, E7, E8) had a pruning ratio of 27.35%

It should be noted that queries such as M14% return the cooitadescriptionelement,

consisting of almost all the textual data contained in thegioal XMark document. Since
in these queries the value of the whole element is needednétrel to perform string
searching operations, there is little that can be done fhenpbint of view of static pruning.
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9.5.2 Saxon-b/XQuery

As we can see from the results in Figlife 7 pruning the docubrefote querying it always
yields a speed-up and a reduction in memory use for a main myegngine such as Saxon.

On the one hand, for queries whose main bottleneck are sigarations (such as calls
to thecontains function in M14 and E7), document projection gives verydigpeed-up.
On the other hand, query Al or C3 see a dramatic speed-up (RQ7atimes faster than
the original respectively). This shows that despite théover optimizations built into the
engine, a significant amount of time is often spent by itagativer “non-relevant” nodes
which are discarded by the pruning process.

On the side of memory consumption, pruning the documentrpnisingly reduces
memory usage drastically. Indeed, document projectionaesl the number of elements
and therefore simplifies the tree-structure of the XML doeunim This aspect is critical
for main-memory engines which often (as in the case of Saxgpresent the document
as a pointer-based data-structure (e.g., following the D@ddel [17] where each element
is represented as a node which contains a pointer to its fifist t the next sibling, and
to its parent). Indeed, we experienced for Saxon (but wergbdesimilar behaviour in
other main-memory query engines) a 112MB XMark documentl&voacupy 430MB of
RAM while the same document stripped of its data—amountingrly 36 MB on disk—
would occupy 340MB of memory. As Figuké 7 illustrates, owing technigque precisely
addresses this issue, reducing in most cases the memonyreptien to a few percents of
what is needed to handle an un-pruned file.

9.5.3 MonetDB/XQuery

MonetDB is known to be one of the fastest XML database aviglathe efficiency of the
MonetDB/XQuery engine is essentially due to the stair-gaseoperation ([24]) which
minimizes the amount of intermediate sets constructed ssvanan XPath query. Even
so, the use of type-based document projection often imgrquery answering time. In
particular, as shown in Figufé 8, a smaller index often ydéss /0O operations which in
turn increases the speed of the query engine. On the coffidragueries such as D2, M14
and M15, the document is already optimally indexed and rieduthe size of the index
does not reduces the amount of I/O which explains why forehgeries the gain in speed
is null. Yet for some queries the speed-up can be up to twkahds-(D1).

9.5.4 Comparison with related work

These results are a clear-cut improvement over currenhtéefy. While we cannot dir-
ectly compare processing performances since no impleti@miaf the other pruning ap-
proaches is publicly available, we want to stress two poihisst, for XMark queries the
pruning precision we achieve is equal or better than whdttained with other approaches
(with the exception of query M10 for which [27] achieves aming ratio of 4.5% where
we could only prune the document down to 9.2% of its origined)s Second, performing
pruning never is a bottleneck in our case thanks to the fadtdbr solution consists of
a single buffer-less traversal of the input document (ontestr machine we were able to
efficiently prune arbitrary large documents, while in cabf2@] pruning can end up using
as much memory as the execution of the query).

The experiments also illustrate that our approach retairesyahigh precision even in
the presence of complex XPath features (like backward axésxernal functions). While
it is true that the technique df [31] could be used to allow islarand Simeon’s work to
handle backward axes, it would still not be, to our sensefisfaetory solution. The first
reason is that the rewrite rules given[inl[31] do not supp@itse of data-value or negation
in the filters of the original query (se€ [3]). For instance tiuery

descendant::keyword not(ancestor::item)]
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cannot be written without backward axis. Second the quenggeed may be exponentially
bigger than the original one (and its computation takes Bgptal time in the size of
the original) and may introduce several predicates as 8eléacendant-or-self axes.
Both features degrades the pruning precision of [27].

10 Conclusion and future work

Our experiments show the clear advantages of applying dimigation technique to query
XML documents, and the characteristics of our solution nigeofitable in all application
scenarios. We discussed several aspects for which ouragpmmproves the state of the
art: for performances (better pruning, more speedup, lesaary consumption), for the
analysis techniques (linear pruning time, negligible mgnand time consumption), for
its generality (handling of all axes and of predicates), ¢t but not least, for the formal
foundation it provides (correctness formally proved, tewif the approach formally stated).

The present work extends and improves the preliminary eergresented at VLDB
2006 [5] in several aspects. From a formal point of view, the of regular tree grammars
as schema model makes the technique applicable to the sdiiodi of schemas currently
in use. Furthermore, the closure properties that we prowsdre that type-based projection
is at most as expensive as validation for a given class ofsali@nguage. We also handle a
richer set of queries formally (in particular we handle edgiredicates in XPathand took
special care to document how to encode or approximate dexgrartant XPath idioms
that were lacking from the formal presentation. On a prattievel, we have validated
our approach against state of the art query engines, usatigtie queries and data sets. In
particular, not only did we test against an efficient main ragnguery engine (Saxon) but
also demonstrated that our approach can be used to impmwetisnes by a double digit
factor, the performances of an already very optimized tisked XML database such as
MonetDB/XQuery.

Future work will be pursued both at a formal and practicaklevAt a formal level,
one of the main shortcoming of our approach is its relianc¥iath syntax. Indeed, even
though we managed to isolate a fragment of XPath that we doutdally reason with, it
still leaves us with a syntax-directed approach. The probiéth this is twofold. First, it
makes the proofs and the specification of algorithms quiti®tes and unnecessarily intric-
ate. Second and more importantly, our pruning inferencerdlgn might yield different
type projectors depending on the syntax of the original yuleor future work, we would
like to tackle a semantic based approach. In particularétmseworthwhile to consider
more theoretically sound formalisms for tree queries siHa instance, MSO formula
or tree automata. The latter in particular would allow usstiase our pruning algorithm for
pattern-matching based languages (such a€fece language [1] and its pattern-based
query languag€QL [28,[6,[14]). It is also known that tree-automata (as welMSO
formula) have better closure properties than XPath exjmessand support fine-grained
set-theoretic operations (intersection, union, complinthat have been used with suc-
cess to devise very precise type-systems for XML [22].

At a practical level we would like to see a tighter integratioetween document-
projection and query engines. Firstly, although quite efuour experiments show that
even a carefully designed indexed system such as MonetDBeaefit from document
pruning. It seems interesting to develop further such mielary results and design a pro-
jection aware XML index. In other words we would like to bealbd equip any native
XML query engine optimizer with a type-projector componeht particular, one could
think of an index consisting of the original document togetWith its projected versions.
Textual data could be shared between the main document angrdfected ones which
would merely become a projected view of the tree structute@tiocument. We make the
hypothesis that the overhead of such pruned tree structuralsl be quite small compared
to the size of an XML index while providing significant speegin query answering time.
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Secondly, coupling our projection algorithm with early guanswering techniques
would allow us to achieve further pruning, especially whemtime conditions are involved.
For instance we could use our type-inference algorithm terde@ne on what type of ele-
ments a given built-in function is applied to; for instannen expression such as

contains(.//*, "foo").
This information could then be used at loading time to dideements that do not match
the predicate.
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A Detailed proofs

LEMMA ((B3)) Let mbe a type projector fof.,E). Then for every tree &5 (,E) it
holds(t\5m) <t.

Proof 1 The proofis a straightforward induction on t.

LEMMA (ERASURE PRESERVES LOCALITY(34)) Let(.#,E) be a local tree gram-
mar and(.’,E’) a regular tree grammar. If.’,E’) <: (*,E) then(.’,E’) is a local
tree grammar.

Proof 2 By contradiction, suppose that”’, E’) is not a local tree grammar. By Defini-
tion[Z12,.7’ C . therefore || < |7 < 1.

e Then, either there exist two competing rulessA[r;] and B— I[r[] in E’. Then
by definition of erasure, there exist two rules-Al[ra] and B— I[rp] in E such
that r = ra|n, and r, = rp|n, for some N € Names(ra) and N, € Names(rp,). But
then these two rules share the same label |, and therefore@meting one with
the other, which contradicts the fact tha?’,E) is a local tree grammar.

e Or there exists two rules & l[r;] and C— I[rp] in E’ with the same left hand-
side (and distinct labels). But then, by definition of erasuhere exists two cor-
responding rules in E, G I[r}] and C— I’[r] such that r =r{|n,i € {1,2} for
some names;NTherefore there are two rules in E with the same left-hadé,si
which contradicts the fact thgt”, E) is a local-tree grammar.

O

LEMMA (ERASURE PRESERVES SINGLEYPEDNESS(3.H)) Let(.”,E) be a single-
type tree grammar and.’,E’) a regular tree grammar. If.’,E’) <: (,E) then
(.,E') is a single-type tree grammar.

Proof 3 By contradiction suppose th&t”’ E’) is not a single-type tree grammar and
proceed by case analysis:

e either there exist two competing non terminals A and B But by definition of
erasure,’ C . and(.%/, E) has two competing start symbols, which contradicts
the hypothesis thgt”, E) enjoys the single-type property.

e orthere exists arule X+ 1[ 1’ | and there exist two competing non terminals A and
B in Names(r’). Since(.",E’) <: (., E), then there exists X |[ r | such that
r’ =r|n for some NC Names(r). But that means that A and B are Names(r),
which implies that.,E) is not a single-type tree grammar, thus contradicting
our hypothesis. O
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LEMMA (UNION CLOSURE OF LOCAL TYPE PROJECTOR$3.6)) Let(.,E) be a
local tree grammar. Let 71, E;) and(.#%, E;) be two tree grammars such tha?, E;) <:
(“,E) and(.%2,Ep) <: (<,E). Then(1U.%2,E1 UEy) is a local tree grammar.

Proof 4 Consider(.71U.¥, E; UE,) and suppose, by contradiction, that it is not local.
First, remark that by definition of erasure?; C . and.%, C ., therefore, U %% C
. and consequently”; U.%%| < |.¥| < 1. Second:

e either we have two rules A I[rz] and B— I[rp] (with A and B distinct). By
Lemmd 34 we know th&t”,E;) and (2, E») are local tree grammars. Then it
must be that one of two rules at issue ig.if, E1) and the other if.%,, E,), oth-
erwise one of the two grammars would not be local (it wouldehiéne competing
pair in its rules). Without loss of generality we can supptis A— I[ra] € E;
and B— I[rp] € Ep. Since(.¥1,E;) <: (., E), then by definition of erasure there
exists a rule A I[r}] € E with ra = r|n for some NC Names(r}). Similarly,
there exists B+ |[r]] € E with r, = rj |y for some NC Names(r;,). But then, this
means that we have two competing rules in E, which contradiet hypothesis
that (., E) is a local tree grammar.

e or, there are two rules G- |[r1] and C— I’[r] with the same left-hand side and
distinct labels in EUE,. Similarly to the previous case, we must have:Cr;] €
E; and C— I'[ry] € Ey, otherwise(.#1,E1) or (.#2,E») would not be local. But
then by definition of erasure, it means that there exists wes; C— I[r}] € E
and C— I'[r}] € E such thaty=r{|n,,i € {1,2} for some names;NThis means
that there are two rules in E with distinct labels and the ségfichand side, which
contradicts the assumption tha?”,E) is a local tree grammar.

O

LEMMA (UNION CLOSURE OF SINGLETYPE TYPE PROJECTORE3.1))

Let(.7,E) be a single-type tree grammar. Le¥1,E;) and(.%2, Ez) be two tree gram-
mars such that.71,E1) <: (.,E) and (.%2,Ep) <: (/,E). Then(.#1U .2, E1UEy) is a
single-type tree grammar.

Proof 5 Consider(.#1U.%%,E; UE,) and suppose by contradiction that it does not en-
joy the single-type property. This implies that there exastrule X— I[r], such that
Names(r) contains two competing non-terminals A and B. Moreover, émind 3.b
we know that.#1,E;) and (2, E,) are single-type tree grammars. Therefore-Xl[r]
cannot be in E nor in E; because they have the single-type property. The only saluti
is that there exists a rule X |[r1] in E; with A€ Names(r;) and X— 1[ry] in Ex with

B € Names(r,), and that r=r1|r, (remember that we identify two rules with the same
left-hand side and the same label by merging them into a singk). Therefore, by
the definition of erasure, there exists a rule-XI[r{] in E such that Ac Namesr/).
Similarly, there exists a rule X» I[r] in E such that B Namesr}). Since we identify
such rules, there is a rule X 1[r}|r5] in E. But then, this rule contains both A and B
which are competing. This contradict the hypothesis thdt E) is a single-type tree
grammar. 0

LEMMA (ERASURE PRESERVES LOCALITY[3.4) Let(.#,E) be alocal tree grammar
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and (.’ ,E’) a regular tree grammar. If.¥' E') <: (,E) then(',E’) is a local tree
grammar.

Proof 6 By contradiction, suppose that”’,E’) is not a local tree grammar. By Defini-
tion[Z12,.7’ C . therefore || < || < 1.

e Then, either there exist two competing rulessA[r;] and B— I[r}] in E’. Then
by definition of erasure, there exist two rules-Al[ra] and B— I[rp] in E such
that r = ra|n, and r, = rp|n, for some N € Names(ra) and N, € Names(rp,). But
then these two rules share the same label |, and therefore@meting one with
the other, which contradicts the fact th@¥’,E) is a local tree grammar.

e Or there exists two rules € |[r1] and C— I’[r] in E’ with the same left hand-
side (and distinct labels). But then, by definition of erasuhere exists two cor-
responding rules in E, G I[r}] and C— I’[r] such that r =r{|n,i € {1,2} for
some names;iN Therefore there are two rules in E with the same left-hadé,si
which contradicts the fact thgt”, E) is a local-tree grammar.

O

LEMMA (ERASURE PRESERVES SINGLEYPEDNESS(3.H))
Let (./,E) be a single-type tree grammar arjd”’,E’) a regular tree grammar. If
(" E') <: (S,E) then(.””,E’) is a single-type tree grammar.

Proof 7 By contradiction suppose th&t”’ E’) is not a single-type tree grammar and
proceed by case analysis:

e either there exist two competing non terminals A and Bh But by definition of
erasure,’ C . and(.#, E) has two competing start symbols, which contradicts
the hypothesis thgt”, E) enjoys the single-type property.

e orthere exists arule X+ 1[ 1’ | and there exist two competing non terminals A and
B in Names(r’). Since(.",E’) <: (., E), then there exists X |[ r | such that
r’ =r|y for some NC Names(r). But that means that A and B are Names(r),
which implies that.,E) is not a single-type tree grammar, thus contradicting
our hypothesis. O

LEMMA (UNION CLOSURE OF LOCAL TYPE PROJECTOR$3.6)) Let(.,E) be a
local tree grammar. Let71, E;) and(.#%, E;) be two tree grammars such tha?, E; ) <:
(,E) and(.%2,Ep) <: (<,E). Then(1U.%2,E1 UE,) is a local tree grammar.

Proof 8 Consider(.71 U.%,,E; UE,) and suppose, by contradiction, that it is not local.
First, remark that by definition of erasure?; C . and.%, C ., therefore, U %% C
. and consequently”; U.%%| < |.| < 1. Second:

e either we have two rules A> I[ra] and B— I[rp] (with A and B distinct). By
Lemmd 3.4 we know théat1, E;1) and (.2, E,) are local tree grammars. Then it
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must be that one of two rules at issue ig.if, E1) and the other if.%,, E,), oth-
erwise one of the two grammars would not be local (it wouldehiéne competing
pair in its rules). Without loss of generality we can supptis A— I[ra] € E;
and B— I[rp] € E,. Since(.71,E;) <: (,E), then by definition of erasure there
exists a rule A I[r}] € E with ry = r|n for some NC Names(r}). Similarly,
there exists B+ |[r]] € E with r, = rj |y for some NC Names(r;,). But then, this
means that we have two competing rules in E, which contradiet hypothesis
that (., E) is a local tree grammar.

e or, there are two rules G- |[r1] and C— I’[r2] with the same left-hand side and
distinct labels in EUE,. Similarly to the previous case, we must have:C[r;] €
E; and C— I'[ry] € Ey, otherwise(.#1,E1) or (.2, E») would not be local. But
then by definition of erasure, it means that there exists wes; C— I[r}] € E
and C— I'[r}] € E such thaty=r{|n,,i € {1,2} for some names;NThis means
that there are two rules in E with distinct labels and the sagfichand side, which
contradicts the assumption tha?’,E) is a local tree grammar.

O

LEMMA (UNION CLOSURE OF SINGLETYPE TYPE PROJECTORY3.7)) Let(.7,E)
be a single-type tree grammar. Lie¥1,E;) and (%2, E;) be two tree grammars such that
(#,E1) < (V,E) and(#, Ep) <: (7,E). Then(.#1U.%2,E1 UEy) is a single-type tree
grammar.

Proof 9 Consider(.#1U.%%,E; UE,) and suppose by contradiction that it does not en-
joy the single-type property. This implies that there exsstrule X— I[r], such that
Names(r) contains two competing non-terminals A and B. Moreover, émind 3.b
we know that.#1,E;) and (2, E,) are single-type tree grammars. Therefore-Xl|r]
cannot be in E nor in E; because they have the single-type property. The only saluti
is that there exists a rule X I[r1] in E; with A€ Names(r;) and X— 1[ry] in Ex with

B € Names(r,), and that r=r1|r, (remember that we identify two rules with the same
left-hand side and the same label by merging them into a singk). Therefore, by
the definition of erasure, there exists a rule-XI[r{] in E such that Ac Namesr/).
Similarly, there exists a rule X» I[r5] in E such that B Namesr}). Since we identify
such rules, there is a rule X 1[r}|r5] in E. But then, this rule contains both A and B
which are competing. This contradict the hypothesis thdt E) is a single-type tree
grammar. 0

LeEmmMA (B2) Lett be a treej-valid with respect to the schenta”,E). For every
SC lds(t) and typet, if 3(S) C Dn(1), then

1. 3([Axidt(S)) C Dn(Ag(1,Axis))
2. J(S: :tTesh C Dn(Tg(1, Tesh)

Proof 10 The proof is done by case analysis on the possible axes (§pid tests (for

(2.)):
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1. We only need to consider tkelf and descendant axes. Indeed¢hild is an
instance oflescendant, andancestor andparent are the dual ofiescendant

andchild respectively.

self: By Definitiof4.B, we have thsel£]:(S) = S, thereforgi([sel£]:(S)) =
3(S). By Definition[5.1L Ag(T,self) = 1. SinceJ(S) C Dn(1) by hypo-
thesis, we can conclude that
J([self]i(S)) C Dn(Ag(T,self))

descendant: we supposé’ € [descendant]i(S). Let us show thafi(i’) €
Dn(Ag(7,descendant)). If i’ € [descendant]; (S) then by Definitiol 413:

Ji € 1ds(t) such that(i,i’) € Edg(t) "

By definition ofEdg this means that there exists a sequeigci, . . . iy such

that t@ix = I[...t"...] andRootld(t") = iy, 1, Withip = i andi, = i’. Said
differently,ig,is, . ..,in is the path fromi to its descendarit in the tree t that
we consider.

Let us now call X=J(ix). For all k, there is a rule X— R« € E such that
Xk11 € Names(Ry) (since t isJ-valid with respect to E and by Definitibn2.8).
Hence, there exists a chaip % ... = X, with Xy in 3(S). By hypothesis,
J(S) C Dn(1), therefore % € 1. Since X =g ... = Xn, by Definitio4.B
we have X — R, € Ag(T,descendant). But since, X= J(i’), we have

J(i") € Dn(Ag(T,descendant))
and therefore

J([descendant];(S)) C Dn(Ag(T,descendant))

2. By case on the test:
node: By Definitiof 4.2 we have:
node: :;S=S

By Definition 5.1l we havég(T,node) = 1. SinceJ(S) C Dn(1) by hypo-
thesis, we have that:

J(S: :tnode) C Dn(Tg(T,node))

a (for some element name): supposei € a: :tS. Let us show thafi(i) €
Dn(Tg(t,a)). By Definition 4.2, we know tha@i = a[f] for some forest
f. Since t isJ-valid with respect to E, thefi(i) = Y and there exists a rule
Y — a[R] in E. Since € S, we also have thdt(i) € Dn(t) (by hypothesis).
By Definitior[5.1, since ¥~ a|R] € 7, then Y— a|R] € Te(1,a) and there-
foreJ(i) =Y € Dn(Tg(t,a), hence

J(S::xaC Dn(Te(1,a))

text: similar to the previous case.
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LEMMA (TERMINATION OF TYPE INFERENCE(G.H)) Let(.#,E) be a type, P a path,
andZ and¥’ two environments. If there is a derivation for the judgm®hte P: ¥/, then
this derivation is unique and finite.

Proof 11 Uniqueness of the derivation is immediate, since the rulesyntax-directed:

at each step, at most one of the rules applies (if no rule agplihere is no derivation
and the output type igy). Finiteness can be shown by a simple induction on the length
of the path, noted(P), that we define as follows:

I (Axis:: Tes) =1

|(Axis: Tes{C]) = 1+PZC|(P)
I(P/P') = I(P)Jerl(P’)
|(P|P) = I(P)+I(P)

Basic case:The query has length 1, meaning it is a single step withoudipate. Then
the only rules we can apply afdown-axis), (up-axis) or (test). These rules have
no premise, therefore the derivation is finite and has lerdgth

Inductive case: If the query has several steps, then the r(geguence) applies. The
lengths of the queries in the premises of the rule are syrletls than the length of
the query in the goal, by definition df ). By induction hypothesis both premises
have a finite derivation, therefore the goal can be deriveati wifinite derivation.

Similarly, if the query is a top-level union, the typing rgiaion) applies.

If the query is a single step with a predicate, then r(peedicate) applies. We
should first remark that there is a finite set of rulesXig, and a finite number
of path n in Cond. Thus, there are exacfly,,| x n premises for this rule. For
each one of these premises, the paghi®such that (Pj) < |(P), by definition
of I(_). By induction hypothesis, every premise has finite deowatherefore the
judgment in the goal of the rule has a finite derivation.

O

THEOREM (SOUNDNESS OF TYPE INFERENCHB.6)) Let(,E) be atype and P a
path. Letg={X - R| X - Re E,X € /}. If (Eo,Ep) e P: (T,K) then:

Dn(7) 2 [ JI([P]:(Rootld(t)))

t€3(-}/},E)

Proof 12 We consider the following, more general judgment:
(1,k) Fe P: (T',K")
We show simultaneously the following properties:
1. Soundness : for all treeX-valid with respect tq.~,E) and all set SC Ids(t), if
3(S) € Dn(T) then:
3([Pt(S)) € Dn(t")

2. Context well-formedness, if

K={Y—=R|VZeDn(1),X=¢Y =¢ Z}
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then
K'={Y = R|VZeDn(t),X=£Y=¢Z}

Property 1 is a generalization of the soundness property l@geoving. Given a set of
context nodes S whose types are jthe type of[P];(S) is in T’. Property 2 states that
the algorithm preserves the well-formedness of contextspive both properties by
induction on the depth of the typing derivation, which istéifiy Lemm&T®5l5:

Base case:

(down-axis): Property 1 is true by a direct application of Lemial5.2. Prap@
holds by definition oRg(_,_)

(up-axis): By Lemm&®’l2: -
J([Axis::node]t(S)) C Dn(Ag(T,AXis))

We must now show th&t([Axis::node]t(S)) is in ., for it to be in the
intersection of both. Sinceis a well-formed context:

K={Y—=R|VZeDn(1),X=¢Y=¢Z}
Let us first consider the case Axisancestor. By Definitio[4.B:
[ancestor:node]t(S) = {i’ | i € SA(i’,i) € Edg" (1)}
Thus
J({i"|ieSA(i,i)eEdg"(t)}) ={Y|Z€I(SAY =¢ Z}
Since we supposédsS) C Dn(1), then clearly:
{Y S RZEI(SAY =¢ Z} Ck

thus
J(JAxis:: node](S)) € Dn(Ag(1,AXis) NK)

which proves Property 1. The case for thgatent” axis is a particular
instance of ‘ancestor”. As for Property 2,k is the set of rules used to
derive the context node tyge Ag (K, Axis) is the set of all the parent rules
(or ancestor rules) of the rules in. Consequently, the intersection is still a
well formed context.

(test) : Similarly to the case of Rul@own-axis), Property 1 is a direct applica-
tion of Lemm&5J2. For Property 2, we can remark that

K" =Kk NAg(Te(1,Tesh,ancestor)

contains all the rules leading to a nodeirfor which Test succeeds (includ-
ing the ones of the selected node), therefore it is a welhéat context.

Inductive case:
(predicate) : Let us consider:
[self:node[ OrjAndy Py 1]:(S)
By Definitio 4.}, we have
[self:inode[ OrjAndy Py 1[i(S) = U i

ieT
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where T is the set of ids satisfying the predicate:

T = {ili e SA\/ AIPile ({i}) # @}
ik

Let us consider € T. We have thate S, and since is part of anJ-valid
tree t, there existsiX= J(i) and an associated rule; %= R;. We apply the
induction hypothesis on:

({X — R}, Zewx) Fe P - 2K
therefore we have
(Pl ({i) € =5
Consequentlyzit’;‘p is not empty: X— R, € T’ (the output type). So
J([self:nodel[ OrjAndy Py 1]t (S)) C Dn(T')

which proves Property 1. Property 2 holds for the same arguras in rule
(test).

(sequence): Property 1 is true by induction hypothesis on both premigasp-
erty 2 is true for the first premise, by induction hypothelsigarticular, =/,

is a well-formed context. We can then apply the inductiorotiygsis or>”
and we have that’_is a well-formed context too.

ctx

(union) : is similar to the previous case.

LEMMA (WITNESS OF A GRAMMAR (5.8)) Let(.#,E) be a non-recursives-guarded,
parent-unambiguous local tree grammar. There exists a a@ru t,J-valid with respect
to (.,E) such that:

vX € Dn(E),Ji € lds(t) such thati(i) = X

we call such a documentwitnessof the schem&.~ , E).

Proof 13 Since the tree grammar is non recursive and parent unambiguave can
prove the lemma by inductioh)(on the height of the grammar, seen as a DAG.

Basic case:the grammar has height 1. It consists therefore of a single. rihe rule is
either X— String and a document & a suitable witness; or the rule is X% a[ |
for some label a and the documenjais a witness of the grammar.

Inductive case: Consider({X},E). The rule for the start symbol X is X afry-- -y
for some label a (since E is-guarded, the rule must have this shape). We show
by induction (1) on the structure of the regular expressigrhat there is witness
for this regular expression.

Basic case:Either r; = €, and therefore the empty foregf is a suitable wit-
ness. Or y=Z. Then consider the grammé&fZ},E’) where E = {Y —
R|Y = ReE,Z={Y}, thatis the restriction of E to Z. Then, height) <
heightE) since at least the rule associated with X is not in{@&d because
E is not recursive and parent unambiguous). Therefore, Qydtion hypo-
thesis () there exists a witnesgfor Z.
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Inductive case: Either r; = (r{|r')* and by induction hypothesisl{, there is a
witness t for r/ and {’ for r{’. Then, the forest 1t is a witness for ir (the
first iteration ofx matchesjtand the second one matchgg t
Orri = (r{)x and 1 is not a union. Then by induction hypothesig (there
is a witnesstand { is also a witness forir Or r; = r{r/. By induction
hypothesisl(), there is a witness for r{ and {’ for r{’. Then, the foresf t”
is a witness for .

Therefore, for each;there is a withess.tThen the tree g ... ty] is a witness of
the rule X— afry...rnl.

O

COROLLARY (59) Let ({X},E) be a non-recursive;guarded, parent-unambiguous
local tree grammar and t be its witness. &t ..., Y } CDn(E). If Y1 =€ ... =& Yy, then
there exist{iy,...,in} C 1ds(t) such that

Vie{2...n}, ((ii-1,0i) € £(1)) AT(idi—1) = Y1 AT(ii) =¥

Proof 14 This is a direct application of Lemmia_5.8. We know that for Malk
Dn(E), i € lds(t)such thati(i) =Y. This is true in particular fo{Yi,...,Y,}. Con-
sider Y and Y, 1. We have Y=t Yi;1 which means that in E, there is a rule-¥ a[ri]
for some label a and with;Y; € ri. Consequently,@i; = a...,idi,1,...]. Therefore,
(ij,lji41) € &(1). O

THEOREM(COMPLETENESS OF TYPE INFERENCE5.10)) Let(7,E) be ax-guarded
non-recursive and parent unambiguous local tree grammad, & a path. Let

Eo={X > R|X >ReE, Xe.7}.

If (Eo,Eo) Fe P: (7,K) then:

Dn(r) € [ Ji([Pl(Rootid(t)))

tesE

Proof 15 Like for the proof of Theoreiln 8.6, we consider the followimgre general
judgment:
(1,k) Fe P: (T',K")

let t be the witness of E. We show thabif(1) C J(S) then,Dn(t") C J([P]:(9)). If

this holds for the witness t then it holds for the union of eesJ-valid w.r.t to E (which
contains t). Informally, this means that if the typ&describes precisely” the nodes in
S, that is, if there are no unneeded rulegjrthen the type’ describes exactly the result
of the query: for each rule in’, there is a node in the result of the query typed by that
rule. We proceed by induction on the depth of the typing déon:
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Basic case:

(down-axis): self axis: We suppose®n(7) C J(S). We haver’ = Ag(T,self) = T.
We also have:
[self:inodeli(S)=S

by Definitio41L. Therefor&n(t’) C J(S) and so

Dn(t") C J([self:node]i(S))

descendant axis: Let us consider names, X Dn(r) and Y €
Ag({X},descendant).By Definition[5]l, we have that X-£ Y. By using
Corollary 5.9, we have that there exists a sequengg:..,in in t such that
X =7(i1) and Y= 7J(in). We also have that

Vie{l...n—1}, (ij,ijr1) € &)
thus(i1,in) € & (t) and therefore that

in € [descendant ::nodel;({i1})
Subsequently:

Ae({X},descendant) C J([descendant ::nodef;({i1}))

child axis:is a particular instance of the previous case.

(up-axis) We only treat the case of thencestor axis, of which theparent axis is
a particular instance. This case is the symmetric ofdeecendant axis. Let
X € Dn(7). LetY e Ag({X},ancestor) Nk. By Definition[ 5.1, we have that
Y =¢£ X (and becauseis a well-formed context). By using Corolldry 5.9, we
have that there exists a sequenge: .., in int such that Y= J(i1) and X= J(ip).
We also have

Vie{l...n—1},(ij,ij+1) € &(1))
thus(i1,in) € & (t) and therefore

in € [ancestor::nodeft({i1})
Thus, we have
Ae({X},ancestor) C J([ancestor::nodeft({in}))

We must also show that if & k then

Y € J([ancestor::inodeft({in}))

(because the output type is intersected with the contexhferrule). This is an
immediate consequence of the well-formedness of conkeigsvell-formed only
if K € TUAE(T,ancestor).

(test): is similar to the caseelf of Rule(down-axis).
Inductive case:

(predicate) Suppose Xe Dn(T) (there is a unique rule with as left hand side, since
we consider a local tree grammar). We consider the premise:

({X; — Ri},K) |_E ij . Zijk
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Let us consider a set & S. By induction hypothesis,{iK} C J(S) thenzit’;‘p C
J([Pk]t(S)). There are two cases.

EitherJ; mkz‘g}; = @. Then, X¢ Dn(1’) (the output type). But if this is the case,
because the type-system is sound (cf. Thebrem 5.6), then:

Vij such thati(ij) = X, [Pi]t ({ii}) = @ and therefore
Zap = [Pl ({ii}) = 2

Or U; Nk o, # @ and sinces 6, € 3([Pil:(S)), this means thafPi](S) # @

typ typ =
and therefore that

S C [self:inode[Condl]i(9)

Since Xe 3(S), X € J([self:inode[Condl];(S)). Lastly, we remark that for
each Xthe set Sis not empty. This is a consequence of Lefima 5.8, for each name
Xi, there is a nod@ in the witness.

(sequence): By applying straightforwardly the induction hypothesistbe premises.
(union) : By applying straightforwardly the induction hypothesistbe premises.

O

LEMMA (TERMINATION OF TYPE-PROJECTOR INFERENCH5E.13)) Let (., E) be a
type, P a path, and and 3’ environments. The judgmebti-g P : ¥’ has a unique and
finite derivation.

Proof 16 The uniqueness of the derivation follows from the fact thilathe rules are
mutually exclusive (although not strictly syntax diregtddhnks to their side conditions.
To prove termination, we need some more care than for theityerence algorithm.
For the judgment:
SheP:¥

we give it as weight the tripld (P),r(P), |Z4,|) ordered lexicographically, where:
[(P) is the length of the path P, as defined previously

r(P) is the number of occurrences of a recursive step, that is timeber of occurrences
of descendant ::node Of ancestor ::node in the P

|Z¢yp| is the number of rules in the input

The proof is straightforward and consists that for evenertile weight strictly decreases
in the premises:

Basic case:the base of induction is an application(@kstep) or (p-erase) does not have
any premises.

Inductive case: For the rules(p-union), (p-test) and (p-predicate), the weight strictly
decreases in(P) in the premises. For the rul@-iterate), |Z,,,| strictly decreases
in the premises, since in the conclusion the weight has at tea for this compon-
ent and exactly one in each of the premises. Also, P is un@thinghe premises
therefore [P) and r(P) do not increase. For the rul-many), the I(P) partis un-
changed in the premises sinddéscendant ::node/P) = |(child::inode/P) =
1+1(P) and r(P) decreases strictly.

O
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LEMMA (WELL-FORMEDNESS OF TYPEPROJECTOR INFERENCHGE.13)) Let(.,E)
be a type, 7/, andk sets of rules, and P a path. (f,k) IFg P: 7/, then(T,k) Fg P:
(1", k") impliesk” C T'.

Proof 17 We use a structural induction on the derivation(afk) I-g P : 7/ which is
finite by Lemm&5.12.

Basic case: The property is trivially true for the rulép-step) since the result is the union
of the output type and its associated context.

Rule (p-erase) can only be applied if the side conditions of the other rubgk f
which means in the case where the judgnienk) g P: (1”,k”) does not hold.
Therefore the lemma is true too in that case.

Inductive case:

(p-union) We supposér, k) e PP : (17, k). This means that the typing rufenion)
(cf. Figure[) holds and that:

(T,) Fe PL: (17,K7)

and
(T,K) Fe P2 (15, K7)

let P, produce a type-projector; and B producet;; by induction hypothesis
ki C 11 andky C 15. But sincex” = k{ Uk5, we havex” C iU, =T/

(p-iterate) similar to the previous case.

(p-test) we suppose
({Y = R},K) Fg self:TesyP: (1”,k")

According to thetest) typing rule, this means that:
({Y — R},K) e self::Test: (11,K1)

and
(t1,K1) FE P (T7,K")

the induction hypothesis can be applied on the second peeoiithe rule(p-test)
and we have 1y, k;) IFg P: 7/ with k” C 7. Sincet’ C {Y — R}UT/, we have
k" C {Y — R}UT which proves this case.

(p-predicate) similar to the previous case, we can observe that the corgsutting of
the typing of the first step is passed as argument for theanfar of the projector
of the remainder of the path.

(p-single) similar to the previous case.

(p-many) we only treat the case for Axis descendant, the case forncestor being
similar. We suppose:

({Y — R},K) e descendant ::node/P: (To, Ko) (*)
and we want to show thap C {Y — R}UT'UT". Let us write:

({Y = R},K) e descendant ::node : (T1,K1) (1)
({Y = R}UT1,K) FE child:inode: (T2,K2) (2)
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thent; = T ank; = K». Indeed:

71 = Ae({Y — R},descendant)

(1) K1 =T1UK
B T, =Ae({Y = R} UTy,child)
Ky = ToUK

by definition ofA (_,_):

p—)

(1){ n={Y=>R|Y=£Y}

K1 =T1UK
L=J{Y'=>R|Y=gY"}

2 { {Y'=R | Y=£YJU{Y=R}
Ko =ToUK

by transitivity of=-g, (2) becomes:

L=(J{Y'=>R'|Y =gY"}
{Y=R [ Y=¢Y'}

L={Y->R|Y={Y}=10

Ko =ToUK=T1UK =K1
therefore, for the path P

({Y = R}UT1,K) Fg child:inode/P: (To,Ko)
by application of thésequence) typing rule. We can finally remark that
({Y = R}UT)NT',K) g child:node/P: (To, Ko)

all the rules insty \ T’ yield an empty projector. Therefore

(',K) g child:inode/P: (To, Ko)

which allows us to apply the induction hypothesis on thedtipremise of(p-
many), which gives uo C 1, and thereforexo C {Y - R}Ut’ UT1”

O

THEOREM (SOUNDNESS OF TYPEPROJECTOR INFERENCHS.14)) Let (., E) be a
type and P an XPaftguery. Let S be the set of rules=S{X — R| X € .#}. If

(SSIFeP:T

thent is a type-projector fof.#, E) and for every t5 (., E) we have:

[P\, (Rootld(t)) = [P]:(Rootld(t))

Proof 18 By simple structural induction on the path. O
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THEOREM (COMPLETENESS OF PROJECTOR INFERENOE.18)) Let (%,E) be a
x-guarded, non-recursive, and parent-unambiguous load grammar, and P a strongly-
specified XPathpath. Let S be the set of rules=S{X — R| X € .7}. If

(SSIFeP:1

then there exists €5 (., E) such that for each ¥»> Re 1, if m=1\ ({Y = R}U
Ae({Y — R},descendant)), then:

[Plt\, n(Rootld(t)) # [P]t (Rootld(t))

Proof 19 By induction on the length of the typing derivation whichngé. We use The-
orem[5.10 to show that if we remove a name Y inferred by theity@ence algorithm,
then we remove nodes from the result of the query appliedeti@ibiected document.
The fact that P is strongly specified is used for the treatnoémpiredicates. Indeed, it
forces any path in a predicate to be matched exactly by one.rbd path in a predicate
could be matched by two (or more) nodes, then removing onlgeafiddes would not
change the semantics of the query, since there would stéltede present to make the
predicate succeed. We illustrate this in the example hexeaf O

B Text of the XMark and XPathMark queries
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| Base and inductioh

> g Step: (1,K) 2IFePriTy e Pt

-st if -union
(p-step) — i —eprox 172 @ ) SIFe PP iU
(p-erase)m if no other rule applies
X1 —Rih,k)IFEP: T — JK)IFEP: Th
(p-iterate) ({Xa =R} k) FEPI Ty (0 2> Rb k) IFEP T o o
(X1 =Ry . Xn =R}, K) ke P [ 1
i=1l.n
Path Rules
Y - R}HK) - 1f::Test: 2 2IFeP:T .
(p-test) d }oK) e se E if Ztyp # @
({Y = R},K) kg self::TesyP: {Y - R}UT
SheP:T

({Y = R},K) Fg self::node[OirArl;dP,j 1:% SheRj:Tj if Syp#9
(p-predicate)

({Y = R}, k) g selfinode [Or AndRj1/P: {Y —» RfutUJ|JTij
i ] P

({Y — R},K) Fg Axis:: node : (T,K’)
Gori=1.n) ({X = R}L,K)FeP:Z (T ,K)IFgP: 1"
({Y = R},K) IFg Axis:inode/P: {Y = RjUT' UT"

(p-single)

)

(*) where Axise {parent,child}, T = {X; — Ry,...,Xn = Rn},

U={X—R|i=1n 5 +#0} 140 andl £2

({Y — R}, k) Fg Axis:: node : (T,K’)
(p-many) . _
(fori=1.n ({X — R}, k") g Axis:inode/P:%' (T/,k’) IFg s(AXis) ::node/P: 1"
({Y = R},K) IFg Axis:inode/P: {Y - RjuT UT”

)

(**) where Axise {ancestor,descendant},
T={X1 > R,.... %0 =R} T={Y 5 RIU{X >R |i=
L.n, Zityp #@},1# 3, T # &, s(descendant) = child, and
s(ancestor) = parent.

Figure 2: Inference rules for type-projectors
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F(count (Q)) = P(Q)

F(last(Q)) = P(Q)

F(position(Q)) = P(Q)

F(string(Q)) = P(Q)/descendant-or-self ::node[text()]
F(number (Q)) = P(Q)/descendant-or-self ::node[text()]
F(not (Q)) = P(Q)

F(true() = {self:node}

F(f alse()) = {self:node[self:aandself:bl}
F(f(vi,...,Vn)) = {self:node} wherey;isavalue

Figure 3: Approximation of XPath functions

2.

E(O,r,m) = O
E(v,[,m) = O
E((Ql’qZ)!r!m) = E(Ql!r!m)UE(q21r1m)
E(<tag>g</tag>,l,m) = E(qlm
E(x,I,1) = U {P/descendant-or-self ::node}
(x;P)er
E(xI,0) = U
(x; P)elr
E(Pathl",1) = {Path/descendant-or-self ::node}
E(Pathl",0) = {Path}
E(FLOWR/P,I",m) = E(FLOWRI,m)/E(P,[,m)

E(Step'P,l,m)
E(StepCond/P,I",m)

Step E(P,I",m)

(U  stepq) /E(P,Fm)
geE’(Condl’,m)

E(if q then (; else (p,I,M) E(q,l,0)UE(qy,,m)UE(ge,I",m)

E(let $x := g return gp,l,m) = E(q,M Ul m)

wherel = {(x;P) | P € E(q,M

E(for $x in g return gp,l,m) = E(qy,l,0)UE(qe,M UT’,m)
wherel = {(x;P) | P € E(q,M

E’(Cond, op Cond,I",m) = U U {qop d}
geE’(Cond,,I’,m) ' €E’(Cond,I",m)

whereop € {and,
E’(Expr; cmp Expg,I",m) = U U {q cmp d}
geE’ (Expry,I’,m) o €E’ (Expr,,[",m)
wherecmpe {=,1=,<,> >=
E’ (Arithy op Avrithp,I",m) = U U  {aopd}

geE’ (Arithy,I",m) g €E’ (Arithp,I",m)

whereop € {+, -, *,div,n
E’(f(Expry, ..., Expry ),l,m) = U U {fla....,
qi€E’(Expry,IF M(f,1))  go€E’(Expr,,[,M(f,n))
E’(AtomI",m) = E(AtomI,m) Atom# f(qi,...,0n)

Figure 4: XQuery path extraction

0)}

0)}

58



M (count, 1) =0 M(string,1) = 1
M (last,1) =0 M (number,1) = 1
M(position,1) = O M (not,1) = 0

Figure 5: Value of the parametarfor various built-in XPath functions

59




09

salanb

YeNyredX pue ey ‘@zis o)1 reulblio sy Jo waoiad ul onel Buiunid :9 ainbi4

10.00 27.356

9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00 ~
0.00

% of the original size

MOl M02 MO03 MO04 MO5 MO06 MO7 M08 M09 M10 M1l M12 M13 M14 M15 M16 M17 M18 M19 M20
XMark Query

17.035 17.035 27.356

Al A2 A3 A4 A5 A6 A7 A8 Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 D1 D2 D3 D4 D5 E1 E2 E3 E4 E5 E6 E7 E8
XPathMark Query




Al1|A6|B1|B2|C3|C4/D1| D2 |[ES5|E7|M3|M6|M7|M14|M 15
(i) |3363336333633363336333633363 3363 336322423363 33633363 22423363
(i) | 447]67.6/50.5| 571|68.3| 137|65.5/297.2560.8| 605/92.8 9 | 121| 605|67.6

@ii)] 10| 9 | 3 |113] 9 | 23| 13| 59 | 12 |190| 18| 2 | 24 | 190| 65
(iv)| 20 | 17| 22 | 29| 17 | 5.8|12.1| 5.6 |12.3] 2.1| 9 |15.8/14.3]2.19| 7.5
(v) | 3.7]55(22(222/ 37| 8 | 54| 9.7 (744 22| 9 |18|49| 29 |15.2

@: Largest queryable document (MB). We stopped our testir33é8 MB
(ii):  Pruned size (MB)

(iii):  Pruned size for 671 MB (MB)

(iv):  Speed upx faster)

(v):  Memory use in % of original

Query answering time (s) Memory consumption (MB)
50

- 3000 M Original
E gr\glngl O Pruneﬂ
rune:
40 1

30 2000

L ll”hl -

JALLELELEE] | [EEEHTEEEL L

A M W 5N SN N 5 N & N IN IN = §
ISR A U N L - AR IR SR L R IR R IRS R R - R SRR IR

2

1=

1

=)

Query Query

Figure 7: Experimental results for the Saxon-b/XQuery eagi
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Figure 8: Experimental results for the MonetDB engine
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Al
A6
B1
B2
C3

Cc4
D1
D2
E5
E7

M3

/site/closed_auctions/closed_auction/annotation/description/text/keyword
/site/people/person[profile/gender and profile/age]/name
/site/regions/*/item[parent: :namerica or parent::samerical/name
//keyword/ancestor: :listitem/text/keyword

/site/people/person[profile/@income =
/site/open_auctions/open_auction/current]/name

/site/people/person[watches/watch/id(Qopen_auction)/seller/@person = @id]/name
/site/open_auctions/open_auction[(count(bidder) mod 2) = 0]/interval

count (//text) + count(//bold) + count(//emph) + count(//keyword)
/site/regions/*/item[preceding::item[100] and following::item[100]]/name

/site/regions/*/item[contains (substring-before(description,’eros’), ’passion’)
and contains(substring-after(description, ’eros’), ’dangerous’)]/name

for $b in $doc/site/open_auctions/open_auction

where zero-or-one($b/bidder[1]/increase/text()) * 2

M 6
M7

<= $b/bidder[last()]/increase/text ()
return
<increase
first="$b/bidder[1]/increase/text()"
last="$b/bidder[last()]/increase/text()"/>

for $b in $doc//site/regions return count($b//item)

for $p in $doc/site
return
count ($p//description) + count($p//annotation) + count($p//emailaddress)

M 14for $i in $doc/site//item

where contains(string(exactly-one($i/description)), "gold")
return $i/name/text()

M 15for $a in

$doc/site/closed_auctions/closed_auction/annotation/description/parlist/
listitem/parlist/listitem/text/emph/keyword/text ()
return <text>$a</text>

Figure 9: XPathMark (A-E) and XMark (M) queries

62




	1 Introduction
	1.1 State of the art
	1.2 Our contribution
	1.3 Plan of the article

	2 Notations
	2.1 Data Model
	2.2 Types and validation

	3 Type projectors
	3.1 Definition
	3.2 Closure properties

	4 XPath
	5 Static Analysis
	5.1 Type inference
	5.2 Type-Projection inference

	6 Extension to full XPath
	6.1 Handling XPath predicates
	6.2 Other XPath features
	6.2.1 and axes
	6.2.2 Sibling axes
	6.2.3 and axes
	6.2.4 Document node
	6.2.5 Absolute paths
	6.2.6 axis and attributes in the data-model and schema
	6.2.7 id() function


	7 Extension to XQuery
	8 Extension to other typing policies
	8.1 Handling un-typed documents
	8.2 Using regular tree languages as schemas

	9 Experiments
	9.1 Prototype
	9.2 Benchmark suite
	9.2.1 Data-set
	9.2.2 XPathMark queries
	9.2.3 XMark test suite

	9.3 Protocol
	9.3.1 Test machine
	9.3.2 Saxon-b/XQuery
	9.3.3 MonetDB/XQuery

	9.4 Experimental results
	9.4.1 Pruning precision
	9.4.2 Saxon-b/XQuery
	9.4.3 MonetDB/XQuery

	9.5 Interpretation
	9.5.1 Pruning precision
	9.5.2 Saxon-b/XQuery
	9.5.3 MonetDB/XQuery
	9.5.4 Comparison with related work


	10 Conclusion and future work
	A Detailed proofs
	B Text of the XMark and XPathMark queries

