
Bounds on Information Exchange for Byzantine
Agreement

DANNY DOLEV AND RijDIGER REISCHUK

IBM Research Laboratory, San Jose, California

Abstract. Byzantine Agreement has become increasingly important in establishing distributed properties
when errors may exist in the systems. Recent polynomial algorithms for reaching Byzantine Agreement
provide us with feasible solutions for obtaining coordination and synchronization in distributed systems.
In this paper the amount of information exchange necessary to ensure Byzantine Agreement is studied.
This is measured by the total number of messages the participating processors have to send in the worst
case. In algorithms that use a signature scheme, the number of signatures appended to messages are
also counted.

First it is shown that Q(m) is a lower bound for the number of signatures for any algorithm using
authentication, where n denotes the number of processors and t the upper bound on the number of
faults the algorithm is supposed to handle. For algorithms that reach Byzantine Agreement without
using authentication this is even a lower bound for the total number of messages. If n is large compared
to t, these bounds match the upper bounds from previously known algorithms. For the number of
messages in the authenticated case we prove the lower bound n(n + t2). Finally algorithms that achieve
this bound are presented.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems-
network operating systems; D.4.5 [Operating Systems]: Reliability-verijication

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Distributed systems, reliability, Byzantine Agreement

1. Introduction

Reaching agreement in a distributed system is essential for maintaining coordina-
tion and synchronization among the participating processors. This problem has
been modeled in the following way.

The distributed system consists of n processors, of which up to t may be faulty.
The processors are completely interconnected. One of these processors, called the
transmitter, sends a private value v to the other processors. They then have to
reach agreement on which value the transmitter has sent.

The type of agreement studied in this paper is called the Byzantine Agreement
[141 and it is achieved when

(i) all correctly operating processors agree on the same value;
(ii) if the transmitter is correct, then all correctly operating processors agree on its

value.

Authors’ present addresses: D. Dolev, Institute of Mathematics and Computer Science, Hebrew
University, Givat Ram, 91904 Jerusalem, Israel; R. Reischuk, Fakultat Mathematik, Universimt
Bielefeld, 4800 Bielefeld 1, West Germany.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 l/85/0100-0191 $00.75

loumal of the Association for Computing Machinery, Vol. 32, No. I, January 1985, pp. 19 I-204.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2455.214112&domain=pdf&date_stamp=1985-01-01

192 D. DOLEV AND R. REISCHUK

For establishing the agreement, information has to be exchanged. In this paper
we present lower bounds on the amount of information exchange to ensure that
agreement is reached.

Several algorithms for obtaining Byzantine Agreement have been published [3,
4,6,9, 10, 12-151. Without authentication, the best algorithm is the one presented
in [lo], in which the agreement is achieved within 2t + 3 phases while exchanging
O(nt + t3) messages in the worst case. The best solution using authentication is
presented in [9]; it requires t + 1 phases and O(nt + t*) messages, where each
message may contain several signatures. This algorithm may exchange O(nt* + t3)
signatures; by a slight modification and one additional phase, this number can be
reduced to O(nt -k t’). Previous papers give lower bounds either on the ratio
between correct and faulty processors [3,4, 151 or on the number of phases [1,7-
9, 111.

In this paper we concentrate on algorithms using authentication and analyze
how many messages have to be exchanged t,o reach Byzantine Agreement. We
prove that in the worst case any algorithm must exchange Q(n + t*) messages and
Q(nt) signatures. The lower bound for the number of messages in the authenticated
case differs from the known upper bound. To close this gap, we present an algorithm
that, within O(t) p:hases, sends only O(n + t’) messages. For n much larger than t
there is an even simpler and better solution with t + 3 + t/a phases and O(an)
messages for 1 5 cx I t. The solution introduces a trade-off between the number of
messages and the number of phases. This paper is a complete version of [5].

Concentrating on algorithms that use authentication does not mean sacrificing
practicality, since i.n a real distributed system one can assume that no processor
sends wrong information on purpose, and a simple error correction code instead
of a signature scheme can be used to get applicable results.

The lower bounld on the number of signatures implies a lower bound on the
number of messages in the unauthenticated case. Therefore, for the amount of
information exchange, the algorithm in [lo] is the best possible to within a constant
factor in the case in which n is bigger than t*.

2. Histories
We first have to define a formal model for the class of algorithms we are looking
at. Because we wa:nt to establish lower bounds, we use a more general notation
than the one in [6]..

Let PR be a set of n processors. A phase for PR is a directed graph with nodes
corresponding to processors in PR and with labels on the edges. A label on edge
(p, q) represents th.e information sent from processor p to processor q during the
given phase. We as,sume that when no message is sent there is no edge. A history
for PR is a finite slequence of n node phases. There is also a special initial phase
called phase 0, which contains only a single inedge. This edge goes to a special
processor called transmitter and it is labeled with exactly one value v from a set V
of values. (The assumption is that the inedge at phase 0 carries the value that the
transmitter is to send and that V is the set of all values it might send.)

A subhistory of a history H is an initial segment of H. For each subhistory H’
of H and every processor p there is a unique subhistory pH’ called the individual
subhistory of H’ fiw- p. It consists of only those edges in H’ with target p. We
assume that, for each labeled edge, processor p knows the source of that edge. This
means no processor can send a message to p claiming to be somebody else. Note
that at the beginning of phase k the individual subhistory p&-i, which is derived

Bounds on Information Exchange for Byzantine Agreement 193

from the first k - 1 phases, is all that processor p has to work with; it cannot have
any other information about the states of other processors. Let the set ISH contain
all possible individual subhistories and MSG be a (large enough) set of labels
(messages).

An agreement algorithm for PR consists of a set of

correctness rules RP: ISH x PR + MSG,
decision functions F,: ISH + 2 ‘.

Given a (k - 1)-phase individual subhistory for p and a processor q, the
correctness rule RP produces a label for the edge in phase k from p to q. The
decision function F, maps individual subhistories for p into the power set of V. If
FP is a singleton set, we say that p has decided on the value.

With respect to a given correctness rule, a processor p is said to be correct at
phase k of history H if the following condition holds: Each edge from p to a
processor q in phase k has a label as specified by the correctness rule for p when it
is applied to the individual subhistory of H for p consisting of the previous
k - 1 phases. A processor p is correct in history H if it is correct at each phase of
H. We call a history t-faulty if at most t of its processors are incorrect.

We say Byzantine Agreement can be achieved for n processors with at most t
faults if there is an agreement algorithm for PR such that, for any t-faulty history
H, the decision functions FP obey the conditions of Byzantine Agreement:

(i) if processors p and q are correct in H, then FJpH) = F,(qH);
(ii) if the transmitter and processor p are correct in H, then FJpH) = v, where v

is the transmitter’s value.

3. A Lower Bound on the Number of Signatures in the Authenticated Case
We consider the worst-case behavior in which a faulty processor can invent any
unauthenticated information. But we allow the processors to share a signature
scheme that enables each one to sign its messages so that every receiver will
recognize them as being signed by it and no one can change the contents of
a message or the signature undetectably. Such a scheme is the one suggested in
[2] and [16] and its use for Byzantine algorithms is described in [6], [9], [14],
and [151.

We allow faulty processors to collude for cheating. Therefore every message that
contains only signatures of faulty processors can be produced by them.

Since there exists an algorithm for reaching Byzantine Agreement without using
signatures, the lower bound is meaningless unless we somehow count the messages
that do not contain signatures. We make the technical assumption that every
message in an authenticated algorithm carries at least the signature of its sender.
Alternatively, the lower bound given below holds if one counts the number of
signatures together with the number of messages without signatures.

THEOREM 1. If Byzantine Agreement is achieved by an agreement algorithm
that handles up to t (t < n - 1) faults, by using authentication, then there exists a
history without any faults in which the total number of signatures being sent by
correct processors is at least n(t + 1)/4.

PROOF. Let H be the history in which all processors are correct and the
transmitter’s value is 0, and G the one in which all are correct and the transmitter’s
value is 1. Let p be any processor. By condition (ii) for Byzantine Agreement,

194 D. DOLEV AND R. REISCHUK

F,(pff) = 0 and FJpG) = 1 (The decision rule for p has to yield 0 in history H
and 1 in history G).

Denote by A(&,) the set of all processors that either receive the signature of p or
p receives their signatures in at least one of the two histories. If for each processor
p the set A(p) contains at least t + 1 processors, then the theorem obviously holds.
Notice that the transmitter is not necessarily in A(p).

Assume to the contrary that there exists a processor p for which the cardinality
of A(p) is at most t. Let H’ be the history in which the processors in A(p) are
faulty behave towau-d p as in H and toward all the rest of the processors as in G.

The processors jin A(p), as faulty processors, are able to do so, because all the
messages to correct processors, other than p, do not contain p’s signature and all
the messages to p contain only signatures of processors in A(p).

Therefore, in H;’ the correct processor p sees the same subhistory as in H (pH =
pH’). Since pH’ is all the information available to p when applying its decision
function FP, we can conclude that F,(pH’) = F,(pH) = 0. On the other hand,
each correct proce:ssor q other than p sees the subhistory it saw in G and by the
same argument Fr(qH’) = F,(qG) = 1 must hold. Notice that there is such a correct
processor q since *we assume t < y1 - 1. This violates condition (i) of Byzantine
Agreement. There:fore, a correctly operating Byzantine Agreement algorithm can-
not allow any processor to “exchange” less than t + 1 signatures with other
processors in H and G altogether. Notice that we have established this (worst case)
lower bound not for some weird history, but for a history in which every processor
behaves correctly. Cl

If authentication is not available, this lower bound applies directly to tine number
of messages that h,ave to be sent.

COROLLARY 1. If Byzantine Agreement is achieved by an agreement algorithm
that handles up to t (t < n - 1) faults, without using authentication, then there
exists a nonfaulty history in which the total number of messages being sent by
correct processors is at least n(t + 1)/4.

PROOF. The basic assumption for algorithms that reach Byzantine Agreement
without using authentication is that a processor can identify only the immediate
source of every message it receives. Any processor p can claim to have received a
certain message from another processor q, and a processor z, different from p and
q, cannot decide whether this is true or not (except in the special case where z has
already detected t faulty processors and p is not among them).

This is equivalent to the assumption that every message carries exactly one
signature, the signature of the last sender of that message. Therefore, we can
conclude from Th.eorem 1 that at least n(t + 1)/4 messages are necessary in any
algorithm that does not use authentication. 0

4. A Lower Bound on the Number of Messages in the General Case

Sometimes the overhead for sending a message costs more than the message itself;
and, therefore, it makes sense to find algorithms that minimize the number of
messages. Since a message with several different signatures appended can contain
much more verifiable information than the same message without these signatures,
we do not necessarily need the same number of messages as in the unauthenticated
case. In this sect:ion we present a lower bound on the number of messages,
independent of the size of a message or the information it carries.

Bounds on Information Exchange for Byzantine Agreement 195

As we have proved in the previous section, if we use fewer than n(nt) messages,
some must carry several signatures. In this section we show that in certain histories
at least Q(n + t’) messages have to be sent to ensure that agreement has been
reached.

THEOREM 2. If Byzantine Agreement is achieved by an agreement algorithm
that handles up to t (t < n - 1) faults, then there exists a history H in which the
correct processors send at least max((n - 1)/2, (1 + t/2)*) messages.

PROOF. As in the previous proof, let H (respectively, G) be the history in which
all processors are correct and the transmitter sends the value 0 (respectively, 1).
One of these values, let us say 0, must have the property that there exists a set Q
of at least I(n - 1)/21 processors different from the transmitter such that each one
does not agree on 0 if it receives no messages at all. This implies that the correct
processors in H must have sent at least f(n - 1)/21 messages.

Now assume that the maximum is achieved by the second term. Let B be a
subset of Q of size Ll + t/2J and let A be the remaining processors. We cannot
prove that every processor has to send or receive a certain number of messages
increasing with t, because efficient authenticated algorithms tend not to be homo-
geneous. But by playing with histories we shall show that there exists a history H’
in which each processor in B is faulty and can force the correct processors in A to
send it at least I1 + t/21 messages.

Let H’ be the following history: Every processor in A is correct; the transmitter
correctly sends the value 0. Each processor q in B never sends a message to other
processors in B. Toward processors in A, such a processor q behaves like a correct
processor with one exception-it ignores the first i-t/21 messages received from
processors in A (it ignores all of them if it gets fewer than rt/21). This defines a
valid history with Ll + t/21 faulty processors in which the correct processors in A
have to agree on value 0, because the transmitter is correct and has sent this value.

Assume that there is a faulty processor p in B that gets at most rt/21 messages
from processors in A. Let A(p) be the set of processors of A that have sent messages
to p in H. To obtain the contradiction, we change H’ into history H” in which p
is correct and all the processors in A(p) are incorrect. They behave like correct
processors except that they do not send any messages to p. Processors in B different
from p ignore any message they get from p.

By definition, the faulty processors in B - 1 p) and A(p) behave toward the
correct processors in A in history H” in exactly the same way as they do in H’.
Since p in H’ simulates the behavior of a correct processor that has not got the
first Lt/2J messages it was supposed to get, there is also no difference between the
behavior of p toward processors in A in H’ and H”. Therefore, each correct
processor q other than p sees the same subhistory in both cases (qH’ = qH”), and
at the end it must agree on value 0 because F,(pH’) = 0.

But the correct processor p receives no messages at all in H”. Therefore, by
definition of the set B, it does not agree on 0. This leads to a contradiction, which
proves that in H’ every processor in B must receive at least I1 + t/21 messages
from correct processors. Cl

Theorem 2 also holds in the case when faults are much more limited because
the proof only uses the ability of a faulty processor to send to some and not to
others. This observation is not true, in general, for Theorem 1.

196 D. DOLEV AND R. REISCHUK

5. A Linear Algorithm for n L t3
None of the known authenticated algorithms uses authentication to substantially

reduce the number of messages required to be sent in the case in which n is much
larger than t. In ,this case the best-known algorithms, with and without authenti-
cation, require O(nt) messages [9, lo] in the worst case. However, for large n,
Theorem 2 implies only a linear lower bound, and the Q(nt) lower bound of
Theorem 1 only holds for the total number of signatures that have to accompany
messages. Since we can append many signatures to a message, there may exist an
authenticated algorithm that, after reaching the agreement among some set of
active processors, sends only a linear number of messages to inform the rest about
the agreement.

In this section we present such an algorithm. The number of phases it needs
does not exceed the minimal number t + 1 by more than a small constant factor.
But many messages carry Q(t) signatures.

We may assume that n is at least 2t + 1; otherwise, the algorithm in [9] sends
as many messages as the lower bound in Theorem 2. We consider the case
n = 2t + 1 and describe two algorithms. The first, working in t + 2 phases, sends
fewer messages than the previously known algorithms. The second uses more
phases, but at the end every correct processor agrees on the same value and also
has a one-message proof for the outside world. It possesses a string that says what
the common value is, and this statement is signed by at least t other processors.

Throughout this section we assume that all processors are completely synchro-
nized and that, as in the lower bound proofs, the values the transmitter may send
are 0 or 1. If the tr,ansmitter can send more than two values, one has to modify the
algorithms slightly.

Instead of using the formal model defined in Section 2 (which seems to be
appropriate for lower bound proofs), we prefer a more informal description for the
following algorithms.

For the first algorithm let q be the transmitter and partition the 2t remaining
processors into two sets A and B, each of size t. Let G be the graph that is formed
by the complete bipartite graph with A and B as the sets of nodes, to which we add
a node q and edges from q to every other node. We call the message a processor p
receives at phase k; for k = 1, . . . , t + 2, a correct l-message if it consists of value
1 with signatures appended to it and if the sequence of processors that signed that
message, together Iwith p, forms a simple path of length k from q to p in G.

ALGORITHM 1
Phase 1. The transmitter signs and sends its value to every other processor.
Phases 2 to t + 2. Whenever a processor in A (respectively, B) gets. a correct l-message
for the first time, it signs and sends this message to everybody in B (respectively, A).
Decision Function: A processor in A or B decides that the value is 1 if by phase t + 2 it has
received a correct l--message; otherwise, it agrees on value 0.

THEOREM 3. For n = 2t + 1 Algorithm 1 is a (t + 2)-phase authenticated
algorithm for reaching Byzantine Agreement among n processors with at most t
faults that does not require sending more than 2t2 + 2t messages.

PROOF. We first prove the correctness of Algorithm 1. If the transmitter
correctly sends value 1 at the first phase, then every processor gets a correct l-
message at phase 1 and each correct one will decide value 1 according to the
decision function. If, on the other hand, the transmitter correctly sends value 0 at
the first phase, no processor will ever be able to send a correct l-message; therefore,
the correct processors will agree on value 0.

Bounds on Information Exchange for Byzantine Agreement 197

There remains the case in which the transmitter is faulty and sends different
values to different processors. If, in this case, a correct processor p agrees on value
1, p must have received a correct 1 -message the first time at some phase k 5 t + 2.
Assume first that k 5 t. At phase k + 1, p will send a correct l-message to every
processor in the set not containing p; let us assume that this is A. At least one
processor z of the t processors in A must be correct, since we assumed the transmitter
to be faulty and the total number of faulty processors is bounded by t. Now z will
send a correct l-message to every processor in B at phase k + 2, and hence every
processor has got a correct l-message by phase t + 2.

If p receives the first correct l-message at phase t + 1 or t + 2, then among the
first t + 1 processors having signed this message there must be at least one correct
processor p’. Processor p’ must have received a correct l-message by phase t.
Therefore, this case reduces to the former one.

The transmitter has to send exactly 2t messages. Each of the remaining 2t
processors can correctly send at most one message to t other processors. Therefore,
the number of messages is bounded by 2t2 + 2t. Cl

The second algorithm is an extension of the first one. It has 2t + 1 additional
phases. Let the processors be p(l), . . . , p(2t + 1). We call a message that is received
by some processor p(j) after phase t + 2 increasing if it consists of the value to
which p(j) has committed in phase t + 2 together with signatures of processors
with labels less than j in an increasing order.

ALGORITHM 2
Phases 1 to t + 2. Run Algorithm 1 and decide on the common value.
Phaset+2+jfor 1 sjs2t+ 1. Let m(j) be one of the increasing messages p(j)
has received so far with a maximum number of signatures appended to it. If it has not
received any message, then m(j) is only the common value. Processor p(j) signs m(j) and,
if m(j) carries at least f signatures, p(j) sends this message to every other processor, else only
to processors with labels between j + 1 and j + t + 1.

THEOREM 4. For n = 2t + 1 Algorithm 2 is an authenticated algorithm that
reaches Byzantine Agreement among n processors with at most t faults such that
after 3t + 3 phases each processor possesses a message containing the common
value with at least t dtgerent signatures of other processors appended to it. No
processor can have such a message with a value dtflerent from the common value.
The algorithm requires sending at most 5t2 + 5t messages.

PROOF. After phase t + 2, each of the processors with labels between 1 and t
sends at most t + 1 messages to other processors, whereas the remaining ones
might send up to 2t each. This adds up to

2t2 + 2t + t(t + 1) + (t + 1)2t = 5t2 + 5t.

It is easy to see that faulty processors cannot produce a message with t + 1
signatures on a value other than the correct one. It remains to be shown that by
phase 3t + 3 each processor has received the common value with at least t other
signatures appended.

Let p(id, . . . , p(i,) be the sequence of correct processors ordered by their labels
(r 2 t + 1). Since between two succeeding ones there can be at most t faulty
processors, one can easily prove that for any 1 < j I r, p(b) receives from p(ijml)
the common value with at least the j - 1 signatures ofp(i,), . . . , p(i&J by phase
t + 2 + 4. (A faulty processor signing an increasing message obviously does not
hurt the correctness of the algorithm.) Therefore, p(i,) will send an increasing
message with at least t + 1 different signatures to every other processor. 0

198 D. DOLEV AND R. REISCHUK

Now assume that II is bigger than 2t + 1 and that the processors are ordered in
some arbitrary way starting with the transmitter. Let (Y be the smallest quadratic
number bigger than 6t. If n happens to be smaller than LY as in [9], one can extend
the first Algorithm by 1 phase and (t + l)(n - 2t - 1) = O(t*) messages and still
achieve an O(n + t*) upper bound. Therefore, assume n L CL We first describe a
simple algorithm for the case y1 2 t3.

Let us call the first 2 t + 1 processors including the transmitter active processors
and the m := n -. (2t + 1) remaining ones passive.

Divide the passive processors into r disjoint sets of size s, where r = rm/sl. The
algorithm is parameterized by the size s of these sets. Every set has a “root,” which
will receive the val.ue from the active processors. Every processor knows the other
members of its set.. For a set C, let c(l), c(2), . . . , c(s) be the elements in C, where
c(1) is the root.

The algorithm g:iven below informs the processors in each set about the value on
which the active processors have agreed on while running Algorithm 1. Within the
algorithm we call this value the correct value.

ALGORITHM 3
Phases 1 to t + 2. The active processors run Algorithm 1.
Phase t + 3. Each active processor sends the correct value to the root c(1) of each set C.
Each root defines message m(1) to be that (unique) value v it received from at least t + 1
active processors.

For each set C and for every 2 5 j 5 s:
Phase t + 2j. c(1) sends m(j - 1) to c(j).
Phase t + 2j + 1. If at the previous phase processor c(j) has received exactly one value
from its root with possibly some signatures of processors c(2), . . . , c(j - 1) appended to it,
it signs this message and returns it to c(1). If c(1) receives m(j - 1) back from c(j) with the
signature of c(j) appended, it defines this message to be m(j); else, m(j) := m(j - 1).
Phase t + 2s + 2. c(1) sends m(s) to every active processor.
Phase t + 2s + 3. For each active processorp and each set C, let m(p, CT’) be the message
p received from the root of C at the previous phase. Active processor p sends the correct
value to every processor c(j) (1 < j 5 s) for which m(p, C) does not contain the correct
value and the signature of c(j) appended to it.
Decision Function. An active processor agrees according to Algorithm 1. A root of a set
agrees on m(1) as defined in phase t + 3. If in the last phase a processor c(j) with j > 1
receives a value v from at least t + 1 active processors, it agrees on v; otherwise, it agrees on
that value that it received from its root at phase t + 2j.

LEMMA 1. Algorithm 3 is an authenticated algorithm that reaches Byzantine
Agreement among n processors with at most t faulty processors within t + 2s + 3
phases by sending at most 2n + &n/s + 3t*s messages.

PROOF. The correctness of Algorithm 3 is evident from the following fact.

Fact. If the root of a set C is correct (a correct processor) then, for each j, 1 I
j I s, m(j) contains the correct value and m(s) contains the signature of each
correct processor in C (except the root) and will be received by each active processor
at phase t + 2s + 21.

Therefore, if a correct processor c(j), j > 1, of a set C receives a value from at
least one correct active processor at the last phase, then the root of C must be
incorrect. If c(j) gets a value from at least t + 1 active processors at the last phase,
at least one of them must be correct; hence that value must be the correct value.
Otherwise, there must be at least one correct active processor p such that m(p, C)

Bounds on Information Exchange for Byzantine Agreement 199

contains the correct value and the signature of c(i). This implies that the message
m(j - 1) sent from c(1) to c(j) contains the correct value and c(j) will agree on it.

The number of messages sent by correct processors does not exceed 2t2 + 2t for
phases 1 to t + 2, (2t + 1)r for phase t + 3, 2(m - r) for phases t + 4 to t + 2s +
1, (2t + 1)r for phase t + 2s + 2, and (2t + l)t(s - 1) for the last phase. The last
bound holds because there are at most t sets with incorrect roots, each one missing
at most s - 1 signatures of processors in that set. Altogether this can be bounded
by 3t2s + 2n + 4tn/s. 0

THEOREM 5. There exists an authenticated algorithm that reaches Byzan-
tine Agreement among n processors with at most t faults while sending at most
O(n + t3) messages.

PROOF. Lemma 1 implies that, by choosing s = 4t in Algorithm 3, the number
of messages is bounded by O(n + t3). 0

6. An O(n + t2) Algorithm for the General Case
In this section we present a more complicated algorithm for a further reduction of
the number of messages. If n is sufficiently smaller than t3 and the active processors
behave as in Algorithm 3, they would send more than O(n + t2) messages in the
worst case. In this situation Algorithm 5 (described below) will match the lower
bound. This algorithm is more intricate and requires sending long messages. Such
an algorithm may be of less practical interest, but at least it shows that for any
ratio between correct and incorrect processors the lower bound of Theorem 2 is
tight.

First let us consider a slightly different problem. Assume that there are N = m2
processors; each wants to send a value to everybody else and the object is to
minimize the number of messages that have to be sent. There is the obvious
solution by which N(N - 1) messages are sent in one phase.

If, at most, t processors are faulty, this problem could be solved by the following
two-phase algorithm:

Select t + 1 processors; they will play the role of relay processors. At phase 1 each processor
signs and sends its value to every relay processor. A relay processor combines all the
incoming messages and its own value to one long message and sends it to every nonrelay
processor at phase 2.

This procedure requires sending at most (N - l)(t + 1) + (N - t - l)(t + 1)
messages. It is easy to show that O(Nt) is also a lower bound for the number of
messages in case each correct processor is required to receive the value of every
other correct processor. If only a high percentage of correct processors are required
to exchange their values, then, as Algorithm 4 shows, one can substantially save in
the number of messages for small values of N.

Denote the m2 processors by p(i, j), where 1 I i, j I m, and let M(i, j) be the
value of p(i, j). We say that a message has a correct format if it contains a value
followed by signatures, as required by the algorithm. A processor ignores messages
that do not have a correct format.

ALGORITHM 4
Phase 1. p(i, j) signs and sends its value M(i, j) to p(i, k) for all 1 c k 5 m. Define
Ml(i, j, k) to be the message p(i, j) received from p(i, k), if the message does not have a
correct format (a value signed by p(i, k)) define Ml(i, j, k) to be the empty string.
Phase 2. p(i,j) sends [Ml(i,j, I), . . . , Ml(i, j, m)] to ~(1, j) for all 1 5 1~ m. If the
message p(i, j) received from ~(1, j) at this phase has a correct format (a list of up to m

200 D. DOLEV AND R. REISCHUK

strings in which each string is a value signed by one of the processors p(/, 1), . . . , ~(1, m)),
then it defines M2(i, j, I) to be this message, otherwise M2(i, j, 1) is the empty string.
Phase 3. p(i, j) sends [M2(i, j, 1), . . . , M2(i, j, m)] to p(i, k) for all 1 I k I m. Denote by
M3(i, j) the set of nxssages p(i, j) received from processors p(i, 1), . . . , p(i, m).

LEMMA 2. If there are at most t faulty processors, then there is a set P of at
least N - 2t correct processors such that for each p(i, j), ~(1, k) E P the set of
messages M3(i, j) includes the value M(1, k) signed by ~(1, k).

PROOF. Let P be the set of all correct processors p(i, j) of which the set p(i, I),
. . .) p(i, m) contains less than m/2 faulty processors. At most t correct processors
do not appear in A~; hence the size of P is at least N - 2t. A correct processor
p(i, j) receives the value M(1, k) signed by a correct processor ~(1, k) if for some x
both ~(1, x) and p(i, x) are correct processors. This clearly holds when each one of
the sets, ~(1, l), . . . , ~(1, m) and p(i, I), . . . , p(i, m) contains less than m/2 faulty
processors. Cl

The number of messages sent by this algorithm is bounded by 3(m - l)m2,
which is smaller th;an Nt for t 1 m = fi. Thus we have proved the following.

THEOREM 6. In three phases a set of N processors containing at most t faulty
ones can mutually exchange values such that a set of at least N - 2t correct
processors actually succeed while sending at most O(N’.‘) messages.

We now present an algorithm that achieves the bound O(n + t2) for any ratio
between n and t. As before, let (Y be the smallest quadratic number bigger than 6t.
The first (Y processors will be the active processors. The active processors use
Algorithm 4 to inform each other about passive processors that have not received
the value. The set of active processors that are able to exchange their messages
without being blocked by the faulty processors (the set P of Lemma 2) will be
called the set of nonisolated processors.

The remaining m := n - (Y passive processors will be divided into complete
binary trees of size s = 2’ - 1. When we refer to a subtrees of these binary trees,
we only consider those subtrees whose leaves are the leaves of the original binary
tree. Within each subtree the nodes are ordered by some order starting from
the root. Define l(x) := 2” - 1 to be the number of processors in a binary tree of
depth x.

Let a string be an integer (an index of the string) followed by a list of some
passive processors and signed by a single active processor. Let C be a subtree of
depth x and M be ;a message containing a set of strings. For a passive processor q,
denote by ?r(M, q, x) the number of different active processors p for which A4
contains a string signed by p with index x which is followed by a list on which q
appears.

In the following algorithm the active processors run Algorithm 2 to decide on a
value and then they transmit this value to the passive processors. The active
processors use Algorithm 4 to decide on the set of passive processors that may have
not received the value yet. Each string we use in the algorithm contains a set of
passive processors that have not received the decision value yet.

To save messages, we want to prevent faulty active processors from activating
correct passive pro’cessors with no reason. On the other hand, we need to activate
passive processors in case that either they or their successors have not received the
value yet. A root of a subtree activates itself only after receiving a set of strings that
proves that either enough active processors think that the root had not received
the value, or two of its successors had not.

Bounds on Information Exchange for Byzantine Agreement 201

A message M is a proof of work for a binary tree C of depth x if either

(i) x = X and M is empty, or
(ii) x < X and either .K(M, c, x) 2 (Y - 2t, where c is the root of C, or there exist a

processor q with ?r(M, q, x) 2 a - 2t in the right depth(x - 1) subtree of C and
a processor q’ with ?r(M, q’, x) L (Y - 2t in the left one.

Let W be the set of values the transmitter may send. We may assume that no
value in W contains the empty set or a name of a processor as a substring. A
message is called valid if it consists of an element in IV (a value) followed by at
least t + 1 signatures of active processors and possibly some of passive ones. The
idea is that a message is valid if at least one correct processor supports its value.
Notice that the outcome of Algorithm 2 are valid messages.

ALGORITHM 5
Phase 1 to 3t + 3. The first 2t + 1 active processors run Algorithm 2.
Phase 3t + 4. Each processor of the first t + 1 ones sends a valid message to the remaining
(Y - 2t - 1 active processors.
For each active processor p denote by B(p, X) the set of passive processors and by C(p, X)
be the set of the lm/sl binary trees of depth X.
Forx=X,..., 0 do (Start of the phases in block x)
Phase 1 of block x. Each active processor p sends a valid message and a proof of work
to the root c of each binary tree C (of depth x) in C(p, x). Assume C consists of processors
c=c(l),..., c(l(x)). If the root c of a binary tree C of depth x receives a valid message m
and a proof of work for C from an active processor it sets m(1) := m and starts sending
messages for the next 21(x) phases. In this case let us call c activated.
For each activated root c and for every 1 5 j < f(x):

Phase 2j - 1 of block x. c sends m(j) to c(j + 1).
Phase 2j of block x. If at the previous phase processor c(j + 1) has received exactly

one valid message from the root of the depth x subtree it belongs to, then it signs this
message and sends it back. If c receives m(j) back from c(j + 1) with its signature appended,
it defines this message to be m(j + l), else m(j + 1) := m(j).

Phase 21(x) - 1 of block x. c sends m(f(x)) to every active processor.
For each active processor p let F(p, x - 1) to be the set of all processors in B(p, x) whose
signature did not appear in any valid message processor p gets back from the roots of the
corresponding subtrees. F(p, x - 1) does not include the roots themselves.

Phases 2f(x) to 21(x) + 2. The active processors run Algorithm 4 with [F(p, x - l),
x - I] as the values to be exchanged.
At the end of Algorithm 4, every active processor p determines its new set C(p, x - 1) as
follows:

Denote by M the set of messages p receives at phase 21(x) + 2. Observe that these
messages are strings because of our definition. Denote by B(p, x - 1) the subset of
F(p, x - 1) that consists of those processors q for which *(M, q, x) 2 (Y - 2t. The set
C(p, x - 1) consists of all those subtrees of depth x - 1 for which A4 is a proof of work.

End of block x

7. Correctness and Complexity of Algorithm 5

After taking part in Algorithm 5, each processor agrees as follows:

Decision Function. Agree on the value of the first valid message received.

Correct active processors sign values from W only in the beginning when they
participate in Algorithm 2. Using Theorem 4, one can easily show that any valid
message must have as its value the correct value and that by phase 3t + 4 each
active processor possesses a valid message. It remains to show that each passive
processor gets a valid message at least once.

202 D. DOLEV AND R. REISCHUK

LEMMA 3. If a passive processor q has not got a valid message by the end of
blockx(x= A,. . o, I), then processor q belongs to B(p, x - l), for each nonisolated
active processor p,,

PROOF. If for each nonisolated processor p a passive processor q belongs to
B(p, x) and q has not signed a valid message in block x, its name will still appear
on the list F(p, x ‘- 1) of each p. Therefore, each nonisolated processor receives q’s
name on at least 12 - 2t different lists at phase 21(x) + 2. This implies that q also
belongs to B(p, x - 1) for each such p. Cl

In the last block each subtree consists of only one processor; therefore, all passive
processors that have not seen a valid message yet will get it directly from the
nonisolated active processors at that phase.

NUMBER OF PHASES. Since block x consists of 2X+’ phases for x > 0 and 1 for
x = 0, the total number of phases of Algorithm 5 is at most 3t + 4s + 2.

NUMBER OF MESSAGES. The correct active processors send at most 5t2 + 5t +
(t + l)(ff - 2t - 1) messages up to phase 3t + 4 and, afterward, among themselves,
no more than 3(a -- l)(~* messages per block.

Let C be one of the binary trees (of size s and depth X).

LEMMA 4. If C contains b(C) faulty processors, then the number of processors
in C which either get activated or are faulty is bounded by 2b(C) + 1.

PROOF. Let P(C) be the set of activated nodes of C and consider the tree T =
T(C) obtained by “‘shrinking” C to P(C). P(C) is the set of nodes of T and, for
each such node except that of the root of T (which equals the root of C), there is
an edge to its nearest ancestor in T. T is not necessarily a complete binary tree.
For a node z of T, denote by h(z) the height of z in C.

We first show that each node z in T has at most two successors. If z has three
successors in T, there must be a pair q, Cp among them such that their nearest
common ancestor w in C is a proper ancestor of z. Let pu (respectively, po) be one
of the active processors that sent a valid message and a proof of work to 9?
(respectively, G).

There must be processors $ and 4 in the subtree with root q (respectively, a)
such that + (respect:ively, 4) appears in at least (Y - 2t sets F(q, h(\k)) (respectively,
F(q, h(G))) that are part of the proof of work that was sent from pu to \k (respectively,
p4 to a). Among the processors signing these sets (as strings) at least (Y - 3t must
be correct active processors. Since 2((~ - 3t) > cr, at least one correct active
processor p appears on both lists. This implies 4 E B(p, h(a) + 1) and $ E B(p,
h(9) + 1). For any active processors p and any 0 I y < x I X, B(p, y) is a subset
of B(p, x); therefore, 4, $ E B(p, h(w)). This means that p had a proof of work for
the subtree with root w, which contradicts the assumption that w did not get
activated.

Nodes in T may represent correct or incorrect processors. Let U be the subtree
of T, which consists of all the incorrect nodes q from which the path from q to the
root of T consists of incorrect nodes only. T-U forms a forest of binary trees Si
with correct roots Si, i = 1, . . . , j. Since T is binary, j cannot exceed the size of U
by more than 1.

After the root s of such a tree S has been activated in block h(s), each correct
node q of S receives the value from s, signs it and every active processor gets the
signature of q from s. Hence q does not belong to the set F(p, h(s) - 1) for any

Bounds on Information Exchange for Byzantine Agreement 203

correct active p, and the sets B(p, y) for y < h(s) contain only incorrect nodes of
S. Therefore, a proof of work for a subtree of S can only rely on incorrect processors
of S. This implies that the number of correct nodes in S that are different from s
is less than the number of incorrect nodes in S.

The number of correct nodes in T can therefore be bounded by 1 1 Ul plus
the number of incorrect nodes in each 5’;. Hence the number of correct nodes
in C that get activated plus the number of incorrect nodes in C does not exceed
2b(C) + 1. cl

This bounds the number of messages between active processors and passive
processors in C of which the sender is correct by 242&C) + 1).

In addition the sum of the sizes of all subtrees of C with an activated or faulty
processor as the root is bounded by s(1 + log(2b(C) + 1)). Then the number of
messages among processors in C with a correct sender is at most twice as much.
This gives a total of 242/~(C) + 1) + 2s(1 + log(2b(C) + 1)) for each tree C.

To estimate the total number of messages, we have to sum over the r = rm/sl
binary trees. Recall that the total number of faulty processors is bounded by t,
which implies that the summation of log(26(C) + 1) over all the binary trees cannot
exceed t log 3. Hence the total number of messages sent by correct processors in
Algorithm 5 is bounded by

O(t2) + O(t’.?og S) + O(tn/s).

Therefore, we have proved the following:

LEMMA 5. Assume 1 I s I t < n/6. Then Algorithm 5 achieves Byzantine
Agreement among n processors with at most t faults in at most 3t + 4s + 2 phases
while sending no more than O(t2 + nt/s) messages.

THEOREM 7. There exists an authenticated algorithm that reaches Byzan-
tine Agreement among n processors with at most t faults while sending at most
O(n + t2) messages.

PROOF OF THEOREM 7. Lemma 5 implies that when we choose s = t in
Algorithm 5 the number of messages is bounded by O(n + t2). Cl

REFERENCES

1. DEMILLO, R. A., LYNCH, N. A., AND MERRITT, M. J. Cryptographic protocols. In Proceedings of
the 14th Annual ACM Symposium on the Theory of Computing (San Francisco, Calif., May 5-7).
ACM, New York, 1982, pp. 383-400.

2. DIFFIE W., AND HELLMAN, M. New direction in cryptography. IEEE Trans. Inform. IT-22, 6
(1976), 644-654.

3. DOLEV, D. Unanimity in an unknown and unreliable environment. In Proceedings ofthe 22nd
Annual Symposium on Foundations of Computer Science. IEEE, New York, 198 1, pp. 159- 168.

4. D~LEV, D. The Byzantine generals strike again. J. Algorithms 3, 1 (1982), 14-30.
5. DOLEV, D., AND REISCHUK, R. Bounds on information exchange for Byzantine Agreement. In

Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(Ottawa, Ontario, Canada, Aug. 18-20). ACM, New York, 1982, pp. 132-140.

6. DOLEV, D., AND STRONG, H. R. Polynomial algorithms for multiple processor agreement. In
Proceedings of the 14th ACM SIGACT Symposium on Theory of Computing (San Francisco, Calif.,
May 5-7). ACM, New York, 1982, pp. 401-407.

7. DOLEV, D., AND STRONG, H. R. Distributed commit with bounded waiting. In Proceedings of the
2nd Symposium on Reliability in Distributed Software and Database Systems (Pittsburgh, Pa.,
July). IEEE Computer Society, 1982, pp. 53-60.

8. DOLEV, D., AND STRONG, H. R. Requirements for agreement in a distributed system. In Proceed-
ings of the Second International Symposium on Distributed Data Bases (Berlin). 1982, pp. 115-
129. Also in Distributed Dafa Bases, H. J. Schneider, Ed. North Holland, Amsterdam, 1982.

204 D. DOLEV AND R. REISCHUK

9. DOLEV, D., AND S’TRONG, H. R. Authenticated algorithms for Byzantine Agreement. SIAM J.
Comput. 12 (1983656-666.

10. DOLEV, D., FISCHER., M., FOWLER, R., LYNCH, N., AND STRONG, R. Efficient Byzantine Agreement
without authentication. 1nl: Cont. S (1983), 257-274.

11. FISCHER, M., AND ILYNCH, N. A lower bound for the time to assure interactive consistency. I&
Process. Left. 14, 4 (1982), 183- 186.

12. FISCHER, M., FOWER, R., AND LYNCH, N. A simple and efficient Byzantine generals algorithm.
In Proceedings of the Second Symposium on Reliability in Distributed Software and Database
Systems (Pittsburgh., Pa., July). IEEE Computer Society, 1982.

13. LAMPORT, L. The weak Byzantine generals problem. J. ACM 30, 3 (July 1983), 668-676.
14. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4,2 (July 1982), 382-40 1.
15. PEASE, M., SHOSTAI:, R., AND LAMPORT. L. Reaching agreement in the presence of faults. J. ACM

27, 2 (Apr. 1980) 228-234.
16. RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital signatures and

public-key cryptosystems. Commun. ACM, 21, 2 (Feb. 1978) 120-126.

RECEIVED SEPTEMBER 1982; REVISED JUNE 1984; ACCEPTED JULY 1984

Journal of the Association for Computing Machinery, Vol. 32, No. I, January 1985.

