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Abstract

A common goal of privacy research is to release synthetic data that satisfies a formal privacy
guarantee and can be used by an analyst in place of the original data. To achieve reasonable
accuracy, a synthetic data set must be tuned to support a specified set of queries accurately,
sacrificing fidelity for other queries.

This work considers methods for producing synthetic data under differential privacy and
investigates what makes a set of queries “easy” or “hard” to answer. We consider answering
sets of linear counting queries using the matrix mechanism [19], a recent differentially-private
mechanism that can reduce error by adding complex correlated noise adapted to a specified
workload.

Our main result is a novel lower bound on the minimum total error required to simultane-
ously release answers to a set of workload queries. The bound reveals that the hardness of a
query workload is related to the spectral properties of the workload when it is represented in
matrix form. The bound is most informative for (ǫ, δ)-differential privacy but also applies to
ǫ-differential privacy.
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1 Introduction

Differential privacy [9] is a rigorous privacy standard offering participants in a data set the appealing
guarantee that released query answers will be nearly indistinguishable whether or not their data
is included. The earliest methods for achieving differential privacy were interactive: an analyst
submits a query to the server and receives a noisy query answer. Further queries may be submitted,
but increasing noise will be added and the server may eventually refuse to answer subsequent queries.

To avoid some of the challenges of the interactive model, differential privacy has often been
adapted to a non-inter-active setting where a common goal has been to release a synthetic data set
that the analyst can use in place of the original data. There are a number of appealing benefits
to releasing a private synthetic database: the analyst need not carefully divide their task into
individual queries and can use familiar data processing techniques on the synthetic data; the privacy
budget will not be exhausted before the queries of interest have been answered; and data processing
can be carried out using the resources of the analyst without revealing tasks to the data owner.

There are limits, however, to private synthetic data generation. When a synthetic dataset is
released, the server no longer controls how many questions the analyst computes from the data.
Dinur and Nissim showed that accurately answering “too many” queries of a certain type is incom-
patible with any reasonable notion of privacy, allowing reconstruction of the database with high
probability [7].

This tempers the hopes of private synthetic data to some degree, suggesting that if a synthetic
dataset is to be private, then it can be accurate only for a specific class of queries and may need
to sacrifice accuracy for other queries. A number of methods have been proposed for releasing
accurate synthetic data for specific sets of queries [6, 19, 17, 27, 28, 4, 1, 25, 30]. These results
show that it is still possible to achieve many of the benefits of synthetic data if the released data
is targeted to a workload of queries that are of interest to the analyst.

In general, efficient differentially private algorithms for answering sets of queries with minimum
error are not known. The goal of our work is to develop tools that can explain what we informally
term the error complexity of a given workload, which should measure, for fixed privacy parameters,
the accuracy with which we can simultaneously answer all queries in the workload.

Such tools can help us to answer a number of natural questions that arise in the context of
private synthetic data generation. Why is it possible to answer one set of queries more accurately
than another? What properties of the queries, or of their relationship to one another, influence
this? Can lower error be achieved by specializing the query set more closely to the task at hand?
Does the combination of multiple users’ workloads severely impact the accuracy possible for the
combined workload?

Naive approaches to understanding the “hardness” of a query workload are unsatisfying. For
example, one may naturally expect that the greater the number of queries in the workload, the
larger the error in simultaneously answering them. Yet the number of queries in a workload is
usually an inadequate measure of its hardness. Query workload sensitivity [9] is another natural
approach. Sensitivity measures the maximum change in all query answers due to an insertion or
deletion of a single database record. Basic differentially private mechanisms (e.g. the Laplace
mechanism) add noise to each query in proportion to sensitivity, and in such cases sensitivity does
in fact determine error rates. But better mechanisms can reduce error when answering multiple
queries (with no cost to privacy), so that sensitivity alone fails to be a reliable measure.

In this paper we seek a better understanding of workload error complexity by reasoning formally
about the minimum error achievable for a workload, regardless of the underlying database. We
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pursue this goal in the context of a class differentially private algorithms: namely those that are
instances of the matrix mechanism (so named because workloads are represented as matrices and
analyzed algebraically). The matrix mechanism can be used to answer sets of linear counting
queries, a general class of queries which includes all predicate counting queries, histogram queries,
marginals, data cubes, and others.

The matrix mechanism [19] exploits the relationships between queries in the workload to con-
struct a complex, correlated noise distribution that offers lower error than standard mechanisms.
It encompasses a range of possible approaches to differentially-private query answering because it
must be instantiated with a set of queries, called the “strategy”, which it uses to derive accurate
answers to the workload queries. This makes the mechanism quite general, since any strategy can
be selected. It includes as a special case a number of recently-proposed techniques for answer-
ing various subsets of the class of linear queries including range-count queries, sets of low order
marginals, sets of data cubes [1, 27, 17, 6, 20, 30, 29]. Each of the above techniques can be seen
as selecting strategies (either manually or adaptively) that work well for given workloads. The
lower bound presented in this work provides a theoretical method of evaluating the quality of the
approaches since it provides a lower bound on the error attained by the best possible strategy.

We use the optimal error achievable under the matrix mechanism as a proxy for workload
error complexity. It is computationally infeasible to compute the optimal strategy for an arbitrary
workload, making the assessment of workload complexity a challenge. Nevertheless, we are able to
resolve this challenge through the following contributions:

• Our main result is a novel lower bound on the minimum total error required to simultaneously
release answers to a set of workload queries. The bound reveals that the “hardness” of a query
workload is related to the eigenvalues of the workload when it is represented in matrix form.

• Under (ǫ, δ)-differential privacy, we characterize two important classes of workloads for which
our lower
bound is tight. As a consequence, it is possible to directly construct a minimum error mech-
anism for workloads in these classes. We also analyze the cases for which our bound is not
tight, including when the bound is adapted to ǫ-differential privacy.

• We compare our lower bound to corresponding bounds on the achieved error of recently-
proposed mechanisms [26, 15, 13, 11].

Note that our lower bound on error is a conditional bound: it holds for the class of mechanisms
defined by the matrix mechanism, but not necessarily for all differentially private mechanisms.
Nevertheless, we believe this conditional bound serves as a widely useful tool. First, it helps to
resolve a number of open questions about the quality of previously-proposed mechanisms that
are instances of the matrix mechanism [19, 27, 1, 6, 20, 30]. Second, emerging techniques that
can outperform this bound tend to exploit special properties of the input database. Therefore,
the achievable error of those mechanisms no longer reflects only properties of the analysis task (as
embodied by the workload) but instead reflects the interaction of the task with the database. Third,
the data-independence of the matrix mechanism makes deployment particularly efficient since the
noise distribution is fixed for all input databases once a strategy has been selected. Our bound
therefore helps to clarify the utility possible using data-independent mechanisms and reveals when
other methods may be required.
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The organization of the paper is as follows. Section 2 reviews definitions and Section 3 presents
the matrix mechanism and properties of workload error. In Section 4 we present the lower bound
and its proof. Section 5 evaluates the tightness and looseness of the bound. We compare our bound
with error rates of data-dependent mechanisms in Section 6. In Appendix A we show how the
bound interacts with algebraic operations on workloads. To aid intuition, we include throughout
the paper a series of examples in which we compute our lower bound on workloads of interest and
report concrete error rates. Appendix B includes proofs of results not included in the body of the
paper.

2 Definitions & Background

In this section we describe our representation of query workloads as matrices, formally define
differential privacy, and review linear algebra notation.

2.1 Data model & linear queries

The queries considered in this paper are all counting queries over a single relation. Let the database
I be an instance of a single-relation schema R(A), with attributes A = {A1, A2, . . . ,
Am}. The crossproduct of the attribute domains, written dom(A) = dom(A1)× · · · × dom(Am), is
the set of all possible tuples that may occur in I.

In order to express our queries, we encode the instance I as a vector x consisting of cell counts,
each counting the number of tuples in I satisfying a distinct logical cell condition.

Definition 2.1 (Cell Conditions). A cell condition is a Boolean formula which evaluates to True
or False on any tuple in dom(A). A collection of cell conditions Φ = φ1, φ2 . . . φn is an ordered list
of pairwise unsatisfiable cell conditions: each tuple in dom(A) will satisfy at most one φi.

The data vector is formed from cell counts corresponding to a collection of cell conditions.

Definition 2.2 (Data vector). Given instance I and a collection of cell conditions Φ = φ1, φ2 . . . φn,
the data vector x is the length-n column vector consisting of the non-negative integral counts xi =
|{t ∈ I | φi(t) is True}|.

We may choose to fully represent instance I by defining the vector x with one cell for every
element of dom(A). Then x is a bit vector of size |dom(A)| with nonzero counts for each tuple
present in I. (This is also a vector representation of the full contingency table built from I.)
Alternatively, it may be sufficient to partially represent I by the cell counts in x, for example by
focusing on a subset of the attributes of A that are relevant to a particular workload of interest.
Because workloads are finite, it is always sufficient to consider a finite list of cell conditions, even
if attribute domains are infinite.

Example 2.3. Consider the relational schema R = (name,
gradyear, gender, gpa) describing students and suppose we wish to form queries over gradyear and
gender only, where dom(gender) = {M,F} and dom(gradyear) = {2011, 2012, 2013, 2014}. Then
we can define 8 cell conditions which result from all combinations of gradyear and gender. These
are enumerated in Table 1(a).

Given a data vector x, queries are expressed as linear combinations of the cell counts in x.

4



Table 1: For schema R = (name, gradyear, gender, gpa), (a) shows 8 cell conditions on attributes
gradyear and gender. The database vector x (not shown) will accordingly consist of 8 counts; (b)
shows a sample workload matrix W consisting of five queries, each described in (c).

(a) Cell conditions Φ
φ1 : gradyear = 2011 ∧ gender =M
φ2 : gradyear = 2011 ∧ gender = F
φ3 : gradyear = 2012 ∧ gender =M
φ4 : gradyear = 2012 ∧ gender = F
φ5 : gradyear = 2013 ∧ gender =M
φ6 : gradyear = 2013 ∧ gender = F
φ7 : gradyear = 2014 ∧ gender =M
φ8 : gradyear = 2014 ∧ gender = F

(b) A query matrix W












1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 -1 -1













(c) Counting queries defined by rows of W
q1: all students;
q2: students with gradyear ∈ [2011, 2012];
q3: female students with gradyear ∈ [2011, 2012];
q4: male students with gradyear ∈ [2011, 2012];
q5: difference between 2013 grads and 2014 grads.

Definition 2.4 (Linear counting query). A linear
counting query is a length-n row vector q = [q1 . . . qn] with each qi ∈ R. The answer to a linear
counting query q on x is the vector product qx = q1x1 + · · ·+ qnxn.

If q consists exclusively of coefficients in {0, 1}, then q is called a predicate counting query.
In this case, q counts the number of tuples in I that satisfy the union of the cell conditions
corresponding to the nonzero coefficients in q.

2.2 Query workloads

A workload is a finite set of linear queries. A workload is represented as a matrix, each row of which
is a single linear counting query.

Definition 2.5 (Query matrix). A query matrix is a collection of m unique linear counting queries,
arranged by rows to form an m× n matrix.

Note that cell condition φi defines the meaning of the ith position of x, and accordingly, it
determines the meaning of the ith column of W. Unless otherwise noted, we assume all workloads
are defined over the same fixed set of cell conditions.

Example 2.6. The matrix in Table 1(b) shows a workload of five queries. The first four are
predicate queries. Table 1(c) describes the meaning of the queries w.r.t. the cell conditions in Table
1(a).

We assume that workloads consist of unique queries, without duplicates. If workload W is an
m× n query matrix, the answers for W are represented as a length m column vector of numerical
query results, which can be computed by multiplying matrix W by the data vector x.

Note that it is critical that the analyst include in the workload all queries of interest. In the
absence of noise introduced by the privacy mechanism, it might be reasonable for the analyst to
request answers to a small set of counting queries, from which other queries of interest could be
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computed. (E.g., it would be sufficient to recover x itself by choosing the workload defined by
the identity matrix.) But because the analyst will receive private, noisy estimates to the workload
queries, the error of queries computed from their combination is often increased. Our privacy
mechanism is designed to optimize error across the entire set of desired queries, so all queries
should be included.

As a concrete example, in Table 1(b), q4 can be computed as (q2 − q3) but is nevertheless
included in the workload. This reflects the fact that we wish to simultaneously answer all included
queries with minimum aggregate error, treating each equally. It is also possible to scale individual
rows by a positive scalar value, which has the effect of reducing the error of that query.

The cell conditions are used to define the semantics of the queries in a workload, while the
workload properties we study are primarily determined by features of their matrix representation.
This can lead to a few representational inconsistencies we would like to avoid. First, while a
workload W is meant to represent a set of queries, as a matrix it has a specified order of its rows.
Further, for any workload W defined by cell conditions Φ = φ1 . . . φn, consider any permutation
Φ′ of Φ. Then there is a different matrix W′, defined on Φ′ and constructed from W by applying
the permutation to its columns, that is semantically equivalent to W. We will verify later that
our analysis of workloads is representation independent for both rows and columns. We use the
following definition:

Definition 2.7 (Representation independence). A numerical measure ρ on a workload matrix is
row (resp. column) representation independent if, given a workload matrix W, and any workload
W′ which results from permuting the rows (columns) of W, ρ(W) = ρ(W′).

A related issue arises in the specification of the cell conditions. If a workload W is defined by
cell conditions in Φ, then we can always consider extending Φ by adding additional cell conditions
not relevant to the queries in W. We can then define a semantically equivalent workload W′ on
Φ′ which will consist of columns of zeroes for each of the new cell conditions. To address this issue
in later sections we rely on the following definition:

Definition 2.8 (Column Projection). Given an m × n workload W defined by cell conditions
Φ = φ1 . . . φn, and an ordered subset Ψ ⊆ Φ consisting of p selected cell conditions, the column
projection of W w.r.t Ψ is a new m× p workload consisting only of the columns of W included in
Ψ.

In the rest of the paper, µ denotes a subset of cell conditions, |µ| denotes its cardinality and Un

to denote all possible subsets of n cell conditions. µ(W) is the column projection of W w.r.t. µ.

Example 2.9. The column projection of the workload in Table 1(b) w.r.t. cell conditions {φ1, φ3, φ5, φ7},
which consists of queries only over Male students, is the following:













1 1 1 1
1 1 0 0
0 0 0 0
1 1 0 0
0 0 1 -1













Common workloads We introduce notation for two common workloads that contain all queries
of a certain type. AllRange(d) denotes the workload consisting of all range-count queries over d
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cell conditions (typically derived from a single ordered attribute Ai with |dom(Ai)| = d). There are
d
2(d+1) queries in workload AllRange(d). Over k ordered attributes with domain sizes d1 . . . dk,
we similarly define the set of all k-dimensional range-count queries, denoted AllRange(d1, . . . dk).

AllPredicate(d) is the much larger workload consisting of all predicate counting queries over
d cell conditions. There are 2d queries in AllPredicate(d).

Example 2.10. The workload of queries counting the students who have graduated in any interval
of years drawn from {2011, 2012, 2013, 2014} is denoted AllRange(4) and consists of 10 one-
dimensional range queries over the gradyear attribute.

Example 2.11.The set of all two dimensional range-count queries over gradyear and gender is
written AllRange(4, 2), where the possible “ranges” for gender are simply M , F , or (M ∨ F ).
This workload consists of 30 queries. The workload of all predicate queries over over gradyear and
gender is AllPredicate(8), consisting of all 256 predicate queries over a domain of size 8.

2.3 Differential privacy & basic mechanisms

Standard ǫ-differential privacy [9] places a bound (controlled by ǫ) on the difference in the proba-
bility of query answers for any two neighboring databases. For database instance I, we denote by
nbrs(I) the set of databases formed by adding or removing exactly one tuple from I. Approximate
differential privacy [8, 22], is a relaxation in which the ǫ bound on query answer probabilities may
be violated with small probability, controlled by δ.

Definition 2.12 (Differential Privacy).A randomized algorithm K is (ǫ, δ)-differentially private if
for any instance I, any I ′ ∈ nbrs(I), and any subset of outputs S ⊆ Range(K), the following holds:

Pr[K(I) ∈ S] ≤ exp(ǫ)× Pr[K(I ′) ∈ S] + δ

where the probability is taken over the randomness of the K.

When δ = 0, this definition describes standard ǫ-differential privacy.
Both definitions can be satisfied by adding random noise to query answers. The magnitude of

the required noise is determined by the sensitivity of a set of queries: the maximum change in a
vector of query answers over any two neighboring databases. However, the two privacy definitions
differ in the measurement of sensitivity and in their noise distributions. Standard differential
privacy can be achieved by adding Laplace noise calibrated to the L1 sensitivity of the queries [9].
Approximate differential privacy can be achieved by adding Gaussian noise calibrated to the L2

sensitivity of the queries [8, 22]. This small difference in the sensitivity metric—from L1 to L2—has
important consequences for the theory underlying our analysis and, unless otherwise noted, stated
results apply only to approximate differential privacy. Sec 4.3 contains a comparison of these two
definitions as they pertain to the matrix mechanism and the results of this paper.

Since our query workloads are represented as matrices, we express the sensitivity of a workload
as a matrix norm. Notice that for neighboring databases I and I ′, |(I − I ′) ∩ (I ′ − I)| = 1 and
recall that all cell conditions are mutually unsatisfiable. It follows that the corresponding data
vectors x and x′ differ in exactly one component, by exactly one. We extend our notation and
write x′ ∈ nbrs(x). The L2 sensitivity of W is equal to the maximum L2 norm of the columns of
W. Below, cols(W) is the set of column vectors Wi of W.
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Definition 2.13 (L2 Query matrix sensitivity). The L2 sensitivity of a query matrix W is
denoted ∆W and defined as follows:

∆W
def
= max

x′∈nbrs(x)
||Wx−Wx′||2 = max

Wi∈cols(W)
||Wi||2

The classic differentially private mechanism adds independent noise calibrated to the sensitivity
of a query workload. We use Normal(σ)m to denote a column vector consisting of m independent
samples drawn from a Gaussian distribution with mean 0 and scale σ.

Proposition 2.14. (Gaussian mechanism [8, 22])Given an m × n query matrix W, the ran-
domized algorithm G that outputs the following vector is (ǫ, δ)-differentially private:

G(W,x) = Wx+ Normal(σ)m

where σ = ∆W

√

2 ln(2/δ)/ǫ

Recall that Wx is a vector of the true answers to each query in W. The algorithm above adds
independent Gaussian noise (scaled by the sensitivity of W, ǫ, and δ) to each query answer. Thus
G(W,x) is a length-m column vector containing a noisy answer for each linear query in W.

2.4 Linear algebra notation

Throughout the paper, we use the notation of linear algebra and employ standard techniques of
matrix analysis. Recall that for a matrix A, AT is its transpose, A−1 is its inverse, and trace(A)
is the sum of values on the main diagonal. The Frobenius norm of A is denoted ||A||F and defined
as the square root of the squared sum of all entries in A, or, equivalently,

√

trace(ATA). We use
diag(c1, . . . cn) to indicate an n× n diagonal matrix with scalars ci on the diagonal. We use 0m×n

to indicate a matrix of zeroes with m rows and n columns. An orthogonal matrix Q is a square
matrix whose rows and columns are orthogonal unit vectors, and for which QT = Q−1.

We will also rely on the notion of a positive semidefinite matrix. A symmetric square matrix A

is called positive semidefinite if for any vector x, xTAx ≥ 0. If A is positive semidefinite, denoted
A � 0, all its diagonal entries are non-negative as well. In particular, for any matrix A, ATA is a
positive semidefinite matrix.

In addition, we use A+ to represent the Moore-Penrose pseudoinverse of a matrix A, a gener-
alization of the matrix inverse defined as follows:

Definition 2.15. (Moore-Penrose Pseudoinverse [2]) Given a m×n matrix A, a matrix A+

is the Moore-Penrose pseudoinverse of A if it satisfies each of the following:

AA+A = A, A+AA+ = A+,

(AA+)T = AA+, (A+A)T = A+A.

We include some important properties of the Moore-Penrose pseudoinverse in the following
theorem.

Theorem 2.16. ([2]) The Moore-Penrose pseudoinverse satisfies the following properties:

1. Given any matrix A, there exists a unique matrix that is the Moore-Penrose pseudoinverse
of A.

2. Given a vector y, we have ||y −Ax||2 ≥ ||y −AA+y||2 for any vector x.
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3. For any satisfiable linear system BA = W, WA+ is a solution to the linear system and
||WA+||F ≤ ||B||F for any solution B to the linear system.

Throughout the paper, we use the singular value decomposition of a matrix, which is a classic
tool of matrix analysis. If W is an m×n matrix, the singular value decomposition (SVD) of W is a
factorization of the form W = QWΛWPT

W such that QW is an m×m orthogonal matrix, ΛW is a
m×n diagonal matrix containing the singular values of W and PW is an n×n orthogonal matrix.
When m > n, the diagonal matrix ΛW consists of an n × n diagonal submatrix combined with
0(m−n)×n. In addition, we also consider the eigenvalue decomposition of matrix WTW and the
square root ofWTW. The eigenvalue decomposition ofWTW has the formWTW = PWDWPT

W,
wherePW is the same matrix as the singular value decomposition ofW andD′

W is an n×n diagonal

matrix such that DW = ΛT
WΛW. The square root of WTW, denoted as

√
WTW, is a matrix

W′ such that (W′)2 = WTW, which can also be represented as the singular values and singular
vectors of W: W′ = PWΛWPT

W.

3 The (ǫ, δ)-Matrix Mechanism

In this section we define the class of algorithms that can be constructed using the matrix mechanism,
we define optimal error of a workload with respect to this class, and we develop notions of workload
equivalence and containment consistent with our error measures.

3.1 The extended matrix mechanism

The matrix mechanism [19] has a form similar to the Gaussian mechanism in Prop. 2.14, but adds
a more complex noise vector. It uses a different set of queries (the strategy matrix A) to construct
this vector. The intuitive justification for this mechanism is that it is equivalent to the following
three-step process: (1) the queries in the strategy are submitted to the Gaussian mechanism; (2) an
estimate x̂ for x is derived by computing the x̂ that minimizes the squared sum of errors (this step
consists of standard linear regression and requires that A be full rank to ensure a unique solution);
(3) noisy answers to the workload queries are then computed as Wx̂.

We present an extended version of the matrix mechanism which relaxes the requirement that A
be full rank. Instead it is sufficient that all queries in W can be represented as linear combinations
of queries in A. Then estimating x̂ is not necessary, and step (2) and (3) can be combined.

Proposition 3.1. (Extended (ǫ,δ)-Matrix Mechanism) Given an m×n query matrix W, and
a p × n strategy matrix A such that WA+A = W, the following randomized algorithm MA is
(ǫ, δ)-differentially private:

MA(W,x) = Wx+WA+Normal(σ)m.

where σ = ∆A

√

2 ln(2/δ)/ǫ.

The proof is contained in App. B.1.
Here condition WA+A=W guarantees that the queries in A can represent all queries in W.

When A has full rank, A+ = (ATA)
−1

AT , which coincides with the original definition [19].
Like the Gaussian mechanism, the matrix mechanism computes the true answer vector Wx

and adds noise to each component. But a key difference is that the scale of the Gaussian noise
is calibrated to the sensitivity of the strategy matrix A, not that of the workload. In addition, the
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noise added to the list of query answers is no longer independent, because the vector of independent
Gaussian samples is transformed by the matrix WA+.

The matrix mechanism can reduce error, particularly for large or complex workloads, by avoiding
redundancy in the set of desired workload queries. Intuitively, some workloads consist of queries
that ask the same (or similar) questions of the database multiple times, which incurs a significant
cost to the privacy budget under the Gaussian mechanism. By choosing the right strategy matrix
for a workload, it is possible to remove the redundancy from the queries submitted to the privacy
mechanism and derive more accurate answers to the workload queries.

Fundamental to the performance of the matrix mechanism, is the choice of the strategy matrix
which instantiates it. One naive approach is to minimize sensitivity. The full rank strategy matrix
with least sensitivity is the identity matrix, I, which has sensitivity 1. With A = I, the matrix
mechanism privately computes the individual counts in x and then uses them to estimate any
desired workload query. At the other extreme, the workload itself can be used as the strategy,
setting A = W. In this case, there is no benefit in sensitivity over the Gaussian mechanism1.

For many workloads, neither of these basic strategies offer optimal error. Recent research has
shown that for specific workloads, there exist strategies that can offer much better error rates. For
example, if W = AllRange(n), two strategies were recently proposed. A hierarchical strategy
[17] includes the total sum over the whole domain, the count of each half of the domain, and so on,
terminating with counts of individual elements of the domain. The wavelet strategy [27] consists
of the matrix describing the Haar wavelet transformation. Informally, both strategies achieve low
error because they each have low sensitivity, O(log n), and every range query can be expressed as a
linear combination of just a few strategy queries.2 Although both of these strategy matrices offer
significant improvements in error for range query workloads, neither is optimal. We will use our
lower bound to evaluate the quality of these proposed strategies in Sec 4. Other recently-proposed
techniques can be seen as attempts to compute approximately optimal strategy matrices adapted
to the input workload [1, 6, 20, 30, 29].

3.2 Measuring & minimizing error

We measure the error of individual query answers using mean squared error. For a workload of
queries, the error is defined as the total of individual query errors.

Definition 3.2 (Query and Workload Error [19]). Let ŵ be the estimate for query w under the
matrix mechanism using query strategy A. That is, ŵ = MA(w,x). The mean squared error of
the estimate for w using strategy A is:

ErrorA(w)
def
= E[(wx− ŵ)2].

Given a workload W, the total mean squared error of answering W using strategy A is: ErrorA(W) =
∑

wi∈W ErrorA(wi).

The query answers returned by the matrix mechanism are linear combinations of noisy strat-
egy query answers to which independent Gaussian noise has been added. Thus, as the following
proposition shows (extending the corresponding proposition from [19]), we can directly compute
the error for any linear query w or workload of queries W:

1Although there is no benefit in sensitivity when A = W, the matrix mechanism still has lower error than the
Gaussian mechanism for some workloads by combining related query answers into a more accurate consistent result.

2The approaches in [17, 27] were originally proposed in the context of ǫ-differential privacy, but their behavior is
similar under (ǫ, δ)-differential privacy.
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Proposition 3.3 (Total Error). Given a workload
W, the total error of answering W using the extended (ǫ, δ)-matrix mechanism with query strategy
A is:

ErrorA(W) = P (ǫ, δ)∆2
A ||WA+||2F (1)

where P (ǫ, δ) = 2 log(2/δ)
ǫ2 .

The proof is contained in App. B.1.
We call a mechanism data-independent if its error for workload W is independent of the data

vector x. Proposition 3.3 shows that the matrix mechanism is data-independent.
The optimal strategy for a workload W is defined to be the one that minimizes total error (the

same measure used in [19]).

Definition 3.4 (Minimum Total Error [19]). Given a workload W, the minimum total error is:

MinError(W) = min
A:WA+A=W

ErrorA(W). (2)

Our work investigates the error complexity of workloads as it is represented by MinError(W).
This reflects the hardness of the workload assuming we use an algorithm that is an instance of the
matrix mechanism and that a total squared error measure is used. Understanding error for this
class of mechanisms is a first step towards more general lower bounds and helps to assess the quality
of a number of previously-proposed algorithms included in this class [19, 27, 1, 6, 20, 30, 29].

The strategy matrix that minimizes total error can be computed using a semi-definite pro-
gram (SDP) [19]. However, finding the solutions of the program with standard SDP solvers takes
O(n8) time, where n is the number of cell conditions, making it infeasible for realistic applications.
Efficient approximation algorithms for this problem have been investigated recently [20, 30]. Yet,
approximate—or even exact—solutions to this problem do not provide much general insight into the
main goal of this paper: to understand the properties of workloads that determine the magnitude of
MinError(W). The bound we will present in Sec. 4 is important because it closely approximates
MinError(W), it is easily computable, and it reveals the connection between minimum error and
spectral properties.

Nevertheless, our results do not preclude the existence of different mechanisms capable of an-
swering a workload W with lower error. In particular, our error analysis does not include data-
dependent algorithms [26, 15, 24, 5]. The error rates for these mechanisms no longer reflect prop-
erties of the workload alone, but instead some combination of the workload and properties of the
input data, and call for a substantially different analysis. In our case, x (i.e., the vector of cell
counts corresponding to the database) does not appear in (1) above. This means that our minimum
error strategy depends on the workload alone, independent of a particular database instance.

3.3 Equivalence & containment for workloads

Next we develop a notion of equivalence and containment of workloads with respect to error. We
will verify that the error bounds presented in the next section satisfy these relationships in most
cases.

The special form of the expression for total error in Prop. 3.3 means that there are many
workloads that are equivalent from the standpoint of error. For two workloads W1 and W2, if
WT

1 W1 = WT
2 W2, then any strategy A that can represent the queries of W1 can also represent

the queries of W2, and vice versa. In addition, WT
1 W1 = WT

2 W2 implies ||W1A
+||2F = ||W2A

+||2F
for any strategy A. We therefore define the following notion of equivalence of two workloads:
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Definition 3.5 (Workload Equivalence). An m1 × n1 workload W1 and an m2 × n workload W2

are equivalent, denoted W1 ≡ W2, if W
T
1 W1 = WT

2 W2.

The following conditions on pairs of workloads imply that they have equivalent minimum error:

Proposition 3.6 (Equivalence Conditions). Given
an m1 × n1 workload W1 and an m2 × n2 workload W2, each of the following conditions implies
that MinError(W1) = MinError(W2):

(i) W1 ≡ W2

(ii) W1 = QW2 for some orthogonal matrix Q.

(iii) W2 results from permuting the rows of W1.

(iv) W2 results from permuting the columns of W1.

(v) W2 results from the column projection of W1 on all of its nonzero columns.

It follows from this proposition that MinError is row and column representation independent,
and behaves well under the projection of extraneous columns.

Defining a notion of containment for workload matrices is more complex than simple inclusion
of rows. Even if the rows of W1 are not present in W2, it could be that W1 is in fact contained in
W2 when expressed using an alternate basis. The following definition considers this possibility:

Definition 3.7 (Workload Containment). An m1 × n workload W1 is contained in an m2 × n
workload W2, denoted W1 ⊆ W2, if there exists a W′

2 ≡ W2 and the rows of W1 are contained
in W′

2.

The following proposition shows two conditions which imply inequality of error among work-
loads:

Proposition 3.8 (Error inequality). Given an m1 × n1 workload W1 and an m2 × n2 workload
W2, each of the following conditions implies that

MinError(W1) ≤ MinError(W2) :

(i) W1 ⊆ W2

(ii) W1 is a column projection of W2.

App. B.2 contains the proof of Prop. 3.6 and 3.8.

4 The Singular Value Bound

In this section we state and prove our main result: a lower bound on MinError(W), the optimal
error of a workload W under the extended (ǫ, δ)-matrix mechanism. The bound shows that the
hardness of a workload is a function of its eigenvalues. We describe the measure and its properties
in Section 4.1 and prove that it is a lower bound in Section 4.2. In Section 4.3 we briefly discuss
the challenge of adapting this bound to ǫ-differential privacy.
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4.1 The Singular Value Bound

We first present the simplest form of our bound, which is based on computing the square of the
sum of eigenvalues of the workload matrix:

Definition 4.1 (Singular Value Bound). Given an m × n workload W, its singular value
bound, denoted svdb(W), is:

svdb(W) =
1

n
(λ1 + . . . + λn)

2,

where λ1, . . . , λn are the singular values of W.

The following theorem guarantees that the singular value bound is a valid lower bound to the
minimal error of a workload. The proof is presented in detail in Sec. 4.2.

Theorem 4.2. Given an m× n workload W,

MinError(W) ≥ P (ǫ, δ)svdb(W),

where P (ǫ, δ) = 2 log(2/δ)
ǫ2 .

In the rest of paper, we refer to svdb(W) as the “SVD bound”. For any workload W, the SVD
bound is determined by WTW and can be computed directly from it (which can be more efficient):

Proposition 4.3. Given n× n matrix WTW.

svdb(W) =
1

n
(

n
∑

i=1

√
di)

2.

where d1, . . . , dn are the eigenvalues of WTW.

The SVD bound satisfies equivalence properties analogous to (i), (ii), (iii), and (iv) in Prop. 3.6
and inequality (i) in Prop. 3.8. However, it does not satisfy properties related to column projection,
as shown in the following counter-example.

Example 4.4. Consider a 2 × n workload W consisting of queries [1, 0, . . . , 0] and [t, t, . . . , t].
Let µ be the column projection w.r.t. the first cell condition of W. When n > 8 and t < 1/8,
svdb(W) < svdb(µ(W)).

According to Prop 3.8, column projections reduce the minimum error. Therefore, the SVD
bound on any column projection of W also constitutes a lower bound for the minimum error of
W. Because of this we extend the simple SVD bound in the following way. Recall that Un is the
set of all column projections.

Definition 4.5. Given an m× n workload W and U ⊆ Un. The singular value bound of W w.r.t.
U , denoted by svdbU (W) is defined as

svdbU (W) = max
µ∈U

svdb(µ(W)).

In particular, if U = Un, we call this bound the supreme singular value bound, denoted svdb(W).

According to Prop. 3.8 and Thm. 4.2, for any U ⊆ Un, svdbU (W) provides a lower bound on
MinError(W).
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Corollary 4.6. Given an m× n workload W, and for any U ⊆ Un

MinError(W) ≥ max
µ∈U

MinError(µ(W))

≥ P (ǫ, δ)svdbU (W),

where P (ǫ, δ) = 2 log(2/δ)
ǫ2 .

The supreme SVD bound satisfies all of the error equivalence and containment properties,
analogous to those of Prop. 3.6 and Prop. 3.8, as stated below, both of which are proved in App.
B.3.

Theorem 4.7. Given an m1 × n1 workload W1 and an m2 × n2 workload W2, the following
conditions imply that svdb(W1) = svdb(W2):

(i) W1 ≡ W2

(ii) W1 = QW2 for some orthogonal matrix Q.

(iii) W2 results from permuting the rows of W1.

(iv) W2 results from permuting the columns of W1.

(v) W2 results from column projection of W1 on all of its nonzero columns.

Theorem 4.8. Given an m1 × n1 workload W1 and an m2 × n2 workload W2, the following
conditions imply that svdb(W1) ≤ svdb(W2):

(i) W1 ⊆ W2

(ii) W1 is a column projection of W2.

While Theorems 4.7 and 4.8 show that svdb(W) matches all the properties of MinError(W),
we often wish to avoid considering all possible column projections as required in the computation
of svdb(W). In many cases, using svdb(W) as our lower bound provides good results. In other
cases, we can choose an appropriate set of column projections to get a good approximation to the
supreme SVD bound. We provide empirical evidence for this in the following example, along with
an application of our bound to range and predicate workloads which have been studied in prior
work. The bound allows us to evaluate, for the first time, how well existing solutions approximate
the minimum achievable error under (ǫ, δ)-differential privacy.

Example 4.9. In Table 2 we consider three workloads, each consisting of all multi-dimensional
range queries for a different dimension set, along with a workload of all predicate queries. We
report svdb(W) and its ratio with svdbU (W) where U contains projections onto all possible ranges
over the domain, showing that they are virtually indistinguishable.

We also compute the actual error introduced by several well-known strategies: the identity strat-
egy, the hierarchical strategy [17], and the wavelet strategy [27], as well as a strategy generated by
the Eigen-design mechanism [20]. These results reveal the quality of these approaches by their ratio
to svdb(W). For example, from the table we can conclude that the Eigen-design mechanism and
wavelet strategies have error at most 1.5 to 3 times the optimal for range workloads, but perform
worse on the predicate queries. The identity strategy is far from optimal on low dimensional range
queries, but better on high dimensional range queries and predicate queries.
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Example Workload, W svdb(W) svdbU (W)
Error, as ratio to P (ǫ, δ)svdb(W)

Identity Hierarchical Wavelet Eigen Design
AllRange(2048) 3.034× 107 1.001 47.25 1.776 1.545 1.028
AllRange(64, 32) 2.261× 107 1.000 12.11 2.996 1.899 1.107

AllRange(2, 2, 2, 2, 2, 2, 2, 2, 2, 2) 5.242× 105 1.000 2.000 2.000 2.000 1.000
AllPredicate(1024) 4.885× 10156 1.000 1.884 3.464 6.292 1.000

Table 2: Four example workloads, their singular value bounds, and their error rates under common
strategies and strategies proposed in prior work.

4.2 Proof of the SVD bound

We now describe the proof of Theorem 4.2. The key to the proof is an important property of the
optimal strategy for the (ǫ, δ) matrix mechanism. As shown in Lemma 4.10, among the optimal
strategies for a workload W, there is always a strategy A that has the same sensitivity for every
cell condition (i.e. in every column). We use AW to denote the set that contains all strategies that
satisfy WA+A = W and have the same sensitivity for every cell condition.

Recall that the sensitivity of strategy A (Def. 2.13) is the maximum L2 column norm of A.
The square of the sensitivity is also equal to the maximum diagonal entry of ATA. By using
Lemma 4.10, the sensitivity of A can instead be computed in terms of the trace of the matrix ATA

and minimizing the error of W with this alternative expression of the sensitivity leads to the SVD
bounds. Ultimately, to achieve the SVD bounds, a strategy A must simultaneously (i) minimize
the error of W with the sensitivity computed in terms of the trace(ATA), and (ii) have A ∈ AW.
Such a strategy may not exist for every possible W and therefore the SVD bounds only serve as
lower bounds to the minimal error of W.

Lemma 4.10. Given a workload W, there exists a strategy A ∈ AW such that ErrorA(W) =
MinError(W).

Lemma 4.11. Let D be a diagonal matrix with non-negative diagonal entries and P be an orthog-
onal matrix whose column equals to p1,p2, . . . ,pn.

trace(D) ≤
n
∑

i=1

||Dpi||2.

The proofs of both lemmas are in App. B.3.
Theorem 4.2 can hence be proved using the lemmas above.

Proof. For a given workload W, according to Lemma 4.10, it has an optimal strategy matrix
A ∈ AW, whose sensitivity can then be computed as ∆2

A = 1
n ||A||2F .

Let W = QWΛWPW and A = QAΛAPA be the singular decomposition of W and A, respec-
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tively. We have:

min
A:WA+A=W

∆2
A||WA+||2F

= min
A∈AW

1

n
||A||2F ||WA+||2F

=
1

n
min

(ΛAPA)∈AW

||ΛA||2F ||ΛWPWPT
AΛ+

A||2F

≥ 1

n
min

ΛA,PA

ΛWΛ
+

A
Λ=

A
ΛW

||ΛA||2F ||ΛWPWPT
AΛ+

A||2F (3)

≥ 1

n
min
PA

(

n
∑

i=1

||ΛWpi||2)2 (4)

≥ 1

n
(

n
∑

i=1

λi)
2, (5)

where pi is the i-th column of matrix PWPT
A, the inequality in (4) is based on the Cauchy-Schwarz

inequality and the inequality in (5) comes from Lemma 4.11.
The equal sign in (4) is satisfied if and only if ΛA ∝

√
ΛW. Therefore to achieve equality in

(4) and (5) simultaneously, we need A ∝ Q
√
ΛWPW for any orthogonal matrix Q. Moreover, (3)

is true if and only if A ∈ AW, which may not be satisfied when A ∝ Q
√
ΛWPW, therefore the

SVD bound only gives an lower bound to the minimum total error.

Intuitively, the SVD bound is based on the assumption that the error can be evenly distributed
to all the cells, which may not be achievable in all the cases. The supreme SVD bound considers
only the case that the error can be evenly distributed to some of the cells and therefore may be
tighter than the SVD bound.

4.3 Bounding MinError(W) Under the ǫ-Matrix Mechanism

The SVD bound is defined for the (ǫ, δ)-matrix mechanism, so it is natural to consider extending
these results to the ǫ-matrix mechanism. Prop. 3.3 can be adopted to the ǫ-matrix mechanism,
which uses Laplace noise, an alternative privacy parameter, P (ǫ) = 1/ǫ2, and measures the sensitiv-
ity of A as the largest L1 norm of the columns of A. For any vector, its L1 norm is always greater
than or equal to its L2 norm. Given a workload W and a strategy matrix A, P (ǫ)∆2

A||WA+||2F
provides a lower bound to ErrorA(W) under the ǫ-matrix mechanism. Therefore, error under the
ǫ-matrix mechanism is also bounded below by svdb(W).

When the number of queries in a workload is no more than the domain size, Bhaskara et
al. [3] presented the following lower bound of error for any data-independent ǫ-differential privacy
mechanism.

Theorem 4.12 ([3]). Given an m × n workload W with m ≤ n, let convex body K = WBn
1 ,

where Bm
1 is the m-dimensional L1 ball. Let P1, . . . ,Pt be projection operators to a collection of

t mutually orthogonal subspaces of R
m of dimension m1, . . . ,mt respectively. Then the error of

answering W under any data-independent ǫ-differentially private mechanism must be at least

Ω

(

∑

i

m3
i

ǫ2
Volmi

(PiK)2/mi

)

,
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where Volmi
(PiK) is the volume of the convex body PiK in mi dimensional space.

In particular, when Pi are the projections to the singular vectors of W, we can formulate the
bound above using singular values of W.

Corollary 4.13. Given an m× n workload W with m ≤ n, the error of answering W under any
data-independent ǫ-differentially private mechanism must be at least

Ω

(

n
∑

i

λ2i
ǫ2

)

,

where λ1, . . . , λn are singular values of W.

When m ≤ n, we can compare the lower bound in Corollary 4.13 with the SVD bound under
the ǫ-matrix mechanism. It is clear that the bound in Corollary 4.13 is tighter unless all singular
values of W are equal. When m > n, the quality of the SVD bound under the ǫ-matrix mechanism
is not yet known. The discussion on the tightness and looseness of the SVD bound in the next
section is based on the (ǫ, δ)-matrix mechanism and cannot be extended to the ǫ-matrix mechanism
directly.

5 Analysis of the SVD Bound

In this section, we analyze the accuracy of the SVD bound as an approximation of the minimum
error for a workload. We study the sufficient and necessary conditions under which the SVD bound
is tight. In addition, we show the minimum error is equal to the bound over a specific class of
workloads called variable-agnostic workloads and then generalize the result to the widely-studied
class of data cube workloads. For both classes, strategies that achieve the minimum error can be
constructed, as a by-product of the proof of the SVD bound.

We then show that the bound may be loose, underestimating the minimal error for some work-
loads. The worst case of looseness of the SVD bound is presented in Section 5.2, along with a
formal estimate of the quality of the bound. We conclude this section with an example demonstrat-
ing empirically that error rates close to the lower bound can be achieved for workloads consisting
of multi-dimensional range queries.

The proofs to the theorems in this section can be found in App. B.4.

5.1 The Tightness of the SVD Bound

The circumstances under which the SVD bound is tight arise directly from inspection of the proof
presented in Sec. 4.2. In particular, we noted the conditions that make the inequalities in equations
(3), (4) and (5) actually equal. Those conditions are equivalent to a straightforward property of
WTW:

Theorem 5.1. Given workload W, svdb(W) is tight if and only if the diagonal entries of
√
WTW

are all equal.

There are workloads that satisfy the condition in Thm 5.1. Here we present one such special
class of workloads, called variable-agnostic workloads, in which the queries on each cell are fully
symmetric and swapping any two cells does not change WTW.
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Definition 5.2 (Variable-agnostic workload).
A workload W is variable-agnostic if WTW is unchanged when we swap any two columns of W.

For any variable-agnostic workloadW, WTW has the following special form: for some constants
a and b such that a > b, all diagonal entries of WTW are equal to a and the remaining entries of
WTW are equal to b.

The following theorem shows that any variable-agnostic workload W satisfies the condition in
Thm 5.1. Furthermore, we also demonstrate the closed form expression of the SVD bound in case
that n is a power of 2.

Theorem 5.3. The SVD bound is tight for any variable-agnostic workload W. In addition, when
n = 2k for any nonnegative integer k, svdb(W) = 1

n(
√

a+ (n − 1)b+ (n− 1)
√
a− b)2, where a is

the value of diagonal entries of WTW and b is the value of off-diagonal entries of WTW.

As a concrete example, the workload AllPredicate(n) is variable-agnostic, and therefore we
can construct its optimal strategy and compute the error rate directly.

Corollary 5.4. The SVD bound is tight for the workload AllPredicate(n). In addition, when

n = 2k for any nonnegative integer k, svdb(AllPredicate(n)) = 2n−2

n (n− 1 +
√
n+ 1)2.

For variable-agnostic workloads, using a naive strategy like the identity matrix or the workload
itself results in total error equal to na and the ratio by which the error is reduced using the strategy
in Thm. 5.3 is approximately 1− b

a . In the case of AllPredicate(n), the ratio is at least as low
as 0.5, which occurs when n is very large.

Another family of workloads for which the SVD bound is tight are those consisting of sets of
data cube queries. A data cube workload consists of one or more cuboids, each of which contains
all aggregation queries on all possible values of the cross-product of a set of attributes. Here we
also consider the case that each cuboid can have its own weight, so that higher weighted queries
will be estimated more accurately than lower weighted ones.

Theorem 5.5. The SVD bound is tight for any weighted data cube workload W.

Data cube workloads (a special case of marginal workloads) have been studied by the differential
privacy community in both theory and practice [1, 6, 18]. Barak et al. [1] use the Fourier basis as
a strategy for workloads consisting of marginals while Ding et al. [6] proposed an approximation
algorithm for data cube workloads. Thm. 5.5 shows that under (ǫ, δ)-differential privacy we can
now directly compute the optimal strategy, obviating the need to use an approximation algorithm
or blindly relying on the Fourier basis for workloads of this type. The result in [18], however,
involves data-dependent techniques and the comparison between [18] to the SVD bound relies on a
thorough analysis of the spectral properties of data cube workloads, which is a direction of future
work.

5.2 The Looseness of the SVD Bound

The SVD bound can also underestimate the minimum error when the workload is highly skewed.
For example, the SVD bound does not work well when the sensitivity of one column in the workload
is overwhelmingly larger than others. Recall the workload in Example 4.4, when t → 0, the SVD
bound will underestimate the total error by a factor of n. This is caused by the underestimate of
the sensitivity of A considered in equation (3) in the proof of Thm. 4.2.
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Since the proof of Thm. 4.2 constructs a concrete strategy, one way to measure the looseness
of the SVD bound is to estimate its ratio to the actual error introduced by this strategy. Note
that the sensitivity of the strategy is the only part of the SVD bound that is underestimated. The
square of the sensitivity is the maximum diagonal entry of matrix ATA, rather than the estimate
given by trace(ATA)/n. The ratio between the actual sensitivity and the estimated sensitivity
bounds the looseness of the SVD bound, as shown by the following theorem.

Theorem 5.6. Given an m× n workload W. Let d0 be the maximum diagonal entry of
√
WTW.

MinError(W) ≤ nd0P (ǫ, δ)svdb(W)

trace(
√
WTW)

,

where P (ǫ, δ) = 2 log(2/δ)
ǫ2 .

According to Thm. 5.6, the approximate ratio of the SVD bound corresponds to the ratio
between d0, the largest diagonal entry of

√
WTW and the trace of

√
WTW, which is equal to the

sum of all singular values of W. This ratio, although it is upper-bounded by the ratio between
the largest singular value of W and the sum of all singular values of W, is much closer to 1 than
the ratio between singular values. As a consequence, the skewness in singular values does not
always lead to a bad approximation ratio for the SVD bound. For example, for variable-agnostic
workloads, the largest singular value can be arbitrarily larger than the rest of the singular values,
while the SVD bound is tight. Instead, the cases where the SVD bound has high approximation
ratio, such as the one in Example 4.4, are due to the skewness of singular value of W and the
particular distribution of singular vectors. The supreme SVD bound can help us to avoid some of
these worst cases, but there is no guarantee of the quality of the bound with more sophisticated
cases.

Nevertheless, for many common workloads, empirical evidence suggests that the SVD bound is
quite close to the minimal error. The following example provides a comparison between the SVD
bound and achievable error for a few common workloads.

Example 5.7. Returning to Table 2, we observe empirical evidence that for range and predicate
workloads, there are strategies that come quite close to the SVD bound. The last column of Table 2
lists the error for the Eigen-design mechanism [20], which attempts to find approximately optimal
strategies for any given workload by computing optimal weights for the eigenvectors of the workload.
This algorithm is able to find a strategy whose error is within a factor of 1.028 and 1.107 of optimal
for AllRange(2048) and AllRange(64, 32), respectively.

6 Comparison of Mechanisms

The matrix mechanism is a data-independent mechanism: the noise distribution (and therefore
error) depends only on the workload and not on the particular input data. This makes it possible
to process the workload once and apply the mechanism efficiently to any dataset. On the other
hand, data-independent mechanisms lack the flexibility to exploit specific properties of individual
datasets. In this section, we use the SVD bound to compare the error bounds of the matrix
mechanism with error bounds of other mechanisms that are data-dependent.
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6.1 Asymptotic Estimation of the SVD bound

Before the comparison, we first convert the SVD bound into an error measure that can be directly
related to other bounds in the literature. We assume all queries in the workload have sensitivity
at most one and estimate the SVD bound as a function of the domain size n and the number of
queries m. Recall that the error in previous sections is defined as the total mean squared error of
the queries. We introduce a new measure of error which bounds the maximum absolute error of
the workload queries by α with high probability (controlled by β).

Definition 6.1 ((α, β)-Accurate [13]).Given a workload W, an algorithm K is (α, β)-accurate if, for
any uniformly drawn data vector x, with a probability of at least 1−β, maxq∈W |K(q,x)−qx| ≤ α.

Since the SVD bound measures total error (rather than max error), here we modify the (α, β)-
accuracy by bounding the root mean squared error of the workload.

Definition 6.2 (RMS-(α, β)-Accurate). Given a
workload W, an algorithm K is RMS-(α, β)-accurate if, for any uniformly drawn data vector x,

with a probability of at least 1− β,
√

∑

q∈W ||K(q,x) − qx||2/|W| ≤ α.

Theorem 6.3. Given an m× n workload W, if the
svdb(W) is asymptotically tight, then there exists a strategy under which the matrix mechanism is
RMS-(α, β)-accurate, where

α = O





√

min(m,n)
√

log(2/δ) log(
√

π/2/β)

ǫ



 .

The proof of the theorem can be found in App. B.5.
Recall the discussion in Sec. 5.1 indicates that the SVD bound is tight or almost tight for many

common workloads. Thus, it is reasonable to compare the asymptotic estimate of the SVD bound
to the error introduced by other mechanisms.

6.2 Comparison of Error Bounds

Here we compare our SVD bound with other error bounds from data-dependent mechanisms. We
include four competitors each representing fundamentally different mechanisms. The median mech-
anism [26] discards candidate data vectors that are inconsistent with historical query answers.
The multiplicative weights mechanism (MW) [15] and the iterative database construction method
(IDC) [13] repeatedly update an estimated data vector according to query answers. The boosting
method [11] maintains a distribution of queries according to the quality of their answers and re-
peatedly samples queries from the distribution so as to improve their answers. The (α, β)-accuracy
under (ǫ, δ)-differential privacy for the median and the multiplicative weight mechanism follows the
result in [13].

Table 3 summarizes error bounds of different data dependent approaches. In particular, the
comparison is over (ǫ, exp(−t))-differential privacy and (α, exp(−t))-accuracy.
The workload W we considered contains m queries with sensitivity no larger than 1. The database
is of size N , which means the sum of all xi’s in the data vector is N .

Observing the values of α in Table 3, the matrix mechanism has a greater dependence on
ǫ compared with the median, the multiplicative weights and the iterative database construction
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Mechanism α

1 Median [26] O

(

√

N(logn logm)1/4
√

t(logm+t)
√
ǫ

)

2 MW [15] O

(

√

N(log n)1/4
√

t(logm+t)
√
ǫ

)

3 IDC [13] O

(

(nN)1/4
√

t(logm+t)
√
ǫ

)

4 Boosting [11] Õ
(√

N logn·t3/2 log3/2 m

ǫ

)

5 SVDB O

(√
min(m,n)·t

ǫ

)

Table 3: For t ≥ 2, bounds on the α required to achieve (ǫ, exp(−t))-differential privacy and ac-
curacy measures of: (α, exp(−t))-accuracy (mechanisms 1-4); RMS-(α, exp(−t))-accuracy (mecha-
nism 5).

methods. In addition, since the matrix mechanism is data-independent, it cannot take advantage
of the input dataset so that it always assumes n = N . However, when N is sufficiently large
(Θ(n)) and m = O(n), the SVD bound is smaller than the error of the Boosting method and can
outperform other competitors when m = Ω(exp(t/ǫ)).

6.3 Data-dependency & the matrix mechanism

Although the techniques of the matrix mechanism are data-independent, they can be deployed in a
data-dependent way, blurring the distinction between mechanism types. The differentially private
domain compression technique [21] may be applied to reduce the domain size n to Θ(N) with
an additional O(log n) noise, which suggests a method for improving the error dependency of the
matrix mechanism on n.

Further, the optimal strategy matrix used in the matrix mechanism represents the fundamen-
tal building blocks of the workload and the matrix mechanism reduces error by using the strat-
egy queries as differentially private observations, instead of the workload queries. Recent data-
dependent approaches can benefit from the same approach. In fact, [14] selects Fourier basis
vectors adaptively in a data dependent manner, but could benefit from selecting from a more effi-
cient strategy matrix. Therefore, the SVDB bound can serve as a baseline accuracy measure, which
may be improved by data-dependent query selection.

7 Related Work

The original description of the matrix mechanism [19] focuses primarily on ǫ-differential privacy,
with a brief consideration of (ǫ, δ)-differential privacy. A number of proposed mechanisms can be
formulated as instances of the matrix mechanism: techniques for accurately answering range queries
are presented in [27, 17]; low-order marginals are studied in [1] using a Fourier transformation as
the strategy (combined with other techniques for achieving integral consistency) as well as in [29]
by optimally scaling a manually-chosen set of strategy queries; an algorithm for generating good
strategies for answering sets of data cube queries is introduced in [6]; and an algorithm for computing
optimal low-rank strategy matrices is presented in [30]. The lower bound presented in this work
provides a theoretical method to evaluate the quality of each of the approaches above, assuming
(ǫ, δ)-differential privacy.
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In recent work, Nikolov et al. [23] propose an algorithm whose error is within a ratio of
O(log2 rank(W) log(1/δ)) to the optimal error under any data-independent (ǫ, δ)-diff-erentially pri-
vate mechanism (not limited to instances of the matrix mechanism). Their algorithm is in fact
a special case of the (ǫ, δ)-matrix mechanism, so this approximation ratio also bounds the ratio
between the SVD bound and the minimum achievable error of all possible data-independent (ǫ, δ)-
differential private mechanisms.

Blum et al. [4] describe a very general mechanism for synthetic data release, in which error rates
are related to the VC dimension of the workload. However, for many workloads of linear queries,
VC dimension is too coarse-grained to provide a useful measure of workload error complexity.
For example, the VC dimension for any workload of d-dimensional range queries that can not be
embedded into (d − 1)-dimensional spaces is always d + 1, despite the fact that such workloads
could have very different achievable error rates.

Hardt et al. [16] present a lower bound on error for low rank workloads. Similar to the SVD
bound, this geometric bound can also be represented as a function of the singular values of the
workload. In particular, the bound uses the geometric average of the singular values rather than
the algebraic average in the SVD bound. The geometric bound provides a more general guarantee
since it is a lower bound on all ǫ-differential privacy mechanisms. But it is not directly comparable
with the SVD bound since it bounds the mean absolute error rather than mean squared error in
the SVD bound. Lower and upper bounds on answering all k-way marginals with a data dependent
mechanism are discussed in [18]. Though it is clear that the SVD bound is tight in the case
of all k-way marginals (since it is a special case of data cube) comparison with [18] requires a
careful analysis of the singular values of workloads of k-way marginals and is a direction for future
investigation.

There are also error bounds from data-dependent mechanisms, some of which we have compared
with in Sec. 6. A data-dependent approach for range queries is described in [5]. The median
mechanism [26] drops data vectors that are inconsistent with query answers in each step. Dwork
et al. [11] samples linear queries in each step and modifies the sample distribution with the new
query answers. In [15, 14, 13], the authors recursively update the estimated data vector to reduce
the error on linear queries. More generally, Dwork et al. provide an error bound using an arbitrary
differentially private mechanism [10] but not specifically for linear counting queries. Those analyses
lead to smaller error than the matrix mechanism over sparse databases by analyzing the properties
of the underlying database. Thus their error bounds reflect the connection between workloads and
databases but cannot lead to bounds on error that can be used to characterize the error complexity
of workloads.

8 Conclusion

We have shown that, for a general class of (ǫ, δ)-differentially private algorithms, the error rate
achievable for a set of queries is determined by the spectral properties of the queries when they
are represented in matrix form. The result is a lower bound on error which is a simple function
of the eigenvalues of the query matrix. The bound can be used to assess the quality of a number
of existing differentially private algorithms, to directly construct error-optimal strategies in some
cases, to compare the hardness of query sets, and to guide users in the design of query workloads.
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svdb svdb

W1 ∪W2

√

svdb(W1) +
√

svdb(W2) ≥
√

svdb(W1 ∪W2)
√

svdb(W1) +
√

svdb(W2) ≥
√

svdb(W1 ∪W2)
W1 ×W2 svdb(W1)svdb(W2) = svdb(W1 ×W2) svdb(W1)svdb(W2) ≤ svdb(W1 ×W2)

Predicate Workloads
W1 ∧W2 svdb(W1)svdb(W2) = svdb(W1 ∧W2) svdb(W1)svdb(W2) ≤ svdb(W1 ∧W2)

Table 4: Algebra operators and relations for the simple and supreme singular value bounds.

A An Algebra for Workloads

In this section we briefly discuss the relationship between workload operations and the SVD bound.
We define basic operators of negation-free relational algebra, union and crossproduct, on workloads
and show how our error measure behaves in the presence of these operators. Many common
workloads are the result of combining simpler workloads using these operators. Thus, the following
results can be used to save computation of the SVD bound. In particular, for the crossproduct
operation, the computation time for the SVD bound of the crossproduct of two workloads with size
m1×n1 and m2×n2 can be reduced from O(min(m1m2, n1n2)m1m2n1n2) to O(min(m1, n1)m1n1+
min(m2, n2)m2n2).

The proofs of the theorems can be found in App. B.6. Table 4 summarizes the results.

A.1 Union

The union operation on workloads has the standard meaning for rows of the workload matrix:

Definition A.1 (Union). Given an m1 × n workload W1 and an m2 × n workload W2 over the
same n cell conditions. W1 ∪W2 is the union of W1 and W2, the workload consisting of the rows
of both W1 and W2, without duplicates.

The relationship between the SVD bounds of workloads and their unions can be bounded:

Theorem A.2. Given an m1 × n workload W1 and an m2 × n workload W2 on the same set of
n cell conditions.

√

svdb(W1) +
√

svdb(W2) ≥
√

svdb(W1 ∪W2);
√

svdb(W1) +
√

svdb(W2) ≥
√

svdb(W1 ∪W2).

A.2 Workload combination

Given two workloads over distinct sets of cell conditions, we can combine them to form a workload
over the crossproduct of the individual cell conditions. This is most commonly used to combine
workloads defined over distinct sets of attributes B1 and B2 to get a workload defined over B1∪B2.
When we pair individual predicate queries, it is equivalent to pair them conjunctively.

Definition A.3 (Workload combination). Given an m1×n1 workload W1 defined by cell conditions
Φ = φ1 . . . φn1

and an m2 × n2 workload W2 defined by distinct cell conditions Ψ = ψ1 . . . ψn2
,

a new combined workload W is defined over cell conditions {φi ∧ ψj | φi ∈ Φ, ψj ∈ Ψ}. For
each w1 = (w1,1, . . . , wn1,1) ∈ W1 and w2 = (w1,2, . . . , wn2,2) ∈ W2, there is a query w ∈ W

accordingly:
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• (Crossproduct) If the entry of w related to each cell condition φi ∧ ψj is w1,i · w2,j, W is
called the crossproduct of W1 and W2, denoted as W1 ×W2.

• (Conjunction) If both W1 and W2 consist of predicate queries and the entry of w related
to each cell condition φi ∧ψj is w1,i ∧w2,j , then W is called the conjunction of W1 and W2,
denoted as W1 ∧W2.

The next theorem describes the singular value bound for the crossproduct of workloads:

Theorem A.4. Given an m1 × n1 workload W1 and an m2 × n2 workload W2 defined on two
distinct sets of cell conditions:

svdb(W1 ×W2) = svdb(W1)svdb(W2)

svdb(W1 ×W2) ≥ svdb(W1)svdb(W2)

The conjunction of predicate queries is a special case of crossproduct, Thus, applying Theo-
rem A.4 to predicate workloads we have:

Corollary A.5. Given an m1 × n1 workload W1 and an m2 × n2 workload W2, both of which
consist of predicate queries.

svdb(W1 ∧W2) = svdb(W1)svdb(W2);

svdb(W1 ∧W2) ≥ svdb(W1)svdb(W2).

B Proofs

The following appendices contain proofs that are omitted from the body of the paper. In those
proofs, we say A a strategy on workload W if WA+A = W.

B.1 The Extended Matrix Mechanism

In this section we present the proofs related to the extended matrix mechanism.

Proposition B.1. (Extended (ǫ,δ)-Matrix Mechanism) Given an m×n query matrix W, and
a p × n strategy matrix A such that WA+A = W, the following randomized algorithm MA is
(ǫ, δ)-differentially private:

MA(W,x) = Wx+WA+Normal(σ)m.

where σ = ∆A

√

2 ln(2/δ)/ǫ.

Proof. Noticing WA+A = W,

MA(W,x) = Wx+WA+Normal(σ)m

= WA+(Ax+Normal(σ)m).

Since σ = ∆A

√

log(2/δ)/ǫ, according to Proposition 2.14, answering Ax with Ax + Normal(σ)m

satisfies the (ǫ, δ)-differential privacy. Thus MA(W,x) satisfies (ǫ, δ)-differential privacy as well.

Proposition B.2 (Total Error). Given a workload
W, the total error of answering W using the extended (ǫ, δ)-matrix mechanism with query strategy
A is:

ErrorA(W) = P (ǫ, δ)∆2
A ||WA+||2F (6)
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where P (ǫ, δ) = 2 log(2/δ)
ǫ2 .

Proof. According to Def. 3.2 and Prop. 3.1, given a query w and a strategy A, the mean squared
error is

Errorw(A) = E((wx− ŵ)2) = Var(ŵ) = Var(wA+Normal(σ)m)

= σ2||wA+||22 = P (ǫ, δ)∆2
A||wA+||22.

Therefore for a given workload W,

ErrorW(A) =
∑

w∈W
P (ǫ, δ)∆2

A||wA+||22 = P (ǫ, δ)∆2
A||WA+||2F .

B.2 Workload Containment and Equivalence

This section contains the proofs of the relationship between workloads and their minimal errors in
Section 3.3.

Proposition B.3 (Equivalence Conditions). Given
an m1 × n1 workload W1 and an m2 × n2 workload W2, each of the following conditions implies
that MinError(W1) = MinError(W2):

(i) W1 ≡ W2

(ii) W1 = QW2 for some orthogonal matrix Q.

(iii) W2 results from permuting the rows of W1.

(iv) W2 results from permuting the columns of W1.

(v) W2 results from the column projection of W1 on all of its nonzero columns.

Proof. (i): If W1 ≡ W2, for any strategy A,

||W1A
+||2F = trace((A+)TWT

1 W1A
+)

= trace((A+)TWT
2 W2A

+) = ||W2A
+||2F .

Therefore MinError(W1) = MinError(W2).
(ii): It is equivalent with (i).
(iii): It is a special case of (ii) where Q is a permutation matrix.
(iv): Let P is the permutation matrix such that W1P = W2. For any strategy A on W1, AP is
a strategy of W2 and ErrorA(W1) = ErrorAP(W2).
(v): Since (iv) is true, we can assume W1 = [W2,0]. For any strategy matrix A2 on W2,
A1 = [A2,0] is a strategy on W1 and

||W1A
+
1 ||2F = trace(A+

1 (A
+
1 )

TWT
1 W1)

= trace([A+
2 ,0]

T [A+
2 ,0][W2,0]

T [W2,0])

= trace((A+
2 )

TWT
2 W2A

+
2 ) = ||W2A

+
2 ||2F .

For any strategy A1 on W1 there is a strategy on W2 with equal or smaller error formed by
deleting corresponding columns from A2.
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Proposition B.4 (Error inequality). Given an m1 × n1 workload W1 and an m2 × n2 workload
W2, each of the following conditions implies that

MinError(W1) ≤ MinError(W2) :

(i) W1 ⊆ W2

(ii) W1 is a column projection of W2.

Proof. For (i), let W′
2 ≡ W2 such that W′

2 contains all rows of W1. According to Prop. 3.6 (iii),

we can assume W′
2 =

[

W1

W3

]

. For any strategy A on W2, since A is also a strategy on W′
2, A can

represent all queries in W1 as well. Thus A is a strategy on W1. In addition,

ErrorA(W2)

= P (ǫ, δ)∆2
A||W2A

+||2F
= P (ǫ, δ)∆2

A||W′
2A

+||2F
= P (ǫ, δ)∆2

A(||W1A
+||2F + ||W3A

+||2F )
= ErrorA(W1) + ErrorA(W3) ≥ ErrorA(W1).

Therefore, MinError(W1) ≤ MinError(W2).
For (ii), given a strategy A2 on W2, let A1 be a column projection of A2 using the same

projection that generates W1 from W2. According to the construction of A1 and W1, since
W2 = W2A

+
2A2, we have W2A

+
2A1 = W1. Therefore according to Theorem 2.16, ||W2A

+
2 ||F ≥

||W1A
+
1 ||F . Furthermore, since ∆A2

≥ ∆A1
, we know ErrorA2

(W2) ≥ ErrorA1
(W1).

B.3 The Singular Value Bound

We first present the proof of lemmas that are required for the proof of Thm 4.2. After that, we
prove the theorems showing that the supreme SVD bound satisfies the error properties.

Lemma B.5. Given a workload W, there exists a strategy A ∈ AW such that ErrorA(W) =
MinError(W).

Proof. For any workload W, the problem of finding a strategy that minimizes the total error of W
can be formulated as a SDP problem [19]. Therefore the optimal strategy that minimizes the total
error ofW always exists. LetA′ be an optimal strategy on workloadW. We now construct a matrix
A from A′ such that A ∈ AW. Let d1, . . . , dn denote the diagonal entries of matrix ∆2

AI−A′TA′,
i.e. d1, . . . , dn is the difference between each diagonal entry of A′TA′ and the maximal diagonal
entry of A′TA′. Since d1, . . . , dn ≥ 0, let D be the diagonal matrix whose diagonal entries are√
d1, . . . ,

√
dn, and A =

[

A′

D

]

. Then A is a strategy matrix such that the diagonal entries of ATA

are all the same. Let B = [A′+,0]. Then WBA = WA′+A′ = W. According to Theorem 2.16,
||WA+||F ≤ ||WB||F . Recall ∆A = ∆A′ , we have,

ErrorA(W) = P (ǫ, δ)∆2
A||WA+||2F

≤ P (ǫ, δ)∆2
A||WB||2F

= P (ǫ, δ)∆2
A′ ||WA′+||2F

= ErrorA′(W) = MinError(W).

Therefore ErrorA(W) = MinError(W) and A is an optimal strategy for workload W.
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Lemma B.6. Let D be a diagonal matrix with non-negative diagonal entries and P be an orthogonal
matrix whose column equals to p1,p2, . . . ,pn.

trace(D) ≤
n
∑

i=1

||Dpi||2.

Proof. Use di to denote the diagonal entries of D and pij to denote the entries in P. Noticing that
∑n

j=1 p
2
ji = 1, we have

||Dpi||2 =

√

√

√

√

n
∑

j=1

p2jid
2
j ≥

n
∑

j=1

p2jidj .

Therefore, since
∑n

j=1 p
2
ij = 1,

n
∑

i=1

||Dpi||2 ≥
n
∑

i=1

n
∑

j=1

p2jidj =

n
∑

j=1

(

n
∑

i=1

p2ji)dj = trace(D).

Theorem B.7. Given an m1 × n1 workload W1 and an m2 × n2 workload W2, the following
conditions imply that svdb(W1) = svdb(W2):

(i) W1 ≡ W2

(ii) W1 = QW2 for some orthogonal matrix Q.

(iii) W2 results from permuting the rows of W1.

(iv) W2 results from permuting the columns of W1.

(v) W2 results from column projection of W1 on all of its nonzero columns.

Proof. (i) (ii) (iii): Since any one of those conditions leads to WT
1 W1 = WT

2 W2, according to
Prop. 4.3, svdb(W1) = svdb(W2).

(iv): Given a workload W1, it is sufficient to prove that the singular values of W1 are column
representation independent. Let W2 be a matrix resulting from a permutation of the columns of
W1 and P be the permutation matrix such that W1P = W2. If a singular value decomposition of
W1 is W1 = QWΛWPW, then the decomposition of W2 is W2 = QWΛWPWP. Since PWP is
still an orthogonal matrix, W2 = QWΛWPWP is a singular value decomposition of W2. Therefore
the singular values of W2 are exactly the same as the singular values of W1.

(v): SinceW2 is a column projection ofW1, svdb(W1) ≥ svdb(W2) by definition. In addition,
for any matrix with columns of zeroes, removing thse columns will not impact the non-zero singular
values of the matrix. Therefore projecting those columns out will reduce the total number of singular
values but not their sum. Therefore projecting out all zero columns from W1 will not decrease
svdb(W1), which indicates svdb(W1) = svdb(W2).

Theorem B.8. Given an m1 × n1 workload W1 and an m2 × n2 workload W2, the following
conditions imply that svdb(W1) ≤ svdb(W2):

(i) W1 ⊆ W2

(ii) W1 is a column projection of W2.
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Since (ii) is naturally satisfied according to the definition of svdb(W), it is sufficient to prove
(i). Here we prove it is true even for the SVD bound so that it is also true for the supreme SVD
bound.

Proof. Given W1 ⊆ W2, according to the definition, there exists a workload W′
2 such that W′

2 ≡
W2 and W′

2 contains all the queries of W1. Then W′
2 has the following form:

W′
2 =

[

W1

W3

]

.

Then

WT
2 W2 −WT

1 W1 = W′
2
T
W′

2 −WT
1 W1

= WT
3 W3 � 0

Let W1 = Q1Λ1P1 and W2 = Q2Λ2P2 be the singular value decomposition of W1 and W2,
respectively. Then

WT
2 W2 −WT

1 W1 � 0 ⇔ PT
2 Λ

2
2P2 −PT

1 Λ
2
1P1 � 0

⇔ Λ2
2 −P2P

T
1 Λ

2
1P1P

T
2 � 0

⇒ ∀ i, λi ≥ ||Λ1pi||2,
where λi is the i-th diagonal entry of Λ2 and pi is the i-th column vector of P1P

T
2 . The inequality

in the last row based on the property that the diagonal entries of any positive semidefinite matrix
are non-negative. Therefore, according to Lemma 4.11,

trace(Λ2) =

n
∑

i=1

λi ≥
n
∑

i=1

||Λ1pi||2 ≥ trace(Λ1). (7)

B.4 Analysis of the SVD Bound

The theorems that are respectively related to the tightness and the looseness of the SVD bound
are proved here.

Theorem B.9. Given workload W, svdb(W) is tight if and only if the diagonal entries of
√
WTW

are all equal.

Proof. Recall that the SVD bound is tight if and only if (3), (4) and (5) takes equal sign simulta-
neously. The conditions that make all three inequalities to have equal sign is A ∝ Q

√
ΛWPW and

A ∈ AW, which is equivalent to the case that the diagonal entries of PT
WΛWPW are all the same.

In addition, PT
WΛWPW =

√
WTW and we have the theorem proved.

Theorem B.10. The SVD bound is tight for any variable-agnostic workload W. In addition, when
n = 2k for any nonnegative integer k, svdb(W) = 1

n(
√

a+ (n − 1)b+ (n− 1)
√
a− b)2, where a is

the value of diagonal entries of WTW and b is the value of off-diagonal entries of WTW.

Proof. For the strategy A =
√
ΛWPW, if A ∈ A,

ErrorA(W) = P (ǫ, δ)svdb(W). Since W is a variable agnostic matrix, WTW has the following
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special form:

WTW =









a b . . . b
b a . . . b
...

...
. . .

...
b b . . . a









,

where a > b. One can verify that a + (n − 1)b is an eigenvalue of WTW with order 1 and
a − b is an eigenvalue of WTW with order n − 1. Let PW = (pij)n×n. Noticing the rows of
PW are the eigenvectors of WTW, without loss of generality, assume its first row contains the
eigenvector associated with eigenvalue a+ (n− 1)b. In addition, since WTW1 = (a+ (n − 1)b)1,
(1/
√

a+ (n− 1)b)1 is an unit-length eigenvector of WTW associated with eigenvalue a+(n−1)b.
The ith diagonal entry of matrix ATA = PT

WΛWPW can be computed as:

(a+ (n− 1)b)p21i +

n
∑

j=2

(a− b)p2ji = 1 + (a− b)(

n
∑

j=1

p2ji − p21i)

= 1 +
a− b

a+ (n − 1)b
.

Thus A ∈ A and so it is a strategy for W such that
ErrorA(W) = P (ǫ, δ)svdb(W). Therefore the SVD bound is achieved.

Theorem B.11. The SVD bound is tight for any weighted data cube workload W.

Proof. Let us induct on the number of attributes d in the database. When d = 1, there are only
two cuboids, the cuboid asks for the sum of all the cells and the cuboid asks for all the individual
cells. Consider the workload W that weight the first cuboid w1 and the second cuboid w2, one can
compute that

WTW =









w2
1 + w2

2 w2
1 . . . w2

1

w2
1 w2

1 + w2
2 . . . w2

1
...

...
. . .

...
w2

1 w2
1 . . . w2

1 + w2
2









,

which is a variable agnostic workload. Therefore, according to Thm 5.3, svdb(W) is tight.
If the SVD bound is tight when d = d0, consider the case that d = d0 + 1. Given a data cube

workload W. The cuboids in the data cube can be separated into two groups: the first group is the
cuboids that aggregate on the last attribute; the second group is the cuboids that do not aggregate
on the last attribute. Let W1 be the projection of the cuboids in the first group on the first d0
attributes and W2 be the projection of the cuboids in the first group on the first d0 attributes. We
can represent W using W1 and W2:

W =













W1 W1 . . . W1

W2 0 . . . 0
0 W2 . . . 0
...

...
. . .

...
0 0 . . . W2













,

where the number of W1 blocks and W2 blocks are the number of values in the last attribute,

denoted as n0. Let Q1, Q2 be the orthogonal matrices such that Q1W1 =
√

WT
1 W1 and Q2W1 =
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√

WT
2 W2. Let

Q =









Q1 0 . . . 0
0 Q2 . . . 0
...

...
. . . 0

0 0 . . . Q2









,

and then

QW =















√

WT
1 W1

√

WT
1 W1 . . .

√

WT
1 W1

√

WT
2 W2 0 . . . 0

0
√

WT
2 W2 . . . 0

...
...

. . .
...

0 0 . . .
√

WT
2 W2















.

One can verify that

√
WTW =

√

WTQTQW =









W3 W4 . . . W4

W4 W3 . . . W4

...
...

. . .
...

W4 W4 . . . W3









,

where

W3 =
1

n0
((n0 − 1)

√

WT
1 W1 +

√

WT
1 W1 + n0W

T
2 W2),

W4 =
1

n0
(−
√

WT
1 W1 +

√

WT
1 W1 + n0WT

2 W2).

Noticing that both W1 and
[

W1√
n0W2

]

are data cube workloads on d0 attributes, according to the

induction assumptions, both
√

WT
1 W1 and

√

WT
1 W1 + n0WT

2 W2 are symmetric matrices whose

diagonal entries are all the same, respectively. Thus W3 and W4 are also symmetric matrices
whose diagonal entries are all the same, respectively. Then

√
WTW is a symmetric matrices whose

diagonal entries are all the same and then the SVD bound is tight on W.

Theorem B.12. Given an m×n workload W. Let d0 be the maximum diagonal entry of
√
WTW.

MinError(W) ≤ nd0P (ǫ, δ)svdb(W)

trace(
√
WTW)

,

where P (ǫ, δ) = 2 log(2/δ)
ǫ2

.

Proof.

MinError(W) ≤ ErrorA(W)

=
nd0P (ǫ, δ)svdb(W)

Trace(
√
WTW)

.

B.5 Asymptotic Estimation to the SVD Bound

Here we prove the our asymptotic estimation to the SVD bound.
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Theorem B.13. Given an m× n workload W, if the
svdb(W) is asymptotically tight, then there exists a strategy under which the matrix mechanism is
RMS-(α, β)-accurate, where

α = O





√

min(m,n)
√

log(2/δ) log(
√

π/2/β)

ǫ



 .

Proof. Given a workload W. Let λ1, . . . , λmin(m,n) be the non-zero singular values of W.

(λ1 + . . .+ λmin(m,n))
2 ≤ min(m,n)(λ21 + . . .+ λ2min(m,n))

= min(m,n)||W||2F
≤ min(m,n)mn

Therefore
svdb(W) ≤ min(m,n)m.

Noticing svdb(W) is estimating the L2 error of m queries and the error is Gaussian random noise.
Take the average of the svdb(W), consider the error estimator for Gaussian random variable with
mean m and standard deviation σ:

P(|X −m| > tσ) ≤
√
2√
πt

exp(− t
2

2
),

and we have the bound proved.

B.6 The SVD Bound and Operations on Workloads

Here we prove relations between the SVD bound and the operations on workload. The proofs of
union and generalized negation are related to the relationship between singular values of matrices
and their sum, as stated in the theorem below.

Proposition B.14 ([12]). Given two n×n matrices W1 and W2 with singular values µ1, µ2, . . . , µn
and λ1, λ2, . . . , λn respectively. Let φ1, φ2, . . . , φn be the singular values of W1 +W2, then

n
∑

i=1

µi +
n
∑

i=1

λi ≥
n
∑

i=1

φi.

For any m×n matrix W, there always exists an n×n matrix W′ such that the nonzero singular
values of W and W′ are all the same. Theorem B.14 holds even if both W1 and W2 are m × n
matrices, which leads to the relationship between the SVD bounds of two workloads and their sum.

Theorem B.15. Given an m1 × n workload W1 and an m2 × n workload W2 on the same set of
n cell conditions.

√

svdb(W1) +
√

svdb(W2) ≥
√

svdb(W1 ∪W2);
√

svdb(W1) +
√

svdb(W2) ≥
√

svdb(W1 ∪W2).

Proof. Let W = W1 ∪W2. Expand W1, W2 to two (m1 +m2)× n matrices as follows:

W′
1 =

[

W1

0

]

, W′
2 =

[

0
W2

]

.
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Since W′
1 and W′

2 have the same singular values as W1 and W2, respectively, svdb(W′
1) =

svdb(W1), svdb(W
′
2) = svdb(W2). Furthermore, since

W′
1 +W′

2 =

[

W1

W2

]

⊇ W,

according to Prop. B.14, the sum of the singular values of W′
1 and W′

2 is larger than or equal to
the sum of singular values W. Therefore, with Thm. 4.8 and Prop. B.14,

√

svdb(W1) +
√

svdb(W2)

=
√

svdb(W′
1) +

√

svdb(W′
2) ≥

√

svdb(W).

For the case of svdb, notice that for any projection µ,
√

svdb(µ(W1)) +
√

svdb(µ(W2)) ≥
√

µ(svdb(W)).

Consider all projections and we have the result proved.

The property of crossproduct can be proved by constructing a proper representation to the
resulting workload.

Theorem B.16. Given an m1 × n1 workload W1 and an m2 × n2 workload W2 defined on two
distinct sets of cell conditions:

svdb(W1 ×W2) = svdb(W1)svdb(W2)

svdb(W1 ×W2) ≥ svdb(W1)svdb(W2)

Proof. Let w1 and w2 be queries in W1 and W2, respectively and W = W1 ×W2. Consider the
vector representation of w1 and w2: w1 = [w11, w12, . . . , w1n1

]T , w2 = [w21, w22, . . . , w2n2
]T . The

crossproduct of w1 and w2, denoted as w can be represented as an n1 by n2 matrix, whose (i, j)
entry is equal to w1iw2j. In another word,

w = w1w
T
2 .

We can the represent w as a vector, denoted as w′, which is a 1×n1n2 vector that contains entries
in w row by row. Therefore,

w′ = [w11w2, w12w2, . . . , w1nw2]
T .

More generally, using W1
ij to denote the (i, j) entry in W1, W can be represented as the following

matrix:

W =











w1
11W2 w1

12W2 . . . w1
1n1

W2

w1
21W2 w1

22W2 . . . w1
2n1

W2
...

...
. . .

...
w1
n1W2 w1

n2W2 . . . w1
m1n1

W2











.

Let v1, v2 be the eigenvectors of WT
1 W1, W

T
2 W2 with eigenvalues λ1, λ2, respectively. Let the

vector representation of v1 be v1 = [v1n, v2n, . . . , v1n]
T . Consider the following vector

v = [v11v2, v12v2, . . . , v1nv2]
T ,

According to block matrix multiplication,

WTWv = WT











∑n
i=1 w

1
1iv1iW2v2

∑n
i=1 w

1
2iv1iW2v2
...

∑n
i=1 w

1
m1i

v1iW2v2










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=











λ1v11λ2v2

λ1v12λ2v2
...

λ1v1nλ2v2











= λ1λ2v.

Thus v is an eigenvector of WTW with eigenvalue λ1λ2. Since WT
1 W1 and WT

2 W have n1
and n2 orthogonal eigenvectors, respectively, we can find n1n2 orthogonal eigenvectors with this
method. Noticing WTW only has n1n2 eigenvalues, the eigenvalues of those n1n2 eigenvectors are
all the eigenvalues of WTW. Let λ11, . . . , λ1n be the eigenvalues of WT

1 W1 and λ21, . . . , λ2n be
the eigenvalues of WT

2 W2.

svdb(W) =
1

n1n2
(

∑

1≤i≤n1,1≤j≤n2

√

λ1iλ2j)
2

=
1

n1
(

n1
∑

i=1

√

λ1i)
2 · 1

n2
(

n2
∑

i=1

√

λ2i)
2

= svdb(W1)svdb(W2).

Though we use a specific rule above to represent the query cross products as query vectors, according
to Theorem 4.7, the SVD bound is independent of the rule of representation. Thus we have the
theorem proved in arbitrary cases.

For the case of svdb, since for any projection µ1 on W1 and µ2 on W2, µ1×µ2 is a projection on
W. On the another hand, there are projections on W that can not be represented as a crossproduct
of a projection on W1 and a projection on W2. Therefore

svdb(W1)svdb(W2) = max
µ1

svdb(µ1(W1))max
µ2

svdb(µ2(W2))

= max
µ1,µ2

svdb((µ1 × µ2)(W))

≤ max
µ

svdb(µ(W)) = svdb(W).
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