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Robust Convention Emergence in Social Networks through
Self-Reinforcing Structures Dissolution
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Convention emergence solves the problem of choosing, in a decentralized way and among all equally beneficial
conventions, the same convention for the entire population in the system for their own benefit. Our previous
work has shown that reaching 100% agreement is not as straighforward as assumed by previous researchers,
that, in order to save computational resources fixed the convergence rate to 90% (measuring the time it takes
for 90% of the population to coordinate on the same action). In this article we present the notion of social
instruments as a set of mechanisms that facilitate and accelerate the emergence of norms from repeated
interactions between members of a society, only accessing local and public information and thus ensuring
agents’ privacy and anonymity. Specifically, we focus on two social instruments: rewiring and observation.
Our main goal is to provide agents with tools that allow them to leverage their social network of interactions
while effectively addressing coordination and learning problems, paying special attention to dissolving meta-
stable subconventions.

The first experimental results show that even with the usage of the proposed instruments, convergence is
not accelerated or even obtained in irregular networks. This result leads us to perform an exhaustive analysis
of irregular networks discovering what we have defined as Self-Reinforcing Structures (SRS). The SRS are
topological configurations of nodes that promote the establishment and persistence of subconventions by
producing a continuous reinforcing effect on the frontier agents. Finally, we propose a more sophisticated
composed social instrument (observation + rewiring) for robust resolution of subconventions, which works by
the dissolution of the stable frontiers caused by the Self-Reinforcing Substructures (SRS) within the social
network.
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1. INTRODUCTION

Conventions are a special type of norms, used as a mechanism for sustaining social
order, increasing the predictability of behavior in the society, and specifing the details of
these unwritten laws. Following Coleman’s theory [Coleman 1998], conventions emerge
to solve coordination problems, where there is no conflict between the individual and
the collective interests, as what is desired is that everyone behaves in the same way,
without any major difference on which action agents are coordinated. Therefore, the
selection of the focal action in such norms is arbitrary.

In the multiagent systems community, the problem of convention emergence
has been commonly approached through what has been defined as social learning
[Mukherjee et al. 2007; Sen and Airiau 2007]. This approach has resulted in special
interest because of the decentralized nature of the self-organization task. In social
learning of norms, where each agent is learning concurrently over repeated interac-
tions with randomly selected neighbors in the social network, a key factor influencing
success of an individual is how it learns from the “appropriate” agents in their social
network. Therefore, agents can develop subconventions depending on their position
on the topology of interaction. As identified by several authors [Salazar-Ramirez
et al. 2008; Toivonen et al. 2009; Villatoro et al. 2009], metastable subconventions
interfere with the speed of the emergence of more general conventions. The problem
of subconventions is a critical bottleneck that can derail emergence of conventions in
agent societies, and mechanisms need to be developed that can alleviate this problem.
Subconventions are conventions adopted by a subset of agents in a social network
who have converged to a different convention than the majority of the population.
Subconventions are facilitated by the topological configuration of the environment
(isolated areas of the graph which promote endogamy) or by the agent reward function
(concordance with previous history, promoting cultural maintenance). Assuming that
agents cannot modify their own reward functions, the problem of subconventions
has to be solved through the topological reconfiguration of the environment. In order
to produce the lowest impact on the original structure of the social network, the
subconventions need to be dissolved with the help of agents in the conflicting area
where two different conventions confront, that we define as frontier.

Being part of a social network, agents can exercise certain control over it so as to
improve one’s own utility or social status. We define social instruments to be a set of
tools available to agents to be used within a society to influence, directly or indirectly,
the behavior of its members by exploiting the structure of the social network. Social
instruments are used independently (an agent does not need any other agent to use
a social instrument) and have an aggregated global effect (the more agents use the
social instrument, the stronger the effect). In this work we study the effects of social
instruments on the emergence of conventions through the dissolution of subconven-
tions. Previous research has provided results proving that emergence of conventions
based solely on private interactions is affected by factors like topology [Delgado 2002]
or learning algorithms [Sen and Airiau 2007].

The main contributions of this work are the following: (1) establishment of a brief
classification and analysis of the social instruments present in the existing literature,
(2) the application of social instruments to facilitate the convention emergence process,
(3) the identification of Self-Reinforcing Substructures (SRS) in social networks, that
cause the metastable subconventions, and (4) the dissolution of the SRS with the help
of the proposed social instruments. More specifically, we study two social instruments
in this work: rewiring and observation. Rewiring allows agents to control the links
that relate them with other agents by replacing them intelligently. This direct control
of the topology of the social network allows agents to control whom they interact with,
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Robust Convention Emergence in Social Networks through Dissolution 2:3

resulting in increased reward without actually altering the reward function. On the
other hand, observation allows agents to obtain partial information of the convention
emergence process by observing other agents in the neighborhood. The access to this
information allows agents to consider extra information over what they receive from
direct interactions. This observation process also has an impact on the reward of the
agents by speeding up their convention emergence within the society. After a first
experimental phase, we discover the pertinence of the frontier in the subconventions
problem. The frontier is the topological area of the network at the edge of settled groups
(with the same shared convention within the group, and different outside the group).

Later we also propose a combination of the two presented social instruments to
develop a robust solution to the subconventions formation problem. We present exper-
imental results and their analysis about the efficacy of these social instruments for
convention emergence by expediently dissolving the SRSs.

The structure of this article is as follows: in Section 2 we present the motivation of
this work and a more detailed explanation of our vision of social weapons; we then
present a small categorization of social weapons from a review of the literature of
multiagent systems in Section 3, we then propose two new social weapons in Section 4.
In Section 5 we present the agent interaction and reward model that we have used;
experimental results are presented in Section 6. We perform an exhaustive analysis
of irregular networks in Section 7, and after identifying the SRS, the combined social
instrument is presented and experimented with to observe its efficacy in Section 8.
Finally, conclusions from the analysis of the results and future work are presented in
Section 9.

2. MANIPULATING THE NETWORK

Normally, in social learning scenarios the reward function1 for an agent is determined
either by the environment (e.g., if one overexploits resources, they will be exhausted)
or by individual social interactions (e.g., drive on the same side of the road as the rest
of the drivers for one’s own and others’ safety) and typically individual agents cannot
modify it. However, in social learning interactions, the reward is determined based
on the actions of the partners involved in the interaction. Therefore, an agent can
indirectly modify the reward obtained and change its success and visibility and hence
social status by controlling or modifying the social network it is located in, for example,
selectively choosing which other agents it interacts with, giving different importance
to the relationships with other agents, sharing information about the interactions with
other agents, etc.

Social instruments are used by agents to improve their utility, without directly alter-
ing the utility function. Given a set of social instruments, agents can exploit the state
of their social environment to have tangible effects on the utility obtained from their
interactions with other agents in that environment.

A society where individual agents repeatedly use a social instrument has the prop-
erties of a complex system: the effect of the individual elements aggregated together
exhibits, as a whole, properties that are not present in the properties of the individual
parts. Moreover, the emergent aggregate behavior may change over time. The impact
of the social instruments is reflected on its aggregated effect which often transforms
the social environment.

1We use the definition of reward function typically used in the Markov decision processes framework, where
it is understood as a private function that, given a state and a set of actions chosen by the players, and maybe
their past history, returns to the agent a scalar reward value.
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For inspiration, we can look to human societies and observe how humans have de-
veloped different social instruments to exploit and produce changes in their social
networks. These human social mechanisms have direct or side-effects on the social
networks. There exists some literature on classifying and analyzing the effects of these
social instruments on the network and therefore on the agents’ interactions [Albert
et al. 2000; de Pinninck et al. 2007; Savarimuthu et al. 2007; Urbano et al. 2009;
Villatoro et al. 2009; Babaoglu and Jelasity 2008; Conte and Paolucci 2002; Hales
2002; Hales and Arteconi 2006].

However, there is a critical dearth of work in this area of socially inspired tools for
MultiAgent Systems (MAS). Our goal is to fill this gap by formalizing and adapting
the social mechanisms used by humans for agent societies. As a social network can
be represented as a type of graph, we profit from the good ground formalism provided
by graph theory and we establish a parallel between network operators and social
operators. However, from a societal point of view, only a subset of all the possible graph
operations make sense.

3. SOCIAL INSTRUMENTS REVIEW

In a social network, agents are represented by nodes and relationships by edges. As-
suming agents cannot create or destroy other agents, the set of graph operations that
are socially relevant are the following: destroy a link, create a link, add attributes to
nodes (node coloring2), add attributes to links (link coloring3), and transmit informa-
tion (any node can transmit information to any other node following the right protocols
using the communication network, which might be different from the social network).

The social instruments available to the agents should be able to perform these oper-
ations. To alter the state of the social network in which agents are located, researchers
have developed different social mechanisms that we now categorize. We identify some
social instruments found in the MAS literature and observe their effect on the social
network. The mechanisms we are interested in are those that can be used by the agents
without institutional support.

Partner Selection (Edge Addition/Removal). People continually select who they do
and do not want to interact with. Giving agents the capability of removing edges
attached to them in their social network gives them direct control over the network
that directly affects them, improving the overall behavior of the system [Albert et al.
2000; de Pinninck et al. 2007].
Tags (or Node Coloring). Recognizing certain attributes and characteristics of other
agents before interacting with them reduces social friction (e.g., by reducing the
number of unsuccessful interactions) and improves coordination. To facilitate this
process, some kind of externally visible social markings are needed, for example, tag
mechanisms [Chao et al. 2008; Holland 1993].

By carrying a tag, having a role [Savarimuthu et al. 2007] or a certain force
[Urbano et al. 2009], an agent allows all other agents to recognize a certain charac-
teristic or quality even before any direct interaction.
Social Position (or Link Coloring). Humans recognize that our behaviour has to be
adapted depending on who we are interacting with, for example, I behave differently
with a friend from school than with my boss. Agents can extract information from
the topology of a social network to gauge the influence or status of other agents

2Node coloring is a special case of node labeling in order to recognize certain characteristics of a node
represented by its color.
3Link coloring is a special case of link labeling in order to recognize certain characteristics of the relationship
between two nodes represented by its color.
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and use this information strategically to further their own interests [Villatoro et al.
2009].
Mimicking (or Node Imitation). Humans consciously or subconsciously imitate the
strategies of more successful individuals as they aspire to improve their own perfor-
mance. Access to the strategies of other nodes in the network can be used as a social
instrument [Hales and Arteconi 2006]. Such access can be applied to compare the
efficiencies of several strategies and mimic the most effective ones.

4. PROPOSED SOCIAL INSTRUMENTS

In the last section, we have analyzed several social instruments that have been stud-
ied in the literature. In this section we propose two new additional social instruments:
rewiring and observation. As we will see in the next sections, rewiring directly changes
the structure of the network and observation exploits the information of certain parts
of the network to bias agents’ decisions. For the sake of clarity, we will clarify certain
terms that might seem similar and are used in the rest of this article: agents choose an
action at each timestep and this action, except when exploring, expresses the agents’
preference over a finite set of actions. In this article, as we deal with learning algo-
rithms, the preference represents the action which has the highest value estimated by
the learning algorithm.

4.1. Rewiring (or Intelligent Link Removal and Creation)

If we use human societies as inspiration, agents should have the ability of choosing
whom they want to interact with. We have adapted this idea into a social instrument
that allows agents to “break” the relationships from which they are not receiving any
benefit and try to create new ones. This social instrument allows an agent to remove
links with other agents it is connected with and intelligently substitute those links
by new ones, making this last step the crucial difference with edge removal. Agents
decide to rewire a link after the number of unsuccessful interactions4 with another
agent crosses a certain tolerance threshold. Agents also need to decide whom they
want to establish the new link with5. In this research we are especially interested
in developing methods that access only local and public information, ensuring agents
privacy and anonymity. We have developed an intelligent rewiring scheme, (neighbor’s
advice), which will be compared with two other control methods: the zero-intelligence
method (random rewiring) and the full-information method (global advice).

(1) Random Rewiring. Agents rewire to a randomly selected agent from the population.
(2) Global Advice. Agents rewire to an agent that is randomly selected by the system

from those that have selected the same action in the last timestep. If no such agent
exists, random rewiring is applied.

(3) Neighbor’s Advice. Agents rewire to an agent recommended by a neighbor. The
rewiring agent X asks a neighbor which in the last timestep selected the same
action as that of X (agent referent) for another agent which also selected the same
action but is not a neighbor of X (agent referred). If these conditions do not apply,
random rewiring is applied.

Despite the similarity of our approach with the work of Griffiths and Luck [2010]
in that both use an evolutionary approach, there is a crucial difference. Griffiths and
Luck [2010] measure the results of their techniques after the reproduction of a number

4Unsuccessful interaction in our convention emergence scenario corresponds to being uncoordinated or not
sharing the same convention for that interaction.
5As in this work we only consider undirected networks, when one agent decides to break or establish one
link, the other agent will also be affected by this decision.
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of generations, and using a certain mutation rate. On the other hand, we use a more
online approach where agents can modify their social network at runtime, without the
necessity of evolving new generations. In addition, our rewiring methods do not access
any private agent information (used only in the global advice which is used as a control
case) such as their actual reward. Our rewiring methods only access the last played
action of other players, respecting the privacy of agents’ information. There is also
a clear difference between this social weapon and the partner selection mechanism:
rewiring produces a tangible change in the network, while partner selection on the
other hand does not directly affect the network but prioritizes some nodes over the
rest.

4.2. Observation

In a social learning scenario, allowing agents to observe the actions selected by other
agents outside their circle of interaction can provide useful information to support the
convention emergence process. However, there has to be a trade-off between observ-
ing and interacting. Allowing agents to observe other agents’ state might help when
deciding which action should be reinforced in its learning algorithm in order to be-
come the established convention. In order to analyze the effects of observation, we
will allow agents to observe, at certain timesteps, a subset of other agents’ states in
the population. Therefore, agents will be assigned an observation probability that will
determine the probability to use the observation instrument each timestep. Moreover,
agents need to know the maximum number of agents they can observe (observation
limit6) and how they want to observe (observation method). As we previously did for
rewiring, we propose three different observation methods two intelligent methods (lo-
cal observation and random focal observation) contrasted against the zero-intelligence
method (random observation).

(1) Random Observation. Agents observe random agents from the society.
(2) Local Observation. Agents observe their immediate neighbors in the social network.
(3) Random Focal Observation. Agents select one random agent from the society and

observe that agent and its direct neighbors.

After the observation process, the agent will choose the majority action taken by
the selected observed agents and will send a strong reinforcement signal to its learn-
ing algorithm for that action. We are aware that in certain configurations, choosing
the observed “majority action” might not help agents achieve the general convention.
Nonetheless, and because of the intrinsic nature of the convention emergence process,
the observed “majority action” will lead in most of the situations to the general majority
action.

Despite the similarity, this instrument and mimicking (presented in the previous
section) behave differently: mimicking agents copy from a successful agent the strategy
(which in most of the cases is private) as well as the interaction neighbors (which might
also be private). On the contrary, with the observation instrument agents observe the
last decision (hoping this represents the actual strategy) of a group of agents (without
knowing the actual success of the agents) and update their estimates based on the
majority. With observation, agents only access information that has been previously
made public by the observed agent, while with mimicking, they access information that
can be considered private.

6If an agent has more neighbors than specified by the observation limit, it will randomly select the additional
agents to observe. If it has less neighbors than the observation limit, it will observe all its neighbors.
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5. MODEL OF REWARD

The social learning situation for norm emergence that we are interested in is that of
learning to reach a social convention. We borrow the definition of a social convention
from Shoham and Tennenholtz [1997]: A social law (a restriction on the set of actions
available to agents) that restricts agents’ behavior to one particular action is called a
social convention. For this reason, in our social learning scenario norms are implicit.
Agents do not have any internal representation of norms, only preference for one action
(the one specified by the norm) over the others.

To test the efficiency of the proposed social instruments, we test them under the most
accepted convention emergence model (used by Delgado et al. [2003], Kittock [1993],
Mukherjee et al. [2007], Sen and Airiau [2007], Shoham and Tennenholtz [1997], and
Walker and Wooldridge [1995]): agents converge to a convention through repeated
bilateral interactions with other agents from their social neighborhood. Any interaction
between two agents is represented as a 2-person n-action game. At each timestep,
each agent is paired with another agent and they independently decide about their
actions. This decision is made without observing the paired agent’s identity or strategy,
preserving all agents’ anonymity and privacy.

In our approach a social convention will be reached the exact timestep all the agents
are in the same state or consistently choose the same action (the actual state reached or
action chosen is immaterial). Other researchers have used a convergence threshold of
90% [Delgado et al. 2003; Kittock 1993]. However, we have observed that with certain
reward functions and on certain topologies, after 90% of the society has converged to
a convention, the convergence dynamics can be very different than those produced
until the 90% convergence rate. Hence, a threshold of 90% can produce misleading or
inaccurate results.

An agent state is determined by the action the agent is choosing: when two agents are
randomly paired to interact, each one will choose an action (or state) for this interaction,
and will receive a reward from the environment according to the game they are playing
(in this case, the coordination game used in Sen and Airiau [2007]). A convention is
reached if all agents present in the population choose the same action (or state) in any
interaction.

As in several other research in convention emergence (see Delgado et al. [2003] and
Kittock [1993]), the interactions between agents in our framework are constrained by
one of two different underlying structures: (i) a one-dimensional s-lattice with connec-
tions between all s neighboring vertex pairs and (ii) a scale-free network7, whose node
degree distribution asymptotically follows a power law. Each agent is represented by
a node in the network and the links represent the possibility of interaction between
nodes (or agents). All the links in the network are undirected and unweighted.

As in Kittock [1993], Shoham and Tennenholtz [1997], and Villatoro et al. [2009],
agents are endowed with a limited memory of past interactions (same memory size for
all agents). Agents save in their memory when an interaction occurred, the action cho-
sen, and the reward obtained. As we will see shortly, the information stored in memory
is used differently depending on the type of decision-making procedure adopted.

Agents cannot observe the other agent’s memory, current decision, or immediate
reward, and hence cannot calculate the payoff for any action before actually interacting
with the opponent.

Once the model of interaction is fixed, the decision-making procedure needs to
be defined. We test our social instruments using three well-known decision-making
functions.

7The method used in this work for the generation of the scale-free networks is the classic Barabási Albert
preferential attachment [Barabási and Albert 1999] (with m0 = 2).
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Player 2
Player 1 Action A Action B

Action A
+1

+1

-1

-1

Action B
-1

-1

+1

+1

Fig. 1. Coordination game.

(1) Best Response Rule (BRR) [Mukherjee et al. 2007; Sen and Airiau 2007]. Each
agent chooses the action with which it has obtained the highest payoff in the last
iteration. A positive reward is given to agents if they are coordinated. This function
gives preference to the myopic utility-maximizing action.

(2) Highest Cumulative Reward Rule (HCRR) [Shoham and Tennenholtz 1997; Kittock
1993]. “[A]n agent switches to a new action iff the total payoff obtained from that
action in the latest m iterations is greater than the payoff obtained from the cur-
rently chosen action in the same time period.” A reward is generated based on a
coordination game. This function gives preference to the action that has obtained
the highest accumulated payoff in the last m interactions (rather than only in the
last one).

(3) Memory-Based Rule (MBR) [Villatoro et al. 2009]. A positive reward is given to
agents if they are coordinated, and it is proportional to the actions they have
chosen in the past. This function gives preference to the action that has provided
the largest payoff while taking into consideration in the reward function also the
previous actions (promoting concordance with previous history).

The system’s payoff that each agent receives with the first two functions is shown in
Figure 1, which shows a classical coordination game. Then, the internal payoffs that
each agent uses is different depending on the function: for BRR the payoffs received are
the same used in the internal reasoning of the agents; for the HCRR, an accumulative
value of the rewards obtained in the past with the coordinated action is used; and
finally, for the MBR a proportional value of the past actions equal to the coordinated
action taken by the agent. The HCRR also specifies the action that each agent has to
take in each interaction. On the other hand, for BRR and MBR, agents use a learning
algorithm to estimate the worth of each action. Agents choose their action in each
interaction in a semideterministic fashion: a certain percentage of the decisions will
be chosen randomly, representing the exploration of the agent, and for the rest of the
decisions, agents deterministically choose the action estimated to be of the highest
utility. In all the experiments presented in this article, and in order to follow the
methodology established in previous work of social learning [Mukherjee et al. 2007;
Sen and Airiau 2007; Villatoro et al. 2009], the exploration rate has been fixed at 25%,
that is, one-fourth of the actions are chosen randomly.

The learning algorithm used here is a simplified version of the Q-learning algo-
rithm [Watkins and Dayan 1992]. The Q-update function for estimating the utility of
an action a is

Qt(a) ← (1 − α) × Qt−1(a) + α × reward, (1)

where reward is the payoff for the current interaction and Qt(a) is the utility estimate
of action a after selecting it t times. When agents decide not to explore, they will choose
the action with the highest Q value.

The simulation process for repeated interactions in the agent society is presented in
Algorithm 1.
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ALGORITHM 1: Simulation Process
for timesteps do

forall agents do
Select another partner agent from population;
Each selected agent chooses an action;
The joint action from the selected agents and their history determines rewards;
Selected agent(s) use received reward to update action estimates;
Apply Social Instrument;

end
end

6. EXPERIMENTS

We use the simulation model presented in the previous section to evaluate how
the social instruments that we propose influence the process of emergence of social
conventions.

Some of the simulation parameters are common to all the experiments:

—population size = 100;
—agents located in a social network with different topologies: s-lattices (varying the

value of s attending to the neighborhood size NS = 2 × s) and scale-free network;
—memory size 5 (for HCRR and MBR).8

We experiment with different sets of available actions (2, 5, and 10 actions) for agents
to choose from. Based on the underlying assumptions of the convention emergence
problem, all actions (or states) are potentially of the same value, as long as all agents
converge to the same action (i.e., given the set of actions = {A, B}, converging to action
A produces the same utility to agents as converging to action B). Agents are initialized
with no preference between the available actions and randomly choose actions with
equal probabilities. One specific metric that will be used for the valuation of the exper-
iments is the convergence time that is defined as the number of timesteps that it takes
for the whole population to agree on a common convention. All the results presented
are the average over 25 runs of the simulation.

6.1. Effects of Rewiring

We have experimented with the three rewiring methods introduced in Section 4.1 on
three topologies: a low-clustered9 one-dimensional lattice (lattice with neighborhood
size = 10), a high-clustered one-dimensional lattice (lattice with neighborhood size =
30), and a scale-free network. We have explored the search space of the tolerance levels,
observing how they affect the convergence time and the number of components (max-
imally connected subgraphs) created when convergence is reached with the different
decision-making functions.

6.1.1. Influence of Rewiring Methods. From the experimental data we have observed how,
in general, the Global Advice (GA) rewiring method produces the best convergence
time due to its centralized nature and access to global information. Nonetheless the
decentralized methods, especially the Neighbor’s Advice (NA) method, also demonstrate
good performance. The NA method improves the Random Rewiring (RR) method as
it more expediently resolves the subconventions that appear in the one-dimensional
lattices during the convention emergence process. These metastable subconventions

8These values have chosen in order to compare our results with those from the literature [Shoham and
Tennenholtz 1997; Villatoro et al. 2009] where they conventionally use a memory size of 5.
9Clustering coefficient is a measure of degree to which nodes in a graph tend to cluster together.
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Fig. 2. Component sizes histogram for scale free.

have been already identified in Salazar-Ramirez et al. [2008], Toivonen et al. [2009],
and Villatoro et al. [2009] to be the preferred action of a group of nodes who have
converged to a different convention than the rest. These subconventions, as noted
in Villatoro et al. [2009], do persist as long as the frontier region remains metastable10.
The frontier region is the group of nodes in the subconvention that directly interacts
with other nodes that have adopted a different convention.

The explanation of why, when using the neighbor’s advice method, these subconven-
tions are resolved more expediently is the following: Agents in the frontier use the
rewiring instrument as they cross the tolerance level faster than those not in the fron-
tier. For this reason, the RR method will relink an agent with a more suitable agent
with a probability of 1

NumberOf Actions (as this is the probability that a random agent plays
the same action). In contrast, the NA method will relink the agent with another one
playing the same action if it is accessible. In case there is no other agent which fulfills
the necessary conditions to connect with, random rewiring will be applied, obtaining
in the worst-case scenario the same results.

These results are reaffirmed for the scale-free networks, although an interesting phe-
nomenon concerning the final number of components is observed in this case. Figure 2
shows the size of the components11 when a convention was reached. The horizontal
axis represents the tolerance levels and the vertical axis presents ranges (of size 10)
of component sizes, and the histogram darkness corresponds to the amount of compo-
nents. When using the RR (Figure 2(a)) and the GA (Figure 2(c)) methods, the number
of components obtained is always above one, resulting in a fragmented society. The
number of components is slightly higher for the NA method than when using the other
methods. This phenomenon is observed because of the structure of the scale-free net-
works and the dynamics of the rewiring methods. Nonhub nodes reach their tolerance
levels faster than hub nodes (as nonhub nodes interact with a lower number of agents).
Once the tolerance level is reached, the rewiring process kicks in. We do not observe
any distinctive behavior separating the RR or the GA methods as they both incorporate
a random component. However, when using the NA scheme, the number of components
is variable, depending on the tolerance level: the number of components is higher with
low tolerance, although we have observed that most of these components are small in
size (as shown in Figure 2(b)).

Nonhubs (when using the NA method) will rewire to any of their leaf nodes (nodes wih
degree 1) separating completely from the initial complete component (e.g., in Figure 3

10Metastable conventions are those that should preferably be broken, but remain stable because of a combi-
nation of factors like interaction dynamics, topology, and decision-making functions.
11A component of an undirected graph is defined as a subgraph in which any two vertices are connected to
each other by some path, and no node in this subgraph is connected to additional nodes.
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Fig. 3. Example of components evolution in scale-free NA rewiring method.

we can observe how one agent has applied rewiring, breaking the link that linked itself
with the main component, and rewiring to another agent forming a new component of
the network), creating a greater number of components, but of smaller sizes.

6.1.2. Influence of Topology. When observing the effects of the topology, we find that the
convergence time is increased under the effects of rewiring when the neighborhood
size is increased in regular networks. This effect is due to the average degree of the
nodes in the network (intuitively proportional to the clustering coefficient)12. The one-
dimensional lattices with higher neighborhood sizes are more fragmented than those
with more restricted neighborhoods. Therefore, when increasing the neighborhood size,
the number of links between agents also increase (thereby increasing the clustering
coefficient). High-degree networks in highly clustered societies are more resistant to
rewiring, as the node that wants to use the rewiring would have to apply it to a
higher number of nodes, and then be rewired to the same amount of nodes with the
appropriate strategy, induced by the last played action. This scenario highlights the
difference between our social instrument and that presented in Hales and Arteconi
[2006] and Griffiths and Luck [2010]: our instrument needs to substitute the selected
links one by one; on the other hand, the instrument in Hales and Arteconi [2006] and
Griffiths and Luck [2010] accesses the private information of another agent and copies
their entire set of neighbors in one shot. Our social instrument sacrifices convergence
time to preserve privacy.

Related to these results, we have also observed that under the effects of rewiring
there exists a trade-off between the diameter of the regular network and the num-
ber of components: with higher diameters (smaller neighborhood size) the number of
components remains constant and is greater than one (see Figure 4(a)). However, we
can observe in Figure 4(b) that when the diameter is smaller (with higher neighbor-
hood size), the number of components is reduced to one for certain tolerance values.
The explanation of this phenomenon is again related to the clustering coefficient of
the network combined with the dynamics of the rewiring process. When the clustering
level of the network is low, agents have less links to be rewired. Initially, and before the
tolerance level is reached, agents also change their preferences without rewiring. Even-
tually, and after the tolerance level is reached, agents start rewiring their links (and
reducing their number of preference changes). As explained previously, low-clustered
societies have higher tendency to become disconnected and form different components.

Experimental results (shown in Figure 5) also show interesting properties with scale-
free networks (see Section 6.1.1). Similar to what was observed by Villatoro et al. [2009]
we found that subconventions have a stronger effect on scale-free networks when using
MBR, producing, in general, a larger number of components (see Figure 4(c)). However,

12The clustering coefficient quantifies how well connected are the neighbors of a vertex in a graph. We borrow
the definition introduced in Watts and Strogatz [1998], where “the local clustering coefficient of a node is
given by the proportion of links between the vertices within its neighborhood divided by the number of links
that could possibly exist between them.”
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Fig. 4. Rewiring methods comparison for number of components in a one-dimensional lattice (a) and (b) and
scale free (c).
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Fig. 5. Convergence times with different rewiring methods in a scale-free network.

global convergence is obtained in this type of networks when using the rewiring social
instrument.

We can conclude that rewiring performs better in low-clustered societies, producing
a stratified population which results in a significant reduction in convergence time.
In more clustered networks, the tolerance level has to be chosen carefully (depending
on the other experimental parameters) to produce an effective technique for norm
emergence.

6.2. Effects of Observation

In this section we analyze the effects of the observation social instrument when used
by agents. We test and compare the three different methods proposed, exploring the
search space with a representative range of observation probability values. As we did
in the previous section, we experiment with three topologies: a low-clustered lattice, a
high-clustered lattice, and a scale-free network. To determine the effects of the different
developed methods, we fix the observation limit to 10 for the experiments.

6.2.1. Influence of Observation Methods. Comparing the results from the three observa-
tion methods we observe in Figure 6 that the Random (RO) and the Random Focal
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Fig. 6. Comparison on effects of convergence time on one-dimensional lattice.

Observation (RFO) methods are the most effective ones (with different topological
effects), and have very similar results when compared with the Local Observation (LO)
method. The reason for this phenomenon can be attributed to the frontier effect. When
agents use the LO method, they observe their direct neighbors. If the observing agent
is in the frontier area, then this observation is pointless. However, observing different
areas gives a better understanding of the state of the world, and hence the RO and the
RFO methods perform better.

6.2.2. Influence of Topology. For the BRR and MBR decision-making functions, we have
observed that the different observation methods produce a more pronounced effect
in societies with higher diameters, as we can see in Figure 6 (only results for MBR
are plotted, although similar results are observed for BRR). We notice that a small
percentage of observation drastically reduces convergence times. The reason for this
effect can again be found in the frontier and the subconvention effects previously
discussed. Subconventions emerge more readily when the social network has a small
diameter and the frontier region represents the unsettled area. These subconventions
are more easily resolved at these frontiers by observation rather than by learning
through interactions.

6.2.3. Influence of Decision-Making Techniques. The main experimental result obtained
for BRR and MBR is that greater observation leads to faster convergence. However, in
most cases, even smaller observation percentages help significantly reduce the conver-
gence time. This result is important if observation has a concomitant cost. However,
observation has a poor effect on HCRR: we find that the convergence time is propor-
tional to the observation probability (the higher the observation, the worse it performs).
The reason for this effect is found on the HCRR’s lack of exploration policy. When ob-
serving, an action is reinforced, and this action might be different from the one that the
agent has converged to within its environment. This new reinforcement destabilizes
the convergence that was already obtained. This effect is not produced with the other
reward rules as they have an exploration rate that quickly corrects this destabilization.

6.3. Discussion on the Frontier Effect

The experiments performed up to now have shown us how the emergence of social con-
ventions can be facilitated with the usage of our proposed social instruments, achieving
good results. However, some practical information has to be kept for the appropriate
usage of them: On the one hand, tolerance levels have to be carefully chosen when
using rewiring. On topologies with large diameters, the social network might suffer
important changes affecting the number of components. Moreover, we have observed
an interesting phenomenon on scale-free networks: without the usage of the social

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 1, Article 2, Publication date: April 2013.



2:14 D. Villatoro et al.

instruments, full convergence is hard to obtain. With the use of rewiring instrument
convergence is reached and a larger amount of components are produced when using
the neighbor’s advice method.

On the other hand, a small percentage of observation is very helpful in the achieve-
ment of full convergence. Interestingly, when using the local observance method, this
improvement is not as prominent as with the other methods.

With these pieces of information we can hypothesize that there exists a special type
of subconventions that cannot be resolved at a local level with the methods proposed,
especially in scale-free networks. As our local information methods do not produce
improvement in the process of convention emergence, agents in the frontier have to be
provided additional mechanisms to dissolve the subconventions with local information.

7. UNDERSTANDING SUBCONVENTIONS

The results from experiments presented earlier, together with the observations nar-
rated by other authors [Epstein 2000; Toivonen et al. 2009; Villatoro et al. 2009],
convinced us that subconventions are problematic obstacles to the emergence of global
conventions. These subconventions thrive (amongst other reasons) because of the topo-
logical structure of the network where they emerge.

Because of the inherent structure of the scale-free networks, interesting properties
of the network are highlighted in the dynamics of the convention emergence process.
To have a more detailed idea of how the topology affects the convergence emergence
process, we have performed a detailed study of its dynamics.

7.1. Which is the Strongest Node?

In previous works in the literature [Sen and Airiau 2007; Mukherjee et al. 2008], some
authors fixed the behavior of a number of agents in the population to observe how their
immutable behavior would affect the emergence of a convention. These experiments
were performed in regular networks and the position of the fixed learners on the
network was not considered. Inspired by those works, we have decided to apply such
technique in irregular networks, locating the fixed learners in selected positions of the
network.

Scale-free networks are defined as irregular networks where very few nodes have
a large number of connections (hubs), and a large number of nodes have a very few
connections (leaves). To understand which nodes have a stronger effect in the emer-
gence of conventions, we experiment by fixing a certain percentage of the population
to a specific convention. Three experimental variants are tested.

Fixing hub agents’ behavior. The behavior of the nodes with higher degree of con-
nectivity are fixed.
Fixing leaf agents’ behavior. The behavior of the nodes with lower degree of con-
nectivity are fixed.
Fixing random agents’ behavior. The behavior of randomly selected nodes are fixed.

We hypothesize that by fixing the behavior of hub agents, the rest of the population
will converge faster than in any other possible situation. Our intuitions are founded
on the dynamics of the convention emergence: given that a hub node will interact
with more agents, its fixed behavior will remain unaffected by the others’ decisions.
However, as others are learners, they will learn from the decisions of the hubs.

Experimental results presented in Figure 7 partially confirm our hypotheses. We
have performed extensive evaluation of the search space, exploring different per-
centages of fixed agents in different locations of the network and analyzing their

ACM Transactions on Autonomous and Adaptive Systems, Vol. 8, No. 1, Article 2, Publication date: April 2013.



Robust Convention Emergence in Social Networks through Dissolution 2:15

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  10  100  1000  10000 100000 1e+06

C
on

ve
rg

en
ce

 R
at

e

Timesteps

Random
Fixed Hubs
Fixed Leafs

(a) 5% fixed learners

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  10  100  1000  10000 100000 1e+06

C
on

ve
rg

en
ce

 R
at

e

Timesteps

Random
Fixed Hubs
Fixed Leafs

(b) 25% fixed learners

 0.9

 0.95

 1

 1  10  100  1000  10000 100000 1e+06

C
on

ve
rg

en
ce

 R
at

e

Timesteps

Random
Fixed Hubs
Fixed Leafs

(c) 55% fixed learners

Fig. 7. Fixing agents’ behavior.

convergence rate13. For small numbers of fixed agents, fixing the hubs produces better
convergence rates than when fixing the same amount of leaves or random agents (see
Figures 7(a) and 7(b)). On the other hand, when the number of fixed agents is larger,
fixing the leaves results in faster convergence (see Figure 7(c)).

This empirical result lead us to pay attention to the leaves. Experimental data
confirms that when the majority of the leaves have reached a common convention (ar-
tificially by fixing its behavior, or naturally through the convention process) reaching
full convergence can be easily achieved. Consequently, to identify why learning leaves
(by fixing the hubs’ behavior) produces such delay in the convention emergence, we
analyzed carefully the networks when the metastability was reached. By taking snap-
shots of the state of the convention emergence process (the structure and state of the
network: which node is in which state and connected with which other nodes) at the
timestep where no improvement in the convergence rate has been made, we identified
Self-Reinforcing Substructures (SRS). These substructures are a group of nodes that,
given the appropriate configuration of agents’ preferences and network topology, do
maintain subconventions, as the agents in the frontier remain in a metastable non-
convergent state because of the reinforcement received from the interactions with the
agents in the SRS.

We have grouped the topology of these structures into two general categories.

—The Claw SRS is formed by connecting a node with a number of hangers14 connected
to it smaller than the number of links with the main component of the network.
When the hangers coordinate to the same convention among themselves and with the
connecting node, we have a self-reinforcing structure. For example, in Figure 8(a), A
is the central node, having one connection with the rest of the network and 3 hangers:
B (that it is another claw), C (plain hanger) and D (chain’s connecting node).

—The Caterpillar SRS is a structure formed by a central path, whose extreme nodes
are connected to the main network component and from its members other SRSs
(such as claws, chains, or plain hangers) can hang. For example, in Figure 8(b), A, B,
C, and D are members of the central path and the other nodes reinforce them.

These two abstract (examples in Figure 8) structures can be found as subnetworks of
scale-free and random networks. As we have observed, the existence of these SRSs (74%
of the generated networks with the methods described in Delgado et al. [2003] contain
SRSs) are the main reason why convergence to a 90% level (as observed by Delgado

13Convergence rate is the proportion of the population sharing the majority action with respect to the whole
population.
14A hanger is formed by nodes that are connected to a member of a cyclic component, but which do not
themselves lie on a cycle [Scott 2000], and a chain is a walk in which all vertices and edges are distinct.
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Fig. 8. Self-reinforcing structures.
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Fig. 9. Comparison with fixed SRS nodes.

et al. [2003]) is achieved relatively quickly, but overcoming the last 10% (containing
the SRS) is significantly harder to achieve.

To check the validity of our hypotheses, we have extended the previous experiment,
adding another variant where we fix the behavior of the nodes in the SRS with higher
betweenness15.

Experimental results in Figure 9 show a comparison of the results of convergence
rates of the best performing variants of those presented previously and the one that
fixes the agents’ behavior in the SRS. We can observe that fixing the SRS nodes out-
performs any of the other strategies.

This result is very interesting as it helps us understand the specific substructures
that generate subconventions within social networks. We are now aware that only by
dissolving the subconventions in the frontier of a SRS can full convergence be ensured
in scale-free networks. To more robustly tackle and eliminate the subconvention’s effect,
we propose the combination of both analyzed instruments in the next section.

8. COMBINING INSTRUMENTS: SOLVING THE FRONTIER EFFECT

After experimenting with both social instruments in Section 6, we observed that the
subconventions need to be resolved in what we consider to be the “frontier” region of self-
reinforcing structures. Otherwise, the agents within the SRS will continue reinforcing
a frontier node with one specific convention and which will be at conflict with the
convention of the rest of the network.

A subconvention in a regular network is not metastable (i.e. the subconvention is con-
tinuously affected, tending to dissappear), but unfortunately, slows down the process

15Betweenness measures the extent to which a particular node lies “between” the various other nodes in the
graph [Freeman 1979].
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of emergence. On the other hand, in other network types, such as random or scale-
free subconventions, they seem to reach metastable states16 because of the existence
of the self-reinforcing structures identified in Section 7.1. Therefore, by giving agents
the tools to disolve these frontiers, we hypothesize that convention emergence will be
achieved faster and full convergence rates will be obtained.

However, because of the way social instruments have been designed, the instruments
can be activated in situations where it is not necessary (observation follows a proba-
bilistic approach, and rewiring is activated using a rewiring tolerance). Therefore, and
by combining both social instruments developed in this work, we have designed a
composed instrument for resolving subconventions in the frontier in an effective and
robust manner. This composed instrument allows agents to “observe” when they are
in a frontier, and then apply rewiring, with the intention of breaking subconventions.
To effectively use this combined approach, agents must first recognize when they are
located on a frontier.

We define a frontier as a group of nodes in the subconvention that are neighbors to
other nodes with a different convention and at the same time are not in the frontier
with any other group. To provide a more precise definition we first need to define our
system. We have

Systemt = {A, Relt, St}, (2)

where A is a set of agents, Relt is a neighborhood function at time t, and St is the actual
state of agents at time t.

We can therefore formalize the notion of subconvention Sub.

Subt ⊂ A where ∃a ∈ Subt, � ∃b ∈ Subt | Relt(a, b) ∧ St
a �= St

b

And now we can define when an agent is located in a frontier.

Frontiert(a) = {
a, c ∈ Subt ∧ ∃b �∈ Subt ∧ Relt(a, b) ∧ St

a �= St
b ∧ Relt(a, c)

∧ (∀d ∈ A | Relt(c, d) → St
c == St

d)
}

(3)

This formula basically means that an agent a is in the frontier when it is connected
to another agent b not sharing the same convention, and at the same time, is being
reinforced by other agents c that are not in the frontier.

As the cases are different for regular and irregular networks, two types of frontiers
need to be defined:

—weak frontiers as the ones that are not metastable in regular networks; and
—strong frontiers as the ones generated by the SRSs in irregular networks.

The most important characteristic that defines a frontier is the existence of a con-
frontation. Confrontation occurs when two agents in an interaction do not share the
same convention17.

Before proceeding further, we will define three characteristics of agents with re-
spect to their convention and the topological position in the network. An agent is in
equilibrium if it has the same number of neighbors in its own convention as in the
other convention. An agent is a weak node if the number of neighbors in its own con-
vention is lower than those in the other, and an agent is a strong node otherwise (if
the number of neighbors in its own convention is greater than those in the other). In

16By experimentation, we have observed that around 99% of the generated scale-free networks do not achieve
full convergence before one million timesteps with any of the decision-making functions used in this work
and without any social instrument.
17Not sharing the same convention, choosing a different action, or choosing a different state to be, are
considered equivalent expressions for our purpose.
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Fig. 10. Comparison with simple and combined social instruments on regular network using MBR.

regular networks, two confronted agents are in a frontier region iff: (1) At least one
of the confronted agents is in an equilibrium position, and (2) all the neighbors of an
inequilibrium confronted agent are strong nodes. In irregular networks, two confronted
agents are in a frontier region iff both agents are strong nodes.

With these formalizations and identification of what the frontiers are in each of the
topologies, agents can be equipped with this knowledge and the tools necessary to
recognize when they are located in a frontier and repair that situation. To achieve this
task we will use a combination the simple instruments presented in Section 4: first,
agents will use observation (with the local observance method) to identify if they are
located in a frontier (and therefore part of a self-reinforcing structure), and secondly,
they will use rewiring to solve the frontier problem, by disconnecting from another
agent in the SRS and reconnecting to another random agent.

8.1. Results

We have conducted exhaustive experimentation with the composed instrument on the
three topologies and using the different decision-making functions described in the
previous section. The use of the composed instrument on regular networks does not
produce an improvement on convergence time with respect to simple rewiring (one
example of topology and decision-making technique can be observed in Figure 10(a)).
However, an important improvement is observed in the number of rewired links (one
example of this improvement can be seen in Figure 10(b)). In general, this improvement
is observed for lower tolerances. The reason for this effect is because higher-tolerance
rewiring works in the same way as the composed social instrument, but without observ-
ing. For those smaller values the effect is significant, reducing the number of rewiring
links down to half of the original value.

On the other hand, we observe an important improvement for convergence times
when using the composed instrument (with the recognition of SRS) on irregular net-
works. The results presented in Figure 11 represent the average results from 25 dif-
ferent scale-free networks with and without using the combined social instrument. By
comparing Figures 11(a) and 11(b) we notice the trade-off between the improvement in
convergence times and the amount of rewiring to be done. The reason for this phenom-
ena is because the composed social instrument decomposes the SRS differently than
the simple rewiring, which only rewires the node in the actual frontier.

9. CONCLUSIONS AND FUTURE WORK

We have introduced the use of social instruments as tools that facilitate norm emer-
gence. We have identified the characteristics and opportunities for effectively utilizing
these social instruments for facilitating norm emergence through social learning. Social
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Fig. 11. Comparison with simple and combined social instruments on scale-free network using BRR.

instruments are attractive since they do not require centralized monitoring or enforce-
ment mechanisms, are generally easy to use, have very low computational costs, ensure
the privacy and anonymity of agents within the network (as our instruments only ac-
cess public local information), and are scalable to large systems. We present an initial
classification of related instruments in multiagent systems and networks.

Experimental results with the identified social instruments have shown that the
emergence of transitory subconventions are the cause of the delay of the emergence
of global conventions. From results presented in this article for the two simple social
instruments studied, we observe that the most effective social instruments are those
that more expediently solve this subconvention formation problem in the frontier re-
gions. In the case of the rewiring social instrument, we have identified three methods,
one that uses global information and two others using local information, that improve
the performance of the system. We observed how the rewiring methods perform better
in societies with a low clustering coefficient. In societies with a relatively large cluster-
ing coefficient, a large number of rewirings have to be performed, resulting in longer
convergence times. A future line of research should carefully analyze the relationship
between the clustering coefficient of the networks and the performance of the rewiring
instrument, which at the moment remain described vaguely.

For the observation social instrument, we also analyzed three methods, and these
produce improved convergence times. We emphasize that even a very small percentage
of observation does drastically reduce convergence times. The first experimental results
led us to perform a more exhaustive study to identify the self-reinforcing structures that
are present in social networks with other topologies, for example, scale-free networks.
Finally, we have presented a composed social instrument as a robust solution that
overcomes persistence of subconventions generated by the identified SRS, improving
the convergence times obtained with simple rewiring.

In a world where almost 950 million users belong to an online social networking
platform (where virtual agents could also exist) [Radwanick 2010], it is important to
understand what mechanisms this virtual entities should be equipped with to facilitate
the emergence of common conventions (for the sake of the whole group) as quickly as
possible. Moreover, as a system manager, the results from this work highlight the
harmful potential of self-reinforcing structures within the network for delaying the
emergence process, and provide effective solutions for such critical problems.

In the near future, our primary aim is to include and compare other social instru-
ments presented in the literature review in our platform and observe their effects on
the convention emergence process. The integration of other social instruments in our
platform would allow us to improve their relative effectiveness by analyzing novel com-
binations of social instruments. The integration of these concepts in social systems and
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the analytical study of them would represent another step forward in the integration
of social mechanisms into multiagent systems.
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