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Abstract. Byzantine Agreement has become increasingly important in establishing distributed properties 
when errors may exist in the systems. Recent polynomial algorithms for reaching Byzantine Agreement 
provide us with feasible solutions for obtaining coordination and synchronization in distributed systems. 
In this paper the amount of information exchange necessary to ensure Byzantine Agreement is studied. 
This is measured by the total number of messages the participating processors have to send in the worst 
case. In algorithms that use a signature scheme, the number of signatures appended to messages are 
also counted. 

First it is shown that Q(m) is a lower bound for the number of signatures for any algorithm using 
authentication, where n denotes the number of processors and t the upper bound on the number of 
faults the algorithm is supposed to handle. For algorithms that reach Byzantine Agreement without 
using authentication this is even a lower bound for the total number of messages. If n is large compared 
to t, these bounds match the upper bounds from previously known algorithms. For the number of 
messages in the authenticated case we prove the lower bound n(n + t2). Finally algorithms that achieve 
this bound are presented. 

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems- 
network operating systems; D.4.5 [Operating Systems]: Reliability-verijication 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Distributed systems, reliability, Byzantine Agreement 

1. Introduction 

Reaching agreement in a distributed system is essential for maintaining coordina- 
tion and synchronization among the participating processors. This problem has 
been modeled in the following way. 

The distributed system consists of n processors, of which up to t may be faulty. 
The processors are completely interconnected. One of these processors, called the 
transmitter, sends a private value v to the other processors. They then have to 
reach agreement on which value the transmitter has sent. 

The type of agreement studied in this paper is called the Byzantine Agreement 
[ 141 and it is achieved when 

(i) all correctly operating processors agree on the same value; 
(ii) if the transmitter is correct, then all correctly operating processors agree on its 

value. 
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For establishing the agreement, information has to be exchanged. In this paper 
we present lower bounds on the amount of information exchange to ensure that 
agreement is reached. 

Several algorithms for obtaining Byzantine Agreement have been published [3, 
4,6,9, 10, 12-151. Without authentication, the best algorithm is the one presented 
in [lo], in which the agreement is achieved within 2t + 3 phases while exchanging 
O(nt + t3) messages in the worst case. The best solution using authentication is 
presented in [9]; it requires t + 1 phases and O(nt + t*) messages, where each 
message may contain several signatures. This algorithm may exchange O(nt* + t3) 
signatures; by a slight modification and one additional phase, this number can be 
reduced to O(nt -k t’). Previous papers give lower bounds either on the ratio 
between correct and faulty processors [3,4, 151 or on the number of phases [ 1,7- 
9, 111. 

In this paper we concentrate on algorithms using authentication and analyze 
how many messages have to be exchanged t,o reach Byzantine Agreement. We 
prove that in the worst case any algorithm must exchange Q(n + t*) messages and 
Q(nt) signatures. The lower bound for the number of messages in the authenticated 
case differs from the known upper bound. To close this gap, we present an algorithm 
that, within O(t) p:hases, sends only O(n + t’) messages. For n much larger than t 
there is an even simpler and better solution with t + 3 + t/a phases and O(an) 
messages for 1 5 cx I t. The solution introduces a trade-off between the number of 
messages and the number of phases. This paper is a complete version of [5]. 

Concentrating on algorithms that use authentication does not mean sacrificing 
practicality, since i.n a real distributed system one can assume that no processor 
sends wrong information on purpose, and a simple error correction code instead 
of a signature scheme can be used to get applicable results. 

The lower bounld on the number of signatures implies a lower bound on the 
number of messages in the unauthenticated case. Therefore, for the amount of 
information exchange, the algorithm in [lo] is the best possible to within a constant 
factor in the case in which n is bigger than t*. 

2. Histories 
We first have to define a formal model for the class of algorithms we are looking 
at. Because we wa:nt to establish lower bounds, we use a more general notation 
than the one in [6].. 

Let PR be a set of n processors. A phase for PR is a directed graph with nodes 
corresponding to processors in PR and with labels on the edges. A label on edge 
(p, q) represents th.e information sent from processor p to processor q during the 
given phase. We as,sume that when no message is sent there is no edge. A history 
for PR is a finite slequence of n node phases. There is also a special initial phase 
called phase 0, which contains only a single inedge. This edge goes to a special 
processor called transmitter and it is labeled with exactly one value v from a set V 
of values. (The assumption is that the inedge at phase 0 carries the value that the 
transmitter is to send and that V is the set of all values it might send.) 

A subhistory of a history H is an initial segment of H. For each subhistory H’ 
of H and every processor p there is a unique subhistory pH’ called the individual 
subhistory of H’ fiw- p. It consists of only those edges in H’ with target p. We 
assume that, for each labeled edge, processor p knows the source of that edge. This 
means no processor can send a message to p claiming to be somebody else. Note 
that at the beginning of phase k the individual subhistory p&-i, which is derived 
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from the first k - 1 phases, is all that processor p has to work with; it cannot have 
any other information about the states of other processors. Let the set ISH contain 
all possible individual subhistories and MSG be a (large enough) set of labels 
(messages). 

An agreement algorithm for PR consists of a set of 

correctness rules RP: ISH x PR + MSG, 
decision functions F,: ISH + 2 ‘. 

Given a (k - 1)-phase individual subhistory for p and a processor q, the 
correctness rule RP produces a label for the edge in phase k from p to q. The 
decision function F, maps individual subhistories for p into the power set of V. If 
FP is a singleton set, we say that p has decided on the value. 

With respect to a given correctness rule, a processor p is said to be correct at 
phase k of history H if the following condition holds: Each edge from p to a 
processor q in phase k has a label as specified by the correctness rule for p when it 
is applied to the individual subhistory of H for p consisting of the previous 
k - 1 phases. A processor p is correct in history H if it is correct at each phase of 
H. We call a history t-faulty if at most t of its processors are incorrect. 

We say Byzantine Agreement can be achieved for n processors with at most t 
faults if there is an agreement algorithm for PR such that, for any t-faulty history 
H, the decision functions FP obey the conditions of Byzantine Agreement: 

(i) if processors p and q are correct in H, then FJpH) = F,(qH); 
(ii) if the transmitter and processor p are correct in H, then FJpH) = v, where v 

is the transmitter’s value. 

3. A Lower Bound on the Number of Signatures in the Authenticated Case 
We consider the worst-case behavior in which a faulty processor can invent any 
unauthenticated information. But we allow the processors to share a signature 
scheme that enables each one to sign its messages so that every receiver will 
recognize them as being signed by it and no one can change the contents of 
a message or the signature undetectably. Such a scheme is the one suggested in 
[2] and [16] and its use for Byzantine algorithms is described in [6], [9], [14], 
and [ 151. 

We allow faulty processors to collude for cheating. Therefore every message that 
contains only signatures of faulty processors can be produced by them. 

Since there exists an algorithm for reaching Byzantine Agreement without using 
signatures, the lower bound is meaningless unless we somehow count the messages 
that do not contain signatures. We make the technical assumption that every 
message in an authenticated algorithm carries at least the signature of its sender. 
Alternatively, the lower bound given below holds if one counts the number of 
signatures together with the number of messages without signatures. 

THEOREM 1. If Byzantine Agreement is achieved by an agreement algorithm 
that handles up to t (t < n - 1) faults, by using authentication, then there exists a 
history without any faults in which the total number of signatures being sent by 
correct processors is at least n(t + 1)/4. 

PROOF. Let H be the history in which all processors are correct and the 
transmitter’s value is 0, and G the one in which all are correct and the transmitter’s 
value is 1. Let p be any processor. By condition (ii) for Byzantine Agreement, 
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F,(pff) = 0 and FJpG) = 1 (The decision rule for p has to yield 0 in history H 
and 1 in history G). 

Denote by A(&,) the set of all processors that either receive the signature of p or 
p receives their signatures in at least one of the two histories. If for each processor 
p the set A(p) contains at least t + 1 processors, then the theorem obviously holds. 
Notice that the transmitter is not necessarily in A(p). 

Assume to the contrary that there exists a processor p for which the cardinality 
of A(p) is at most t. Let H’ be the history in which the processors in A(p) are 
faulty behave towau-d p as in H and toward all the rest of the processors as in G. 

The processors jin A(p), as faulty processors, are able to do so, because all the 
messages to correct processors, other than p, do not contain p’s signature and all 
the messages to p contain only signatures of processors in A(p). 

Therefore, in H;’ the correct processor p sees the same subhistory as in H (pH = 
pH’). Since pH’ is all the information available to p when applying its decision 
function FP, we can conclude that F,(pH’) = F,(pH) = 0. On the other hand, 
each correct proce:ssor q other than p sees the subhistory it saw in G and by the 
same argument Fr(qH’) = F,(qG) = 1 must hold. Notice that there is such a correct 
processor q since *we assume t < y1 - 1. This violates condition (i) of Byzantine 
Agreement. There:fore, a correctly operating Byzantine Agreement algorithm can- 
not allow any processor to “exchange” less than t + 1 signatures with other 
processors in H and G altogether. Notice that we have established this (worst case) 
lower bound not for some weird history, but for a history in which every processor 
behaves correctly. Cl 

If authentication is not available, this lower bound applies directly to tine number 
of messages that h,ave to be sent. 

COROLLARY 1. If Byzantine Agreement is achieved by an agreement algorithm 
that handles up to t (t < n - 1) faults, without using authentication, then there 
exists a nonfaulty history in which the total number of messages being sent by 
correct processors is at least n(t + 1)/4. 

PROOF. The basic assumption for algorithms that reach Byzantine Agreement 
without using authentication is that a processor can identify only the immediate 
source of every message it receives. Any processor p can claim to have received a 
certain message from another processor q, and a processor z, different from p and 
q, cannot decide whether this is true or not (except in the special case where z has 
already detected t faulty processors and p is not among them). 

This is equivalent to the assumption that every message carries exactly one 
signature, the signature of the last sender of that message. Therefore, we can 
conclude from Th.eorem 1 that at least n(t + 1)/4 messages are necessary in any 
algorithm that does not use authentication. 0 

4. A Lower Bound on the Number of Messages in the General Case 

Sometimes the overhead for sending a message costs more than the message itself; 
and, therefore, it makes sense to find algorithms that minimize the number of 
messages. Since a message with several different signatures appended can contain 
much more verifiable information than the same message without these signatures, 
we do not necessarily need the same number of messages as in the unauthenticated 
case. In this sect:ion we present a lower bound on the number of messages, 
independent of the size of a message or the information it carries. 
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As we have proved in the previous section, if we use fewer than n(nt) messages, 
some must carry several signatures. In this section we show that in certain histories 
at least Q(n + t’) messages have to be sent to ensure that agreement has been 
reached. 

THEOREM 2. If Byzantine Agreement is achieved by an agreement algorithm 
that handles up to t (t < n - 1) faults, then there exists a history H in which the 
correct processors send at least max((n - 1)/2, (1 + t/2)*) messages. 

PROOF. As in the previous proof, let H (respectively, G) be the history in which 
all processors are correct and the transmitter sends the value 0 (respectively, 1). 
One of these values, let us say 0, must have the property that there exists a set Q 
of at least I(n - 1)/21 processors different from the transmitter such that each one 
does not agree on 0 if it receives no messages at all. This implies that the correct 
processors in H must have sent at least f(n - 1)/21 messages. 

Now assume that the maximum is achieved by the second term. Let B be a 
subset of Q of size Ll + t/2J and let A be the remaining processors. We cannot 
prove that every processor has to send or receive a certain number of messages 
increasing with t, because efficient authenticated algorithms tend not to be homo- 
geneous. But by playing with histories we shall show that there exists a history H’ 
in which each processor in B is faulty and can force the correct processors in A to 
send it at least I1 + t/21 messages. 

Let H’ be the following history: Every processor in A is correct; the transmitter 
correctly sends the value 0. Each processor q in B never sends a message to other 
processors in B. Toward processors in A, such a processor q behaves like a correct 
processor with one exception-it ignores the first i-t/21 messages received from 
processors in A (it ignores all of them if it gets fewer than rt/21). This defines a 
valid history with Ll + t/21 faulty processors in which the correct processors in A 
have to agree on value 0, because the transmitter is correct and has sent this value. 

Assume that there is a faulty processor p in B that gets at most rt/21 messages 
from processors in A. Let A(p) be the set of processors of A that have sent messages 
to p in H. To obtain the contradiction, we change H’ into history H” in which p 
is correct and all the processors in A(p) are incorrect. They behave like correct 
processors except that they do not send any messages to p. Processors in B different 
from p ignore any message they get from p. 

By definition, the faulty processors in B - 1 p) and A(p) behave toward the 
correct processors in A in history H” in exactly the same way as they do in H’. 
Since p in H’ simulates the behavior of a correct processor that has not got the 
first Lt/2J messages it was supposed to get, there is also no difference between the 
behavior of p toward processors in A in H’ and H”. Therefore, each correct 
processor q other than p sees the same subhistory in both cases ( qH’ = qH”), and 
at the end it must agree on value 0 because F,(pH’) = 0. 

But the correct processor p receives no messages at all in H”. Therefore, by 
definition of the set B, it does not agree on 0. This leads to a contradiction, which 
proves that in H’ every processor in B must receive at least I1 + t/21 messages 
from correct processors. Cl 

Theorem 2 also holds in the case when faults are much more limited because 
the proof only uses the ability of a faulty processor to send to some and not to 
others. This observation is not true, in general, for Theorem 1. 
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5. A Linear Algorithm for n L t3 
None of the known authenticated algorithms uses authentication to substantially 

reduce the number of messages required to be sent in the case in which n is much 
larger than t. In ,this case the best-known algorithms, with and without authenti- 
cation, require O(nt) messages [9, lo] in the worst case. However, for large n, 
Theorem 2 implies only a linear lower bound, and the Q(nt) lower bound of 
Theorem 1 only holds for the total number of signatures that have to accompany 
messages. Since we can append many signatures to a message, there may exist an 
authenticated algorithm that, after reaching the agreement among some set of 
active processors, sends only a linear number of messages to inform the rest about 
the agreement. 

In this section we present such an algorithm. The number of phases it needs 
does not exceed the minimal number t + 1 by more than a small constant factor. 
But many messages carry Q(t) signatures. 

We may assume that n is at least 2t + 1; otherwise, the algorithm in [9] sends 
as many messages as the lower bound in Theorem 2. We consider the case 
n = 2t + 1 and describe two algorithms. The first, working in t + 2 phases, sends 
fewer messages than the previously known algorithms. The second uses more 
phases, but at the end every correct processor agrees on the same value and also 
has a one-message proof for the outside world. It possesses a string that says what 
the common value is, and this statement is signed by at least t other processors. 

Throughout this section we assume that all processors are completely synchro- 
nized and that, as in the lower bound proofs, the values the transmitter may send 
are 0 or 1. If the tr,ansmitter can send more than two values, one has to modify the 
algorithms slightly. 

Instead of using the formal model defined in Section 2 (which seems to be 
appropriate for lower bound proofs), we prefer a more informal description for the 
following algorithms. 

For the first algorithm let q be the transmitter and partition the 2t remaining 
processors into two sets A and B, each of size t. Let G be the graph that is formed 
by the complete bipartite graph with A and B as the sets of nodes, to which we add 
a node q and edges from q to every other node. We call the message a processor p 
receives at phase k; for k = 1, . . . , t + 2, a correct l-message if it consists of value 
1 with signatures appended to it and if the sequence of processors that signed that 
message, together Iwith p, forms a simple path of length k from q to p in G. 

ALGORITHM 1 
Phase 1. The transmitter signs and sends its value to every other processor. 
Phases 2 to t + 2. Whenever a processor in A (respectively, B) gets. a correct l-message 
for the first time, it signs and sends this message to everybody in B (respectively, A). 
Decision Function: A processor in A or B decides that the value is 1 if by phase t + 2 it has 
received a correct l--message; otherwise, it agrees on value 0. 

THEOREM 3. For n = 2t + 1 Algorithm 1 is a (t + 2)-phase authenticated 
algorithm for reaching Byzantine Agreement among n processors with at most t 
faults that does not require sending more than 2t2 + 2t messages. 

PROOF. We first prove the correctness of Algorithm 1. If the transmitter 
correctly sends value 1 at the first phase, then every processor gets a correct l- 
message at phase 1 and each correct one will decide value 1 according to the 
decision function. If, on the other hand, the transmitter correctly sends value 0 at 
the first phase, no processor will ever be able to send a correct l-message; therefore, 
the correct processors will agree on value 0. 
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There remains the case in which the transmitter is faulty and sends different 
values to different processors. If, in this case, a correct processor p agrees on value 
1, p must have received a correct 1 -message the first time at some phase k 5 t + 2. 
Assume first that k 5 t. At phase k + 1, p will send a correct l-message to every 
processor in the set not containing p; let us assume that this is A. At least one 
processor z of the t processors in A must be correct, since we assumed the transmitter 
to be faulty and the total number of faulty processors is bounded by t. Now z will 
send a correct l-message to every processor in B at phase k + 2, and hence every 
processor has got a correct l-message by phase t + 2. 

If p receives the first correct l-message at phase t + 1 or t + 2, then among the 
first t + 1 processors having signed this message there must be at least one correct 
processor p’. Processor p’ must have received a correct l-message by phase t. 
Therefore, this case reduces to the former one. 

The transmitter has to send exactly 2t messages. Each of the remaining 2t 
processors can correctly send at most one message to t other processors. Therefore, 
the number of messages is bounded by 2t2 + 2t. Cl 

The second algorithm is an extension of the first one. It has 2t + 1 additional 
phases. Let the processors be p(l), . . . , p(2t + 1). We call a message that is received 
by some processor p(j) after phase t + 2 increasing if it consists of the value to 
which p(j) has committed in phase t + 2 together with signatures of processors 
with labels less than j in an increasing order. 

ALGORITHM 2 
Phases 1 to t + 2. Run Algorithm 1 and decide on the common value. 
Phaset+2+jfor 1 sjs2t+ 1. Let m(j) be one of the increasing messages p(j) 
has received so far with a maximum number of signatures appended to it. If it has not 
received any message, then m(j) is only the common value. Processor p( j) signs m(j) and, 
if m( j) carries at least f signatures, p(j) sends this message to every other processor, else only 
to processors with labels between j + 1 and j + t + 1. 

THEOREM 4. For n = 2t + 1 Algorithm 2 is an authenticated algorithm that 
reaches Byzantine Agreement among n processors with at most t faults such that 
after 3t + 3 phases each processor possesses a message containing the common 
value with at least t dtgerent signatures of other processors appended to it. No 
processor can have such a message with a value dtflerent from the common value. 
The algorithm requires sending at most 5t2 + 5t messages. 

PROOF. After phase t + 2, each of the processors with labels between 1 and t 
sends at most t + 1 messages to other processors, whereas the remaining ones 
might send up to 2t each. This adds up to 

2t2 + 2t + t(t + 1) + (t + 1)2t = 5t2 + 5t. 

It is easy to see that faulty processors cannot produce a message with t + 1 
signatures on a value other than the correct one. It remains to be shown that by 
phase 3t + 3 each processor has received the common value with at least t other 
signatures appended. 

Let p(id, . . . , p(i,) be the sequence of correct processors ordered by their labels 
(r 2 t + 1). Since between two succeeding ones there can be at most t faulty 
processors, one can easily prove that for any 1 < j I r, p(b) receives from p(ijml) 
the common value with at least the j - 1 signatures ofp(i,), . . . , p(i&J by phase 
t + 2 + 4. (A faulty processor signing an increasing message obviously does not 
hurt the correctness of the algorithm.) Therefore, p(i,) will send an increasing 
message with at least t + 1 different signatures to every other processor. 0 
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Now assume that II is bigger than 2t + 1 and that the processors are ordered in 
some arbitrary way starting with the transmitter. Let (Y be the smallest quadratic 
number bigger than 6t. If n happens to be smaller than LY as in [9], one can extend 
the first Algorithm by 1 phase and (t + l)(n - 2t - 1) = O(t*) messages and still 
achieve an O(n + t*) upper bound. Therefore, assume n L CL We first describe a 
simple algorithm for the case y1 2 t3. 

Let us call the first 2 t + 1 processors including the transmitter active processors 
and the m := n -. (2t + 1) remaining ones passive. 

Divide the passive processors into r disjoint sets of size s, where r = rm/sl. The 
algorithm is parameterized by the size s of these sets. Every set has a “root,” which 
will receive the val.ue from the active processors. Every processor knows the other 
members of its set.. For a set C, let c(l), c(2), . . . , c(s) be the elements in C, where 
c( 1) is the root. 

The algorithm g:iven below informs the processors in each set about the value on 
which the active processors have agreed on while running Algorithm 1. Within the 
algorithm we call this value the correct value. 

ALGORITHM 3 
Phases 1 to t + 2. The active processors run Algorithm 1. 
Phase t + 3. Each active processor sends the correct value to the root c( 1) of each set C. 
Each root defines message m( 1) to be that (unique) value v it received from at least t + 1 
active processors. 

For each set C and for every 2 5 j 5 s: 
Phase t + 2j. c( 1) sends m(j - 1) to c(j). 
Phase t + 2j + 1. If at the previous phase processor c(j) has received exactly one value 
from its root with possibly some signatures of processors c(2), . . . , c(j - 1) appended to it, 
it signs this message and returns it to c( 1). If c( 1) receives m( j - 1) back from c(j) with the 
signature of c(j) appended, it defines this message to be m(j); else, m(j) := m( j - 1). 
Phase t + 2s + 2. c( 1) sends m(s) to every active processor. 
Phase t + 2s + 3. For each active processorp and each set C, let m(p, CT’) be the message 
p received from the root of C at the previous phase. Active processor p sends the correct 
value to every processor c(j) (1 < j 5 s) for which m( p, C) does not contain the correct 
value and the signature of c( j) appended to it. 
Decision Function. An active processor agrees according to Algorithm 1. A root of a set 
agrees on m( 1) as defined in phase t + 3. If in the last phase a processor c(j) with j > 1 
receives a value v from at least t + 1 active processors, it agrees on v; otherwise, it agrees on 
that value that it received from its root at phase t + 2j. 

LEMMA 1. Algorithm 3 is an authenticated algorithm that reaches Byzantine 
Agreement among n processors with at most t faulty processors within t + 2s + 3 
phases by sending at most 2n + &n/s + 3t*s messages. 

PROOF. The correctness of Algorithm 3 is evident from the following fact. 

Fact. If the root of a set C is correct (a correct processor) then, for each j, 1 I 
j I s, m(j) contains the correct value and m(s) contains the signature of each 
correct processor in C (except the root) and will be received by each active processor 
at phase t + 2s + 21. 

Therefore, if a correct processor c(j), j > 1, of a set C receives a value from at 
least one correct active processor at the last phase, then the root of C must be 
incorrect. If c(j) gets a value from at least t + 1 active processors at the last phase, 
at least one of them must be correct; hence that value must be the correct value. 
Otherwise, there must be at least one correct active processor p such that m(p, C) 
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contains the correct value and the signature of c(i). This implies that the message 
m(j - 1) sent from c( 1) to c(j) contains the correct value and c(j) will agree on it. 

The number of messages sent by correct processors does not exceed 2t2 + 2t for 
phases 1 to t + 2, (2t + 1)r for phase t + 3, 2(m - r) for phases t + 4 to t + 2s + 
1, (2t + 1)r for phase t + 2s + 2, and (2t + l)t(s - 1) for the last phase. The last 
bound holds because there are at most t sets with incorrect roots, each one missing 
at most s - 1 signatures of processors in that set. Altogether this can be bounded 
by 3t2s + 2n + 4tn/s. 0 

THEOREM 5. There exists an authenticated algorithm that reaches Byzan- 
tine Agreement among n processors with at most t faults while sending at most 
O(n + t3) messages. 

PROOF. Lemma 1 implies that, by choosing s = 4t in Algorithm 3, the number 
of messages is bounded by O(n + t3). 0 

6. An O(n + t2) Algorithm for the General Case 
In this section we present a more complicated algorithm for a further reduction of 
the number of messages. If n is sufficiently smaller than t3 and the active processors 
behave as in Algorithm 3, they would send more than O(n + t2) messages in the 
worst case. In this situation Algorithm 5 (described below) will match the lower 
bound. This algorithm is more intricate and requires sending long messages. Such 
an algorithm may be of less practical interest, but at least it shows that for any 
ratio between correct and incorrect processors the lower bound of Theorem 2 is 
tight. 

First let us consider a slightly different problem. Assume that there are N = m2 
processors; each wants to send a value to everybody else and the object is to 
minimize the number of messages that have to be sent. There is the obvious 
solution by which N(N - 1) messages are sent in one phase. 

If, at most, t processors are faulty, this problem could be solved by the following 
two-phase algorithm: 

Select t + 1 processors; they will play the role of relay processors. At phase 1 each processor 
signs and sends its value to every relay processor. A relay processor combines all the 
incoming messages and its own value to one long message and sends it to every nonrelay 
processor at phase 2. 

This procedure requires sending at most (N - l)(t + 1) + (N - t - l)(t + 1) 
messages. It is easy to show that O(Nt) is also a lower bound for the number of 
messages in case each correct processor is required to receive the value of every 
other correct processor. If only a high percentage of correct processors are required 
to exchange their values, then, as Algorithm 4 shows, one can substantially save in 
the number of messages for small values of N. 

Denote the m2 processors by p(i, j), where 1 I i, j I m, and let M(i, j) be the 
value of p(i, j). We say that a message has a correct format if it contains a value 
followed by signatures, as required by the algorithm. A processor ignores messages 
that do not have a correct format. 

ALGORITHM 4 
Phase 1. p(i, j) signs and sends its value M(i, j) to p(i, k) for all 1 c k 5 m. Define 
Ml(i, j, k) to be the message p(i, j) received from p(i, k), if the message does not have a 
correct format (a value signed by p(i, k)) define Ml(i, j, k) to be the empty string. 
Phase 2. p(i,j) sends [Ml(i,j, I), . . . , Ml(i, j, m)] to ~(1, j) for all 1 5 1~ m. If the 
message p(i, j) received from ~(1, j) at this phase has a correct format (a list of up to m 
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strings in which each string is a value signed by one of the processors p(/, 1), . . . , ~(1, m)), 
then it defines M2(i, j, I) to be this message, otherwise M2(i, j, 1) is the empty string. 
Phase 3. p(i, j) sends [M2(i, j, 1), . . . , M2(i, j, m)] to p(i, k) for all 1 I k I m. Denote by 
M3(i, j) the set of nxssages p(i, j) received from processors p(i, 1), . . . , p(i, m). 

LEMMA 2. If there are at most t faulty processors, then there is a set P of at 
least N - 2t correct processors such that for each p(i, j), ~(1, k) E P the set of 
messages M3(i, j) includes the value M(1, k) signed by ~(1, k). 

PROOF. Let P be the set of all correct processors p(i, j) of which the set p(i, I), 
. . . ) p(i, m) contains less than m/2 faulty processors. At most t correct processors 
do not appear in A~; hence the size of P is at least N - 2t. A correct processor 
p(i, j) receives the value M(1, k) signed by a correct processor ~(1, k) if for some x 
both ~(1, x) and p(i, x) are correct processors. This clearly holds when each one of 
the sets, ~(1, l), . . . , ~(1, m) and p(i, I), . . . , p(i, m) contains less than m/2 faulty 
processors. Cl 

The number of messages sent by this algorithm is bounded by 3(m - l)m2, 
which is smaller th;an Nt for t 1 m = fi. Thus we have proved the following. 

THEOREM 6. In three phases a set of N processors containing at most t faulty 
ones can mutually exchange values such that a set of at least N - 2t correct 
processors actually succeed while sending at most O(N’.‘) messages. 

We now present an algorithm that achieves the bound O(n + t2) for any ratio 
between n and t. As before, let (Y be the smallest quadratic number bigger than 6t. 
The first (Y processors will be the active processors. The active processors use 
Algorithm 4 to inform each other about passive processors that have not received 
the value. The set of active processors that are able to exchange their messages 
without being blocked by the faulty processors (the set P of Lemma 2) will be 
called the set of nonisolated processors. 

The remaining m := n - (Y passive processors will be divided into complete 
binary trees of size s = 2’ - 1. When we refer to a subtrees of these binary trees, 
we only consider those subtrees whose leaves are the leaves of the original binary 
tree. Within each subtree the nodes are ordered by some order starting from 
the root. Define l(x) := 2” - 1 to be the number of processors in a binary tree of 
depth x. 

Let a string be an integer (an index of the string) followed by a list of some 
passive processors and signed by a single active processor. Let C be a subtree of 
depth x and M be ;a message containing a set of strings. For a passive processor q, 
denote by ?r(M, q, x) the number of different active processors p for which A4 
contains a string signed by p with index x which is followed by a list on which q 
appears. 

In the following algorithm the active processors run Algorithm 2 to decide on a 
value and then they transmit this value to the passive processors. The active 
processors use Algorithm 4 to decide on the set of passive processors that may have 
not received the value yet. Each string we use in the algorithm contains a set of 
passive processors that have not received the decision value yet. 

To save messages, we want to prevent faulty active processors from activating 
correct passive pro’cessors with no reason. On the other hand, we need to activate 
passive processors in case that either they or their successors have not received the 
value yet. A root of a subtree activates itself only after receiving a set of strings that 
proves that either enough active processors think that the root had not received 
the value, or two of its successors had not. 
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A message M is a proof of work for a binary tree C of depth x if either 

(i) x = X and M is empty, or 
(ii) x < X and either .K(M, c, x) 2 (Y - 2t, where c is the root of C, or there exist a 

processor q with ?r(M, q, x) 2 a - 2t in the right depth(x - 1) subtree of C and 
a processor q’ with ?r(M, q’, x) L (Y - 2t in the left one. 

Let W be the set of values the transmitter may send. We may assume that no 
value in W contains the empty set or a name of a processor as a substring. A 
message is called valid if it consists of an element in IV (a value) followed by at 
least t + 1 signatures of active processors and possibly some of passive ones. The 
idea is that a message is valid if at least one correct processor supports its value. 
Notice that the outcome of Algorithm 2 are valid messages. 

ALGORITHM 5 
Phase 1 to 3t + 3. The first 2t + 1 active processors run Algorithm 2. 
Phase 3t + 4. Each processor of the first t + 1 ones sends a valid message to the remaining 
(Y - 2t - 1 active processors. 
For each active processor p denote by B(p, X) the set of passive processors and by C(p, X) 
be the set of the lm/sl binary trees of depth X. 
Forx=X,..., 0 do (Start of the phases in block x) 
Phase 1 of block x. Each active processor p sends a valid message and a proof of work 
to the root c of each binary tree C (of depth x) in C( p, x). Assume C consists of processors 
c=c(l),..., c(l(x)). If the root c of a binary tree C of depth x receives a valid message m 
and a proof of work for C from an active processor it sets m( 1) := m and starts sending 
messages for the next 21(x) phases. In this case let us call c activated. 
For each activated root c and for every 1 5 j < f(x): 

Phase 2j - 1 of block x. c sends m(j) to c(j + 1). 
Phase 2j of block x. If at the previous phase processor c(j + 1) has received exactly 

one valid message from the root of the depth x subtree it belongs to, then it signs this 
message and sends it back. If c receives m(j) back from c(j + 1) with its signature appended, 
it defines this message to be m( j + l), else m( j + 1) := m(j). 

Phase 21(x) - 1 of block x. c sends m(f(x)) to every active processor. 
For each active processor p let F(p, x - 1) to be the set of all processors in B(p, x) whose 
signature did not appear in any valid message processor p gets back from the roots of the 
corresponding subtrees. F( p, x - 1) does not include the roots themselves. 

Phases 2f(x) to 21(x) + 2. The active processors run Algorithm 4 with [F(p, x - l), 
x - I] as the values to be exchanged. 
At the end of Algorithm 4, every active processor p determines its new set C(p, x - 1) as 
follows: 

Denote by M the set of messages p receives at phase 21(x) + 2. Observe that these 
messages are strings because of our definition. Denote by B(p, x - 1) the subset of 
F(p, x - 1) that consists of those processors q for which *(M, q, x) 2 (Y - 2t. The set 
C( p, x - 1) consists of all those subtrees of depth x - 1 for which A4 is a proof of work. 

End of block x 

7. Correctness and Complexity of Algorithm 5 

After taking part in Algorithm 5, each processor agrees as follows: 

Decision Function. Agree on the value of the first valid message received. 

Correct active processors sign values from W only in the beginning when they 
participate in Algorithm 2. Using Theorem 4, one can easily show that any valid 
message must have as its value the correct value and that by phase 3t + 4 each 
active processor possesses a valid message. It remains to show that each passive 
processor gets a valid message at least once. 
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LEMMA 3. If a passive processor q has not got a valid message by the end of 
blockx(x= A,. . o, I), then processor q belongs to B( p, x - l), for each nonisolated 
active processor p,, 

PROOF. If for each nonisolated processor p a passive processor q belongs to 
B(p, x) and q has not signed a valid message in block x, its name will still appear 
on the list F( p, x ‘- 1) of each p. Therefore, each nonisolated processor receives q’s 
name on at least 12 - 2t different lists at phase 21(x) + 2. This implies that q also 
belongs to B( p, x - 1) for each such p. Cl 

In the last block each subtree consists of only one processor; therefore, all passive 
processors that have not seen a valid message yet will get it directly from the 
nonisolated active processors at that phase. 

NUMBER OF PHASES. Since block x consists of 2X+’ phases for x > 0 and 1 for 
x = 0, the total number of phases of Algorithm 5 is at most 3t + 4s + 2. 

NUMBER OF MESSAGES. The correct active processors send at most 5t2 + 5t + 
(t + l)(ff - 2t - 1) messages up to phase 3t + 4 and, afterward, among themselves, 
no more than 3(a -- l)(~* messages per block. 

Let C be one of the binary trees (of size s and depth X). 

LEMMA 4. If C contains b(C) faulty processors, then the number of processors 
in C which either get activated or are faulty is bounded by 2b(C) + 1. 

PROOF. Let P(C) be the set of activated nodes of C and consider the tree T = 
T(C) obtained by “‘shrinking” C to P(C). P(C) is the set of nodes of T and, for 
each such node except that of the root of T (which equals the root of C), there is 
an edge to its nearest ancestor in T. T is not necessarily a complete binary tree. 
For a node z of T, denote by h(z) the height of z in C. 

We first show that each node z in T has at most two successors. If z has three 
successors in T, there must be a pair q, Cp among them such that their nearest 
common ancestor w in C is a proper ancestor of z. Let pu (respectively, po) be one 
of the active processors that sent a valid message and a proof of work to 9? 
(respectively, G). 

There must be processors $ and 4 in the subtree with root q (respectively, a) 
such that + (respect:ively, 4) appears in at least (Y - 2t sets F(q, h(\k)) (respectively, 
F(q, h(G))) that are part of the proof of work that was sent from pu to \k (respectively, 
p4 to a). Among the processors signing these sets (as strings) at least (Y - 3t must 
be correct active processors. Since 2((~ - 3t) > cr, at least one correct active 
processor p appears on both lists. This implies 4 E B(p, h(a) + 1) and $ E B(p, 
h(9) + 1). For any active processors p and any 0 I y < x I X, B(p, y) is a subset 
of B( p, x); therefore, 4, $ E B( p, h(w)). This means that p had a proof of work for 
the subtree with root w, which contradicts the assumption that w did not get 
activated. 

Nodes in T may represent correct or incorrect processors. Let U be the subtree 
of T, which consists of all the incorrect nodes q from which the path from q to the 
root of T consists of incorrect nodes only. T-U forms a forest of binary trees Si 
with correct roots Si, i = 1, . . . , j. Since T is binary, j cannot exceed the size of U 
by more than 1. 

After the root s of such a tree S has been activated in block h(s), each correct 
node q of S receives the value from s, signs it and every active processor gets the 
signature of q from s. Hence q does not belong to the set F(p, h(s) - 1) for any 
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correct active p, and the sets B(p, y) for y < h(s) contain only incorrect nodes of 
S. Therefore, a proof of work for a subtree of S can only rely on incorrect processors 
of S. This implies that the number of correct nodes in S that are different from s 
is less than the number of incorrect nodes in S. 

The number of correct nodes in T can therefore be bounded by 1 1 Ul plus 
the number of incorrect nodes in each 5’;. Hence the number of correct nodes 
in C that get activated plus the number of incorrect nodes in C does not exceed 
2b(C) + 1. cl 

This bounds the number of messages between active processors and passive 
processors in C of which the sender is correct by 242&C) + 1). 

In addition the sum of the sizes of all subtrees of C with an activated or faulty 
processor as the root is bounded by s( 1 + log(2b(C) + 1)). Then the number of 
messages among processors in C with a correct sender is at most twice as much. 
This gives a total of 242/~(C) + 1) + 2s( 1 + log(2b(C) + 1)) for each tree C. 

To estimate the total number of messages, we have to sum over the r = rm/sl 
binary trees. Recall that the total number of faulty processors is bounded by t, 
which implies that the summation of log(26(C) + 1) over all the binary trees cannot 
exceed t log 3. Hence the total number of messages sent by correct processors in 
Algorithm 5 is bounded by 

O(t2) + O(t’.?og S) + O(tn/s). 

Therefore, we have proved the following: 

LEMMA 5. Assume 1 I s I t < n/6. Then Algorithm 5 achieves Byzantine 
Agreement among n processors with at most t faults in at most 3t + 4s + 2 phases 
while sending no more than O(t2 + nt/s) messages. 

THEOREM 7. There exists an authenticated algorithm that reaches Byzan- 
tine Agreement among n processors with at most t faults while sending at most 
O(n + t2) messages. 

PROOF OF THEOREM 7. Lemma 5 implies that when we choose s = t in 
Algorithm 5 the number of messages is bounded by O(n + t2). Cl 
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