Model-Driven Adaptive Delegation’

Phu H. Nguyen, Gregory Nain, Jacques Klein, Tejeddine Mouelhi, and Yves Le Traon
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
4, rue Alphonse Weicker, L-2721 Luxembourg
{phuhong.nguyen, gregory.nain, jacques.klein, tejeddine.mouelhi,

yves.letraon}@uni.lu

ABSTRACT

Model-Driven Security is a specialization of Model-Driven
Engineering (MDE) that focuses on making security models
productive, i.e., enforceable in the final deployment. Among
the variety of models that have been studied in a MDE per-
spective, one can mention access control models that specify
the access rights. So far, these models mainly focus on static
definitions of access control policies, without taking into ac-
count the more complex, but essential, delegation of rights
mechanism. User delegation is a meta-level mechanism for
administrating access rights, which allows a user without
any specific administrative privileges to delegate his/her ac-
cess rights to another user. This paper analyses the main
hard-points for introducing various delegation semantics in
model-driven security and proposes a model-driven frame-
work for 1) specifying access control, delegation and the
business logic as separate concerns; 2) dynamically enforc-
ing/weaving access control policies with various delegation
features into security-critical systems; and 3) providing a
flexibly dynamic adaptation strategy. We demonstrate the
feasibility and effectiveness of our proposed solution through
the proof-of-concept implementations of different systems.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures;
K.6.m [Management of Computing and Information
Systems]: Miscellaneous—Security

General Terms
Design, Security

Keywords

Model-driven security, model-driven engineering, model com-
position, delegation, access control, dynamic adaptation

*This work is supported by the Fonds National de la
Recherche (FNR), Luxembourg, under the MITER project
C10/1S/783852.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AOSD’13, March 24-29, 2013, Fukuoka, Japan.

Copyright 2013 ACM 978-1-4503-1766-5/13/03 ...$15.00.

1. INTRODUCTION

Software security is a polymorphic concept that encom-
passes different viewpoints (hacker, security officer, end-user)
and raises complex management issues when considering the
ever increasing complexity and dynamism of modern soft-
ware. In this perspective, designing, implementing and test-
ing software for security is a hard task, especially because
security is dynamic, meaning that a security policy can be
updated at any time and that it must be kept aligned with
the software evolution.

Managing access control to critical resources requires the
dynamic enforcement of access control policies. Access con-
trol policies stipulate actors access rights to internal re-
sources and ensure that users can only access the resources
they are allowed to in a given context. A sound method-
ology supporting such security-critical systems development
is extremely necessary because access control mechanisms
cannot be “blindly” inserted into a system, but the overall
system development must take access control aspects into
account. Critical resources could be accessible to wrong (or
even malicious) users just because of a small error in the
specification or in the implementation of the access control
policy.

Several design approaches like [20] [4] have been proposed
to enable the enforcement of classical security models, such
as Role-Based Access Control (RBAC) [25]. These approaches
bridge the gap from the high-level definition of an access
control policy to its enforcement in the running software,
automating the dynamic deployment of a given access con-
trol policy. Although such a bridge is a prerequisite for the
dynamic administration of a given access control policy, it
is not sufficient to offer the advanced administration instru-
ments that are necessary to efficiently manage access control.
In particular, delegation of rights is a complex dimension of
access control that has not yet been addressed by the adap-
tive access control mechanisms. User delegation is necessary
for assigning permissions from one user to another user. An
expressive design of access control must take into account
all delegation requirements.

Delegation models based on RBAC management have been
known as secure, flexible and efficient access management
for resources sharing, especially on distributed environment.
Flexible means that different subjects for delegation should
be supported, i.e. delegation of roles, specific permissions or
obligations. Also, different features of delegation should be
supported, like temporary and recurrent delegations, trans-
fer of role or permissions, delegation to multiple users, multi-
step delegation, revocation, etc. However, the addition of

flexibility for delegation must come with mechanisms to make
sure that the security policy of the system is securely con-
sistent. And last but not least, the administration of dele-
gations must remain simple to be efficient.

Delegation is a complex problem to solve and to our best
knowledge, there has been no complete approach for both
specifying and dynamically enforcing access control policies
by taking into account various characteristics of delegation.
Having such an expressive security model is crucial in order
to simplify the administrator task and to manage collabo-
rative work securely, especially with the increase in shared
information and distributed systems.

Based on previous work [20], in this paper we propose a
new Modular Model-Driven Security solution to easily and
separately specify 1) the business logic of the system with-
out any security concern using a Domain Specific Model-
ing Language (DSML) for describing the architecture of a
system in terms of components and bindings; 2) the “tra-
ditional” access control policy using a DSML based on a
RBAC-based metamodel; 3) an advanced delegation policy
based on a DSML dedicated to the delegation management.
In this third DSML, delegation can be seen as a “meta-level”
mechanism which impacts the existing access control policies
similarly as an aspect can impact a base program. The secu-
rity enforcement is enabled by leveraging automated model
transformation/composition (from security model to archi-
tecture model). Consequently, in addition to [20], an ad-
vanced model composition is required to correctly handle
the new delegation features.

To be more specific, only basic delegation features have
been considered in [20]. Moreover, these delegation features
have been handled as traditional access control rules. In this
paper, we claim that delegation needs to be clearly separated
from access control since a delegation impacts access control
rules. Therefore, delegation and access control are not at the
same level and should be separated. This separation involves
an advanced model composition approach to dynamically
know, at any time, which are the set of new access controls
that have to be considered, i.e., the “normal” access control
rules as well as the access control rules modified by the del-
egations. From a more technical point of view, the security
enforcement is dynamically done by leveraging automated
model transformation/composition (from security model to
architecture model) and dynamic reconfiguration ability of
modern adaptive execution platforms.

The contributions of this paper are the followings: 1) A
metamodel/DSML dedicated to the delegation management,
for specifying RBAC and RBAC-based delegation features.
OCL constraints are used to check the consistency of the
security policy (access control + delegation); 2) A model-
driven framework for dynamically enforcing access control
and delegation mechanisms specified with our DSMLs. In
this framework, newly defined model transformation rules
play an important role in the dynamic enforcement of secu-
rity policies. We claim that to handle advanced delegation
features, an ideal solution is to separate the delegation rules
from the access control policy, each being specified in iso-
lation, and then compose/weave them together to obtain
a new access control policy reflecting the delegation-driven
policy; 3) A flexibly dynamic adaptation strategy with bet-
ter support for delegation, and the co-evolution of the secu-
rity policy and the security-critical system.

The rest of this paper is organized as follows. Section 2]

briefly presents the background on RBAC, delegation, and
the security-driven model-based dynamic adaptation. Next,
a running example is given in Section It will be used
throughout the paper to describe the diverse characteris-
tics of delegation and illustrate the various aspects of our
approach. In Section [4] we first give an overview of our ap-
proach. Then, we formalize our delegation mechanism based
on RBAC and show how our delegation metamodel can be
used to specify expressive access control policies that take
into account various features of delegation. Based on the
delegation metamodel, we describe our model transforma-
tion/composition rules used for transforming and weaving
security policy into the architecture model. This section
ends with a discussion of several security policy dynamic
adaptation and evolution strategies. Section [5| describes
three case studies that have been used for evaluating our
approach. It is followed by Section [6] which presents related
work. Sectionmconcludes the paper and discusses the future
work.

2. BACKGROUND
2.1 Access Control

Access Control [11] is known as one of the most important
security mechanisms. It enables the regulation of user access
to system resources by enforcing access control policies. A
policy defines a set of access control rules which expresses:
who has the right to access a given resource or not, and the
way to access it, i.e. which actions a user can access under
which conditions or contexts.

2.2 Delegation

In the field of access control, delegation is a very complex
but important aspect that plays a key role in the administra-
tion mechanism [5]. A software system, which supports del-
egation, should allow its users without any specific admin-
istrative privileges to grant some authorizations. Delega-
tion of rights allows a user, called the delegator, to delegate
his/her access rights to another user, called the delegatee.
By this delegation, the delegatee is allowed to perform the
delegated roles/permissions on behalf of the delegator [9].
The delegator has full responsibility and accountability of
the delegated accesses since he/she provides the accesses to
the resources to other users, who are not initially authorized
by the access control rules to access these resources.

Delegation is a powerful and very useful way to perform
policy administration. On one hand, it allows users to tem-
porarily modify the access control policy by delegating ac-
cess rights. By delegation, a delegatee can perform the del-
egated job, without requiring the intervention of the secu-
rity officer. On the other hand, the delegator and/or some
specific authorized users should be supported to revoke the
delegation either manually or automatically. In this way,
the administrative task can be simplified and collaborative
work can be managed securely, especially with the increase
in shared information and distributed systems [1]. However,
the simpler the administrative task is, the more complex
features of delegation have to be properly specified and en-
forced in the software system. To the best of our knowledge,
there is no approach for both specifying and dynamically en-
forcing access control policies taking into account all delega-
tion features like temporary delegation, transfer delegation,
multiple delegation, multi-step delegation, etc.

2.3 Security-Driven Model-Based Dynamic
Adaptation

In [20], the authors propose to leverage MDE techniques
to provide a very flexible approach for managing access con-
trol. On one hand, access control policies are defined by
security experts, using a DSML, which describes the con-
cepts of access control, as well as their relationships. On
the other hand, the application is designed using another
DSML for describing the architecture of a system in terms
of components and bindings. This component-based soft-
ware architecture only contains the business components of
the application, which encapsulate the functionalities of the
system, without any security concern. Then, they define
mappings between both DSMLs describing how security con-
cepts are mapped to architectural concepts. They use these
mappings to fully generate an architecture that enforces the
security rules. When the security policy is updated, the ar-
chitecture is also updated. Finally, the proposed technique
leverages the notion of models@runtime |17] in order to keep
the architectural model (itself synchronized with the access
control model) synchronized with the running system. This
way, the running system can be dynamically updated in or-
der to reflect changes in the security policy. Only users who
have the right to access a resource can actually access this
resource. The different steps of this approach are summed

up in Fig. [T}

(1) Reasoning

depending on the context

the appropriate access e
control rules are selected

from the security model

Business
Architecture
Model

(5) Evolution

At any time the
security model can
be updated

S ; Adaptive
" ecurity Security
[©)] composmon POllcy Model

The security policy is
composed with the
business architecture
(4) Notification
The monitoring
framework triggers

Context reasoning by
Security Enforced Informa(lon notifying relevant
Archltecture Model (3) Adaptation changes
The running system is
safely and automatically
reconfigured
Running System Monitoring Framework
Middleware platform

Figure 1: Overview of the Model-Driven Security
Approach of [20]

Models at runtime

3. A RUNNING EXAMPLE

In this section, we give a motivating example which will be
used throughout the paper for describing the diverse char-
acteristics of delegation and illustrating the various aspects
of our approach.

Let us consider a library management system (LMS) pro-
viding library services with security concerns like access con-
trol and delegation management. There are two types of
user account: personnel accounts (director, secretary, ad-
ministrator and librarian) are managed by administrator;
and borrower accounts (lecturer and student) are managed
by secretary. The director of the library has the same ac-
cesses as the secretary, but additionally, he can also consult
the personnel accounts. The librarian can consult the bor-
rower accounts. A secretary can add new books in the LMS
when they are delivered. Lecturers and students can bor-
row, reserve and return books, etc. In general, the library is
organized with the following entities and security rules.

Roles (users): access rights (e.g. working days)
Director (Bill): consult personnel account, consult, create,
update, and delete borrower account.

Secretary (Bob and Alice): consult, create, update, and
delete borrower account, deliver book.

Administrator (Sam and Tom): consult, create, update,
and delete personnel account.

Librarian (Jane and John): consult borrower account, find
book by state, find book by keyword, report a book dam-
aged, report a book repaired, fix a book.

Lecturer (Paul) and Student (Mary): find book by key-
word, reserve, borrow and return book.

Resources and actions to be protected

Personnel Account: consult, create, update, and delete
personnel account.

Borrower Account: consult, create, update, and delete
borrower account.

Book: report a book damaged, report a book repaired, bor-
row a book, deliver a book, find book by keyword, find book
by state, fix a book, reserve a book, return a book

In this organization, users may need to delegate some of
their authorities to other users. For instance, the director
may need the help of a secretary to replace him during his
absence. A librarian may delegate his/her authorities to an
administrator during a maintenance day.

It is possible to only specify role or action delegations by
using the DSML described in [20]. For instance, a role dele-
gation rule can be created to specify that Bill, the director
(prior to his vacation) delegates his role to Bob, one of his
secretaries. But it is impossible for Bill to define whether
or not Bob may re-delegate the director role to someone else
(in case Bob is also absent for some reason). The role dele-
gation of Bill to Bob is also handled manually: it is enforced
when Bill creates the delegation rule and only revoked when
Bill deletes this rule. There is no way for Bill to define a
temporary delegation, i.e. its active duration is automat-
ically handled. Obviously the DSML described in [20] is
not expressive enough to specify complex characteristics of
delegation.

There are many delegation situations that motivate our
work. We consider in the following some delegation situa-
tions:

1. The director (Bill) delegates his role to a secretary (Bob)
during his vacation (the delegation is automatically acti-
vated at the start of his vacation and revoked at the end of
his vacation).

2. A secretary (Alice) delegates her task/action of create
borrower account to a librarian (Jane).

3. A secretary (Bob) transfers his role to an administrator
(Sam) during maintenance day. In case of a transfer delega-
tion, the delegator temporarily looses his/her rights during
the time of delegation.

4. The role administrator is not delegable.

5. The permission of deleting borrower account is not dele-
gable.

6. The director can delegate, on behalf of a secretary, the
secretary’s role (or some his/her permitted actions) to a li-
brarian (e.g. during the secretary’s absence).

7. If a librarian empowered in role secretary by delegation
is no longer able to perform this task, then he/she can del-
egate, again, this role to another librarian.

— \
dependi both v \
epending on bo / H Delegation E
!
!

i

i

the context and the | control

delegation rules, the i _metamodel_| metamodel i

appropriate access 4
control rules are

selected

" Adapt the access |
control model
according to the
delegation

. specifications

<l‘ D ion
policy

cft

i
i
|
i

conforms to (cft) |
i
i
i
i
i
i

Access
control
policy

Active

security
policy

impact both
access control
and delegation
models

N 4 Context
Information

Ve N

Figure 2: Delegation impacting Access Control

8. The secretary empowered in role director by delegation is
not allowed to delegate/transfer, again, this role to another
secretary.

9. A secretary is allowed to delegate his/her role to a librar-
ian only and to one librarian at a given time.

10. A secretary is allowed to delegate his/her task of book
delivery to a librarian only and scheduled on every Monday.
11. Bill can delegate his role and permitted actions only to
Bob

12. Bob is not allowed to delegate his role.

13. Alice is not allowed to delegate her permitted action of
book delivery.

14. Users can always revoke their own delegations.

15. The director can revoke users from their delegated roles.
16. A secretary can revoke librarians empowered in secre-
tary role by delegation, even if he/she is not the grantor of
this delegation (e.g. the grantor is the director or another
librarian).

It can be seen that there are two levels of delegation rules:
user-level (rules defined by a user: e.g. situations 1, 2, 3)
and master-level (rules defined by a security officer: e.g. 4,
5, 6). Normally, delegations at user-level have to conform
to rules at master-level. For example, the security officer
can define that users of role director are able to delegate
on behalf of users of role secretary. Then at user-level, Bill
(director) can create a delegation rule to delegate, on behalf
of Alice, her role (secretary) to Jane (librarian).

4. A MODEL-DRIVEN APPROACH FOR
ADAPTIVE DELEGATION

4.1 Overview of our approach

In our approach, delegation is considered as a “meta-level”
mechanism which impacts the existing access control poli-
cies, like an aspect can impact a base program. We claim
that to handle advanced delegation rules, an ideal solu-
tion is to separate the delegation rules from the access con-
trol policy, each being specified in isolation, and then com-
pose/weave them together to obtain a new access control
policy (called active security policy) reflecting the delegation-
driven policy (Fig. [2). We present our metamodel (DSML)
for specifying delegation based on RBAC in Section [4.2

change/evolution

RNY i | tes
Delegation “'
Del R t b li Model
elegation i .- policy Ii) transformation
metamodel

Access
control %Ef—t— Access Active
__r_"_e_tain_qtie_l.. policy security

t

\II

A policy
L
conforms to (cft) g test Business logic
evolution q components
Model
3
- Running system
Architecture b Base Q
metamodel | cft model validation
* ity-
7 sy |
architecture 2 SIS

Adaptive execution platform
Self
adaptation
M2 i M1 MO

Figure 3: Overview of our approach

The separation of concerns is not only between delegation
and access control, but also with the business logic of the
system. Fig. presents a wider view of the overall approach.
In order to enforce security policy to the system, the core
business architecture model of the system is composed with
the active security policy previously obtained. The archi-
tecture model is expressed in another DSML, called archi-
tecture metamodel (an architecture modeling language de-
scribed in) The idea is to reflect security policy into the
system at the architecture level. Section defines trans-
formation rules to show how security concepts are mapped
into architectural concepts.

The security-enforced architecture model obtained above
is a pure architecture model which by itself reflects how the
security policy is enforced in the system. It is important
to note that the security-enforced architecture model is not
used for generating the whole system but only the proxy
components. These proxy components can be adapted and
integrated with the running system at runtime to physically
enforce the security policy. The adaptation and integration
can be done by leveraging the runtime adaptation mecha-
nisms provided by modern adaptive execution middleware
platforms. The approach of generating proxy components
overcomes some main limitations of . Section is ded-
icated to discuss our strategy for adaptation and evolution.

4.2 Delegation metamodel

Our metamodel displayed in Fig. [f] defines the conceptual
elements and their relationships that can be used to specify
access control and delegation policies. Because delegation
mechanism is based on RBAC, we first explain the main
conceptual elements of role-based access control. Then, we
show how our conceptual elements of delegation, based on
the RBAC conceptual elements, can be used to specify var-
ious delegation features.

As shown in Fig. E[, the root element of our metamodel is
the Policy. It contains Users, Roles, Resources, Rules, and
Contexts. Each user has one role. A security officer can
specify all the roles in the system, e.g. admin, director, etc.,
via the Role element. In order to specify an access control
policy, the security officer should have defined in advance
the resources that should be protected from unauthorized
access. Each resource contains some actions which are only

0.* resources actions
= Role “oles H Resource " 5 Action
= name : EString 0.* |- name : EString 0-* 1o name : EString
= maxConcurrentRoleDelegations : EInt § = isDelegable : EBoolean
= canRevokeAllDelegations : EBoolean \\\\ = maxConcurrentActionDelegations : EInt
= canRevokeAllDelegationsOfThisRole : EBoolean \ 0 ,~contexts 7
< . ‘\\ - O Context actions 4 / 1
role|1 \\ 1 0. \\rules = name : EString / - /‘action
S H *\ o . .
o rol\e\ delegationTarget 0.7 context isActive : EBoolean e /
canDelegateOnBehalfOf N _ E Rule - / /f
™ 7 1 e /
S /
S P / 1
N
0.% —~—_ / delegatedAction
users - — e /
H User T / /
1 delegatee T /

= username : EString

a Del te : EBool 5 Delegation
canDelegate .oo ean 1delegator

= maxRoleDelegations : EInt

S

explicitDelegatee

= isMonotonic : EBoolean
= redelegationDepth : EInt \\

5 Recurrence

N
o..1/ \
= startDate : EDate \

\\{.Iuration
\ e 1
) ‘ 0.1

5 Permission 5 ActionDelegationRights

= name : EString = maxActionDelegations : EInt

= isNonDelegableAction : EBoolean

E Duration
= startDate : EDate
= endDate : EDate

= endDate : EDate wfecurrence \\ ‘E RoIeDeIegation‘
N\ | |
|]

‘EActionD legatio
\ [
= occurences : EInt \ L

\;

= frequency : EEList \

actionDelegationRights 0.*

Figure 4: The Delegation Metamodel

accessible to authorized users. These protections are defined
in rules: permission rules and delegation rules. Permission
rules are used to specify which actions are accessible to users
based on their roles. That means, without delegation rules
or user-specific access control rules, every user is able to
access the actions associated with his/her role only. Delega-
tion rules are used to specify which actions are accessible to
users by delegation. There are two basic types of delegation:
- Role delegation: When users empowered in role(s) del-
egated by other user(s), they are allowed to access not only
actions associated with their roles but also actions associ-
ated with the delegated role(s).

- Action delegation: Instead of delegating their roles,
users may want to delegate only some specific actions as-
sociated with their roles.

Another important aspect of our access control and dele-
gation framework is the notion of contert. It can be seen
from our metamodel that every permission/delegation rule
is associated with a context. A rule is only active within its
context. The concept of context actually provides our model
with high flexibility. Security policies can be easily adapted
according to different contexts.

The full metamodel for specifying delegation is displayed

in Fig. El It depicts the features that are supported by
our delegation framework. All delegation management fea-
tures are developed based on two basic types of delegation
mentioned above. In the following, we present the delega-
tion features and show how they can be specified, w.r.t. our
metamodel.
- Temporary delegation: This is one of the most common
types of delegation used by users. It describes when the del-
egation starts to be active and when it ends. The grantor
can specify that the delegated role/action is authorized only
during a given time interval, e.g. situation 1 of the running
example in Section [3] Actually, this can be specified using
the recurrence of delegation described below, but we want
to define it separately because of its common use.

- Monotonicity (Transfer of role or permissions): A
property isMonotonic can be used to specify if a delegation
is monotonic or non-monotonic. The former (isMonotonic
= true) specifies that the delegated access right is avail-
able to both the delegator and delegatee after enforcing this
delegation. The latter (isMonotonic = false) means the del-
egated role/action is transferred to the delegatee, and the
delegator temporarily loses his rights while delegating, e.g.
situation 3. In this case, the delegation is called a transfer.
- Recurrence: It refers to the repetition of the delegation.
A user may want to delegate his role to someone else for
instance every week on Monday. Recurrence defines how
the delegation is repeated over time. It is similar to what is
implemented in calendar system and more precisely the ical-
endar standard (RFC2443%). It has several properties; the
startDate and endDate are the starting and ending dates of
the recurrence. In addition, the startDate defines the first
occurrence of the delegation. The frequency indicates one
of the three predefined types of frequency, daily, weekly or
monthly. The occurrences is the number of times to repeat
the delegation. If the occurrences is for instance equals to
2 it means that it should only be repeated twice even when
the endDate is not reached. An example of this delegation
is situation 10.

- Delegable roles and delegable actions: These kinds of
delegation define which roles and actions can be delegated
and how. A policy officer can specify that a role can only
be delegated/transferred to specific role(s), e.g. situation 9.
If no delegationTarget is defined for a role, this role cannot
be delegated/transferred, e.g. situation 4. If a role or ac-
tion (isDelegable = false) is not delegable, it should never
be included in a delegation rule. Moreover, a role can also
be delegated by a user not having this role but his/her own
role is specified as can delegate on behalf of a user in this
role (canDelegateOnBehalfOf = true), e.g. situation 6.

- Multiple delegations: It should be possible to define the

Yhttp:/ /www.rfc-editor.org/info /rfc2445

max number of concurrent delegations in which the same
role or action can be delegated at a given time. The proper-
ties mazConcurrentRoleDelegations and maxConcurrentAc-
tionDelegations define how many concurrent delegations of
the same role/action can be granted, e.g. situation 9. More-
over, it is possible to define for each specific user a spe-
cific maximum number of concurrent delegations of the same
role/action: mazRoleDelegations and mazActionDelegations.
- User specific delegation rights: All user-specific ele-
ments are used to define more strict rules for a specific user
rather for his/her role. There are other user-specific delega-
tions than mazRoleDelegations and mazActionDelegations.
It is possible to define that a specific user is allowed to dele-
gate his role/permitted action(s) or not (canDelegate = true
or false), e.g. situation 12. The property isNonDelegableAc-
tion specifies an action that a specific user cannot delegate,
e.g. situation 13. Moreover, the security officer can define
to which explicit user(s) only (explicitDelegatee) a user can
delegate/transfer his role to, e.g. situation 11.

- Multi-step delegation: It provides flexibility in author-
ity management, e.g. situations 7, 8. The property redele-
gationDepth is used to define whether or not the role/action
of a delegation can be delegated again. When a grantor cre-
ates a new delegation, he/she can specify how many times
the delegated role/action can be re-delegated. If the re-
delegationDepth = 0, it means that the role/action cannot
be delegated anymore, e.g. situation 8. If the redelega-
tionDepth > 0, that means the role/action can be delegated
again and each time it is re-delegated, the redelegationDepth
is decreased by 1.

- Revocations: All users can revoke their own delegations,
e.g. situation 14. Security officer may set canRevokeAllDel-
egations = true for a role with a super revocation power in
such a way that a user empowered in this role can revoke
all delegations, e.g. situation 15. Moreover, a role can also
be defined such that every user empowered in this role can
revoke any delegation from this role (canRevokeAllDelega-
tionsOfThisRole = true), even he/she is not the grantor of
the delegation, e.g. situation 16.

Moreover, each possible instance of the security policy
has to satisfy all necessary validation condition expressed
as OCL invariants. For exampleﬂ we can make sure that
no delegation is out of target, meaning that delegatee’s role

has to be a delegation target of delegator’s role:
context Delegation inv NoDelegationOutOfTarget:
self.delegator.role.delegationTarget —>exists (t | t =
self.delegatee.role)
Or to check that for every user, the number of concurrent
role delegations cannot be over its thresholds:
context User inv NoRoleDelegationOverMax:
RoleDelegation.alllnstances —>select (d | d.delegator =
self) —>size() < self.role.maxConcurrentRoleDelegations
and RoleDelegation.alllnstances —>select (d |
d.delegator = self) —>size() < self.maxRoleDelegations
Other examples are to restrict the value of the redelega-
tionDepth must not be negative, or startDate cannot be later

than endDate:

context Delegation inv NonNegativeDeleDepth:
self.redelegationDepth > 0

context Duration inv ValidDates: self.startDate <

self.endDate

2Due to space restrictions, the OCL expressions presented
here are not exhaustive.

- X - resources
5 Subject | 0..* subjects E Policy £ Resource

0.*
” | = name : EString

0.* | actions

\actions

1 1.5
5 Hole HUser \\4

role

5 Action
= name : EString

= name : EString = username : EString

Figure 5: A pure RBAC metamodel

4.3 Transformations/Compositions

After specifying security policies by the DSML described
in Section[42] it is crucial to dynamically enforce these poli-
cies into the running system. Transformations play an im-
portant role in the dynamic enforcement process. Via model
transformations, security models containing delegation rules
and access control rules are automatically transformed into
component-based architecture models. Note that instances
of security models and architecture models are checked be-
fore and after model transformations, using predefined OCL
constraints.

The model transformation is executed according to a set
of transformation rules. The purpose of defining transfor-
mation rules is to correctly reflect security policy at the ar-
chitectural level. Based on transformation rules, security
policy is automatically transformed to proxy components,
which are then integrated to the business logic components
of the system in order to enforce the security rules. The
metamodel of component-based architecture can be found
in [20] and an instance of it can be seen in Fig. [7] We first
describe the transformation that derives an access control
model according to delegation rules (Section7 and then
describe another transformation to show how security pol-
icy can be reflected at the architecture level (Section .
Moreover, we also show an alternative way of transformation
that combines two steps into one step.

4.3.1 Adapting RBAC policy model to reflect delega-
tion

Within the security model shown in Fig. delegation
rules are considered as “meta-level” mechanisms that impact
the access control rules. The appropriate access control rules
and delegation rules are selected depending on the context
information and/or the request of changing security rules
coming from the system at runtime. According to the cur-
rently active context (e.g. WorkingDays), only in-context
delegation rules and in-context access control rules of the
security model (e.g. rules that are defined with context =
WorkingDays) are taken into account to derive the active
security policy model (Fig. . Theoretically, we could say
that delegation rules impact the core RBAC elements in the
security model in order to derive a pure RBAC model (with-
out any delegation and context elements) which conforms to
a “pure” metamodel of RBAC (Fig. [5). Delegation elements
of a security policy model are transformed as follows:
A.1: Each action delegation is transformed into a new
permission rule. The subject of the permission is user (dele-

gatee) object. The set of actions of the permission contains
the delegated action.

A.2: Each role delegation is transformed as follows. First,
a set of actions associated to a role is identified from the per-
missions of this role. Then, each action is transformed into
a permission like transforming an action delegation de-
scribed above.

A.3: A temporary delegation is only taken into account
in the transformation if it is in active duration defined by the
start and end properties. In fact, when its active duration
starts the (temporary) action/role delegation is transformed
into permission rule(s) as described above. When its active
duration ends the temporary delegation is removed from the
policy model.

A.4: If an action delegation is of type transfer delegation
(monotonic), then it is transformed into a permission rule
and a prohibition rule. The subject of the permission is the
user-delegatee object. The set of actions of the permission
contains the delegated action. The subject of the prohibi-
tion is the user-delegator object. The set of actions of the
prohibition contains the delegated action.

A.5: If a role delegation is of type transfer delegation, then
it is also transformed into a permission rule and a prohibi-
tion rule. The subject of the permission is the user-delegatee
object. The set of actions of the permission contains the del-
egated actions. The delegated actions here are the actions
associated with this role. The subject of the prohibition is
the user-delegator object. The set of actions of the prohi-
bition also contains the delegated actions.

A.6: If a delegation rule is defined with a recurrence,
based on the values set to the recurrence, the delegation rule
is only taken into account in the transformation within its
fromDate and untilDate, repeated by frequency and limited
by occurrences. In other words, only active (during recur-
rence) delegation rules are transformed.

A.7: (User-specific) If a user is associated with any non-
delegable action, the action delegation containing this ac-
tion and this user (as delegator) is not transformed into a
permission rule. Similarly, if a user is specified as he/she
cannot delegate his/her role/action, no role/action dele-
gation involving this user is transformed.

A.8: (Role/action-specific) Any delegation rule with a non-
delegable role/action will not be transformed. In fact, a
delegation rule is only transformed if it satisfies (at least)
both user-specific and role/action-specific requirements.
A.9: Only a role delegation to a user (delegatee) whose role
is in the set of delegationTarget will be considered in the
transformation.

A.10: Before any delegation is taken into account in the
transformation, it has to satisfy the requirements of max
concurrent action/role delegations. Note that the user-
specific values have higher priorities than the role-specific
values.

A.11: A delegation is only transformed if its redelega-
tionDepth > 0. Whenever a user empowered in a role/an
action by delegation re-delegates this role/action, the newly
created delegation is assigned a redelegationDepth = the
previous redelegationDepth - 1.

After transforming all delegation rules, we obtain a pure
RBAC model which reflects both the delegation model and
access control model. This pure RBAC model is then trans-
formed into a security-enforced architecture model as de-
scribed next.

createPersonnelAccount —= createPersonnelAccount(...)

updatePersonnelAccount > updatePersonnelAccount(...) DAO
deletePersonnelAccount —— deletePersonnelAccount(...) | Component
consultPersonnelAccount —> consultPersonnelAccount(...)
L -
Personnel - PersonnelAccount
Account PO Service
Resource > Component
action > method(...)
BO
| co mponent

Figure 6: Mapping Resources to Business Logic
Components

4.3.2 Transformation of Security Policy to Component-
based Architecture

The transformation rules are defined below. The goal is to
transform every security policy model (pure RBAC model
obtained in step 1) which conforms to the metamodel shown
in Fig. [5| to a component-based architecture model which
conforms to the metamodel described in |20]. However, both
the security policy model and the base model provided by
a system designer are used as inputs for the model trans-
formation/composition. Via a graphical editor, the security
designer must define in advance how the resource elements
in the policy model are related to the business components
in the base model. Fig. [6] shows how each action in the
policy can be mapped to the Java method in the business
logic.

Because the base model already conforms to the archi-
tecture metamodel, we now only focus on transforming the
security policy model into the security-reflected architecture
model. As we know, this transformation/composition pro-
cess will also weave the security-reflected elements into the
base model in order to obtain the security-enforced archi-
tecture model.

The core elements of RBAC like resource, role, and user
are transformed following these transformation rules. All
the transformation rules make sure that the security policy
is reflected at the architectural level.

R-A.1: Each resource is transformed into a component in-
stance, called a resource proxy component. According to
the relationship between the resource elements in the policy
model and the business components in the base model, each
resource proxy component is connected to a set of business
components via bindings. To be more specific, each action
of a resource element is linked to an operation of a business
component (Fig. E[) By connecting to business components,
a resource proxy component provides and requires all the
services (actions) offered by the resource.

R-A.2: Each role is also transformed into a role proxy com-
ponent. According to the granted accesses (permission rules
associated with this role) to the services provided by the
resources, the corresponding role proxy component is con-
nected to some resource proxy component(s) (Fig. . A role
proxy component is connected to a resource proxy compo-
nent by transforming granted accesses into ports and bind-
ings. Each (active) access granted to a role is transformed
into a pair of ports: a client port associated with the role
proxy component, a server port associated with the resource
proxy component, and a binding linking these ports.

User layer ; Role layer Resource layer Business layer

¥

Bill / Director |\ .

/x ~— AN\

LN consule
i \ f‘ﬂm Borrower | Borrower
Bob Secretary |- fe——UNTIT: | Account
e WANEETY Resource Service
geete | \

/\ create

S—i \ consult
S Admi VT Personnel { Personnel
am min ".‘ - T Account 1 Acco.unl
5 GEE Resource Service

create
(Y \ deliver
—

Librarian i Book
borro

Resource
S reservé”
—

/ return
-4 Student |/ /

Figure 7: Architecture reflecting security policy be-
fore and after adding a delegation rule (bold lines)

Book
| Service

R-A.3: Each user element defined in the policy model is
also transformed into a wuser proxy component. Because
each user must have one role, each user proxy component
is connected to the corresponding role proxy component.
However, each user may have access to actions associated to
not only his/her role but also to actions associated to other
roles by delegation. Thus, each user proxy component may
connect to several role proxy components. The connection
is established by transforming each access granted to a user
into a pair of ports: a client port associated with the user
proxy component, a server port associated with the corre-
sponding role proxy component (providing the access/port),
and a binding linking these ports (Fig. . Actually, the
granted accesses are calculated not only from permission
rules but also from prohibition rules. Simply, the granted
accesses that equal permissions exclude prohibitions.

In our approach, revocation of a delegation simply con-
sists in deleting the corresponding delegation rule. In this
way, the revocation is reflected at the architectural level
and physically enforced in the running system. Moreover,
both the delegator and delegatee elements will be removed
if these users are not involved in any delegation rules. As
described above, user elements are transformed into proxy
components. However, it is important to stress that only
users involved in delegation rules (e.g. Bill, Bob and Sam in
Fig. E[) are created in the security policy model and trans-
formed into proxy components. Users who are not involved
in any delegation rules (e.g. Jane and Mary in Fig. @, are
manipulated as session objects which directly access the ser-
vices offered by the corresponding role proxy components.

Two steps described above are two separate model trans-
formations that mainly used to explain how delegation can
be considered as a “meta-level” mechanism for administrat-
ing access rights. The first model transformation is to trans-
form a delegation-driven security model into a pure RBAC
model. The second model transformation is to transform the
RBAC model into an architecture model. In fact, these two
steps could be done in only one model transformation that
directly transforms the delegations, the access control pol-
icy and the business logic model into an architecture model
reflecting the security policy. However, this alternative way

(described in the following) has the disadvantage of losing
the intermediate security model (the active security policy)
that could be useful for traceability purpose.

4.3.3 An alternative way: using only one transfor-
mation

In this way, we have to define other transformation rules
to transform directly every security policy model which con-
forms to the metamodel, shown in Fig. [to a component-
based architecture model which conforms to the architecture
metamodel described in [20].

Core elements of RBAC like resources, roles, and users
are transformed following these transformation rules:
R-B.1: Each resource is transformed into a component
instance, called a resource proxy component (already pre-
sented).

R-B.2: Each role also is transformed into a role proxy com-
ponent (already presented). The only difference is the con-
text has to be taken into account (in Section no context
existed because context already dealt with in Section.
Because every permission is associated with a context, we
only transform permissions with the context that is active
at the moment.

R-B.3: Each user element defined in the policy model is
also transformed into a user proxy component. However,
the connection (via bindings) from a user proxy component
to the role proxy component(s) is not only depended on the
user’s role but also delegation rules that the corresponding
user involved in. The transformation of delegation rules is
presented below.

All the transformation rules above make sure that access
control rules are reflected at the architecture level. However,
the delegation rules will impact this transformation process
in order to derive the security-enforced architecture model
reflecting both access control and delegation policy. Delega-
tion elements of a policy model are transformed as follows:
R-B.4: Each action involved in an action delegation is
transformed into a pair of ports and a binding. A client port
(representing the required action) is associated with the user
(delegatee) proxy component. The binding links the client
port to the corresponding server port (representing the same
action provided) that associated with the role proxy com-
ponent reflecting the role of the delegator.

R-B.5: Each role delegation is transformed in a similar
way as action delegation. First, a set of actions associated
to a role can be identified from the permissions of this role.
Then, each action in the set is transformed into a pair of
ports and a binding as transforming an action delegation.
R-B.6: A temporary delegation is only transformed into
bindings if it is still in active duration defined by start and
end properties.

R-B.7: If a delegation is of type transfer delegation,
then both user elements (delegator and delegatee) are trans-
formed into delegator and delegatee proxy components as
described above. The delegator proxy component is not con-
nected to the corresponding role proxy component because
he/she already transfered his/her access rights to the dele-
gatee. Fig. [7|shows a change in the architecture when Bill
transfers his role to Bob.

R-B.8: If a delegation is defined with a recurrence, based
on the values set to recurrence, the delegation rule is only
active during the recurrence (similar to A.6).

R-B.9: If a user is associated with any non-delegable ac-

tion, the delegation of this action is not taken into account
while doing the transformation. Similarly, if a user is spec-
ified as he/she can not delegate his/her role/action, no
delegation requested by this user will be transformed.
R-B.10: Only a role delegation to a user (delegatee) whose
role is in the set of delegationTarget will be consider in
the transformation.

R-B.11: Before any delegation is taken into account in the
transformation, it has to satisfy the requirements of max
concurrent action/role delegations. Note that the user-
specific values have higher priorities than the role-specific
values.

R-B.12: A delegation is only transformed if its redelega-
tionDepth > 0. Whenever a user empowered in a role/an
action by delegation re-delegates this role/action, the newly
created delegation is assigned a redelegationDepth = the
previous redelegationDepth - 1.

By taking into account delegation rules while transforming
access control rules of policy model into security-enforced
architecture model, both delegation and access control rules
are reflected at the architecture level.

4.4 Adaptation and Evolution strategies

The model transformation/composition presented in Sec-
tion ensures that the security policies are correctly and
automatically reflected in an architectural model of the sys-
tem. The key steps to support delegation (i.e. specifications
and transformations) are already presented in Sections
and [£:3] The last step consists in a physical enforcement
of the security policy by means of a dynamic adaptation
of the running system. In this section, our adaptation and
evolution strategy is discussed.

4.4.1 Adaptation

The input for the adaptation process is a newly created
security-enforced architecture model (Fig. . First, this
new architecture model is validated using simulation or in-
variant checking [18|. This valid architectural model actu-
ally represents the new system state the runtime must reach
to enforce the new security policy of the system. According
to the classical MAPE control loop of self-adaptive appli-
cations, our reasoning process performs a comparison (us-
ing EMFCommpare) between the new architecture model
(target configuration) and the current architecture model
(kept synchronized with the running system) [19]. This pro-
cess triggers a code generation/compilation process, and also
generates a safe sequence of reconfiguration commands [18].
Actually, the code generation/compilation process is only
triggered if there are new proxy components, e.g. new user
proxy components involved in delegation, that need to be in-
troduced into the running system. The dynamic adaptation
of the running system is possible thanks to modern adap-
tive execution platforms like OSGi [26] or Fractal 8] which
provide low-level APIs to reconfigure a system at runtime.
The running system is then reconfigured by executing the
safe sequence of commands, compliant to the platform API,
issued by the reasoning process. In this process, the gener-
ation/compilation phase is time consuming. However, this
phase has no impact on the running system, which remains
stable until being adapted by executing the reconfiguration
script. Thus, the actual adaptation phase only lasts for sev-
eral milliseconds, during which the system is not available.

H Security- validation
Architecture | enforced
metamodel architecture

model

3
cft |

Current

1 architecture
& Platform-specifid
Model
comparison Running system

reconfiguration |
commands !
i ! l Proxy
@Q\\ex 0 components
Model diff . « 7
odel di &=r== Model diff [B H
metamodel oft |
H Adaptive execution platform
Code+script
generation '

M2 ; M1 Mo

Business logic
components

Figure 8: Overview of our adaptation strategy

In [20], the adaptation is entirely based on executing plat-
form - specific reconfiguration scripts specifying which com-
ponents have to be stopped, which components and/or bind-
ings should be added and /or removed. This results in several
limitations regarding delegation mechanisms:

L.1: Using reconfiguration scripts only implies to create all
the potentially needed ports (used for bindings between user
proxy components) beforehand. But all the combinations of
users, roles, resources, actions could lead to a combinatorial
explosion and make it infeasible for implementation.

L.2: In [20], the delegation between users are reflected using
bindings connecting one user proxy component to another.
But this approach is not suitable for supporting complex
delegation features. For example, a transfer delegation will
be reflected such as adding bindings between the delega-
tor and delegatee but removing bindings between delegator
and the corresponding role proxy component. Consequently
both delegator and delegatee cannot access the resource, that
does not correctly reflect a transfer delegation.

L.1 can be solved by the automatic re-generation of proxy
components and bindings between them according to changes
in the architectural model. Moreover, as mentioned in Sec-
tion [£:3:2] only users involved in a delegation are trans-
formed into wuser proxy components with necessary ports
and bindings. In this way, only required ports and bind-
ings are created dynamically. L.2 is solved by our model
transformation approach. All complex delegation features
are considered as “meta-level” mechanisms that impact ac-
cess control rules. In this way, a transfer delegation will be
reflected such as adding bindings between the delegatee and
the corresponding delegated role proxy component, but re-
moving bindings between delegator and the corresponding
role proxy component.

Our adaptation strategy could take more time than sim-
ply running a reconfiguration script because of the genera-
tion and compilation time of newly generated proxy com-
ponents. But the process of generating and compiling new
proxy components could not harm the performance because
each proxy component is very light-weight and only neces-
sary proxy components are generated (see Section ‘

4.4.2 Evolution
In [20], the evolution of the security policy is not totally

dealt with. It is possible to run a reconfiguration script
to reflect the changes like adding, removing and updating
rules. But adding a new user, role or resource requires the
generation and compilation of new proxy components, which
is impossible using only reconfiguration scripts. Thus, our
strategy of automatically generating and compiling proxy
components (see Section is more practical w.r.t evolution.

Another important aspect of evolution relates to the ad-
dition, removal or update of resources and actions in the
business logic. The base architecture model can be updated
with the changes in the business logic, e.g. a new resource
is added. On the other side, security officers can manu-
ally update the mappings (Fig. @ following the changes of
resources/actions in the base architecture model. By com-
posing the security model with the base architecture model
as described earlier, the security policy is evolved together
with the business logic of the system.

5. EVALUATION

To evaluate the feasibility of our approach, we have ap-
plied it on three different Java-based case studies, which
have also been used in our previous research work on access
control testing [21]:

1) LMS: already described in our running example.

2) VMqﬂ The Virtual Meeting System offers simplified web
conference services. The virtual meeting server allows the
organization of work meetings on a distributed platform.
When connected to the server, a user can enter (exit) a meet-
ing, ask to speak, eventually speak, or plan new meetings.
There are three resources (Meeting, Personnel Account, User
Account) and six roles (Administrator, Webmaster, Owner,
Moderator, Attendee, and Non-attendee) defined for this
system with many access control rules, and delegation situ-
ations between the users of each role.

3) ASMS: The Auction Sale Management System allows
users to buy and sell products online. Each user in the
system has a profile including some personal information.
Users wanting to sell a product (sellers) are able to start
a new auction by submitting a description of the product,
the starting and ending date of the auction. There are five
resources (Sale, Bid, Comment, Personnel Account, User
Account) and five roles (Administrator, Moderator, Seller,
Senior Buyer, and Junior Buyer) defined for this system,
also with many access control rules, and delegation situa-
tions between users of each role.

Table 1: Size of each system in terms of source code.

Classes | # Methods | # LOC
LMS 62 335 3204
VMS 134 581 6077
ASMS 122 797 10703

We applied our approach to enable dynamic security en-
forcement for these systems, and examined how effective our
approach is. Table [T] provides some information about the
size of these three applications (the number of classes, meth-
ods and lines of code). In terms of security policies, Table
shows the number of access control (AC) rules and delega-
tion rules defined for each system, used in our experiments.

3For more information about VMS (server side), please refer
to http://franck.fleurey.free.fr/VirtualMeeting.

Table 2: Security rules defined for each system.

AC rules | # Delegations | Total
LMS 23 4 27
VMS 36 8 44
ASMS 89 8 97

All these systems are component-based systems. The busi-
ness components of each system contain the business logic,
e.g. Book Service component, Personnel Account compo-
nent, Meeting, Sale, Authenticate component, Data Access
Object components, etc. To enable dynamic security en-
forcement for a system, the resources (components that have
to be controlled) are specified in the base model, and mapped
to the resources of the security policies. Our metamodels are
applicable for different systems without any modification or
adaptation. The structure of delegation and access control
policies for all case studies is the same, only roles, users,
resources, actions are specific to each case study. The proxy
components are automatically generated and synchronized
with the security policy model via model transformations
and reconfiguration at runtime. The model-to-model trans-
formation and model-to-text transformation (code genera-
tion) can be implemented using any transformation engines
like Kermeta [22] (or ATL ﬁ) and Xpand [14]. The security
policy models that are stored in eXistDB [16], a native XML
database, can be easily modified by using XPath, XQuery,
and XUpdate. For experimenting with performance of adapt-
ing the running system, we have implemented the model
transformation/composition rules using not only Kermeta
but also ATL.

There are two kinds of response time we would like to mea-
sure in our case studies: the authorization mechanism and
the dynamic adaptation according to changing security poli-
cies. The experiments were performed on Intel Core i7 CPU
2.20 GHz with 2.91 GB usable RAM running on Windows
7 and Equinox El Because all our access control and dele-
gation rules are transformed to proxy components reflecting
our security policy, response times to an access request only
depends on method calls between these proxy components
and business components (Fig. |7)). Unsurprisingly, response
time to every resource access is a constant, only about 1
millisecond, because the access is already possible or not
by construction. In other words, our 3-layered architecture
reflecting security policy enables very quick response, inde-
pendently from the number of access control and delegation
rules.

Table 3: Performance of weaving Security Policies
using Kermeta and ATL.

Rules | Kermeta 1.4.1 | ATL 3.2.1
LMS 27 4s 0.048s
VMS 44 7s 0.055s
ASMS 97 18s 0.140s

Regarding the adaptation process, Table[3|shows results of
each case study for performing the model transformations of
security policies mentioned in Table 2] using Kermeta 1.4.1
and ATL 3.2.1 correspondingly. At first, we used Kermeta
1.4.1 to implement our model transformations. However, the
results shown in Table 3 have been disappointing. We have

“http://www.eclipse.org/atl/
Shttp://www.eclipse.org/equinox/

tried to use Kermeta 2.0.4 (the latest version of Kermeta
at this moment, compiled to byte code, which means much
better performances), but the tool is not mature yet. To
know if this performance problem is inherently linked to our
approach or simply linked to the use of Kermeta 1.4.1, we
decided to also implement our model transformations using
ATL 3.2.1. Our experiments show that the implementation
using ATL 3.2.1 is much more efficient. We can conclude
that the initial performance issue was due to Kermeta 1.4.1.

Note that the transformation, code generation and com-
pilation are performed “offline” meaning that the running
system is not yet adapted. The actual adaptation happens
when the newly compiled proxy components are integrated
into the running system to replace the current proxy com-
ponents. This actual adaptation process takes only some
milliseconds by using the low-level APIs to reconfigure a
system at runtime provided by the modern adaptive execu-
tion platforms, e.g. OSGi [26]. Right after the new proxy
components are up and running, the new security policy is
really enforced in the running system.

6. RELATED WORK

There is a substantial work related to delegation as ex-
tension of existing access control models. Most researchers
focused on proposing models solely relying on the RBAC for-
malism [25], which is not expressive enough to deal with all
delegation requirements. Therefore, some other researchers
extended the RBAC model by adding new components, such
as new types of roles, permissions and relationships |2} 27] |1}
9, 23]. In [5], the authors proposed yet another delegation
approach for role-based access control (more precisely for
OrBAC model) which is more flexible and comprehensive.
However, no related work has provided a model-driven ap-
proach for both specifying and dynamically enforcing access
control policies with various delegation requirements. Com-
pared to [20], we extend the model-based dynamic adap-
tation approach of [20] with some key improvements. More
specifically, we propose a new DSML for delegation manage-
ment, but also new composition rules to weave delegation in
a RBAC-based access control policy. In addition, we present
a new way (by generating proxy) to implement the adapta-
tion of the security-enforced architecture of the system. In-
deed, we provide an extensive support for delegation as well
as co-evolution of security policy and security-critical sys-
tem. That means our approach makes it possible to deeply
modify the security policy (e.g. according to evolution of the
security-critical system) and dynamically adapt the running
system, which is often infeasible using the other approaches
mentioned above.

In addition, several researchers proposed new flexible ac-
cess control models that may not include delegation, but
allow to have a flexible and easy to update policy. For in-
stance, Bertino et al. [6] proposed a new access control
model that allows expressing flexible policies that can be eas-
ily modified and updated by users to be adapted to specific
contexts. The advantage of their model resides in the ability
to change the access control rules by granting or revoking the
access based on specific exceptions. Their model provides a
wide range of interesting features that increase the flexibil-
ity of the access control policy. It allows advanced admin-
istrative functions for regulating the specification of access
controls rules. More importantly, their model supports dele-
gation, enabling users to temporarily grant other users some

of their permissions. Furthermore, Bertolissi et al. proposed
DEBAC [7] a new access control model based on the notion
of event that allows the policy to be adapted to distributed
and changing environments. Their model is represented as a
term rewriting system |[3], which allows specifying changing
and dynamic access control policies. This allows having a
dynamic policy that is easy to change and update.

As far as we know, no previous work tackled the issue
of enforcing adaptive delegation. Some previous approaches
were proposed to help modeling more general access con-
trol formalisms using UML diagrams (focusing on models
like RBAC or MAC). RBAC was modeled using a dedicated
UML diagram template [13]|, while Doan et al. proposed
a methodology 10| to incorporate MAC in UML diagrams
during the design process. All these approaches allow access
control formalisms to be expressed during the design. They
do not provide a specific framework to enable adaptive del-
egation at runtime. Concerning the approaches related to
applying MDE for security, we can cite UMLsec [12], which
is an extension of UML that allows security properties to be
expressed in UML diagrams. In addition, Lodderstedt et al.
|15] propose SecureUML which provides a methodology for
generating security components from specific models. The
approach proposes a security modeling language to define
the access control model. The resulting security model is
combined with the UML business model in order to auto-
matically produce the access control infrastructure. More
precisely, they use the Meta-Object facility to create a new
modeling language to define RBAC policies (extended to
include constraints on rules). They apply their technique
in different examples of distributed system architectures in-
cluding Enterprise Java Beans and Microsoft Enterprise Ser-
vices for .NET. Their approach provides a tool for specifying
the access control rules along with the model-driven develop-
ment process and then automatically exporting these rules
to generate the access control infrastructure. However, they
do not directly support delegation. Delegation rules should
be taken into account early and the whole system should
be generated again to enforce the new rules. Our approach
enables supporting directly the delegation rules and dynami-
cally enforcing them by reconfiguring the system at runtime.

7. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an extensive model-driven
approach for RBAC-based delegation. It has been shown
that various delegation requirements can be specified using
our delegation DSML. Our DSML supports complex dele-
gation characteristics like temporary, recurrence delegation,
transfer delegation, multiple and multi-step delegation, etc.
We have shown that we can deal with revocation in a sim-
ple manner. Another main contribution of this paper is to
provide adaptive delegation enforcement in which delega-
tion is considered as a “meta-level” mechanism that impacts
the access control rules. A complete model-driven frame-
work has been proposed to enable dynamic enforcement of
delegation and access control policies that allows the auto-
matic configuration of the system according to the changes
in delegation/access control rules. Moreover, our framework
also enables an adaptation strategy that better supports co-
evolution of security policy and the security-critical system.
Our approach has been validated via three different case
studies with consideration of performance and extensibility
issues.

Our approach could be better supported using an opti-
mized models@runtime framework such as Kevored®] instead
of Equinox. We have not dealt with this idea yet in this pa-

per,

but keep it for our future work. Moreover, revocation

mechanism in our current approach has not been completely
taken into account, i.e. without options of strong/weak re-
vocation. So far, we only focused on the delegation of rights,
further work will also be dedicated to the delegation of obli-
gations and the support for usage control [24].

8.
1]

2]

[11]

[12]

[13]

REFERENCES

G.-J. Ahn, B. Mohan, and S.-P. Hong. Towards secure
information sharing using role-based delegation. J.
Netw. Comput. Appl., 30(1):42-59, Jan. 2007.

E. Barka and R. Sandhu. Role-based delegation
model/ hierarchical roles (rbdml). In Proceedings of
the 20th Annual Computer Security Applications
Conference, ACSAC ’04, pages 396-404, Washington,
DC, USA, 2004. IEEE Computer Society.

S. Barker and M. Ferndndez. Term rewriting for access
control. In DBSec, pages 179-193, 2006.

D. Basin and J. Doser. Model driven security: From
UML models to access control infrastructures. ACM
Transactions on Software, (1945):353-398, 2006.

M. Ben-Ghorbel-Talbi, F. Cuppens,

N. Cuppens-Boulahia, and A. Bouhoula. A delegation
model for extended rbac. Int. J. Inf. Secur.,
9(3):209-236, June 2010.

E. Bertino, S. Jajodia, and P. Samarati. A flexible
authorization mechanism for relational data
management systems. ACM Trans. Inf. Syst.,
17(2):101-140, 1999.

C. Bertolissi, M. Fernandez, and S. Barker. Dynamic
event-based access control as term rewriting. In
DBSec, pages 195-210, 2007.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J. Stefani. The FRACTAL Component Model and
its Support in Java. Software Practice and Experience,
Special Issue on Experiences with Auto-adaptive and
Reconfigurable Systems, 36(11-12):1257-1284, 2006.

J. Crampton and H. Khambhammettu. Delegation in
role-based access control. Int. J. Inf. Sec.,
7(2):123-136, 2008.

T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl.
Mac and uml for secure software design. In FMSE ’04:
Proceedings of the 2004 ACM workshop on Formal
methods in security engineering, pages 75—-85, New
York, NY, USA, 2004. ACM.

S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access
control policies. ACM Trans. Database Syst.,
26(2):214-260, 2001.

J. Jiirjens. UMLsec: Extending UML for Secure
Systems Development. In UML’02: 5th International
Conference on The UML, pages 412-425, Dresden,
Germany, 2002. Springer-Verlag.

D.-K. Kim, I. Ray, R. B. France, and N. Li. Modeling
role-based access control using parameterized uml
models. In FASE, pages 180-193, 2004.

Shttp://www.kevoree.org/, last access March 2012

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

B. Klatt. Xpand: A closer look at the model2text
transformation language. Language, (10/16/2008),
2007.

T. Lodderstedt, D. Basin, and J. Doser. SecureUML:
A UML-Based Modeling Language for Model-Driven
Security. In UML’02: 5th International Conference on
The UML, pages 426441, Dresden, Germany, 2002.
Springer-Verlag.

W. Meier. exist: An open source native xml database.
In Web-Services, and Database Systems, NODe 2002
Web and Database-Related Workshops, pages 169-183.
Springer, 2002.

B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and
A. Solberg. Models@ run.time to support dynamic
adaptation. Computer, 42(10):44-51, Oct. 2009.

B. Morin, O. Barais, G. Nain, and J. Jézéquel. Taming
Dynamically Adaptive Systems with Models and
Aspects. In ICSE’09: 31st International Conference on
Software Engineering, Vancouver, Canada, May 2009.
B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel,

A. Solberg, V. Dehlen, and G. Blair. An
aspect-oriented and model-driven approach for
managing dynamic variability. In Proceedings of the
11th international conference on Model Driven
Engineering Languages and Systems, MoDELS ’08,
pages 782-796, Berlin, Heidelberg, 2008.
Springer-Verlag.

B. Morin, T. Mouelhi, F. Fleurey, Y. Le Traon,

O. Barais, and J.-M. Jézéquel. Security-driven
model-based dynamic adaptation. In Proceedings of
the IEEE/ACM international conference on
Automated software engineering, ASE ’10, pages
205-214, New York, NY, USA, 2010. ACM.

T. Mouelhi, Y. L. Traon, and B. Baudry.
Transforming and selecting functional test cases for
security policy testing. In Proceedings of the 2009
International Conference on Software Testing
Verification and Validation, ICST ’09, pages 171-180,
Washington, DC, USA, 2009. IEEE Computer Society.
P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
International Conference on Model Driven
Engineering Languages and Systems (MoDELS),
LNCS 3713, pages 264-278. Springer, 2005.

S. Na and S. Cheon. Role delegation in role-based
access control. In Proceedings of the fifth ACM
workshop on Role-based access control, RBAC 00,
pages 39—44, New York, NY, USA, 2000. ACM.

R. Sandhu and J. Park. Usage control: A vision for
next generation access control. V. Gorodetsky et al.
(Eds.): MMM-ACNS 20038, LNCS 2776, 1:17-31,
2003.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. Computer,
29(2):38-47, Feb. 1996.

O. The OSGi Alliance. Osgi service platform core
specification, release 4.1. 2007.

X. Zhang, S. Oh, and R. Sandhu. Pbdm: a flexible
delegation model in rbac. In Proceedings of the eighth
ACM symposium on Access control models and
technologies, SACMAT ’03, pages 149-157, New York,
NY, USA, 2003. ACM.

	Introduction
	Background
	Access Control
	Delegation
	Security-Driven Model-Based Dynamic Adaptation

	A Running Example
	A Model-Driven Approach For Adaptive Delegation
	Overview of our approach
	Delegation metamodel
	Transformations/Compositions
	Adapting RBAC policy model to reflect delegation
	Transformation of Security Policy to Component-based Architecture
	An alternative way: using only one transformation

	Adaptation and Evolution strategies
	Adaptation
	Evolution

	Evaluation
	Related Work
	Conclusion and Future Work
	References

