
Protocol Specifications and Component Adaptors

DANIEL M. YELLIN and ROBERT E. STROM

IBM T.J. Watson Research Center

In this article we examine the augmentation of application interfaces with enhanced specifications
that include sequencing constraints called protocols. Protocols make explicit the relationship be-
tween messages (methods) supported by the application. These relationships are usually only
given implicitly, either in the code or in textual comments. We define notions of interface com-
patibility based upon protocols and show how compatibility can be checked, discovering a class
of errors that cannot be discovered via the type system alone. We then define software adaptors
that can be used to bridge the difference between applications that have functionally compatible
but type- and protocol-incompatible interfaces. We discuss what it means for an adaptor to be
well formed. Leveraging the information provided by protocols, we show how adaptors can be
automatically generated from a high-level description, called an interface mapping.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—systems
specification methodology; D.1.3 [Programming Techniques]: Concurrent Programming; D.2.1
[Software Engineering]: Requirements/Specifications; D.4.1 [Operating Systems]: Process
Management—concurrency

General Terms: Algorithms, Design

Additional Key Words and Phrases: Adaptors, interface definition languages, protocol compati-
bility, protocol conversion, software composition

1. INTRODUCTION

An emerging direction in software is the construction of applications from compo-
nents (often called parts). A component defines explicit interfaces through which
it can be composed with other components. For instance, a home shopper compo-
nent, which displays a catalogue and allows customers to place orders, may include
a “logging” interface and a “filter” interface. The logging interface can be “con-
nected” to a matching interface in a home financial management component that
logs financial records, writes checks, etc. The filter interface can be connected to a
component which prunes the catalogue using criteria such as personal preference,
supplier location, and price. Composing the home shopper, logging, and filter com-
ponents by connecting their interfaces would yield a compound component with
the collective behavior of its constituent components.

A preliminary version of this article appeared in the ACM OOPSLA 1994 Conference.
Authors’ address: P.O. Box 704, Yorktown Heights, NY 10598;
email: {dmy; strom}@ibm.watson.com.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1997 ACM 0164-0925/97/0300-0292 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997, Pages 292–333.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F244795.244801&domain=pdf&date_stamp=1997-03-03

Protocol Specifications and Component Adaptors · 293

Component-based software is gaining momentum in the commercial world [Udell
1994], as witnessed by vendor implementations of OMG’s Corba [Object Manage-
ment Group 1995] standard (e.g., SOM [IBM 1993]) and other composition tech-
nologies, such as OpenDoc [Udell 1994], Ole [Brockschmidt 1994], PARTS [Digitalk
1993], VisualAge [IBM 1994], and Java [Arnold and Gosling 1996].

This article discusses two challenges of component composition: first, how can
we specify component interfaces in order to know whether a particular component
interface is a valid mate of another — that is, that the two components will work
properly together if connected? Second, how can we provide adaptors to enable
component composition when the components are functionally compatible, but their
visible interfaces are not compatible?

Ideally one needs to look only at the interface specification of a component to
understand how to use it. Today’s object interfaces, such as those defined by Corba,
are based on procedural client-server interfaces. That is, an interface between A
and B is defined as a collection of procedures implemented by B and callable by A.
We find such interface definitions inadequate because of the following:

—Often there are rules constraining the order in which messages may be sent. For
example, an OPEN call may have to precede a READ call. Such rules are not
documented in the formal interface specification.

—In many applications, messages might be initiated by either party. In the Corba
model, the client always initiates messages, and the server may only send a
message to a client in the form of a reply to a call. Of course, a client may send
a server a message containing a reference to a callback object, but in that case
the two interfaces are defined separately, and it is difficult to formally document
semantic constraints relating the two. For instance, there is no way to specify
that B can only send a particular message to A after B had received some other
message from A. Failure to adhere to the constraint could lead to anomalous
behavior such as deadlock.

We therefore adopt augmented interface descriptions containing (1) message
(method) signatures both for messages sent and messages received and (2) pro-
tocols defining the legal sequences of messages that can be exchanged between a
component and its mate.

We formulate a notion of protocol compatibility such that protocol-compatible
objects can be determined to be free of certain important errors that cannot be
caught by the type system alone (e.g., deadlock). Our formulation of protocols and
protocol compatibility is similar to other recent proposals for adding protocols to in-
terface descriptions (e.g., Nierstrasz [1993] and especially Allen and Garlan [1994]).
However, we differ in several important ways. First, unlike some proposals, our pro-
tocols are bidirectional, describing both messages that can be sent and messages
that can be received by a component. Second, we give a very simple semantics for
composability that allows components to be easily checked for protocol compati-
bility, i.e., it does not require elaborate and computationally expensive machinery
such as model-checking technology. Although this has the effect of restricting the
number of protocols that are compatible, it makes it much easier to treat protocols
as part of the type system and to easily reason about protocols. Third, we do
not require a completely new language or environment to implement our scheme.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

294 · D.M. Yellin and R.E. Strom

Instead we provide an implementation strategy enabling one to embed our protocol
semantics on top of a variety of languages and environments.

The second question we posed was how to get components to work together
when they are functionally compatible but not necessarily type and/or protocol
compatible. By functionally compatible we mean that, at a high enough level of
abstraction, the service provided by one component is equivalent to the service
required by the other; nonetheless, they may realize this functionality via different
concrete types and protocols. To get these components to work together we need
to produce an adaptor that bridges these incompatibilities.

Because we are willing to tolerate fairly substantial differences between interfaces
and because we are looking at generic adaptors that do not have domain-specific
knowledge, we cannot produce such adaptors automatically. Instead, we propose a
tool that produces an adaptor based upon a declarative description which we call
an interface mapping. This tool will be able to exploit the protocol as well as the
type information in the interfaces. Whereas most other work on software adaptors
has stressed techniques for data type conversion, our work focuses on the harder
problem of protocol conversion. In this regard our work is similar to work done on
conversion of network protocols, although we have developed a unique formulation
and solution to this problem in the more general domain of software adaptors. In
this domain different notions, such as parameter relationships, become important
issues that have not been adequately addressed by previous work. Adaptors can be
viewed as a realization of the notion of mediators [Wiederhold 1992].

The main contributions of this article are as follows:

—We provide a simpler semantics of protocol compatibility than traditional tech-
niques. This makes it easier to incorporate protocols into the type system. We
also offer implementation techniques to map these semantics to a variety of im-
plementations.

—We differentiate between compatible protocols, which can be bound together us-
ing simple composition, and incompatible protocols, where a more sophisticated
composition technique (requiring an adaptor) is needed.

—We formally define the notion of a software adaptor that allows the composition
of protocol-incompatible components. We show how to check this adaptor for
correctness.

—We define a high-level interface mapping language that can be used to automat-
ically synthesize an adaptor for components with incompatible protocols.

In Section 2 we describe our notion of interface specifications, which includes pro-
tocols. We show how protocols extend the type system, and we give an algorithm for
testing whether two components are protocol compatible. Our work is based upon
a synchronous protocol semantics, rather than the usual asynchronous semantics.
This allows us to simplify protocol specifications by hiding those messages whose
function is to compensate for the asynchronous medium by guaranteeing that both
parties to a protocol agree on the order of messages sent and received. Although the
synchronous semantics makes it much easier to specify and reason about protocols,
it can restrict implementations. For this reason we also describe how to map our
semantics onto a variety of implementations.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 295

In Section 3 we focus on the problem of building adaptors to bridge the difference
between components with incompatible interfaces. We provide a formal definition
of an adaptor between such components and algorithms for deciding whether the
adaptor will function correctly as an intermediary between them. Our formulation
of adaptors provides additional evidence of the usefulness of adding protocols to
interface specifications.

In Section 4 we concentrate on tools to construct adaptors. We introduce the
notion of an interface mapping between incompatible interface specifications. An
interface mapping allows a user to specify the important characteristics required
of an adaptor between components containing these interfaces. We describe an
algorithm that, given an interface mapping, either produces a well-formed adaptor
consistent with the mapping or decides that no such adaptor exists.

In Section 5 we compare our work to related research. In the Appendix we
provide those proofs omitted from the body of the article.

2. ENHANCED INTERFACE SPECIFICATIONS

2.1 Protocols

We assume a world of software components that interact with other components via
typed interfaces. Each component exposes one or more interfaces through which
messages are sent to and received from a potential collaboration mate component.
When an interface of componentA is bound to an interface of componentB, they are
said to engage in a collaboration: messages sent through A’s interface are received
at B’s interface and vice versa. Each interface has a type; this type is associated
with a collaboration specification, an enhanced interface specification defining the
rules governing message exchange.

A component, in general, can expose multiple interfaces, allowing it to simultane-
ously engage in collaborations with multiple components. Note, however, that any
particular collaboration is between exactly two parties. A collaboration between a
component C and multiple other components must be modeled by separate inter-
faces in C, one for each other party it is collaborating with. (See Example 2.2.2.)

Examples of collaborating components (taken from our Global Desktop project
[Huynh et al. 1994]) include viewers that can view data on their own but can also
collaborate with one another so that corresponding entries are viewed simultane-
ously, filters that can collaborate with viewers to filter information, and bidders
that can collaborate with auctioneers to participate in auctions.

A collaboration specification consists of two parts. The first part, called the
interface signature, describes the set of messages that can be exchanged between
the component and its mate. Besides indicating the type of its parameters, each
message in a collaboration specification is labeled as a send message or a receive
message.

The second part of a collaboration specification, called the protocol, describes
a set of sequencing constraints. Sequencing constraints define legal orderings of
messages by means of a finite-state grammar. The finite-state grammar is specified
by means of a set of named states and a set of transitions, one transition for each
message that can be sent or received from a particular state. A transition is of the
form

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

296 · D.M. Yellin and R.E. Strom

<state>: <direction> <message> -> <state>

where <state> is the symbolic name of a state; <direction> is either “+” (receive)
or “−” (send); and <message> is the name of a message described in the interface
signature. Every protocol P has a unique state initP that is the initial state when
the collaboration is established. We do not allow two edges to emanate from a state
if those edges have the same label, i.e., if s1: +M1 -> s2 and s1: +M2 -> s3 are
transitions, then M1 6= M2. (The same is true if we reverse the + signs to − signs.)

When a collaboration begins, the component’s interface will be in the initial
state of the protocol. At any point in time, if the interface is in state s1 then it is
permitted to send a message of type M only if s1: -M -> s2 is a transition of the
protocol. Alternatively, it may receive a message of type M only if s1:+M -> s2 is
a transition. After the message is sent (received), the protocol’s state advances to
s2. Whenever a message is sent or received, the parameters associated with this
message type (by the interface signature) are also sent or received. Hence a protocol
defines a finite-state machine, with edges between states labeled by +<message> or
-<message>. A protocol may have final states with no outgoing transitions, or
it may be nonterminating. A state is local to an interface; each interface of a
component can be in a different state.

A state in which messages can only be sent is called a send state. A state in
which messages can only be received is called a receive state. A state in which the
component can either receive or send a message is called a mixed state.

We make the following liveness assumption: a component will not indefinitely
remain in a state that contains a send transition. If it is a send state, or if it is a
mixed state but does not receive a message, it will ultimately send a message from
that state. Without this assumption, it may be that one party is in a state where
it can send message m, and its mate is in a state where it can receive message m,
but no progress is made, as the sender never sends the message.

2.2 Examples

In this section we give two examples of collaboration specifications. These examples
are implemented in our Global Desktop graphical environment [Huynh et al. 1994].
For presentation purposes we have simplified the specifications to illustrate the
main ideas.

Example 2.2.1. The following gives a Filter collaboration specification, describ-
ing how a filter component interacts with a data server component. It states that
initially the filter is in the state Stable. When the filter wants to filter the data
(perhaps because the user entered some new filtering criterion), the filter sends
the data server a newFilterRequest message. After this send, the filter enters
the state Filter. The mate responds by sending the filter the itemToBeFiltered
message for each data item it has. Whenever the filter receives such a message, it
returns an ok message if the item meets the criterion and a remove message if it
does not. Finally, when the data server has no more data items to check it sends
the noMoreItems message, causing the filter to return to its Stable state.

Collaboration Filter {
Receive Messages {

itemToBeFiltered(dataItem:ObjectRef);

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 297

noMoreItems();
};
Send Messages {

newFilterRequest();
ok();
remove();

};
Protocol {

States {Stable(init),Filter,Respond};
Transitions {
Stable: -newFilterRequest -> Filter;
Filter: +itemToBeFiltered -> Respond;
Filter: +noMoreItems -> Stable;
Respond -ok -> Filter;
Respond: -remove -> Filter;
};

};
};

Example 2.2.2. The following gives an Auctioneer collaboration specification de-
scribing how an auctioneer component interacts with a mate component — a bidder
— that wants to bid on the auction. We model the auctioneer as having a distinct
instance of an interface for each bidder component bound to it. Each such instance
has the identical collaboration specification. When the auction begins (or when a
bidder attaches to the auction in progress) the auctioneer sends to the bidder a
newItem message containing information about the current item being auctioned
and with an id to use on subsequent bids. The auctioneer then enters state B,
representing the fact that this bidder is not the current high bidder for the item.
In this state the auctioneer will inform the bidder about new high bids for the item
by way of an update message, or it will send the bidder an itemsold message,
indicating that the auction for this item is over. When in state B the auctioneer
protocol may also receive a bid message from the bidder, in which case it enters
state D and evaluates the bid. The auctioneer protocol then responds to the bidder
protocol that the bid is either rejected or accepted. In the former case, the auc-
tioneer moves back to state B; in the latter case it moves to state E, representing
the fact that this bidder now owns the high bid for the item. From this state the
bidder is not expected to bid, but the auctioneer can either inform the bidder of
subsequent higher bids for the item received from competing bidders by way of
update messages, or that the auction is over and that this bidder has bought the
item. Each update message is expected to be acknowledged by the bidder with an
updateAck message.

Collaboration Auctioneer{
Receive Messages {
bid(bidderId:id, itemBiddingOn:string, amount:real);
updateAck();

};
Send Messages {

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

298 · D.M. Yellin and R.E. Strom

newItem(itemDescr:string,bidderId:id);
update(highBid:real);
rejectBid(reason:string);
acceptBid();
itemSold();

};
Protocol {
States { A (init), B, C, D, E};
Transitions {
A: -newItem -> B;
B: -update -> C;
B: -itemSold -> A;
B: +bid -> D;
C: +updateAck -> B;
D: -rejectBid -> B;
D: -acceptBid -> E;
E: -update -> C;
E: -itemSold -> A;

};
};

};

2.3 Protocol Semantics

When two components collaborate with each other via particular interfaces, each
sends and receives messages according to the protocols given by the interface spec-
ification. There are two possible semantics one can assign to collaborating com-
ponents: an asynchronous semantics and a synchronous semantics. Under the
asynchronous semantics, a component may send a message m whenever it is in a
state that enables a send m transition, even if its mate is not in a state that en-
ables it to receive that message. Each component in this model has a queue that
holds messages that have been sent to it, but which it has not yet received. The
asynchronous semantics has been extensively studied [Brand and Zafiropulo 1983;
Gouda et al. 1984; 1987]. Although the asynchronous semantics can be easily im-
plemented, it is hard to reason about systems of collaborating components under
these semantics; in general, properties of the system such as deadlock are undecid-
able [Brand and Zafiropulo 1983]. Integrating protocols into the type system of a
language under the asynchronous semantics would be difficult.

Under the synchronous semantics, a component C can only send a message m to
its mate if C is in a state that enables it to send m and if its mate is in a state that
enables it to receive m. The finite-state machines describing the protocols of the two
components advance synchronously, so that the sending and receipt of a message
are considered an atomic action under this abstraction. No queues are required.
Because it is easy to reason about systems of collaborating components under the
synchronous semantics, we adopt these semantics. However, we can implement
the synchronous semantics without actually requiring the two components to send
and receive messages atomically. It turns out that all we really require is that
the two components always agree on the execution trace — the order of messages
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 299

sent and received. This allows us a much greater leeway in how to implement our
semantics, while retaining the simplicity in reasoning about protocols. In the rest of
this section we make precise the synchronous semantics of collaboration and define
what we mean by protocol compatibility. We also give an algorithm that tests for
protocol compatibility. In Section 2.5 we elaborate on implementation techniques.

We denote the states of a protocol P by States(P) and its transitions by Transi-
tions(P). For two collaborating protocols P1 and P2, we assume that the names
of the messages sent from P1 to P2 are disjoint from the names of the messages
sent from P2 to P1. This allows us to write a transition as s : m → s′, omitting
the + and - signs from the message m. The auxiliary function Polarity(P,m) will
be positive (+) if m is a receiving message in protocol P and will be negative (-)
otherwise.

A collaboration state for protocols P1 and P2 is a pair 〈s, t〉, where s ∈ States(P1)
and t ∈ States(P2). A collaboration history for protocols P1 and P2 is a possibly
infinite sequence of the form α1 →m1 α2 →m2 · · · where

—each αi is a collaboration state for P1 and P2,

—α1 = 〈initP1 , initP2〉, and

—αi+1 = 〈si+1, ti+1〉 iff αi = 〈si, ti〉 and (si : mi → si+1) ∈ Transitions(P1),
(ti : mi → ti+1) ∈ Transitions(P2), and Polarity(P1,mi) 6= Polarity(P2,mi).

By definition, Collabs(P1, P2) = { α : α is a collaboration history for P1 and
P2 }. Note that every prefix of a collaboration history is a collaboration history
and that 〈initP1 , initP2〉 ∈ Collabs(P1, P2) so that Collabs(P1, P2) is never empty.
Collabs(P1, P2) give all the traces that can possibly occur when P1 and P2 collab-
orate.

Protocols P1 and P2 have no unspecified receptions [Brand and Zafiropulo 1983]
iff for all α ∈ Collabs(P1, P2), α = α1 →m1 · · ·αn, where αn = 〈sn, tn〉, the
following two conditions hold:

—if s = sn, (s : m → s′) ∈ Transitions(P1), and Polarity(P1,m) = -, then there
exists α′ = α1 →m1 · · ·αn →m αn+1 ∈ Collabs(P1, P2) where αn+1 = 〈s′, t′〉 for
some t′ ∈ States(P2); and

—if t = tn, (t : m → t′) ∈ Transitions(P2) and Polarity(P2,m) = -, then there
exists α′ = α1 →m1 · · ·αn →m αn+1 ∈ Collabs(P1, P2) where αn+1 = 〈s′, t′〉 for
some s′ ∈ States(P1).

That is, P1 and P2 have no unspecified receptions iff, whenever a collaboration α
can reach the point where P1 (P2) is in a state where it can send a message m, its
mate will be in a state where it can receive that message, and hence there exists
some collaboration history in which that message is exchanged at that point.

Protocols P1 and P2 are deadlock free [Brand and Zafiropulo 1983] iff for all finite
sequences α ∈ Collabs(P1, P2), α = α1 →m1 · · ·αn−1 →mn−1 αn, where αn =
〈sn, tn〉, then either

—sn and tn are final states of P1 and P2, respectively, or

—there exists α′ ∈ Collabs(P1, P2) such that α is a strict prefix of α′.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

300 · D.M. Yellin and R.E. Strom

+x
3

4

1

2

-w -x

-z-y
+z+y

A

C

B

+w

Fig. 1. Compatible protocols that accept different languages.

That is, P1 and P2 are deadlock free iff the collaboration α ends with both protocols
in final states, or the collaboration can continue.1

Protocols P1 and P2 are compatible iff they have no unspecified receptions, and
are deadlock free.

Our definition of protocol compatibility requires that when one party can send a
message m, then the other party must be willing to receive that message. However,
the protocols are compatible even when one party can receive a message m, yet
the other party cannot send that message. This asymmetry reflects traditional
programming environments, where the sender protocol decides what it wants to
send independent of the recipient, and where the recipient has no control over what
the sender sends. This differs from CSP, where the 2 operator (called “alternative”
or “deterministic choice”) can be used to force a sender to send what the receiver
wants to receive. Most of the results of this article can be rephrased to accommodate
the CSP semantics.

It is interesting to note that if we look at P1 and P2 as language automata, then
they may not accept the same language even though they are compatible in the
sense described here. Figure 1 shows two such compatible protocols.

Let s ∈ States(P1) and t ∈ States(P2). By definition, s ∼ t iff there exists a
collaboration history α = · · ·αi · · · ∈ Collabs(P1, P2) where αi = 〈s, t〉. Since the
relation ∼ captures exactly those states s, t ∈ States(P1)×States(P2) that can ap-
pear together in a collaboration state of a collaboration history in Collabs(P1, P2),

1Note that our definition is based upon our previously stated assumption that a component will
not indefinitely remain in a state that contains a send transition. Our definition only indicates
lack of deadlock between these two components; it does not guarantee lack of deadlock within an
entire system.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 301

we can apply the criteria for compatibility given above using this relation. That
is, we can reformulate the definitions of unspecified receptions and deadlock using
only the ∼ relation. We now give an algorithm for computing this relation.

Let EQUIV (P1, P2) ⊆ States(P1)× States(P2) be the smallest set such that

—〈initP1 , initP2〉 is in EQUIV (P1, P2); and
—if 〈s, t〉 is in EQUIV (P1, P2), (s : m→ s′) ∈ Transitions(P1), (t : m → t′)
∈ Transitions(P2), and Polarity(P1,m) 6= Polarity(P2,m), then 〈s′, t′〉 is in
EQUIV (P1, P2).

The set EQUIV (P1, P2) is obviously finite and can be computed by a simple algo-
rithm.

Lemma 2.3.1. 〈s, t〉 ∈ EQUIV (P1, P2) iff s ∼ t.
Proof. For all s and t such that s ∼ t, let len(s ∼ t) = i iff (1) there exists

α = α1 →m1 α2 · · ·αi →mi · · · ∈ Collabs(P1, P2) where αi = 〈s, t〉 and (2) if there
exists β = β1 →r1 β2 · · ·βj →rj · · · ∈ Collabs(P1, P2) with βj = 〈s, t〉, then j ≥ i.
It is easy to show by induction on len(s ∼ t) that s ∼ t iff 〈s, t〉 ∈ EQUIV (P1, P2).
2

We therefore have shown an algorithm for computing whether two protocols are
compatible: first compute the relation ∼, and then use that relation to test for
unspecified receptions and deadlock. This proves the following theorem:

Theorem 2.3.2. There exists an algorithm for checking protocol compatibility.

As previously mentioned, one of our main reasons for adopting a synchronous
semantics is that it becomes very easy to reason about protocols. In particular, for
any protocol P , let P be the protocol derived from P by reversing the direction of
all messages, that is, by making each receiving message a sending message and vice
versa. P and P are always protocol compatible. This is not true if one adopts the
asynchronous semantics.

2.4 Subprotocols

Just as type-compatible components are guaranteed to work together free of type
errors, protocol-compatible components are guaranteed to work together free of pro-
tocol errors (messages arriving out of sequence or deadlock). We can extend the
comparison of protocols to type systems by defining the notion of subprotocols,
analogous to subtypes.

Informally, P is a subprotocol of P ′ iff the initial state of P is the “same” as the
initial state of P ′; every final state (a state without any outgoing transitions) in P ′

is a final state in P ; and P can be obtained from P ′ by (1) adding a set S of new
states to P , (2) adding a set of new receive transitions to P , and (3) adding a set
of new send transitions to P such that each new send transition emanates from a
new state of P (a state in S).

Formally, P is a subprotocol of P ′ iff there exists an injective2 function M :
States(P ′)→ States(P) such that

2The fact that M is an injection (i.e., that M(s′1) = M(S′2) ⇒ s′1 = s′2) dictates that each
subprotocol have a substrucuture isomorphic to its superprotocol. This constraint can be removed,

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

302 · D.M. Yellin and R.E. Strom

(1) M(initP ′) = initP ;
(2) s′ is a final state of P ′ ⇒M(s′) is a final state of P ;
(3) (s′1 : m→ s′2) ∈ Transitions(P ′)⇒ (M(s′1) : m→ M(s′2)) ∈ Transitions(P);

and
(4) ∀(s1 : m → s2) ∈ Transitions(P), if M−1(s1) and M−1(s2) are defined, but

(M−1(s1) : m → M−1(s2)) /∈ Transitions(P ′), or M−1(s1) is defined, but
M−1(s2) is not defined, then Polarity(m,P) = +.

The following two lemmas show interesting properties of subprotocols.

Lemma 2.4.1. If P1 is a subprotocol of P and P is compatible with P2, then P1

is compatible with P2.

Proof. The intuition behind this proof is based upon the fact that the sub-
protocol P1 can only start to deviate from the behavior that the superprotocol P
exhibits once it receives a message that P was not prepared to receive. But since
P2 is compatible with P , P2 will never send such a message in its collaboration
with P . Hence it will also never send such a message in its collaboration with P1.
Therefore P and P1 will exhibit exactly the same behavior in their collaboration
with P2. A formal proof follows.

For any s ∈ States(P1), let N : States(P1) → States(P) such that N(s) =
s′ if M(s′) = s; otherwise N(s) = ⊥. Let 〈s, t〉 be a collaboration state for
P1 and P2. Then N(〈s, t〉) = 〈N(s), t〉. Similarly we extend the mapping N :
Collabs(P1, P2)→ Collabs(P, P2) such that for any α ∈ Collabs(P1, P2) such that
α = α1 →m1 · · ·αn →mn · · ·, N(α) = N(α1) →m1 · · ·N(αn) →mn · · ·. To prove
this lemma, we first show that Collabs(P, P2) = {N(α)|α ∈ Collabs(P1, P2)}.

Certainly α′ ∈ Collabs(P, P2) ⇒ ∃α ∈ Collabs(P1, P2) such that N(α) = α′,
since every transition in P has a corresponding transition in P1. We now show
that the converse is also true. Assume that this is false and that there exists α ∈
Collabs(P1, P2) such that N(α) /∈ Collabs(P, P2). Let α′ = α1 →m1 α2 →m2 · · ·αn
be the longest prefix of α such that N(α′) ∈ Collabs(P, P2). (Such a prefix always
exists, as N(α1) = N(〈initP1 , initP2〉) = 〈initP , initP2〉 ∈ Collabs(P, P2).) α must
be of the form α1 →m1 α2 →m2 · · ·αn →mn αn+1 · · ·, where αn →mn αn+1 is of
the form 〈sn, tn〉 →mn 〈sn+1, tn+1〉. It must be that (N(sn) : mn → N(sn+1)) /∈
Transitions(P); otherwise we could concatenate N(αn)→mn N(αn+1) to the end
of N(α′), thereby obtaining a longer prefix α′′ such that N(α′′) ∈ Collabs(P, P2).
Since (sn : mn → sn+1) ∈ Transitions(P1), but (N(sn) : mn → N(sn+1)) /∈
Transitions(P), it follows from the definition of subprotocols that mn must be a
message sent from P2. But then N(αn) = 〈s, t〉 is a state of N(α′) where P2 can
send the message mn from state tn, but P cannot receive that message. Therefore
P is not compatible with P2, contradicting our assumption.

Hence we have established a 1-1 mapping between collaborations in Collabs(P1, P2)
and those in Collabs(P, P2). One can now easily show that no collaboration history
in Collabs(P1, P2) can have an unspecified reception or deadlock, by comparing it to
the corresponding collaboration history in Collabs(P, P2) and using the definition
of subprotocols. 2

thereby allowing a single state of the subprotocol to represent multiple states of the superprotocol.
For simplicity, here we only allow injective functions.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 303

Lemma 2.4.2. If P1 is a subprotocol of P and P2 is a subprotocol of P , then P1

and P2 are compatible.

Proof. This lemma follows by applying Lemma 2.4.1 twice; first apply the
lemma to show that P1 is compatible with P and then to show that P2 is compatible
with P1. 2

The converse of this lemma is not true; that is, P1 and P2 may be compatible,
even though there do not exist superprotocols A and B of P1 and P2, respectively,
with A = B. The protocols of Figure 1 illustrate such a case.

2.5 Implementation of Protocols

Protocols serve as a very useful abstraction of how components interact. There
are several ways in which we can map this abstraction onto programmatic APIs
that programmers can use and several ways to implement this abstraction. We now
examine a few of these.

Asynchronous or Synchronous Message Passing. The component sending a mes-
sage may view the send as (a) an asynchronous message, (b) a blocking send until
message delivery, or (c) a blocking call until completion of a subsequent receive —
i.e., a synchronous call with return. In (a) the sender immediately continues com-
putation after sending the message. Many languages and environments support this
semantic; in CORBA-compliant object systems, for instance, this can be accom-
plished using the oneway IDL keyword [Object Management Group 1995]. In (c)
the sender sends a single message and blocks until the receiver finishes computation
on that message. It is easy to implement this semantics using (possibly remote)
procedure calls. Part (b) defines an intermediate semantics where the sender blocks
until the receiver receives the message but not until the computation is finished.

In all of these implementations a single message is exchanged. If there exists a
state in which one party P may send a message m and in which the subsequent
state requires the mate to return message r, then one may implement that pair of
transitions as a single procedure call in which P sends the parameters of m and
receives back the return parameters of r.

Immediate Invocation or Queued Messages. Messages received by a component
may (a) be queued until explicitly requested by the receiving component, (b) im-
mediately invoke method handlers in the receiving component, or (c) serially invoke
method handlers in the receiving component.

To implement (a), one needs an environment that makes queues explicit to the
programmer. Some programming languages have built-in support for this ab-
straction [Arjomandi et al. 1995; Auerbach et al. 1994; Strom et al. 1991]. Alter-
natively, most window systems provide a queue abstraction and an event notifica-
tion mechanism to inform the application of outstanding messages that need to be
handled. Many RPC and distributed object systems support (b) and (c). For in-
stance, IBM’s SOM [IBM 1993] implementation of the CORBA standard provides
a default Object Server. This server can be specified to be either single- or multi-
threaded. In the former case the server queues up incoming calls and dispatches

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

304 · D.M. Yellin and R.E. Strom

them serially. In the latter case the server starts a new thread to handle each
incoming message.

Passive or Active Components. Components may be active, having autonomous
threads of control, or passive, in which case threads may only exist when responding
to external messages initiated from another component. Passive components are
easiest to implement for protocols that consist of pairs of transitions, where the
first transition is the receipt of a message, and the following transition sends backs
the results of the message. In this case the component can be implemented by
spawning a thread when a message is received. This thread can then handle the
message and return the results to the caller. Protocols containing states in which
both parties can simultaneously send usually necessitate active components.

Pessimistic or Optimistic Arbitrators. Under our formulation of the synchronous
semantics, we imposed the condition that the finite-state machines describing the
protocols of the two collaborating components advance atomically. This assumption
made it much easier to reason about protocols and to formulate conditions for
compatibility.

For implementation purposes, however, we would like to loosen this restriction.
Specifically, we would like to be guaranteed that if P1 and P2 are compatible un-
der the synchronous semantics, then we can implement the collaboration without
requiring atomicity of send/receive transitions, but still (1) guaranteeing freedom
from unspecified receptions and deadlock and (2) preserving the fact that both
components agree on the execution trace; they agree on the total order on messages
sent and received between them.

If the compatible protocols of two components contain no mixed states, then we
can use any simple message-passing system to implement the message exchange,
and we will still be guaranteed that the preceding two properties will be satisfied.
This is not the case if the protocols contain mixed states, in which case we require
some additional lower-level synchronization. To see why this is so, consider the
Auctioneer protocol in Example 2.2.2 above. Suppose component C1 implements
protocol Auctioneer; C2 implements Auctioneer; and both C1 and C2 are in state
B. Then suppose C1 sends an update message and advances to state C. Before
this message is received by C2, C2 sends a bid message. However, C1 is now
waiting for an updateAck message, and when the bid message arrives, we have
an unspecified reception protocol error. Notice that the reason this occurs is that
state B is a mixed state. Mixed states generate race conditions. Without some form
of synchronization between components at mixed states, the two components may
not agree on the execution trace and may therefore exhibit unexpected receptions
or deadlock, even though their protocols are compatible under the synchronous
semantics.

To synchronize protocols containing mixed states, we introduce a run-time arbi-
trator between such protocols. The arbitrator forces both partners to agree who is
to send and who is to receive whenever either side may potentially send. The effect
of the arbitrator is to force the two protocols to advance consistently so that if one
component receives a message m2 after sending a message m1, the mate must have
received message m1 before sending m2— they agree on the execution trace. In the
auction example, without the arbitrator, the bidder may receive an update message
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 305

and not be able to determine whether the message was sent before or after its bid
was received by the auctioneer. With arbitration such confusion is avoided.3

Using an arbitrator, we are guaranteed that properties (1) and (2) given above
will be always satisfied. In order for this scheme to work, we need to perturb
the component protocols so that they interact with the arbitrator via special syn-
chronization messages.4 In the rest of this section, we elaborate on two possible
implementation schemes for arbitrators that differ in how the component interacts
with the arbitrator when it is in a mixed state.

One approach, which we call the optimistic approach, allows either party to opti-
mistically assume that it will win the race condition. This approach always allows
a component C1 to send a message to C2 from a mixed state. The arbitrator will
receive this message and will decide either to forward this message to C2 or to
reject the message. The arbitrator will only reject the message if it has already
received a message from C2 and declared it the winner of the race condition; that
is, the arbitrator has already decided that C1 must receive a message at this mixed
state. The arbitrator will then send C1 a reject message, telling it to “roll back”
its computation to the time when it was in the mixed state, and will forward C2’s
message to it. Figure 2 shows how one would perturb a protocol containing a mixed
state using the optimistic approach. We should note that there are variations on
this scheme that can be used to minimize the number of messages sent. For exam-
ple, instead of the arbitrator explicitly sending a reject message to C1, it can just
forward C2’s message to C1. For most protocols, C1 will then interpret the receipt
of C2’s message as an implicit rejection of its message. There are also details we
are omitting concerning where the reject message should be inserted into the orig-
inal protocol and what to do when multiple messages are sent optimistically. This
scheme is called optimistic because it does not require any extra synchronization
messages to be exchanged with the arbitrator when only one party tries to send
from a mixed state and no race conditions arise. However, when more than one
party tries to send from a mixed state, extra rollback computation needs to be
performed, and extra synchronization messages need to be exchanged.

An alternative scheme never requires any rollback of computation but always
entails some extra synchronization messages. In this pessimistic approach, a com-
ponent always asks the arbitrator for permission to send a message from a mixed
state. The arbitrator will either grant permission, in which case the component can
(and must) send the message, or it will reject the request. The arbitrator will only
reject the request if it has already received a request from the other component to
send from this state and has granted permission to that component. Figure 3 shows
how one would perturb a protocol containing a mixed state using the pessimistic

3The requirement that both applications agree on the sequence of the messages sent and received
can be too restrictive in some situations. We have devised a way of generalizing our protocol
language to allow one to specify that some messages can be sent in parallel by the two components.
The basic idea is to introduce parallel and join nodes into the finite-state machine in which one
can specify “subprotocols” that can proceed in parallel. We do not discuss these generalizations

further in this article.
4We are assuming the use of conventional languages such as C++, which lack a construct for
issuing a conditional method call. In a language like CSP, the arbitration can be performed
completely transparently.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

306 · D.M. Yellin and R.E. Strom

+reject_y

1

2 3

4

2

1
+x -y

+z

+x

Original Protocol Perturbed Protocol

3

4
5

+z

-y

+x

Fig. 2. Perturbing a protocol using the optimistic method.

approach.
We must note that both schemes rely on the fact that the arbitrator, when

receiving a request from a component to send from a mixed state, can tell if that
component has already received the messages the arbitrator has forwarded to it
from its mate. This is not always the case. Consider, for instance, the protocol
of Figure 4. In this case the component can repeatedly either send an x message
or receive a y message. The semantics of collaborations, as mentioned earlier in
the article, is that each party must agree on the execution trace. This means that
each party must agree on the order in which the x and y messages were sent and
received.

Now consider what would happen if we perturbed the protocol of Figure 4 to
a pessimistic one. Say that C1 asked permission from the arbitrator to send an
x message and that this message was forwarded to C2. Then C2 asks permission
from the arbitrator to send a y message. The arbitrator does not know if this latter
request is coming before C2 has received the last x message, in which case it must
reject C2’s request, or whether it is coming after C2 has received this message,
in which case it can grant C2’s request. For either the pessimistic or optimistic
schemes given above to work, it must be that the next message that can be sent
from a component after receiving a message at a mixed state is different than any
message it can send from that mixed state. If this criterion fails to hold, then a more
sophisticated scheme must be used (requiring additional information to accompany
synchronization messages). Details are beyond the scope of this article.

Putting It All Together. In summary, we have defined a system that supports the
following steps:

(1) One first specifies the abstract protocols of interaction for a set of components.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 307

Perturbed Protocol

1

2 3

4

2

1

5

6

3

4

+x -y

+z

+x

+x

-send y?

+yes

-y

+z

Original Protocol

Fig. 3. Perturbing a protocol using the pessimistic method.

-x 1 +y

Fig. 4. A protocol requiring a more sophisticated perturbation.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

308 · D.M. Yellin and R.E. Strom

(2) Next one defines, via binding pragmas, how to realize these protocols. These
pragmas offer a wide variety of choices on how to reflect the abstract protocols
to the programmer. Each component may want to make different choices on
these bindings. A tool would automatically emit the necessary code to facilitate
these bindings.

(3) A tool would also emit arbitrator code to facilitate the implementation of the
synchronous semantics. Once again, how these semantics are reflected to the
programmer is guided by synchronization pragmas.

The main goal of protocols is to facilitate the composition of components, even
when these components have been developed in isolation from one another. Using
the approach just outlined, it should be possible under many conditions to compose
components that have compatible protocols, even if they realize those protocols via
different binding pragmas. This approach can help alleviate some of the practical
problems of component composition (see Garlan et al. [1995]).

3. ADAPTORS

When one component provides a service that another component requires, it is of-
ten not possible to bind the two components together if they were not programmed
to compatible collaboration specifications. An adaptor is a piece of code that sits
between two components and compensates for the differences between their inter-
faces.

Example 3.1. The following shows a Bidder collaboration specification. When
the auction begins (or when the bidder attaches to the auction in progress), the
bidder receives an auctionBegin message from the auctioneer containing informa-
tion about the current item being auctioned. The bidder then enters state 2, where
it can request participation in the auction by sending a requestToBid message and
enters state 3. From this state the bidder either receives a cannotBid or a canBid
message from the auctioneer. In the latter case, the bidder is supplied an id to
use on subsequent bids. Once granted permission to participate in the auction, the
bidder enters state 4, where it will either receive newHighBid messages informing it
about new high bids for the item or a gavel message, indicating that the auction
for this item is over. When in state 4 the bidder may also place a bid by sending
a newBid message, in which case it enters state 6. The auctioneer responds to the
bidder’s bid by either sending a bidNotOk or a bidOk message. In the former case,
the bidder moves back to state 4; in the latter case it moves to state 7, representing
the fact that this bidder now owns the high bid for the item. From this state the
auctioneer can either (1) inform the bidder of subsequent higher bids for the item
received from competing bidders by way of a newHighBid message or (2) signal that
the auction is over and that this bidder has bought the item. Each newHighBid
message is expected to be acknowledged by the bidder with a highBidAck message.

Collaboration Bidder {
Receive Messages {
auctionBegin(auctionInfo:string);
canBid(bidId:id);
cannotBid(why:string);

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 309

newHighBid(price:real);
bidOk();
bidNotOk();
gavel();

};
Send Messages {
requestToBid(name:string,bidItem:string);
newBid(bidId:id, myBid:real);
highBidAck();

};
Protocol {
States {1 (init), 2, 3, 4, 5, 6, 7};
Transitions {
1: +auctionBegin -> 2;
2: -requestToBid -> 3;
3: +cannotBid -> 1;
3: +canBid -> 4;
4: +newHighBid -> 5;
4: +gavel -> 1;
4: -newBid -> 6;
5: -highBidAck -> 4;
6: +bidNotOk -> 4;
6: +bidOk -> 7;
7: +newHighBid -> 5;
7: +gavel -> 1;

};
};

};

This bidder specification is not compatible with the Auctioneer specification given
in Example 2.2.2. There are several minor ways in which these specifications dif-
fer, such as different message and parameter names and different parameter orders.
Additionally some parameters are missing. Even more substantially, this protocol
has seven states, as opposed to the five states of Auctioneer. This is because this
protocol has a “two-phase” property: instead of just bidding on the current auction
item, this protocol demands that this bidder first “authenticate” itself and ask per-
mission to bid before actually bidding on the current item being auctioned. Hence
bidder states 1,4,5,6,7 correspond roughly to auctioneer states A,B,C,D,E, but bid-
der states 2 and 3 have no counterpart. This introduces another incompatibility;
the bid message expected by the auctioneer has an itemBiddingOn parameter,
whereas the corresponding message sent by the bidder, newBid, lacks this parame-
ter. However, an equivalent parameter bidItem is supplied by the requestToBid
message, which is only issued once per item being auctioned. As we will see, we
will need to produce an adaptor that will synthesize the parameters for the bid
message from both the newBid message and the requestToBid message and which
will remember the bidItem parameter of the requestToBid message for subsequent
reuse. Similarly, the bidderId supplied by the auctioneer at the start of the col-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

310 · D.M. Yellin and R.E. Strom

laboration is not expected by the bidder until it receives permission to bid. The
adaptor will need to store this parameter until it can be forwarded to the bidder.

3.1 Adaptor Specifications

We model an adaptor as a finite-state machine that has interfaces to the two com-
ponents that want to collaborate. All messages exchanged by the components will
go through the adaptor. The adaptor’s behavior is governed by its transition rules.
If the adaptor is in a state with a send transition, the adaptor may send a message
to the appropriate component and enter the target state. If the adaptor is in a
state with a receive transition, the adaptor may wait for a message to arrive and
then enter the target state. Additionally, we allow an action to be performed by
the adaptor whenever a transition is taken. The actions we allow are simple enough
to easily analyze interesting properties of adaptors, while being generic enough to
capture most adaptor behaviors.

Let A be an adaptor for two components C1 and C2 supporting protocols P1 and
P2, respectively. A will support a protocol compatible with P1 in its collaboration
with C1 and a protocol compatible with P2 in its collaboration with C2. P1 and
P2 need not be protocol-compatible; they may not even support the same set of
messages!

An adaptor A is specified by a tuple 〈StatesA, CellsA, RulesA〉. StatesA is a
finite set of states. CellsA consists of a finite set of typed memory cells. It will
contain exactly one memory cell, Cells.parm, for each parameter parm that can
be received by the adaptor A. For each state in StatesA, a particular subset of cells
from CellsA will be valid, that is, will hold a value saved from a previously received
message. RulesA consists of a set of state transitions augmented with memory
actions. A state transition involves either sending a message to or receiving a
message from one of the components C1 or C2. A rule has one of the following two
forms:

<s1>: + <message> from <component_name> -> <s2>
[, <save_actions>]
[, <invalidate_actions>] ;

<s1>: - <message> to <component_name> -> <s2>
[, <synthesis_actions>]
[, <invalidate_actions>] ;

The semantics of the first form of a rule is as follows: when in state <s1> the
adaptor can receive a message of type <message> from <component_name> (either
C1 or C2) and will then advance to state <s2>. Additionally the rule can specify the
memory actions <save_actions> and <invalidate_actions> to be taken. Each
<save_action> is of the form write(parm) indicating that the parm parameter of
the message should be stored in cell Cells.parm. write(parm1,parm2,...) is a
shorthand for write(parm1), write(parm2),.... A written memory cell becomes
valid, and we say that the rule writes Cells.parm. We explain the
<invalidate_actions> clause below.

The semantics of the second form of a rule is as follows: when in state <s1>
the adaptor can send a message of type <message> to <component_name> (either
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 311

C1 or C2) and will then advance to state <s2>. Additionally, the rule must spec-
ify where the value of each parameter of the message comes from. The actions
<synthesis_actions> serve this purpose. Each <synthesis_action> is of the
form parm = x or of the form parm = f(x1,x2,...), where parm is a parameter
of the message, and each x,x1,x2,... is either a constant or a memory cell. In
the former case the parameter parm is set equal to the value of x, and in the latter
case parm is set equal to the value of the function f applied to x1,x2,.... We say
that the rule reads x (x1,x2,..., respectively).

In either rule, one may optionally include an <invalidate_actions> clause of
the form

invalidate(x1,x2,...),

where x1,x2,... are memory cells. This indicates that the value of these memory
cells is to be no longer retained — these cells cease to be valid. This allows one
to state rules such as “after receiving a restart message, invalidate all previously
valid memory cells,” or “after using Cells.p to synthesize parameters for message
m, invalidate Cells.p.”

3.2 An Example Adaptor

Example 3.2.1. Figure 5 shows an adaptor specification for Auctioneer and Bid-
der components supporting the protocols of Examples 2.2.2 and 3.1, respectively.
For brevity we have left out all transitions relating to the receipt of the itemSold
message. Each state of the adaptor is represented by a tuple <x,y,mem>, where x
is a state of the Auctioneer protocol, y is a state of the Bidder protocol, and mem
lists those memory cells that are valid in this adaptor state.

3.3 Adaptor Compatibility

In the rest of this section we extend the terminology and proofs of protocol com-
patibility given in Section 2.3 to include collaborations involving an adaptor.

We write (u : m→ u′) ∈ Transitions(A, Pi) (i = {1, 2}) to mean that the given
transition is a transition in adaptor A used to communicate with the component
implementing protocol Pi.

A collaboration state for protocols P1 and P2 using an adaptor A is a tuple
〈s, t, u〉, where s ∈ States(P1), t ∈ States(P2), and u ∈ States(A). A collaboration
history for protocols P1 and P2 using adaptor A is a possibly infinite sequence of
the form: α1 →m1 α2 →m2 · · ·, where

—each αi is a collaboration state for P1 and P2 using the adaptor A,
—α1 = 〈initP1 , initP2, initA〉,
—αi+1 = 〈si+1, ti+1, ui+1〉 iff αi = 〈si, ti, ui〉, and either

(1) (si : mi → si+1) ∈ Transitions(P1), (ui : mi → ui+1) ∈ Transitions(A, P1),
Polarity(P1,mi) 6= Polarity(A,mi), and ti+1 = ti or

(2) (ti : mi → ti+1) ∈ Transitions(P2), (ui : mi → ui+1) ∈ Transitions(A, P2),
Polarity(P2,mi) 6= Polarity(A,mi), and si+1 = si.

By definition, Collabs(P1, P2,A) = { α : α is a collaboration history for P1 and
P2 using A}.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

312 · D.M. Yellin and R.E. Strom

/* LEGEND

M0 = {}

M1 = {itemDescr,bidderId}

M2 = {bidderId}

M3 = {bidItem,bidderId}

M4 = {bidItem}

M5 = {bidItem,highBid}

M6 = {bidItem,bidId,myBid}

M7 = {bidItem,highBid,bidderId}

M8 = {highBid,bidderId} */

<A,1,M0>: +newItem from auctioneer -> <B,1,M1>,

write(itemDescr, bidderId);

<B,1,M1>: -auctionBegin to bidder -> <B,2,M2>,

auctionInfo = Cells.itemDescr,

invalidate(itemDescr);

<B,2,M2>: +requestToBid from bidder -> <B,3,M3>,

write(bidItem);

<B,2,M2>: +update from auctioneer -> <C,2,M8>,

write(highBid);

<B,3,M3>: -canBid to bidder -> <B,4,M4>,

bidId = Cells.bidderId,

invalidate(bidderId);

<B,4,M4>: +update from auctioneer -> <C,4,M5>,

write(highBid);

<B,4,M4>: +newBid from bidder -> <B,6,M6>,

write(bidId, myBid);

<C,4,M5>: -newHighBid to bidder -> <C,5,M4>,

price = Cells.highBid,

invalidate(Cells.highBid);

<C,5,M4>: +highBidAck from bidder -> <C,4,M4>;

<C,4,M4>: -updateAck to auctioneer-> <B,4,M4>;

<B,6,M6>: -bid to auctioneer -> <D,6,M4>,

bidderId = Cells.bidId,

itemBiddingOn = Cells.bidItem,

amount = Cells.myBid,

invalidate(Cells.bidId,Cells.myBid);

<D,6,M4>: +rejectBid from auctioneer-> <B,6,M4>;

<D,6,M4>: +acceptBid from auctioneer-> <E,6,M4>;

<B,6,M4>: -bidNotOk to bidder -> <B,4,M4>;

<E,6,M4>: -bidOk to bidder -> <E,7,M4>;

<E,7,M4>: +update from auctioneer -> <C,4,M5>,

write(highBid);

<C,2,M8>: -updateAck to auctioneer -> <B,2,M8>;

<B,2,M8>: +update from auctioneer -> <C,2,M8>,

write(highBid);

<B,2,M8>:+requestToBid from bidder-> <B,3,M7>,

write(bidItem);

<B,3,M7>: -canBid to bidder -> <B,4,M5>,

bidId = Cells.bidderId,

invalidate(bidderId);

<B,4,M5>: -newHighBid to bidder -> <B,5,M4>,

price = Cells.highBid;

invalidate(Cells.highBid);

<B,5,M4>: +highBidAck from bidder -> <B,4,M4>;

Fig. 5. An adaptor for the Auctioneer and Bidder protocols.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 313

We now define deadlock and unspecified receptions in a manner analogous to
Section 2.3. Protocols P1 and P2 using adaptor A have no unspecified receptions
iff for all α ∈ Collabs(P1, P2,A), α = α1 →m1 · · ·αn, where αn = 〈sn, tn, un〉, the
following conditions hold:

—if s = sn is not a mixed state in P1, (s : m → s′) ∈ Transitions(P1), and
Polarity(P1,m) =-, then there exists α′ = α1 →m1 · · ·αn →m αn+1 ∈
Collabs(P1, P2,A), where αn+1 = 〈s′, tn, u′〉 for some u′ ∈ States(A),

—if t = tn is not a mixed state in P2, (t : m → t′) ∈ Transitions(P2) and
Polarity(P2,m) =-, then there exists α′ = α1 →m1 · · ·αn →m αn+1 ∈
Collabs(P1, P2,A), where αn+1 = 〈sn, t′, u′〉 for some u′ ∈ States(A),

—if u = un, (u : m → u′) ∈ Transitions(A, P1) and Polarity(A,m) =-, then
there exists α′ = α1 →m1 · · ·αn →m αn+1 ∈ Collabs(P1, P2,A), where αn+1 =
〈s′, tn, u′〉 for some s′ ∈ States(P1),

—if u = un, (u : m → u′) ∈ Transitions(A, P2) and Polarity(A,m) =-, then
there exists α′ = α1 →m1 · · ·αn →m αn+1 ∈ Collabs(P1, P2,A), where αn+1 =
〈sn, t′, u′〉 for some t′ ∈ States(P2).

Note that we do not require the adaptor to be able to accept every message that
may be sent to it from a component if that message originates in a mixed state of
the component. The reason for this is to allow an adaptor to be in a state where it
can receive a message m1 from C1 or a message m2 from C2, but once it receives
a message from one of the components, say C1, it advances to a state where it will
no longer accept m2 messages from C2, as long as C2 is in a mixed state.

This idiom is quite useful, as illustrated by our sample adaptor of Example 3.2.1.
When it is in state <B,4> it can receive an update message from the auctioneer
or a newBid message from the bidder. If the former message is received first, then
the adaptor “commits” itself to forwarding this message as a newHighBid message
to the bidder, and the adaptor will no longer accept newBid messages from the
bidder before this newHighBid message is acknowledged by the bidder. Similarly,
if a newBid message arrives first, the adaptor commits itself to forwarding this
message as a bid message to the auctioneer and will no longer accept update
messages before this bid message is replied to by the auctioneer. In this way the
adaptor need not concern itself with these messages “crossing.” This simplifies
both protocols and implementations. These semantics have implications on the
construction of arbitrators for adaptors, as we discuss at the end of Section 3.5.

Protocols P1 and P2 using adaptor A are deadlock free iff for all finite sequences
α ∈ Collabs(P1, P2), α = α1 →m1 · · ·αn−1 →mn−1 αn, where αn = 〈sn, tn, un〉,
then either

—sn and tn are final states of P1 and P2, respectively, or
—there exists α′ ∈ Collabs(P1, P2, A) such that α is a strict prefix of α′.

An adaptor A is compatible with protocols P1 and P2 iff they have no unspecified
receptions and are deadlock free.5

5According to our definition, if progress can always be made between the adaptor and one compo-
nent, then the system is deadlock free, even if the other component has reached a deadlock state

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

314 · D.M. Yellin and R.E. Strom

Theorem 3.3.1. There exists an algorithm for checking whether an adaptor A
is compatible with protocols P1 and P2.

Proof. The proof of this lemma is analogous to the proof of protocol com-
patibility (without an adaptor) in Section 2.3. First we define the relation ∼⊆
States(P1)× States(P2)× States(A) such that ∼ (s, t, u) iff there exists some col-
laboration history α = · · ·αi · · · ∈ Collabs(P1, P2,A) where αi = 〈s, t, u〉. We
then give an algorithm that computes the relation ∼. This algorithm is similar to
the algorithm for computing EQUIV in Section 2.3. Given the relation ∼, it is
straightforward to check for compatibility. We leave the details of the proof for the
reader. 2

3.4 Limitations of Adaptors

There are protocols that are incompatible under the synchronous semantics of pro-
tocol collaboration, even though they would be compatible under an asynchronous
semantics. Some of these incompatible protocols can be made to work together
using an adaptor, but not all.

Consider, for instance, two protocols P1 and P2 and messages m1, containing
a parameter pm1 , and m2, containing a parameter pm2 . Say that P1 first sends
message m1 and then receives message m2 and that P2 first sends message m2

and then receives m1. These protocols are incompatible under the synchronous
semantics (as they would not agree on the execution trace), but an adaptor can be
used to make components implementing these protocols work together.

On the other hand, if P1 first sends two m1 messages and then receives two
m2 messages, and P2 sends two m2 messages and then receives two m1 messages,
the two cannot be made to work together even using an adaptor (although they
would be compatible using traditional asynchronous semantics). The reason is
that our formulation of adaptors only allowed the adaptor to store one copy of any
parameter. In this case, it could not store the parameter pm1 of the first m1 message
as well as the second m1 message simultaneously. We can easily get around this
problem by generalizing our definition of adaptors, allowing an adaptor to have a
memory cell for each parameter of each transition in the protocol. This would not
solve the more general case, however, where P1 and P2 can each send an unbounded
number of messages before receiving the messages sent by the other party. Allowing
this sort of functionality would require the adaptor to store an unbounded number
of message parameters and would lead to undecidability results regarding adaptor
properties.

3.5 Properties of Adaptors

Given protocols P1 and P2, and an adaptor A, we would like to be able to ascer-
tain whether certain properties are guaranteed for any collaboration between two
components using protocols P1 and P2 and adaptor A. We are interested in three
kinds of properties:

where it cannot progress any further. A stronger definition would require the lack of deadlock for
both components. We could equally as well have used the stronger definition.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 315

—Memory consistency: Is the adaptor specified in such a way that it will always
have received a message before trying to forward a parameter from that message?

—Parameter relationships: Does the adaptor maintain the correct relationship be-
tween the parameters of P1 and those of P2?

—Patterns of collaboration: Does the adaptor enforce the correct pattern of com-
munication between P1 and P2?

It should be clear that checking these properties is useful to guarantee that the
adaptor will actually function as desired; given a specification of the properties we
expect an adaptor to exhibit, we can check that a particular adaptor conforms to
this specification. Furthermore, in the next section we show how we can synthesize
an adaptor from the specification.

Memory Consistency. By definition, an adaptor A contains a set of memory
Cells: one cell Cells.parm for each parameter parm that can be received by the
adaptor. A cell Cells.p is valid at a state αk of a collaboration history α = α1 →m1

α2 →m2 · · ·αk · · · iff there exists a state αi = 〈si, ti, ui〉, i < k, such that the
transition into ui writes Cells.p, and there does not exist a state αj = 〈sj , tj , uj〉,
i ≤ j < k, such that the transition out of uj invalidates Cells.p. A collaboration
history α = α1 →m1 α2 →m2 · · · ∈ Collabs(P1, P2,A) is memory consistent iff
for all i and for all cells Cells.p, if the transition from αi into αi+1 causes A to
read cell Cells.p, then Cells.p is valid at αi. A is memory consistent iff for all
α ∈ Collabs(P1, P2,A), α is memory consistent.

A proof of the following lemma is given in the Appendix.

Lemma 3.5.1. There exists an algorithm for checking whether or not an adaptor
is memory consistent.

By definition, an adaptor is well formed w.r.t. P1 and P2 iff it is compatible with
P1 and P2 and is memory consistent. The well-formedness of an adaptor is the
minimum that is required for the adaptor to be correct. For if it is not well formed
then either there exists a mismatch in protocols between the adaptor and one of the
components it is communicating with, or the adaptor may attempt at some point
to forward a value to a component when it has not yet received that value from the
other component, or when it has already forwarded the value and subsequentially
invalidated it. The adaptor of Example 3.2.1 (Figure 5) is well formed.

Theorem 3.5.2. There exists an algorithm to check whether an adaptor is well
formed.

The proof of this theorem follows immediately from Theorem 3.3.1 and Lemma
3.5.1.

Parameter Relationships. Another property of interest is how parameters sent
from the adaptor are related to parameters received by the adaptor. By defi-
nition, val � parm means that there exists some adaptor rule that synthesizes
the parm parameter of a message from the value val. That is, if there exists a
<synthesis_action> of the form parm = x or of the form parm = f(x1,x2,...),
then y � parm or yi � parm (1 ≤ i), where y = x (yi = x) if x is a constant,
and y = p (yi = p) if x = Cells.p. In our example adaptor we have the prop-
erty itemDescr � auctionInfo, as there is a rule that forwards the itemDescr

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

316 · D.M. Yellin and R.E. Strom

parameter as the auctionInfo parameter. Given an adaptor specification, it is
straightforward to discover all relationships of the form X � Y.

Additionally, we often want to know whether a parameter received by the adaptor
(and stored into a memory cell) is used just once or is used repeatedly to synthesize
parameters. In our example adaptor the parameter itemDescr is stored into a
memory cell and then used just once to define the auctionInfo parameter before
it is invalidated. In contrast, the bidItem parameter, once received from the bidder
in a requestToBid message, can be used repeatedly to define the itemBiddingOn
parameter each time a bid message is sent to the auctioneer. We write one-shot(p)
if any particular instance of the parameter p is used at most once to define a
parameter synthesized by the adaptor. In the Appendix we also prove the following
lemma.

Lemma 3.5.3. Given a memory-consistent adaptor, there exists an algorithm to
determine whether the adaptor satisfies the property one-shot(p) for some param-
eter p.

Patterns of Collaborations. The final class of adaptor properties we are con-
cerned with is causality relationships between messages that the adaptor receives
and messages that it sends. We use a regular-expression language to formulate
these relationships. A pattern is a regular expression, where the alphabet is the
set of messages that can either be received or sent by the adaptor. A pattern is
constructed by the following grammar:

<pattern> ::= <message_name>
| <pattern> + <pattern>
| <pattern> . <pattern>
| <pattern> *
| (<pattern>)

If a pattern is <message_name> it means that the adaptor receives or sends that
message and then terminates (the interface specification determines whether the
message is a sending or receiving message in the adaptor). If a pattern is of the
form

<pattern1> + <pattern2>

it means that the adaptor sends and/or receives the message sequence specified by
either <pattern1> or <pattern2> and then terminates. If the pattern is of the
form

<pattern1> . <pattern2>

it means that the adaptor first sends and/or receives the message sequence specified
by <pattern1> and then sends and/or receives the message sequence specified by
<pattern2> and then terminates. Finally, if the pattern is of the form <pattern>*
it means that the adaptor sends and/or receives the message sequence specified by
<pattern> zero or more times. We use the notation !(m1 + m2 + ...) to mean
that the adaptor sends or receives a message other than the specified messages.
This is just a notational convenience, since the set of messages that can be received
or sent by the adaptor is finite, and we could just as well have enumerated the set
of messages it can receive or send, rather than the ones it cannot.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 317

Here are some examples. Let m1 be a receiving message and m2 be a sending
message. An adaptor satisfies the pattern m1.m2 iff, for every collaboration, it first
receives an m1 message, next sends an m2 message, and then terminates. It satisfies
the pattern

((!(m1 + m2))* . m1 . (!(m1 + m2))* . m2)* (!(m1 + m2))*

iff, for every collaboration, every time the adaptor receives an m1 message it subse-
quently sends an m2 message, and whenever the adaptor sends a m2 message it must
have previously received an m1 message. Furthermore, no two m1 messages can be
received without an intervening m2 message being sent, and no two m2 messages can
be sent without an intervening m1 message being received. This pattern captures
the fact that there is often a one-to-one relationship between messages that one
protocol sends and messages that the other protocol receives. A similar pattern is
(!m0)* . m0 . ((!(m1 + m2))* . m1 . (!(m1 + m2))* . m2)* (!(m1 + m2))*.
This pattern states that the preceding conditions on m1 and m2 messages only apply
once the adaptor receives/sends an m0 message.

As a pattern is a regular expression, we can build a deterministic automaton to
recognize the pattern. As an adaptor executes, it sends and receives messages. At
any given time during its execution, the adaptor has either violated the pattern,
or it is at some state within the pattern automaton. When the adaptor starts
execution it is at the initial state of the pattern automaton. If the adaptor sends
or receives a message m, and the adaptor is at a pattern automaton state p that
does not allow the sending or receipt of m, then the adaptor violates the pattern.
Otherwise the adaptor moves to the pattern automaton state that follows p upon
the receipt or sending of m. If the adaptor is at a recognizing pattern automa-
ton state (i.e., a final state of the pattern automaton), then the adaptor at that
state recognizes the pattern. Because the pattern may indicate a potentially infinite
message sequence, an adaptor can fluctuate infinitely often from a state that rec-
ognizes the pattern to one that does not. For instance, if the pattern is of the form
(pattern1 . pattern2)*, and the adaptor has sent and/or received the message
sequence specified by pattern1 . pattern2 . pattern1, then it has not violated
the pattern but is not in a state that recognizes the pattern either. If it next sends
and/or receives the message sequence specified by pattern2, it then is in a state
that recognizes the pattern.

We want to be able to statically determine if an adaptor conforms to the message
sequences described by a particular pattern. By definition, an adaptor weakly sat-
isfies a pattern if it is guaranteed to never violate the pattern, and if the adaptor
ever terminates in a final state, it is guaranteed to be a state that recognizes the
pattern. Under weak satisfaction it may be that the adaptor does not violate the
pattern but will also never be in a state that recognizes the pattern. For instance,
given the pattern (m1 . (!m1)* . m2)* it may be that the adaptor receives m1
and then performs an infinite amount of communication without sending m2. In
this case, as long as it does not receive another m1 message in the meantime it
weakly satisfies the pattern.

An adaptor strongly satisfies a pattern if it is guaranteed to never violate the
pattern, and if the adaptor is ever in a state that does not recognize the pattern,
it is guaranteed to eventually reach a state that does recognize the pattern. For

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

318 · D.M. Yellin and R.E. Strom

instance, in the pattern given above, it would require that the adaptor always
eventually forward an m2 message after receiving an m1 message, even if the adaptor
never terminates.

Strong satisfaction is a stronger notion than weak satisfaction, as it includes a no-
tion of progress. However, strong satisfaction allows us to state stronger properties
than we can state with our protocol language. Consider, for instance, a protocol
that first receives m1 and then sends m2. Our protocol semantics is that after
receiving m1 it will send m2. Hence we can prove that such a protocol strongly
satisfies the pattern m1.m2. However, consider the protocol that first receives an
unbounded number of m1 messages and then sends an m2 message. Our semantics
does not require that the component ever send an m2 message, and it is actually
impossible in our current protocol language to specify “the component/adaptor will
receive an unbounded number of m1 messages and then send an m2 message.”
Hence no adaptor would ever strongly satisfy the pattern m1*.m2. This suggests a
future research direction to extend our protocol specification language with addi-
tional constructs from temporal logic.

Lemma 3.5.4. There exist algorithms to determine whether an adaptor weakly
(strongly) satisfies a pattern.

The proof of this lemma is given in the Appendix.

Adaptors and Arbitrators. Just as we require an arbitrator to enforce the syn-
chronous semantics between two collaborating components, we likewise require ar-
bitrators for collaborations between an adaptor A and the components C1 and C2 it
collaborates with. Unfortunately we cannot use one arbitrator for the collaboration
between A and C1 and a separate arbitrator for the collaboration between A and
C2.

This is because the adaptor A and a component, say C1, may be in mixed states
allowing either party to send, and the adaptor may then switch to a state disallowing
C1 to send, even though no message exchange has occurred between C1 and A. This
can only occur, however, when a message exchange occurs between A and its other
collaborating component C2 (see Section 3.3). If an arbitrator was only aware of
messages between A and C1 it would not be able to enforce this protocol.

To solve this problem we must construct a single arbitrator between A and both
its collaborating components C1 and C2. This arbitrator will be aware of all the
messages exchanged between A and C1 and C2. Alternatively, A can itself assume
the role of arbitrator.

We can therefore follow the same methodology for collaborations between an
adaptor and components as between two components: we reason about the col-
laboration using abstract protocols of all the parties. Given compatibility between
them, we implement the synchronous semantics by constructing an arbitrator (using
either optimistic or pessimistic techniques as described in Section 2.5). We augment
the abstract protocols with the appropriate synchronization messages. The arbi-
trator for the adaptor and collaborating components constructed in this case needs
to potentially be aware of all the messages exchanged between the three parties.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 319

4. ADAPTOR SYNTHESIS

Although one can specify an adaptor using the techniques of the previous section,
it can be tedious and error prone to specify all the transitions and actions. We
would like a tool that takes a very concise declarative specification that relates
parameters and messages in the two different collaboration specifications and either
automatically synthesizes a well-formed adaptor consistent with that specification
or determines that no such adaptor exists. In this section we show how this can be
done.

4.1 Interface Mappings

Let S1 and S2 be the interface signatures of two collaboration specifications.
An interface mapping between S1 and S2 consists of a set of rules, where each
<MappingRule> is given by the following syntax:

<MappingRule> ::= <parm_mapping_rule>
| <parm_usage_rule>
| <causality_rule>

<parm_mapping_rule> ::=
[<Function>] <parm_or_const>+ -> <parm>;

<parm_usage_rule> ::= one-shot (<parm>);

<causality_rule> ::=
forward <msg1> as <msg2>;

| if <msg0> then forward <msg1> as <msg2>;
| <pattern>

<parm_or_const> ::= <constant>
| <parm>

<parm> ::=
<component_name>::<msg_name>.<parm_name>

<msg> ::= <component_name>::<msg_name>

Each rule is either a <parm_mapping_rule>, a <parm_usage_rule>, or a
<causality_rule>. As described in the following, these rules relate messages and
parameters in the two interfaces. Each rule in an interface mapping I introduces
a constraint that any correct adaptor A for these collaboration specifications must
obey.

The left-hand side of a <parm_mapping_rule> consists of an optional conversion
function and a list of parameters and/or constants. (The + metasymbol indicates
one or more instances of the preceding syntactic element.) The right-hand side of
the rule consists of a single parameter. If the rule is of the form f(x1,...,xn)->p,
then the value of p is obtained by evaluating f on its arguments. Otherwise the rule
is of the form x->p, in which case the value of p is obtained directly from the value
of x. If a parameter cn::mn.pn is on the left-hand side of this rule, pn must be the
name of a parameter sent by the component cn in message mn. If the right-hand

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

320 · D.M. Yellin and R.E. Strom

side is of the form cn’::mn’.pn’, then pn’ must be the name of a parameter to be
received by the component cn’ in message mn’. If an adaptor A is correct w.r.t. I
then the adaptor satisfies the property val � parm only if there exists a mapping
rule in I with val on the left-hand side and parm on the right-hand side.

A <parm_usage_rule> is of the form one-shot(cn::mn.pn). It indicates that
any instance of the parameter pn sent by component cn in message mn should be
used to define at most one parameter synthesized by the adaptor. An adaptor A is
correct w.r.t. I only if the adaptor satisfies each one-shot rule given in I.

A <causality_rule> is either of the form forward cn1::mn1 as cn2::mn2 or
if cn0::mn0 then forward cn1::mn1 as cn2::mn2, where mn0 is a message sent
by component cn0; mn1 is a message sent by component cn1; and mn2 is a message
received by cn2. Alternatively, a causality can be any pattern of the type described
in Section 3.5. The first two forms are just shorthand notations for frequently
used patterns. The first form is a shorthand for the pattern ((!(m1 + m2))* .
m1 . (!(m1 + m2))* . m2)*(!(m1 + m2))*. As discussed in Section 3.5, this

means that the adaptor will faithfully maintain a 1-1 correspondence between m1
messages it receives and m2 messages it sends. The second form is similar to the
first, except that it states that the correspondence need not be maintained until
component cn0 sends message mn0. An adaptor A is correct w.r.t. I only if, for
every collaboration, the adaptor satisfies each pattern specified in a causality rule
in I. Recall that in Section 3.5, we defined both weak and strong satisfaction
of patterns. We assume weak satisfaction for the reasons discussed previously.
However, as stated in Lemma 3.5.4, it is also possible to check an adaptor for
strong satisfaction of patterns.

An interface mapping is complete iff every parameter pn of a message mn that can
be received by component cn appears on the right-hand side of some
<parm_mapping_rule>, unless a causality rule dictates that the message mn is never
to be sent to component cn (i.e., via a pattern (!cn::mn)*). Completeness is an
essential property of interface mappings, as we need to specify where the adaptor
is to get the value of any parameter that gets synthesized. An interface mapping
is unambiguous iff each parameter appears in at most one right-hand side of a
<parm_mapping_rule> rule. We assume that all interface mappings are complete
and unambiguous.6

4.2 Validity of Adaptors with Respect to Interface Mappings

Let I be an interface mapping between two collaboration specifications C1 and C2

supporting protocols P1 and P2 respectively. An adaptor A is valid w.r.t. I iff

(1) A is well formed w.r.t. P1 and P2 and

(2) A is correct w.r.t. I (i.e., A satisfies the constraints given in I).

Lemma 4.2.1. There exists an algorithm for checking whether an adaptor is valid
w.r.t. an interface mapping.

6Ambiguous interface mappings can make sense; for instance, one may want to specify two ways
to synthesize a particular parameter of a message, depending upon what previous messages have
been received. For simplicity, we do not discuss ambiguous interface mappings in this article.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 321

//Parameter mapping rules

bidder::newBid.bidId -> auctioneer::bid.bidderId;

bidder::newBid.myBid -> auctioneer::bid.amount;

bidder::requestToBid.bidItem -> auctioneer::bid.itemBiddingOn;

auctioneer::newItem.itemDescr -> bidder::auctionBegin.auctionInfo;

auctioneer::newItem.bidderId -> bidder::canBid.bidId;

auctioneer::update.highBid -> bidder::newHighBid.price;

// Parameter usage rules

one-shot(bidder::newBid.bidId);

one-shot(bidder::newBid.myBid);

one-shot(auctioneer::newItem.itemDescr);

one-shot(auctioneer::newItem.bidderId);

one-shot(auctioneer::update.highBid);

// Causality rules

forward auctioneer::newItem as bidder::auctionBegin;

forward auctioneer::update as bidder::newHighBid if possible;

forward auctioneer::rejectBid as bidder::bidNotOk;

forward auctioneer::acceptBid as bidder::bidOk;

forward auctioneer::itemSold as bidder::gavel;

if (bidder::reqToBid) then forward auctioneer::update as bidder::newHighBid;

forward auctioneer::update as auctioneer::updateAck;

forward bidder::requestToBid as bidder::canBid;

forward bidder::newBid as auctioneer::bid;

(!bidder::cannotBid)*;

Fig. 6. An interface mapping for the Auctioneer and Bidder protocols.

The proof of this lemma follows from Theorem 3.5.2 and Lemmas 3.5.3 and 3.5.4.

Example 4.2.1. Figure 6 gives an interface mapping for the Auctioneer and Bid-
der collaboration specifications. The last rule states that the adaptor should never
send the cannotBid message.

4.3 Synthesis of Adaptors

In this section we describe an algorithm that, given two protocols P1 and P2 for two
collaborating components C1 and C2 and an interface mapping I mapping between
the protocols, will either construct an adaptor that is valid w.r.t. I or will conclude
that no such adaptor exists.

Assume that there are n causality constraints in I and that I dictates that
the adaptor contains the memory cells Cells.7 Let PatternStatei (1 ≤ i ≤ n)
be the states of the pattern automaton for the pattern given in the ith causal-
ity constraint. Let PossibleAdaptorStates be the set of all tuples of the form
States(P1) × States(P2) × 2Cells × PatternState1 × · · · × PatternStaten. Each
state of the constructed adaptor will be an element of PossibleAdaptorStates or
the special state error. We will maintain the invariant that an adaptor enters state
〈s1, s2,memCells, p1, · · · , pn〉 during a collaboration with components C1 and C2

iff at this point in time component C1 is in protocol state s1; component C2 is in
protocol state s2; the adaptor memory cells in memCells are valid; and the pattern

7Recall that an adaptor has one memory cell for each parameter it can receive. Hence an exami-
nation of the interface mapping (or the component protocols) will indicate the set of memory cells
in the adaptor.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

322 · D.M. Yellin and R.E. Strom

automaton for the ith causality constraint is in state pi. The adaptor will enter the
state error iff the collaboration has violated a causality constraint.

Let u = 〈s1, s2,memCells, p1, · · · , pn〉 and u′ = 〈s′1, s′2,memCells′, p′1, · · · , p′n〉
be two PossibleAdaptorStates. We say that the adaptor transition u : m → u′ is
enabled iff all of the following are satisfied:

(1) (s1 : m→ s′1) ∈ Transitions(P1) and s2 = s′2 or s2 : m→ s′2 ∈ Transitions(P2)
and s1 = s′1;

(2) if m is a message to be received by the component (and therefore to be sent
by its mate the adaptor) then memCells contains all the cells required to
synthesize the parameters of m, as specified by I;

(3) if m is a message to be received by the component (and therefore to be sent by
its mate the adaptor) then memCells′ is the same as memCells except that
if I specifies that parm has the one-shot property in I, and if Cells.parm is
used to synthesize a parameter of m, then Cells.parm is not in memCells′;

(4) if m is a message to be sent by the component (and therefore to be received by
its mate the adaptor) then memCells′ is the same as memCells except that
for each parameter parm of m, memCells′ additionally contains Cells.parm;

(5) the pattern automaton of the ith (1 ≤ i ≤ n) causality constraint moves from
state pi to state p′i upon the reception/sending of message m. Furthermore, p′i
cannot equal error.

The first requirement guarantees that an adaptor transition is only enabled if
the message can arrive from or can be sent to one of the collaborating components
without causing an unspecified reception. The second requirement guarantees that
the transition will only be enabled if the adaptor has enough information to synthe-
size the parameters of the message it is sending. The third and fourth requirements
guarantee that the transition will take the adaptor to an adaptor state which cor-
rectly specifies the valid memory cells of the adaptor after this transition is taken.
The last requirement guarantees that the transition will take the adaptor to an
adaptor state which correctly specifies the pattern automaton states of the adaptor
after this transition is taken. A resulting pattern automaton state cannot be error,
as that would violate its causality constraint.

In specifying an adaptor transition, besides specifying the receipt or sending of
a message, one also needs to specify how parameters are synthesized and which
memory cells are written or invalidated. Since the interface mapping specifies how
parameters are to be synthesized, and the adaptor constructed by the synthesis
algorithm will always be valid w.r.t. this mapping, and since the adaptor state
specifies which memory cells are valid, this information is implicit in the transition,
and we will not explicitly state this additional information.

The synthesis algorithm will construct the adaptor in phases. In phase 1 it will
construct an initial adaptor A1. In each successive phase it will remove some of the
states and transitions from the adaptor produced by the preceding phase, thereby
forming a new adaptor. The algorithm will finally reach a fixed point where no
more states and transitions can be removed. If the resulting adaptor is empty — it
is the null adaptor — then no valid adaptor exists. Otherwise the resulting adaptor
is valid w.r.t. I. It will satisfy each causality constraint using weak satisfaction
semantics.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 323

Phase 1 proceeds as follows. A worklist is initialized to contain a single state,
the initial adaptor state 〈initP1 , initP2 , ∅, p1init , · · · , pninit〉, where piinit is the initial
state of the pattern automaton of the ith causality rule. This initial state is marked.
The algorithm then continuously performs the following actions, until the worklist
is empty.

Remove a state u from the worklist. For each enabled transition from u to u′,
where u′ ∈ PossibleAdaptorStates, add this transition to the adaptor. If u′ is not
already marked, add u′ to the worklist and mark it.

When no more states are on the worklist, then this first phase of the algorithm
concludes. The adaptor A1 will consist of the marked states and the transitions
added during the phase.

As shown in the Appendix, A1 captures all of the “good” collaborations that can
possibly occur between the collaborating components and any adaptor that is valid
w.r.t. I. The problem is that A1 may also contain “bad” collaborations — that is,
collaborations that deadlock or that have unspecified receptions. In order to get rid
of these collaborations, we need to remove states and transitions that allow these
bad collaborations to occur.

This is accomplished by the following phases of the algorithm. Given adaptor
Aj , j ≥ 1, phase j + 1 first checks to see if Aj contains a deadlock state or an
unspecified reception state u. In the former case, u is a nonfinal state with no
outgoing transitions. In the latter case, u specifies that one of its collaborating
components is in a send state s (not a mixed state) and can send message m, but
there is no adaptor transition from u that accepts m. If such a state u exists, then
that state is removed from the adaptor with all of its transitions. The resulting
adaptor, Aj+1, is the adaptor produced by phase j + 1.

The algorithm terminates when either the adaptor constructed by a phase has
no more deadlock or unspecified reception states, or the adaptor is empty — it
contains no states. In the latter case we can conclude that there is no adaptor
that is valid w.r.t. I. Otherwise this adaptor is a valid adaptor for this interface
mapping. The proof of the following theorem is given in the Appendix.

Theorem 4.3.1. The adaptor synthesis algorithm will either produce a valid
adaptor w.r.t. the interface mapping I or will correctly conclude that no such
adaptor exists.

Given an adaptor specification synthesized by this algorithm, it is almost com-
pletely straightforward to automatically synthesize the code that implements the
adaptor. Of course, the adaptor synthesized by the algorithm will use abstract
protocols. As discussed toward the end of Section 3.5, these protocols need to be
augmented with synchronization constraints to be able to work with an arbitra-
tor. The only complication is that the specification is not completely deterministic;
the adaptor specification produced can contain mixed states, where the adaptor
is allowed to send or receive a message, and even send states allow the adaptor
to arbitrarily choose one of possibly many messages to send. In these cases, the
code implementing the adaptor can just make an arbitrary decision of which path
to follow. Another approach is to produce an adaptor that does not have this
nondeterminism. To this end we say that an adaptor specification is strongly deter-
ministic iff (1) it has no mixed states and (2) every send state has only one outgoing

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

324 · D.M. Yellin and R.E. Strom

transition. It is not hard to show that if there exists a valid adaptor, then there
exists a strongly deterministic valid adaptor.

5. RELATED WORK

The contributions of this article fall into four categories: augmenting interface
descriptions with protocols, protocol compatibility, the semiautomatic generation
of software adaptors, and component composition.

Adding protocols to interface specifications is based upon the theory that ad-
ditional constraints on interface descriptions can help in the task of composing
software. It helps the programmers of modules by allowing tools to automati-
cally check that the module obeys the constraints given in the specification, and
it helps users of the module by formally documenting usage assumptions. Previ-
ous work by the authors on typestate [Russell et al. 1994; Strom and Yellin 1993;
Strom and Yemini 1986] shows how to statically check modules for compliance to
such constraints. Other recent work on adding constraints to interface descriptions
includes the Rapide system [Luckham et al. 1995].

There have been other proposals for augmenting interface descriptions with se-
quencing constraints. One of the earliest was Campbell and Habermann’s path
expressions [Campbell and Habermann 1974]. A path expression declares sequenc-
ing constraints on method invocations and can be used to limit the number of
concurrent method executions. The emphasis of this work is concurrency control
and synchronization within a server; the path expression does not limit the order in
which clients can invoke methods, but determines how the scheduler orders these in-
vocations. Furthermore, the path expression does not define a relationship between
a particular client and server, but between any number of clients and servers.

Procol [van den Bos and Laffra 1991] incorporates protocols into its object de-
scriptions. These are closer to our own notion of protocol, as they allow a server
to specify interactions with a particular client. However, a protocol in Procol is
less abstract than our own protocols, as it relates messages to internal implemen-
tations, whereas our protocols describe only externally visible interface properties.
Furthermore, like path expressions, Procol only expresses a server’s protocol (i.e.,
receives), not a client’s protocol (i.e., sends).

Whereas the preceding systems use protocols as a run-time device to control
client/server interactions, we propose protocols to augment the type system and
control legal bindings (or at least to warn of potential conflicts). To this end we
defined protocol compatibility. A similar approach is taken by Nierstrasz [1993]
in his paper on regular types for active objects. However, this work once again
focuses on a client/server model where servers only specify receives while clients
only specify sends. There are other technical differences between our approaches,
including how to handle nondeterminism.

Our notion of protocol compatibility is different from that used in the commu-
nicating finite-state machine literature [Brand and Zafiropulo 1983]. Using that
model, for instance, a protocol that first sends message a and then receives b is
compatible with a mate that first sends message b and then receives a. According
to our definition, the protocols are not compatible. On the other hand, in our model
a protocol P is always compatible with its inverse P , which is not true for the asyn-
chronous communicating finite-state machine model. Without any bounds on the
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 325

lengths of queues, and without any synchronization guarantees, it is in general unde-
cidable to determine whether two communicating finite-state machines will contain
no protocol errors such as deadlock [Brand and Zafiropulo 1983]. Many researchers
have investigated what restrictions need to be placed on the protocols to guaran-
tee the decidability of the problem [Brand and Zafiropulo 1983; Gouda et al. 1984;
1987].

We have introduced arbitrators and our new definition of protocol compatibility
for several reasons. First, we did not want to deal with an undecidable problem or
even a computationally hard one. Second, we wanted a model that made it easy for
people and tools to use and reason about protocols. We considered it important to
be able to use a protocol P to collaborate with a component using a protocol P .

Our approach is similar to, but more general than, that given by Gouda et al.
[1984]. We are more general in that we allow for mixed states (which requires our
introduction of arbitrators), and we allow for one protocol to receive messages that
cannot be sent by the other protocol as long this will not result in deadlock. We
also allow one protocol to send messages that cannot be received by the other as
long as the states from which these messages are sent are unreachable during any
collaboration involving these two protocols.

The other area addressed by our article is that of software adaptors. This has been
studied by several other researchers using various different frameworks. Wieder-
hold [1992] describes a general framework for software mediators. In Purtillo et
al.’s Polylith system, a language called NIMBLE has been developed that allows
programmers to easily state mappings between a client invocation of a function and
that invocation on the server [Purtilo and Atlee 1991]. Supported transformations
include reorderings of parameters, data type conversions on parameters, and speci-
fication of default values for missing parameters. This work is important in making
client/server applications work when one can express a 1-1 mapping between client
calls and server invocations. This work is inadequate, however, when dealing with
stateful adaptors where (1) multiple calls need to be mapped into a single call, (2)
synchronization messages need to be synthesized, etc. In the words of Konstan-
tas [1993], “By reducing the interoperability ‘interface’ to the level of a procedure
call, the inter-relation of the interface procedures is lost, since the interoperability
support no longer sees the interface as a single entity but as isolated procedures.”

The object-oriented interoperability work of Konstantas [1993], the work on glu-
ons by Pintado et al. [1992], and the interface adaptors of Thatte [1994] are similar
to ours in that they focus on translation of interfaces (objects). Yet none of these
approaches use protocols as the glue to hold together the messages of an inter-
face. In this regard, our work is most similar to protocol conversion [Lam 1988;
Okumura 1986; Shu and Liu 1989]. In these works, like our own, protocols are used
to specify interfaces; some sort of specification is given to define the relationship
between different protocols; and an algorithm is described that synthesizes a con-
verter given the protocols and the specification. This article extends these works
in several ways. Most significantly, these works do not allow messages to have pa-
rameters; their focus is on synchronizing messages of one protocol with messages in
the other protocol. Because their model lacks parameters, their adaptors consist of
a state (corresponding to the states of its two mates) and a message queue, unlike
our formulation where an adaptor has additional memory used to store parameters.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

326 · D.M. Yellin and R.E. Strom

Although one may be able to mimic parameters as separate messages, our formula-
tion is much more natural (at least to objected-oriented systems). It also allows us
to model many more properties of adaptors, such as parameter translation, reuse
of parameters in multiple messages, and memory consistency of adaptors.

The role of parameters in our model goes beyond expressibility, as it also plays a
fundamental role in our synthesis algorithm. This is because when the model does
not contain parameters, then there are no natural constraints on the adaptor —
one can always construct an adaptor that synthesizes messages to send to either
component whenever that component’s protocol requires such a message to be re-
ceived. The role of the specification is to put constraints on adaptor behavior so
that not all compatible adaptors are valid. When the model includes parameters
and parameter-mapping rules, however, then there exist natural constraints on the
adaptor; the adaptor can only synthesize a message if it has already received suffi-
cient information (in the form of received parameters) to synthesize the parameters
of this message. In this regard, Shu and Lius’ [1989] mapping set is somewhat simi-
lar to our parameter-mapping specifications, except that they map messages of one
protocol to messages in the other protocol, whereas we map parameters to param-
eters. This provides a finer level of granularity in the mapping that is important in
many applications.

Whereas parameter-mapping rules provide a natural way to express the seman-
tics of the adaptor, we recognize that additional constraints are still often needed to
specify additional properties that the adaptor must satisfy. This is the reason that
our interface mappings also allow one to express causality constraints. These con-
straints allow one to specify properties similar to the sorts of properties expressible
by Okimura’s [1986] conversion seed.8

Overall, in both goals and methodology of building a robust model for compo-
nent composition, the work by Allen and Garlan [1994a; 1994b] on specification
of ports and connectors is the most closely related to ours. In both models, com-
ponents may have one or more interfaces, each with its own formal specification
based on finite-state protocols — Allen and Garlan’s interfaces are called ports.
Whereas we distinguish between the cases where two interface specifications can
be directly bound and those where an adaptor is required, in Allen and Garlan’s
model there is always an adaptor-like connector. Their connectors are first-class,
reusable components in their own right and can support n-party interactions. Con-
nectors are polymorphic in that any component’s port whose protocol is compatible
with a given connector’s role can be plugged into that role. Allen and Garlan are
able to use model-checking tools to verify both compatibility and deadlock free-
dom. Their port and role protocols are defined in a subset of CSP, including the
nondeterministic and deterministic choice operators (2 and u). Our model im-
poses additional restrictions on the interfaces that may be specified: in particular,
a component’s interface may only make a deterministic choice involving zero or

8It is interesting to note that causality rules are needed to specify liveness properties of adaptors.

The parameter-mapping rules only indicate under what conditions an adaptor is permitted to
send a message; it does not indicate when the adaptor must send a message. (Sometimes the
combination of a parameter-mapping rule and the fact that the adaptor cannot deadlock will have
the effect of enforcing a liveness property, but this is not always the case.)

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 327

more input events and an optional nondeterministic choice among output events.
Deterministic choices among output events (where the environment dictates which
message is output) and nondeterministic choices among input events (where the
recipient determines which message he will accept) are not allowed. Although more
restricted, our interface semantics is still adequate to capture the communications
models of most object-based systems that use either method calls or asynchronous
message passing. Our safety criterion is also stronger: we require that the two
parties agree on the order of sent and received messages. Although adaptors can
be used to bypass this strict agreement on the order of messages, it is still more
restrictive than the sorts of protocols that are compatible under the usual asyn-
chronous semantics, as discussed in Section 3.4. These restrictions permit us to
simplify the analysis of compatibility, to automatically produce arbitrators to man-
age contention, and to synthesize adaptors when the protocols are not syntatically
compatible but are functionally compatible.

One way in which our work can be generalized is to support not only two-party
interactions, but multiple-party interactions, as in Allen and Garlan’s work cited
above, as well as in the work on contracts by Helm et al. [1990]. In this case,
the “adaptor” is not just an entity that bridges the differences between interfaces,
but a more general mechanism for “gluing” together multiple applications into a
composite application. It would serve the role as coordinator and would probably
require a more general scripting mechanism than the adaptors of this article.

The component composition model used in this article allows an interface in
one component to be bound to an interface in a second component. It does not
allow an interface in one component to be bound to multiple interfaces (in several
components). Additional research is needed to explore the protocol semantics of
such compositions.

Another area for future research is to investigate richer languages for expressing
protocols. Such languages should include notions of fairness and liveness.

APPENDIX

PROOFS OMITTED FROM MAIN TEXT

Dataflow Analysis of Collaborations

In order to prove Lemmas 3.5.1, 3.5.3, and 3.5.4, we first present a generic tool for
checking whether a property will hold for any collaboration involving a particular
adaptor. To help in this task, we utilize techniques similar to classical dataflow al-
gorithms developed for program analysis and optimization[Kam and Ullman 1977;
Kildall 1973].

Given protocols P1 and P2, and adaptor A, we build a collaboration graph repre-
senting all possible collaborations. There will exist one node in the graph for each
tuple 〈s, t, u〉 (of type States(P1)× States(P2)× States(A)) such that there exists
some collaboration history with a collaboration state of the form 〈s, t, u〉. As shown
in the proof of Theorem 3.3.1, the set of all such tuples is finite and computable.
There will exist an edge from a node representing 〈s, t, u〉 to a node representing
〈s′, t′, u′〉 iff, in some collaboration history, a collaboration state 〈s, t, u〉 can imme-
diately precede a collaboration state 〈s′, t′, u′〉. The label of an edge will contain a
set of message names. In particular, the label will contain the name of any mes-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

328 · D.M. Yellin and R.E. Strom

sage that can be sent to or received from the adaptor if that message causes the
transition from the predecessor to the successor state. The resulting graph can be
cyclic. Any path in the collaboration graph starting at 〈initP1 , initP2 , initA〉, the
entry node of the graph, represents a collaboration history α ∈ Collabs(P1, P2,A).

Let Props be some finite set of properties about the collaboration. The goal of
the analysis is to label each node of the graph with a subset P of Props such that
〈s, t, u〉 is labeled by P iff the following invariant is maintained: p ∈ P iff there
exists α ∈ Collabs(P1, P2,A) such that α = · · ·αi · · ·, αi = 〈s, t, u〉, and p is true of
the collaboration when it enters state αi. That is, the label at a node 〈s, t, u〉 will
include an element p of Props iff there exists some collaboration state 〈s, t, u〉 of
some collaboration such that p is true when the collaboration enters that state.

Formally, each label is drawn from an element of the semilattice L. L consists of
a set of properties (i.e., an element of 2Props) and a meet operation ∪ (set union).
The least element is Props; the greatest element is ∅; and the partial order is ⊇
(set inclusion), i.e., a ≥ b ⇒ a ⊆ b. Each edge of the graph has an associated
function f : 2Props → 2Props that shows how to derive a set of properties at a
successor state from the set of properties at the predecessor state. For monotonic
frameworks, this function must be monotonic; S1 ⊆ S2 ⇒ f(S1) ⊆ f(S2). In our
case, for each function f there will exist a function f ′ : Props → Props such that
f(S) = ∪s∈Sf ′(s). Hence f will satisfy the property that f(S1∪S2) = f(S1)∪f(S2).
In technical terms, this means that this framework is not only monotonic, it is
distributive [Kam and Ullman 1977].

Property computation of the collaboration graphs proceeds as follows. Initially
each node is labeled by ∅. Repeatedly a node of the graph is evaluated until a
fixed point is reached. Evaluation of a node means computing the value at this
node by applying the edge function to each predecessor node label and taking the
meet of these values to form the label at this node. Because this framework is
monotonic, we are guaranteed to reach a fixed point. Furthermore, because this
framework is distributive, we are guaranteed to compute the meet-over-all-paths so-
lution [Kam and Ullman 1977]. This means that for each node representing 〈s, t, u〉
computed to have label P , there exists p ∈ P iff there exists α ∈ Collabs(P1, P2,A)
such that α = · · ·αi · · ·, αi = 〈s, t, u〉, and p is true of the collaboration when it is
in state αi.

With this introduction, we can now prove Lemmas 3.5.1, 3.5.3, and 3.5.4. In each
case we will apply the framework given above by implicitly defining the functions
f and f ′.

Proof of Lemma 3.5.1. To check for memory consistency we use the dataflow
analysis algorithm given above. In this case, Props = 2Cells. If 〈s, t, u〉 is labeled
by P ⊆ 2Cells, then for each set of memory cells memCells ∈ P , there exists
some collaboration history passing through the adaptor state u such that the valid
memory cells at u exactly equal memCells.

In order to use the dataflow analysis algorithm given above, we need to define
how to compute the label P ′ at a successor state 〈s′, t′, u′〉 given the label P of
the predecessor state 〈s, t, u〉. This is straightforward: for each set memCells ∈
P , and for each message m that labels the edge from 〈s, t, u〉 to 〈s′, t′, u′〉, if the
corresponding adaptor transition is a receive transition with save-actions, then the
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 329

newly received parameters are added to the set of valid memory cells memCells. If
the corresponding adaptor transition is a receive or send transition with invalidate-
actions, then the invalidated parameters are removed from the set of valid memory
cells memCells. The resulting set is added to P ′.

Once we have computed the labels for each node of the graph, for each node
corresponding to state 〈s, t, u〉 with label P , we check each transition from this
state to a successor state in which the adaptor sends a message m. It must be
the case that for each memCells ∈ P , memCells contains all the cells needed to
synthesize the parameters of m. If this fails to be the case, the adaptor is not
memory consistent; otherwise it is. 2

Proof of Lemma 3.5.3. We can use a slight variation of the proof just given to
determine whether a particular parameter has the one-shot property. In this case,
we run the algorithm given above, but we also add an action to invalidate Cells.p in
any adaptor transition that uses Cells.p to synthesize a parameter. If the resulting
adaptor is still memory consistent, then the adaptor satisfies one-shot(p), and
otherwise it does not. 2

Proof of Lemma 3.5.4. We need to show how to check whether an adaptor
satisfies a pattern. We begin with weak satisfaction. For any message pattern we
can construct a finite automaton that recognizes that pattern. During a collabora-
tion, every transition will cause this automaton to advance to a new state, based
upon which message was sent from or received by the adaptor in this transition. We
will assume that every such pattern automaton also has a special state called error
that will be entered during a collaboration if a transition occurs that violates the
pattern. (For instance, if the automaton corresponds to the pattern m1 . m2 and
after receiving an m1 message an m3 message is sent, the pattern automaton would
enter the state error.) Once it has entered the error state, the pattern automaton
never leaves this state.

In order to determine whether the adaptor weakly satisfies a pattern, we use
the dataflow algorithm given above. In this case, Props will be the states of the
pattern automaton. The meaning of labeling a node by a subset of automaton
states is as follows: node 〈s, t, u〉 includes the automaton state p as part of its label
iff there exists some collaboration state 〈s, t, u〉 of some collaboration history such
that when that collaboration state is entered, the automaton recognizing the given
pattern will be in the automaton state p.

Computing the properties at a successor node 〈s′, t′, u′〉 from a predecessor node
〈s, t, u〉 labeled P is as follows: For each p ∈ P , for each message m that labels
the edge from 〈s, t, u〉 to 〈s′, t′, u′〉, the pattern automaton is consulted to see what
state p′ the pattern automaton enters when starting in state p and making the
transition involving message m. This state p′ is then added to the label of the
successor state 〈s′, t′, u′〉. We apply the dataflow analysis algorithm to label each
node of the collaboration graph.

Once we have computed the labels at each collaboration graph node, we check
that no node has a label that contains the error symbol and that any final state of
the collaboration graph is labeled only by final states of the pattern automaton. If
this is the case then the adaptor weakly satisfies the pattern; otherwise it does not.

Checking for strong satisfiability requires more work. In addition to the above
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

330 · D.M. Yellin and R.E. Strom

requirements, strong satisfiability means that whenever the adaptor enters a col-
laboration state that does not recognize the pattern, it will eventually enter a
collaboration state that will recognize the pattern (i.e., a final state of the pattern
automaton). This means that we need to check all cycles of the collaboration graph
and make sure that any collaboration that forever traverses the cycle will infinitely
often enter a state that recognizes the pattern. If there exists some node of the
cycle that is labeled only by terminal states of the pattern automaton, then this
is certainly true. Otherwise, we need to check if the condition is satisfied by using
the following algorithm:

Consider each node n on the cycle, and each nonfinal pattern automaton state p
labeling that node. The fact that p labels the node means that there exists some
collaboration that enters this node with the pattern automaton in state p. Say that
the pattern automaton has k states. Consider all sequences of transitions that cause
the collaboration to traverse the cycle k times, starting at node n and returning
to node n. Let S be the set of these sequences. There exists a finite (although
possibly exponential) number of such sequences. (There exist more than one such
sequence, since each edge on the cycle can be labeled by multiple message names.)
Consider each sequence in S. Starting at node n, simulate the traversal given by
this sequence. Initially, let n be labeled by p, and all other nodes on the cycle have
an empty label. Each time a node is entered, compute the new pattern automaton
state, and add that state to the label at that node.

When adding a pattern automaton state to the label at a node, consider the fol-
lowing three possibilities: (1) If the newly computed pattern automaton state is a
final state, then stop. It means that using this sequence, the collaboration eventu-
ally entered a final state, and using this sequence the adaptor strongly satisfies the
pattern. Continue by checking the next sequence in S. (2) If the newly computed
automaton state p′ at node n′ is the same as an existing label p′ at that node,
then stop. It means that along this collaboration sequence, the collaboration can
begin at node n′ with the automaton in state p′ and eventually return to node n′

with the automaton once again in state p′ without the automaton entering a final
state in the meantime. Hence we can construct an infinite collaboration with this
behavior (never entering a final automaton state) by repeating this sequence prefix
an infinite number of times. Therefore the adaptor does not strongly satisfy the
pattern. (3) The label is a nonfinal pattern automaton state that does not already
label this node. Continue with simulating this sequence.

Since each sequence traverses the cycle k times, since node n is originally labeled
by an automaton state, and since there are only k automaton states, one of the
first two conditions will be true by the time we finish simulating the sequence and
labeling node n with the k + 1st pattern automaton state. If for any sequence we
detect that the adaptor will not strongly satisfy the pattern, then we can conclude
that the adaptor does not strongly satisfy the pattern. Otherwise we can conclude
that the adaptor does strongly satisfy the pattern w.r.t. this cycle. If this is true
for all cycles, we can conclude that the adaptor strongly satisfies the pattern. 2

Proof of Theorem 4.3.1. If the synthesis algorithm of Section 4.3 produces
a nonnull adaptor A, then the resulting adaptor will certainly be well formed w.r.t.
P1 and P2, as all unspecified reception and deadlock states have been removed. To
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 331

show memory consistency, as well as correctness w.r.t. the interface mapping I,
we need to show that, for every α ∈ Collabs(P1, P2, A), α is memory consistent
and that it satisfies each <parm_mapping_rule>, each <Parm_usage_rule>, and
<causality_rule>. This can be shown by induction on the length of α.

To prove the theorem we need to also show that if a null adaptor is produced by
the algorithm, then no valid adaptor exists.

For any collaboration history α between an adaptor and two components, let
Messages(α) be the sequence of messages that are exchanged by the components
and the adaptor as specified in the collaboration history α. Messages(α1) =
Messages(α2) iff α1 = α2.

Recall that Ai is the adaptor produced by phase i of the algorithm. Assume that
I admits a valid adaptor, and let B be any valid adaptor w.r.t. to I. We show that
the following invariant is maintained: if β ∈ Collabs(P1, P2, B) then there exists
α ∈ Collabs(P1, P2, Ai) where Messages(α) = Messages(β). We prove this claim
by induction on Ai, where i is the phase of the algorithm. For the base case, we
can show that this is true for A1 using induction on the length of β.

Assume that the invariant is true for adaptor Ai. The construction of Ai+1

removes some state u from the adaptor where u is either a deadlock or an un-
specified reception state. Obviously, Collabs(P1, P2, Ai+1) ⊂ Collabs(P1, P2, Ai).
If our claim is wrong, then there exists a collaboration β ∈ Collabs(P1, P2, B)
and α ∈ Collabs(P1, P2, Ai) such that Messages(α) = Messages(β), but where
α /∈ Collabs(P1, P2, Ai+1). It must be that α passes through the removed state
u = 〈s1, s2,memCells, p1, · · · , pn〉. Consider the following two cases: (1) u is a
deadlock state in Ai or (2) u is an unspecified reception state in Ai. In each case we
will show that the collaboration histories β and α imply that there exist some other
collaboration histories β′ and α′ in Collabs(P1, P2, B), and Collabs(P1, P2, Ai) re-
spectively, and that α′ ∈ Collabs(P1, P2, Ai) contradicts the assumption that u is
a deadlock or unspecified reception state in Ai.

Regarding case (1), since u is a deadlock state, it must be that α = α1 →m1

· · · →mn−1 αn where αn = 〈s1, s2, u〉, and that s1 and s2 are not both final states.
Since Messages(β) = Messages(α), it must be that β = β1 →m1 · · · →mn−1

βn, and that when adaptor B is in state βn, its collaborating components are in
states s1 and s2, respectively. Since s1 and s2 are not both final states, and B
is compatible with P1 and P2, it must be that there exists some collaboration
β′ = β1 →m1 · · · →mn−1 βn →mn βn+1 · · · ∈ Collabs(P1, P2, B). By induction
there exists α′ ∈ Collabs(P1, P2, Ai) such that Messages(α′) = Messages(β′).
Obviously, α′ = α1 →m1 · · · →mn−1 αn →mn αn+1 · · ·. But then u is not a
deadlock state in Ai, which contradicts our assumption.

Regarding case (2), let α = α1 →1 · · · →mn−1 αn · · · where αn = 〈s1, s2, u〉,
and let β ∈ Collabs(P1, P2, B) such that Messages(α) = Messages(β). Since
u = 〈s1, s2,memCells, p1, · · · , pn〉 is an unspecified reception state, it must be that
there exists some message m′ such that when one of the components, say C1, is in
the send state s1, it can send the message m′, but the adaptor Ai has no transi-
tion from u to another state that allows it to receive m′. Let MessageHistory =
Messages(α1 →m1 · · · →mn−1 αn) ·m′. MessageHistory is the sequence of mes-
sages in α up to the point where α enters state u and is then followed by the message
m′. Since B is a valid adaptor, and since by assumption β ∈ Collabs(P1, P2, B),

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

332 · D.M. Yellin and R.E. Strom

it must be that there exists a collaboration history β′ ∈ Collabs(P1, P2, B) such that
Messages(β′) = MessageHistory. By induction there exists α′ ∈ Collabs(P1, P2, Ai)
such that Messages(α′) = Messages(β′). Obviously, α′ = α1 →m1 · · · →mn−1

αn →m′ αn+1. But then u does have a transition upon receipt of an m′ message in
Ai, which contradicts our assumption.

Hence the adaptor Ak produced by the final phase of the algorithm will have the
property that if β ∈ Collabs(P1, P2, B), then there exists α ∈ Collabs(P1, P2, Ak)
where Messages(α) = Messages(β). In particular, if Ak is the null adaptor, it
must be that no valid adaptor B exists. 2

ACKNOWLEDGEMENTS

We thank Josh Auerbach, who first pointed us toward the protocol conversion
literature and put much of its work into context for us. We also wish to thank David
Garlan, who provided many valuable comments in improving the presentation of
an earlier version of this article. Finally, the anonymous referees provided many
useful suggestions.

REFERENCES

Allen, R. and Garlan, D. 1994. Formalizing architectural connection. In Proceedings of the
16th International Conference on Software Engineering. IEEE, New York.

Arjomandi, E., O’Farrell, W., Kalas, I., Koblents, G., Eigler, F., and Gao, G. 1995.
ABC++: Concurrency by inheritance in C++. IBM Syst. J. 34, 1.

Arnold, K. and Gosling, J. 1996. The Java Programming Language. Addison Wesley, Reading,
Mass.

Auerbach, J. S., Goldberg, A. P., Goldszmidt, G. S., Gopal, A. S., Kennedy, M. T., Rao,

J. R., and Russell, J. R. 1994. Concert/C: A language for distributed programming. In Winter
1994 USENIX Conference. USENIX Assoc., Berkeley, Calif.

Brand, D. and Zafiropulo, P. 1983. On communicating finite-state machines. J. ACM 30, 2
(Apr.), 323–342.

Brockschmidt, K. 1994. Inside OLE2. Microsoft Press, Redmond, Wash.

Campbell, R. H. and Habermann, A. N. 1974. The Specification of Process Synchronization by
Path Expressions. Vol. 16. Springer-Verlag, Berlin, 89–102.

Digitalk. 1993. PARTS Workbench User’s Guide. Digitalk, Sunnyvale, Calif.

Garlan, D., Allen, R., and Ockerbloom, J. 1995. Architectural mismatch or why its hard
to build systems out of existing parts. In Proceedings of the 17th International Conference on
Software Engineering. IEEE, New York.

Gouda, M. G., Gurari, E. M., Lai, T., and Rosier, L. E. 1987. On deadlock detection in
systems of communicating finite state machines. Comput. Artif. Intell. 6, 3, 209–228.

Gouda, M. G., Manning, E. G., and Yu, Y. T. 1984. On the progess of communication between
two finite-state machines. Inf. Control 63, 200–216.

Huynh, T., Jutla, C., Lowry, A., Strom, R., and Yellin, D. 1994. The global desktop: A
graphical composition environment for local and distributed applications. In Programming
Technology Forum, R. Pinter, Ed. IBM, Armonk, N.Y.

IBM. 1993. SOMobjects Developer Toolkit Users Guide, Version 2.0. IBM, Armonk, N.Y.

IBM. 1994. VisualAge User’s Guide and Reference. IBM, Armonk, N.Y.

Kam, J. B. and Ullman, J. D. 1977. Monotone data flow analysis frameworks. Acta Inf. 7,
305–317.

Kildall, G. A. 1973. A unified approach to global program optimization. In The 1st ACM
Symposium on Principles of Programming Languages. ACM, New York, 194–206.

Konstantas, D. 1993. Object oriented interoperability. In Visual Objects, D. Tsichritzis, Ed.
Universite De Geneve, Switzerland. Also Appeared in ECOOP 93.

Lam, S. S. 1988. Protocol conversion. IEEE Trans. Softw. Eng. 14, 3 (Mar.), 353–362.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

Protocol Specifications and Component Adaptors · 333

Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., and Mann, W. 1995.
Specification and analysis of system architecture using Rapide. IEEE Trans. Softw. Eng. SE21, 4
(Apr.), 336–355.

Nierstrasz, O. 1993. Regular types for active objects. In OOPSLA ’93 Conference Proceedings.
ACM SIGPLAN Not. 25, 10 (Oct.).

Okumura, K. 1986. A formal protocol conversion method. In Proceedings of the ACM SIGCOMM
’86 Symposium. ACM, New York, 30–37.

Pintado, X. and Junod, B. 1992. Gluons: Support for software component cooperation. In Object
Frameworks, D. Tsichritzis, Ed. Universite De Geneve, Switzerland.

Purtilo, J. M. and Atlee, J. A. 1991. Module reuse by interface adaption. Softw. Pract.
Exper. 21, 6 (June).

Russell, J., Strom, R. E., and Yellin, D. M. 1994. A checkable interface language for pointer-
based structures. In ACM Workshop on Interface Languages. SIGPLAN Not. 29, 8 (Aug.).

Shu, J. and Liu, M. 1989. A synchronization model for protocol conversion. In Proceedings of
IEEE Infocom 89. IEEE, New York.

Strom, R. and Yemini, S. 1986. Typestate: A programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. SE12, 1 (Jan.), 157–171.

Strom, R. E., Bacon, D. F., Goldberg, A., Lowry, A., Yellin, D., and Yemini, S. A. 1991.
Hermes: A Language for Distributed Computing. Prentice-Hall, Englewood Cliffs, N.J.

Strom, R. E. and Yellin, D. M. 1993. Extending typestate checking using conditional liveness
analysis. IEEE Trans. Softw. Eng. SE19, 5 (May), 478–485.

Thatte, S. 1994. Automated synthesis of interface adaptors for reuseable classes. In ACM
SIGPLAN-SIGACT POPL ’94 Conference Proceedings. ACM, New York, 174–187.

Udell, J. 1994. Componentware. BYTE 19, 5 (May).

van den Bos, J. and Laffra, C. 1991. PROCOL - A concurrent object-oriented language with
protocols delegation and constraints. Acta Inf. 28, 511–538.

Wiederhold, G. 1992. Mediators in the architecture of future information systems. IEEE Com-
put. 14, 3 (Mar.), 38–48.

Received May 1995; revised February 1996; accepted April 1996

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997

	Introduction
	Enhanced interface specifications
	Protocols
	Examples
	Protocol Semantics
	Subprotocols
	Implementation of Protocols

	Adaptors
	Adaptor Specifications
	An Example Adaptor
	Adaptor Compatibility
	Limitations of Adaptors
	Properties of Adaptors

	Adaptor Synthesis
	Interface Mappings
	Validity of Adaptors with Respect to Interface Mappings
	Synthesis of Adaptors

	Related Work

