
Knowledge Based Support for System Verification during Requirement Analysis

Mohan R. Tanniru
School of Management, Syracuse University, Syracuse NY 13210

and

S. Sakthivel
College of Business Administration, Bowling Green State University

Bowling Green Ohio 43403

Abstract

Requirement analysis is the first step in the development of information SYS-

terns and its objective is to ensure that any proposed system meets the projected
requirements of the user. As a part of this requirement analysis, an analyst is
asked to verify that the proposed system is representationally accurate before
undertaking any other evaluation. This paper proposes a Petri Net representation
of an information system and the use of a PROLOG-based knowledge base to test its
representational accuracy.

Introduction

Organizations rely on accurate and timely information for making decisions and

managing their operations. The availability of correct information and, in turn,

the systems that provide such information, are critical to supporting the basic

purposes and goals of an organization. The development of such correct informa-

tion systems is dependent of how well a user's needs are specified (requirement

specification) and an information system designed to meet these needs (system

design and implementation). The importance of accurate specification of user

requirements is obvious for a successful development of correct information sys-

tems. A system developed from wrong specifications will lead to inappropriate

design and, hence, its probable rejection by its users. Also, the cost of cor-

recting these errors at a later stage will be higher.

In general, these specifications can be expressed in terms of 'content' (what

information is needed) and 'c~~ntext'. The context may be related to how the
PermIssion to copy without fee all or part of this maiirial is granted provided that the copies are not made or distributed for direct commerc~4 advantage.
the ACM copynght nolice and the lillc of the publicatitm and its date appear, and not~e is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requL:es a fee and/ or rpeclflc permission.

1987 AChl CJ-b9791-222-5/87/0003/0163 750

163

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24533.24543&domain=pdf&date_stamp=1987-03-01

system is presented to the user (when, how, and in what form the information is

presented to the user), how much resource is consumed to generate the needed

information (system efficiency considerations), how well the system is adapted

to its environment (implementation strategies of the system), or any combination

of these three. Figure 1 shows the major steps in the requirement analysis phase:

a static representation of the current or proposed system to ensure that it can

meet the 'content' needs and a dynamic representation of this system to test its

feasibility in meeting the context requirements defined by the user.

-----------------_c-____3__c____________--”--------------”--------------

CURRENT OR PRO- GENERATION OF
REQUIREMENT POSED SYSTEM FEASIBLE REQUIREMENT
DEFINITION REPRESENTATION ALTERNATIVES SPECIFICATION

/ ------------__------_________I__________--------------------------------
<DEFINITION> <-----REQUIREMENT ANALYSIS-----------> <SPECIFICATION>

--
Figure 1: A Framework for Requirement Analysis

The objective of this paper is to extend the well developed modelling capa-

bilities of Petri Nets to represent the information system of an organization and

to use PROLOG-based knowledge base to verity the information system repre-

sentation. The next section will discuss some earlier research with regard to

requirement verification. The third section will discuss the basic features of

Petri Nets as they are used to model the information system and how this modelling

can be represented as factual knowledge in PROLOG. The fourth section will use

the analytical properties of Petri Nets to define rules in the knowledge base and

their use in the verification process.

164

Information System Verification

In verifying for the content, one needs to test for the 'derivability of the

output' requested by the user using 'logic' and 'precedence' information of each

process in the static representation. Successive iterations of this step on each

output eventually should lead to the definition of the 'boundary conditions'

(where the system meets its external environment). When a complex system is re-

presented in a hierarchical manner, the successive iteration 'of the output

derivability step should also ensure consistency between levels in the hierarchy.

In addition, one needs to ensure that all the process and data flow/file defi-

nitions are consistent, i.e. there exists no redundant,or overlapping definition

of either the process or data.

The methods that have been used to verify a proposed information systems range

from a simple manual technique to complicated automated techniques. One simple

method is to have the system reviewed by users and other analysts using techniques

such as structured walk-throughs and do's and don't's associated with documenta-

tion conventions. Most of these methods are manual and, thus, are time consuming

when analysing large complex systems [Z].

A number of automated methods are discussed in the literature to assist the

analysis and design phases of system development. These methods usually use some

type of mechanism to ensure accuracy in the system representation. Software Re-

quirements Engineering Methodology/Requirements Engineering and Validation Sys-

tems (SREM/REVS) [l], Systems ARchitects Apprentice (SARA) (275, Systems

Descriptor and Logical Analyzer (SDLA) 191, PSL/PSA [25,26], SODA [ll] are soft-

ware products that use such methods. Refer to Olle [12] and Schneider f24] for

additional references. Many of these check for inconsistent definition of inputs

165

and outputs, and output derivability. More importantly, many of these tend to

be oriented to program verification rather than system verification. SREM/REVS

has been primarily used as a tool to test the software of weapon systems in a

dynamic environment [4].

PSL/PSA and SREM use automated cross referencing for verification, or provide

data flow, control flow and data structure diagrams for manual cross referencing.

These aids are good for checking consistency and closure properties such as

missing functions. PSL/PSA is shown to be weak, however, in hierarchical repre-

sentation and dynamic analysis [43. SREM is shown to be a good methodology but

is not a good verification tool [20,23].

Structured Analysis and Design Technique (SADT) [I9,21] and DFD [5] are com-

monly used in business today. Structured analysis techniques use data flow dia-

grams (DFD) to represent a system. These methods are excellent for user/analyst

communication, but these methodologies are primarily manual and have no analytical

basis for system verification.

Methodologies such as the Structured Requirements Definition of Orr 113,141

and Jackson System Development (which has a time dimension) of Jackson [7] suffer

from inadequacies such as lack of a theoretical basis for verification.

The Petri Net, developed by C.A.Petri 1171, is an abstract tool for modelling

information flow. It has become a powerful tool for modelling and analysis of

computer hardware and software systems [3,6,8,15,16,18]. Petri Nets are found

to be useful to model systems that exhibit events that are asynchronous, concur-

rent or sequential, constrained by precedence relationships, and have varying

execution time and frequency. These are based on sound mathematical principles

156

and can be computerized for efficiency in the verification process. E'or addi- .

tional discussion of Petri Nets see [lO,lSj. In this paper only the static

properties of Petri Nets are used for system verification within a knowledge base

environment.

Petri Net representation for defining the knowledge base

A Petri Net has two types of nodes called places (P) and transitions (T).

Places can be the input (I) or the output (0) of transitions. The state of the

system is defined by the tokens associated with each place. Tokens are indicated

by dots inside the places and the execution of a Petri Net is controlled by the

position and movement cJf these tokeis.
.

The placement of these tokens in a Petri

Net at any given instant of time is defined by vector M. The structure of a Petri

Net is, thus, represented by these three elements T, I(T) and O(T), and M re-

presents the state of the system.

The Petri Nets defined above can be represented as a Petri Net graph. The

places are represented as circles, transitions as vertical bars, and the func-

tional relation between places and transitions as directed arcs. The arcs can

be directed only between an element of one set (places or transitions) and an

element of the other set (transitions or places) . The static properties of a

system are represented by such a Petri Net graph and the dynamic properties of a

system result from its execution.

An example of a Petri Net representation is shown in Figure 2. Here 'order'

and 'catalog' represent input places (or conditions) and 'sales order' represents

an output place for the 'prepare sales order' transition. This Petri Net is

167

executed by firing or enabling the transition Tl. The transition is fired when

the two input places have at least one token in them, i.e. both the order and

catalog information are available. The result of such a firing is a token in the

output place as shown in Figure 3. For more discussion on the execution of a Petri

Net see Sakthivel and Tanniru [22].

The information about the places, transitions, and their relationship can be

represented in the knowledge base as shown below. For illustration, a simple

order validation system will be used here. The structured system representation

of this system is shown in Figure 4 and its equivalent Petri Net representation

is shown in Figure 5.

Table 1. Places, Transitions, and their relationships

---------------_---
.

places ([catalog, order, sales orderl, sales order2, credit available,
credit not available, accepted orders, rejected orders, sales. log,
product changes]).

transitions ([prepare sales order, update product changes, update sales
log, process orders for acceptance, process orders for rejection]).

input (prepare sales order, [order, catalog)).
output (prepare sales order, [sales orderl, sales order2, catalog]).
input (update product changes, [product changes, catalog]).
output (update product changes, [catalog]).
input (process orders for acceptance, [sales orderl, credit available]).
output (process orders for acceptance, [accepted order]).
input (process orders for rejection, [sales orderl, credit not

available]).
output (process orders for rejection, [rejected order]).
input (update sales log, [sales order2, sales log]).
output (update sales log, [sales log]).

1. Token Conservation: Since the firing of a transition removes the token from-

its input, certain places that have no input to them must contain an infinite

number of tokens. We can conserve such places, i.e. have it maintain a certain

168

number of tokens all the time, by making it a part of both the input and output

sets of that transition. Table 1 shows how the places such as 'catalog' and 'sales

log ' are conserved by representing them both as input and output of transitions

, T5 and T4 respectively. All files are represented typically in this manner.

2. Conflict in transition inputs: If a single place is an input to two transi-

tions, then only one of these transitions can be fired at any given point of time.

This type of structure allows for the representation of operational-conflicts (two

events that cannot occur at the same time). In Table 1, the 'catalog' place is

input to transitions Tl and T5. If each of these has to be fired immediately upon

receipt of the appropriate inputs, then only one of these two transitions can be

fired at any given point of time. These conflicts can be identitied in PROLOG

using the following rule:

conflict (TRl, TR2) :- input(TRl,X), input(TR2,Y), diff(TRl,TR2), shares(X,Y).

h'ote that the predicate 'diff' ensures that the system does not pick the same

transitions for conflict evaluation. The 'share' predicate tests for overlap

among the inputs.

3. Interpretative transitions: Conditional logic can be explicitly expressed in

a Petri Net rather than buried in the structured English associated with many

structured methodologies (see Figure 4). For example, if acceptance of a sales

order is based on the availability of credit, then two possible output places

(accepted order and rejected order) can result from this evaluation. This is

illustrated in Figure 2 by having these two output places generated by the firing

of appropriate transitions T2 and T3. Such conflict in the transitions due to

169

conditional logic can be determined in a manner that is similar to file based .

conflict discussed above except for the following change:

files ([catalog, sales log]).
conflict (TRl, TRZ):- input (TRl, X), input (TR2, Y), diff (TRl, TR2),

shared set(X,Y,Z), files(F), member (Z,F).

Note that the variable 'Z' extracts all the common elements between X and Y, and

member predicate checks to see if any of these are a subset of (permanent) files.

4. Hierarchical representation: The tokens in places 'credit available' and

'credit not-available' are derived from the sales order value and credit limit.

.This can be shown in a lower level Petri Net as in Figure 6. This type of hi-

erarchical structure in Petri Nets allows for a top-down, modular representation

of an information system consistently. Note that the places 'sales order' and

'catalog' are both in&t links to the lower level Petri Net and the places 'credit

available' and 'credit not-available' become the output links to the top level

Petri Set. These places will be- referred to as 'link nodes'. The knowledge base

representation for this lower 'level net is shown below:

link nodes ([catalog, sales orderl, credit available, credit not available]).
input (prepare order value, [catalog, sales order].).
output (prepare order value, [catalog, order value]).
input (process credit availability, [order value, credit limit]).
output (process credit availability, [credit available, credit limit]).
input (process credit nonavailability, [order value, credit limit]).
output (process credit nonavailability, [credit not available, credit

limit]).

Note that these are structurally similar to the knowledge base of the higher level

net, except that these are referred to as 'interpretative' transitions, since the

execution of these is based on an interpretation of the inputs rather than the.

existence of a token.

170

5. Precedence in transition firing: Precedence relationships in a Petri Net are

explicit as they include both the triggering mechanism (when each process is acted

upon) and informational dependency in their representation. This is contrary to

many structured methodologies which need a separate sequence diagram to illustrate

process interdependencies. In addition, if a sales log is updated whenever an

order is validated, it should be represented primarily as a parallel process to

order validation. However, a data flow diagram representation of this situation

may obscure such dependency information. The Petri Net representation of sales

log update, as shown in Figure 5, treats this parallelism explicitly. To accom-

plish this parallelism of (TZ,T3) and T4, sales order is named as sales order1

and sales order2, even though these represent same document. By adding a synonym

relationship as shown below, one can capture such parallelism.

synonym (sales order, [sales orderl, sales orderz]).

In summary, the Petri Net representation of an information system can be used

to create the facts about the problem domain (information system features). It

is in fact possible to derive the Petri Net representation from structured doc-

umentation such as data flow diagrams. The next section will illustrate how the

representation of a Petri Net can be used to verify the information system char-

acteristics.

Petri Net Representation for Information System Verification

Information systems, as demonstrated in the previous section, can be repres-

ented as a Petri Net, where places correspond to the availability of data and

transitions correspond to the processes that operate on these data. This section

171

will use such a Petri Net representation to perform the checks described in sec-

tion 2: input and output consistency, boundary definition, output derivability,

hierarchical consistency, and precedence relationships.

Input and Output Consistency: Here we are concerned with proper definition

of the input conditions that are needed to enable a transition and output condi-

tions that result from such a transition. Inconsistent definition of output

places (same place output by two different transitions) is often a result of ei-

ther improper naming of these output places or incorrect definition of the asso-

ciated transitions. For example, in Figure 5, if 'sales order' is defined as an

output of both 'prepare sales order' (Tl) and 'process orders for acceptance'

(T2), then the role of each transition is left ambiguous. However, if the output

place associated with 'process orders for acceptance' as 'accepted order', then

this ambiguity is eliminated. Alternately, the 'sales order' may be an input to

multipie transitions such as 'process orders for acceptance' and 'process orders

for rejection' as long as the conflicts are recognized. This consistency check

can be performed by using the following rule:

inconsistent (X) : - places (P), check consistency (P, X).

check inconsistency ([J,[J).
check inconsistency ([H,T], X):- multiple member (H,Headl),

check inconsistency (T, Taill), append (Headl, Taill, X).

multiple member (X,Y):- output (Z,List), output(Z1, Listl), diff (Z,Zl),
member (X, List), member (X, Listl), Y=X.

multiple member (X,[]).

These set of rules are used to select each place from the set of all places, send

them to multiple member function to see if this place is an output of more than

one transition, and return either the name of the place or a null value to the‘

calling routine 'check inconsistency'. In this calling routine, these results

are appended. Null value for this operation ensures input/output consistency.

172

An exception to this rule, however, exists. For example, sales order may be .

an output of 'prepare sales order' and 'process back order'. Such cases have to

be reconciled on a case by case basis.

Boundary conditions: In this example, 'order' and 'product changes' are ex-

ternal inputs to the system, while 'credit available' and 'credit not-available'

are the link nodes. Note that the catalog and sales order are the link nodes in

the lower level net. In addition, 'rejected order' and 'approved order' are

boundaries to the external system, and the 'credit available' and 'credit not

available' are the link nodes in the lower level'net. Also, places that appear

both as an input and output of a transition represent files. These nodes can be

identified using the following rule:
.

boundary nodes(X):- places (P), get candidate (P,X).

get candidate ([],[I).
get candidate ([HJT],X):- boundary (H,Head), get candidate(T,Tail),

append (Head,Tail,X).

boundary (L,M):- Transitions (T), check transition (T,L,M).
boundary (L,M):- files (F), member (L,F), M=[J.
boundary (L,M):- link nodes (K), member (L,K), M=[].
boundary (L,L).

check transition ([I,-,-).
check transition([H]T],L,-):- output (H,List), not member (L,List),

check transition (T,L,[]).
check transition (-,L,L).

Here the knowledge based system first selects a place, checks to see if it is a

member of any of the transition outputs, a member of files, or a member of link

nodes. If it is not any of these, it will then append to a list. Otherwise, it

will return a null value. This process is repeated for each place in the place

list.

173

Output derivability: This is primarily concerned .with the ability of the

system to generate the needed outputs from the *defir:nd input conditions. Even

though the highest level Petri Net corresponds to information flows in their ag-

gregate form, it is necessary to ensure that the conditional logic associated with

each of these output flows is clearly identified, i.e. what input conditions

generate each of these outputs, what conditions, in turn, are needed to generate

these input conditions, etc., until all the input conditions are shown to be de-

rived, external, conserved, or extracted from a lower/higher level Petri Net.

The rules related to precedence can be used to find out how each of the output

places is derived.

precedes (TRl, TRZ) :- output (TRl, Ol), input (TR2, 12), diff (TRl,TR2),
shares (01, 12), output (7X2, 02), input (TRl, Il),
not(shares(02, 11)).

Here this precedence rule is applied for each of the output nodes until all the

input places of the preceding transition are boundary node;.

Hierarchical Consistency: All the places that are identified as links to

lower/higher level Petri hTets (called 'link nodes') should have appropriate en-

tries in these nets. This derivation is implicit if all the nets are in the same

knoxledge base since there is no representational difference between the higher

level or lower level nets. However, if these are in distinctly different data

(facts) bases, then one need to test for their internal consistency.

Each of these nets should be consistent, well defined in terms of boundaries,

and have output derivability. One should be able to collapse, if needed, these

nets without any effect on the rest of the Petri Net. The collapse should result

in the extraction of only the 'boundary nodes' as-the free (not an output of any

transition) nodes.
174

Precedence information: Given that the representation requires the identifi-

cation of what input conditions are needed to generate an output place, the se-

quential nature of the processes is explicitly represented in a Petri Net. The

. path derived in the output derivability will also ensure that all the precedence

information is incorporated in the representation. The synonym relationship is

used here to identify any parallel paths.

In summary, the knowledge base derived from the Petri Net representation and

its static properties can be used to effectively verify the system before it is

used for performance evaluation and, possible, design.

Conclusions

Requirement analysis in systems development plays a critical role in allowing

the analyst and user develop an accurate requirement specification. This re-

quirement specification (both the content of the information to be presented and

the context under which this presentation is to occur) is used for an eventual

system design. This paper illustrates how a Petri Net representation can be used

to capture the knowledge about the system, and use the analytical properties of

these Petri Nets to verify the system representation. The structural properties

of the Petri Nets are amenable for automation and such automation using

PROLOG-based knowledge base is illustrated.

Since one can derive the Petri Net from other structured tools such as data

flow diagrams, structured English, and process sequence diagram, the incremental

effort to transform a system from these representations to Petri Net is minimal.

This transformation allows one to use data flow diagrams for effective user com-

175

munication and knowledge base, . built from Petri Net representation, for effective

verification.

References

[I] T.E.Bell, D.C.Bixler and M.E.Dyer, ltAn Extendable Approach to Computer-Aided
Software Requirements Engineering," IEEE Transactions on Software Engineering ,
Vol SE-3,Nol,Jan 1977, pp 49-59.

[2] B.W.Boehm, '*Validating and Verifying
ifications," IEEE Software , Vol 1, No 1,

[3] W.Brauer, Net Theory and Applications

[4] G.B.Davis and C.R.Vick, ?l?he Software
on Software Engineering , Vol SE-3, No 1,

.

Software Requirements and Design Spec-
Jan 1984, pp 75-88.

2 Springer Verlag, NewYork, 1980.

Development System," IEEE Transactions
Jan 1977, pp 69-84.

[5] T.DeMarco, Structural Analysis and Systems Specification , Yourdon Press,
NewYork, 1978.

[6] C.Girault and W.Reisig, _AEPlication and Theory of Petri Nets , Springer
Verlag, NewYork, 1982,

[7] M.A.Jackson, Systems Development , Prentice Hall International, London, 1983.

[8] IEEE international Workshop on Timed Petri Nets , Torino, Italy, 1985, IEEE
Catalog Number 85CH2 187-3.

[9] E.Xnuth, F.Halasz and P.Rado, "System Descriptor and Logical Analyzer," in
T.W.Olle, H.G.Sol and A.A.Verrijn Stuart, Information System Design and
Methodologies-A Comparative Review ,Proceedings of IFIP WG 8.1 Conference, North
Holland Publishing Co., NewYork, 1982, pp 143-172.

[lo] T.Murata, "Petri Nets and Their Application - An Introduction," Management
and Office Information Systems , edited by Shi-Kuo Chang, Plenum Publishing Cor-
poration, 1984.

[ll] J.F.Nunamaker, " A Methodology for the Design and Optimisation of Information
Processing Systems," AFIPS conference proceedings , Vol 38, 1971.

1121 T.W.Olle, H.G.Sol and A.A.Verrijn Stuart, Information System Design and
>lethodologies-A Comparative Review ,Proceedings of IFIP WG 8.1 Conference, North
Holland Publishing Co., NewYork, 1982

f13] K.T.Orr, Structured Systems Development , Yourdon Press, NewYork, 1977. -

[14] K.T.Orr, Structured Requirements Definition , Ken Orr and Associates Inc,
Topeka, KS, 1981.

‘176

[15] J.L.Peterson, :'Petri Nets," Computing Surveys , ACM, Vol 9, No 3, Sep 1977,
pp 223-252.

[16] J.L.Peterson, Petri Net Theory and Modelling of Systems , Prentice Hall Inc.,
NewYork, 1981.

' [17] C.A.Petri, Kommunikation mit Automaten , University of Bonn, 1962; English
translation by C.F.Greene Jr. "Communication with Automata", supplement 1 to Tech.
Report RADC-TR-65-377, Vol I, Rome Air Development Center, Griffis Air Base, Rome,
KY . 1965.

[18] W.Reisig Petri Nets-An Introduction , Springer Verlag, NewYork,l982.

[19] D.T.Ross, "Structured Analysis (SA): A Language for Communicating Ideas,"
IEEE Transactions on Software Engineering , Vol SE-3, No 1, Jan 1977 pp 16-33.

[20] P.A.Scheffer, A.H.Stone, W.E.Rzepka, tA Case Study of SREM," Computer , Vol
18, No 4, April 1985, pp 47-54.

[21] D.T.Ross and K.E.Scheman, "Structured Analysis for Requirements Definition,fl
IEEE Transactions on Software Engineering , Vol SE-3, No 1, Jan 1977, pp 6-15.

[22] S.Sakthivel and Mohan R. Tanniru, 'Information System Verification and Val-
idation during Requirement Analysis.-using Petri Nets', School of Management,
Syracuse.University, Syracuse, New York, 13210.

(23] A.E.Salwin, "A Test Case Comparison of URL/URA and RSL/REVS,ti Tech. report
FS-77-161, Fleet Systems department, The John Hopkins University, Applied Physics
Laboratory, Laurel, Maryland.

[24] H.J.Schneider, Formal h!odels and Practical Tools for Information Systems --
Design - Proceedings of lF,P TC.8 Conference North Holland Publishing Co.,
NewYork, 1979. Verlag, NewYork, 1980, pp 307-320.

[25] D.Teichroew, '*Problem Statement Analysis: Requirements for the Problem
Statement Analyzer [PSA]-ISDOS", Department of IE, Univ. of Michigan, AnnArbor,
1977.

[26] D.Teichxoew and E.A.Hershey, 11 PSL/PSA-A Computer-Aided Technique for
Structured Documentation and Analysis of Information Systems," IEEE Transactions
on Software Engineering , Vol SE-3, No 1, Jan 1977, pp 41-48.

[27] J.W.Winchester and G.Estrin, "Requirements Definition and its Interface to
SARA Design Methodology for Computer Based Systems," National Computer Conference
, ;982, pp 369-379.

177

Catalog (P2)

order (Pl)

Petri Net representation

1 Catalog

Dfd representation

Figure 2: Petrinet and Dfd representation of order preparation
process

catrlog (P2)

Salts ordti

17
Tl

order (Pl)

(a) before ffiing (b) after fixing

crmlog (P2)

B1
Sales order

*

Tl

or&r (Pl)

Flnurc 3: Exscution of 8 Pctrinrt

178

accepted order
Credit file

pi

PI: Upon rac‘alving an orderfra a CUS~OICE
- gst product

P
rice from catalog;

- prepare a aa esordcr using product price information.

P2: Upon rbcolvFng 3 138lao order,
- record the order arrival ln a Salaa log;
- obtofn credit litit for the custormr from the credit file;
- compute order ~31~3;
- if or&r vrlue < credit limft arend the accepted order to wazehouae,
- eloe (ordar value> credit lidt) send the rajactad or&r

to the customr.

P3: Upon racrltig price changer from a vendor, '
- record them changsa In tb product Catalog.

Sequencu Dbgrrm:

P3 0
FL-it 4: Structured representation (&tar Sow diagram,

structured ki;ngIlgh and s@quencc dlap;rxm) of an
"orciar validation” aystsm.

179

29: product changea P4: credit sverilable

T5 P3: sales order

f-L

Pl:

P3': sales order P5: credit
- .

P7 : rr'L j i-tclted
ordera

@ T4: update sales log

P8: sales log

Figure 5: Order Processing System

180

P2: cbtalog ' PO: cthdit l vaileblc

1

w P3 P6: accepted

-

P1: order I
I

I
I .

Tl

c/: reJecrca
order

- I

PS: credit ;T3
xwt moilrbltl

,

credit limit
,I.-

cL-c-- C-

I
.’

P2: catalog I

(IT----- _f -- I -1 ordxlue

4 -1.- -
P4: cre!dCW -

available .

process . I
credit
availability - 1

I

Pf: credit not-
I available

7'2: proctsr credit
non-availability

credit limit

Figure 6: Hferarchial decomposition of a Petrinet

18.1

