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1. Introduction 

Pebbling acyclic directed graphs is a technique that can be used to model space 
and time requirements of straight-line programs. It has many applications in 
computer science, including comparisons of programming languages, code gener- 
ation and optimization for compilers, time-space trade-offs for a wide variety of 
problems, and as a simulation tool in relating complexity classes. A detailed survey 
of pebbling results is contained in Pippenger [6]. The concern of this paper is to 
compare the complexity of two variations of the pebble game, black&white versus 
black, which correspond, respectively, to the space requirements of nondetermin- 
istic and deterministic evaluations of straight-line programs. 

Let G be an acyclic directed graph. We call a vertex of G an input vertex or 
simply an input if it has no incoming edges. All other vertices are referred to as 
noninput vertices. A vertex x is said to be an immediate predecessor of a vertex y 
if there is an edge from x to y. Furthermore, x is a predecessor of y if there is a 
path from x to y. Finally, a proper predecessor of y is any predecessor of y other 
than y itself. The black&white pebble game is played on an acyclic directed graph 
according to the following set of rules: 

(1) A black pebble may be removed at any time. 
(2) A black pebble may be placed on a vertex if all of its immediate predecessors 

have pebbles. 
(3) If all the immediate predecessors of a vertex have pebbles, a black pebble may 

be slid from one of the immediate predecessors onto the vertex. 
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FIG. 1. The pyramid of height 7. 

(4) A white pebble may be placed on any vertex at any time. 
(5) A white pebble may be removed from a vertex if all of its immediate predeces- 

sors have pebbles. 
(6) A white pebble may be slid from a vertex onto one of its immediate predecessors 

if all its other immediate predecessors have pebbles. 

A configuration (B, I+‘) on a graph G is a pair of disjoint (possibly empty) subsets 
of the vertices of G, where B and W represent the vertices containing black and 
white pebbles, respectively. A black&white strategy is a finite sequence of conlig- 
urations, ( Bo, WO), . . . , (IL, W,), such that (Bo, Wo) = (0,0), and (Bi+l, W+l) is 
the result of applying one of the rules (l)-(6) to (Bi, Wi) for each i < n. Moreover 
we say that a strategy achieves (B, IV) if (B, IV) is the last configuration in the 
sequence. The space requirement of a strategy is defined to be the maximum 
number of pebbles in any configuration in its sequence. The black&white pebble 
number of a vertex is the minimum of the space requirements of strategies that 
end with the configuration having a single black pebble on that vertex and no other 
pebbles on the graph. We denote the black&white pebble number of a vertex x by 
b&w(x). (This should really be b&w(G, x) where G is the acyclic directed graph, 
but we suppress the G for simplicity of notation.) Similarly, the black&white pebble 
number of a configuration is the minimum of the space requirements of 
black&white strategies that achieve that configuration. 

Analogous definitions are made for the black pebble game, which is played 
according to rules (l), (2), and (3) above. In particular, we denote the black pebble 
number of a vertex x by b(x). We always have b&w(x) I b(x). Moreover, it is easy 
to find examples where equality holds (e.g., if G is a directed path). Thus we are 
interested in proving lower bounds on b&w(x) in terms of b(x). 

A pyramid graph of height m has m levels containing m, m - 1, . . . ,2, 1 vertices, 
respectively, arranged so that each noninput vertex has incoming edges from the 
two vertices immediately on its left and right in the level below. A pyramid of 
height 7 is shown in Figure 1. (In this paper our figures always follow the convention 
that edges are directed upward.) Another way of visualizing pyramid graphs is as 
triangular fragments of directed two-dimensional rectilinear lattices. 

In [l] Cook proved that the black pebble number of the apex of a pyramid of 
height m is m. Roughly speaking, the purpose of this result was to provide 
“evidence” that there is a problem that can be solved in polynomial time, but not 
polylog space. To strengthen this “evidence,” Cook and Sethi [2] introduced the 
black&white pebble game and proved that the black&white pebble number of the 
apex of a pyramid of height m is at least m - 1; thus for x a vertex of a 
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pyramid graph, b&w(x) 2 m - 1. They also conjectured that for pyramid 
graphs, in fact b&w(x) = Q(b(x)). 

The first (and only) result bounding b&w(x) in terms of b(x) for vertices 
of arbitrary graphs was proved by Meyer auf der Heide [5], who showed that 
6&w(x) z i + V%(X) - 7/4. This can be viewed as a pebbling analog of Savitch’s 
theorem that NSPACE( s) C DSPACE( s*). In the same paper Meyer auf der Heide 
also proved that for vertices of pyramids, b&w(x) s Lb(x)/2J + 2. For vertices of 
trees it can be proved that b&w(x) r Lb(x)/21 + 1 (this was proved for complete 
trees by Loui [4] and Meyer auf der Heide [5] independently, and for arbitrary 
trees by Lengauer and Tarjan [3]). In their paper Lengauer and Tarjan mention 
pyramid graphs as the natural class of graphs to which their result might be 
extended. 

In this paper we extend this lower bound, b&w(x) z Lb(x)/21 + 1, to spreading 
graphs, a fairly broad class of graphs that includes pyramid graphs and several 
natural generalizations. The basic idea is to define a cost function for black and 
white pebble configurations and then to prove that for spreading graphs this cost 
function is a lower bound for the black&white pebble number of the configuration. 
The lower bound on b&w(x) for vertices of spreading graphs follows almost 
immediately from this result. Since the definition of spreading graph is somewhat 
complicated, we leave this till Section 3. Instead, in Section 2, we define the cost 
function, state a property of spreading graphs, use this property to prove that the 
cost function is indeed a lower bound and finally obtain the lower bound on the 
black&white pebb1.e number of vertices of spreading graphs. In Section 3 we prove 
that spreading gra:phs possess the property used in Section 2. The final task is to 
show that pyramids and their generalizations are spreading graphs. Since the 
definition of spreading graph makes it generally difficult to determine whether a 
graph is a spreading graph, we introduce nice graphs in Section 4 and prove that 
they are a subclass of spreading graphs. Since it is very easy to verify that pyramids 
and their generalizations are nice, this provides a unified method of verifying that 
a variety of graphs, are spreading graphs. 

2. The Lower Bound 
This section highhghts the basic structure of the proof, leaving most of the technical 
details for later. We now introduce terminology and notation that we use to define 
a cost function for pebble configurations. 

We say that a set of vertices Y blocks a vertex x if, for every path L from an 
input to x, we have Y II L # 0. Moreover we say that Y blocks a set of vertices X 
if Y blocks every vertex in X. It is easily verified that blocking is a transitive 
property; that is, ii‘Z blocks Y and Y blocks X, then Z blocks X. Thus, for example, 
if Y blocks every immediate predecessor of a noninput vertex x, then Y 
blocks x itself. For each vertex set Y we define its measure m(Y) as m(Y) = 
maxlj + 2 1 Y[j] ] : Yu] # 01, where for each positive integerj we define Y[j] = 
jx E Y: b(x) r j). Now for each configuration (B, W) we define its cost c(B, W) 
as c(B, IV) = min(Lm( Y)/2J: Y U Wblocks BJ. 

We now attempt to provide some intuition as to why c(B, w) is a reasonable 
candidate for a lower bound on the black&white pebble number of (B, IV’). Consider 
the following pebbling strategy for (B, IV). First use an optimal black&white pebble 
strategy to place a black pebble on the vertex in B with the highest black&white 
pebble number. Leaving that pebble on its vertex, now use an optimal black&white 
pebble strategy to black pebble the vertex in B with the second highest black&white 
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FIG. 2. Example in which the independent pebble strategy is not optimal. 

pebble number. Continue to black pebble the vertices in B in decreasing order of 
black&white pebble number until all have black pebbles, and then place white 
pebbles on the vertices in W. Ignoring the last part of the strategy in which the 
vertices in W are pebbled, the number of pebbles needed by this strategy is 
max(k + 1 (x E B: b&w(x) r kJ 1 - 1: (x E B: b&w(x) z k) # 0). If b&w(x) z 
Lb(x)/2J + 1 for each x in B, then Lm(B)/2J is a lower bound for this number. 
This strategy is unlikely to be optimal for two reasons. First of all, it pebbles each 
of the black pebbles independently, ignoring the fact that it may be easier to pebble 
them jointly than separately. Second, it ignores the fact that the presence of the 
white pebbles on W might make the placing of the black pebbles easier. Examples 
of these two cases are shown in Figure 2. The definition of c(B, W) avoids these 
problems by using the blocking concept to simulate the “joint” pebbling of vertices 
and by allowing the white pebbles to help in the blocking of B. 

We now state the property of spreading graphs, which is needed to prove our 
main result. 

Property 2.1 (proved in Theorem 3.7). If (B, W) is a configuration on a 
spreading graph, then there is a vertex set Y such that Y U W blocks B, c(B, W) = 
Lm(Y)/2J,andeither Y= Bor 1 Yl < JBI + 1 WI. 

Using Property 2.1 we now prove our main theorem, which, combined with 
Property 2.1, yields the desired lower bound on b&w(x) as a corollary. 

THEOREM 2.2. If (BO, WO), (B1, WI ), . . . , (B,, W,) is a black&white peb- 
ble strategy on a spreading graph, then for each i we have c(Bi, Wi) 5 
mmo& I Bj I + 1 U: I >. 

PROOF. The proof is by induction on i. It clearly holds for i = 0, so assume 
that i I 1 and that c(Bi-1, Wi-1) I maxo+si-I( 1 Bj 1 + 1 Wj 1). The remainder of the 
proof depends on what move led from (Bi-1, Wi-1) to (Bi, Wi). Let us assume that 
the move did not consist of placing a black pebble on an input, or of removing a 
white pebble from an input. In this case we shall see that c( Bi, Wi) 5 c(Bi-1, Wi-1 ), 
which clearly completes the proof. To see this, let Y be any set such that Y U Wi-1 
blocks Bi-1. Obviously it suffices to show that Y U Wi blocks Bi. This is immediate 
from the definitions and the transitivity of blocking, except perhaps for the case 
that the move consists of the removal or sliding of a white pebble. Let w be the 
vertex from which the white pebble was removed or slid, and let L be any path 
from an input to a vertex in Bi (note that Bi = Bi-1). We show that L fl 
(Y U Wi) # 0. Since L tl (Y U Wi-1) # 0 and Wi-1 C Wi U (w], it suffices to 
consider the case that L tl ( Y U Wipl) = (w). Let L’ be the subpath of L from the 
input to W. NOW since w is blocked by Bi U Wi, we have L’ fl (Bi U Wi) # 0. 
Suppose there is some vertex x in L’ rl Bi. Then since x is blocked by Y U 
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Wi-l\]Wl, we have: ,C’ tl (Y u W;-,\(w)) # 0, which contradicts L r) (Y U Id&,) 
= {w). Thus L’ n MVi # 0 and hence L tl W; # 0, which completes the proof that 
Y U Wi blocks Bi. 

NOW suppose that (Bi, Wi) is obtained from (Bi-1) w-1) by placing a 
black pebble on an input vertex y. By Property 2.1 there exists a set Y such that 
C(Bi-1, w-1) = L~z( Y)/2J, Y U wi-1 blocks B;-1, and ] Y( I ] Bi-1 1 + I Wi-1 (. Let 
Y’ = Y U ( y ). Clearly Y’ U H’i blocks Bi, so by the induction hypothesis our proof 
will be complete if we can show that Lm( Y’)/2J 5 max(Lm( Y)/2J, ] Bi I + I W, 11. 
We have Y’[j] = Y[j] for eachj> 1 and Y’[ l] = Y U (yj, so m( Y’) = max{m( Y), 
1+2~Y’[l]I~=~~ax~~(Y),3+2~YI]~max(~(Y),3+2(~B~-~I+~Wi-~I)). 
Thus Lm( Y’)/2J 5; max{Lm(Y)/2J, 1 + ] Bi-1 I + ] K-1 I} = max{Lm( Y)/2J, 
I Bi ] + I Wi ] ) as desired. 

Finally suppose that (Bi, wi) is obtained from (Bi-l, IVi-1) by removing a white 
pebble from an input vertex y. By Property 2.1 there exists a set Y such that 
C(Bi-1, wi-1) = Lm( Y)/2J, Y U wi-1 blocks Bi-1, and either Y = Bi-1 or ] Y] < 
] Bi-11 + ] Wi-1 I. Since Bi = Bi- 1, if Y = Bi-1 we obviously have c( Bi, Wi) 5 
Lm( Y)/21 = c(Bi-1, Wi-1) and we are done. On the other hand if ] Y I < ] Bipl I + 
] Wi-1 1, let Y’ = Y U (~1. Clearly Y’ U Wi = Y U Wi-1, which blocks Bi. Since 
Y’[ I] = Y[l] U ( JI) and Y’[j] = Y[j] for j > 1, Lm( Y’)/2J 5 max(Lm( Y)/2J, 1 + 
1 Yl) 5 max(c(Bi-1, W-l), I Bi-l I + I W-1 I). Thus C(Bi, wi) 5 max(c(Bi-1, K-1), 
] Bi-1 ] + I wi-1 I), completing the proof. Cl 

COROLLARY 2.3. If x is a vertex of a spreading graph then b&w(x) z 
Lb(x)/2J + 1. 

PROOF. By Theorem 2.2 we have b&w(x) L c({xl,0) so it suffices to show that 
c({x), 0) 2 Lb(x)/2,J + 1. By Property 2.1 we can find a set Y such that Y blocks 
x, c((x), 0) = Lm( Y)/2J and either Y = (xl or ] Y I < 1. Obviously, ] Y I < 1 is 
impossible as no vertex can be blocked by the empty set, so we have c((xl, 0) = 
Lm({x])/2J. Finally., it is easy to see that for any vertex we have m((x)) = b(x) + 
2, which completes the proof. q 

3. Spreading Graphs 
We start by establishing some facts about minimal blocking sets that lead to a 
concept of connectedness for minimal blocking sets. Spreading graphs are then 
defined as graphs whose connected sets have a certain property. To prove property 
2.1, we must show that, if Y has minimal cardinality such that Y U W blocks B 
and c(B, I+‘) = Lm( Y)/2J, then either Y = B or I Y I < ( B I + I WI. We first prove 
a somewhat stronger result for the case that Y U Wis connected, and then obtain 
the general result by applying the stronger version to the connected components of 
YU w. 

We call a set V of vertices tight if, for every vertex v in V, the set V\(v) does not 
block v. We use ( V’) to denote the set of vertices that are blocked by V, and, if V 
is tight, for each x in ( V) we define V, = (v E V: there is a path L from an input 
to x such that L rl V = Iv)). Note that since V is tight, for each v E I/ we have 
V” = (v). 

LEMMA 3.1. If ;V is tight and.x E ( V), then V, blocks x and V, is contained in 
every subset of V that blocks x. 

PROOF. It is obvious that V, must be contained in any subset of V that blocks 
x since, for each v in V., there is a path L from an input to x such that v is the 
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(4 W 
FIG. 3. Tight sets on the pyramid. (a) Connected. (b) Disconnected. 

only element of I/ on L. Now suppose that V. does not block x, and let L be a 
path from an input to x such that L rl V, = 0. Let v be the vertex in L n V that is 
closest to x on L. Since V\(vj does not block v, there is a path M from an input 
to v such that V rl M = (v). Now let L’ be the path from an input to x, which 
begins with M and then continues along L from v to x. Now L’ fl V = (v) so v E 
V,, a contradiction. 0 

LEMMA 3.2. For any set U there is a tight subset V of U such that ( V) = ( U). 

PROOF. Let V be a minimal subset of U such that ( V) = ( U). It is easy to see 
that V is tight, since if any vertex v of V is blocked by V\(v), then ( V\(v]) = 
(V)=(U). 0 

For each vertex x we use P(x) to denote its set of immediate predecessors and 
P*(x) to denote its set of predecessors. A set V is said to be connected if it is tight, 
and if the graph with vertices ( V) and edges ((x, y) :x, y E ( V) and P*(x) fl 
( Vx) n P*(y) n ( V,) # 0) is a connected graph. Figure 3 shows examples of 
connected and disconnected tight sets on the pyramid. 

LEMMA 3.3. Let V be a tight set and let U be a connected component of the 
graph on ( V) defined previously. Then U = ( V rl U). 

PROOF. We first show that U C ( V rl U). For each x in ( V) and y in V,, the 
edge (x, y) is in the graph on ( V) since y E P*(x) rl V, tl P*(y) n V,. Thus, if 
x E U, then V, c U, and hence by Lemma 3.1, V rl U blocks x, so x E ( V rl U). 
We now show that ( V n U) C U. If x E ( V rl U), then by Lemma 3.1 we have 
V, C V rl U. Now since x and V, must be in the same component of ( V) by the 
previous argument, x is in U also. 0 

For any set X of vertices we define bj(x) = min( ] Y 1: Y blocks X[j] and Y = 
Y[j]). In other words, b,(x) is the size of any smallest set Y with the following two 
properties: 

( 1) Every vertex in Y has black pebble number at least j. 
(2) Y blocks every vertex in X that has black pebble number at least j. 

A graph G is called a spreading graph if, for every connected set V of G and 
j 2 0 such that ( V) [j] # 0, we have 1 V/I r bj(( V)) +j - min(b(v): v E VI. The 
idea behind this definition is to ensure that if a connected set containing a vertex 
with a small black pebble number blocks a vertex with a high black pebble number, 
then the connected set must have a lot of vertices. 

The general idea behind the proof of Property 2.1 is as follows. We can use the 
definition of spreading graph to prove that, if Y U W blocks B and Y U W is 
connected, then there is some set Y’ such that Y’ U W blocks B, m( Y’) 5 m(Y), 
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andeitherY’=BlorIY’I<IBI+(WI.Now,ifXisasetsuchthatXUW 
blocks B and c(B, I+‘) = Lm(X)/21, we may assume by Lemma 3.2 that X U W is 
tight. By applying the statement above to each connected component of (X U W), 
we would expect to obtain a set X’ with m(X’) I m(X) and the other desired 
properties. Note that, since m(X) = c(B, IV), this would imply m(X’) = c(B, W) 
also, and we would be done. Unfortunately, this does not work because the function 
m(X) does not behave nicely with respect to disjoint unions. In fact, it is easy to 
find disjoint sets of vertices Xi, X2, and X3 such that m(X,) < m(X2) but m(X U 
&) > m(& U X3). For example, let w, x, y, z be distinct vertices with b(w) = 4 
and b(x) = b(y) = h(z) = 1. Then, takingXr = lx, y), X2 = (w), andX3 = (zl, we 
have m(X,) = 5, m(&) = 6, m(& U X3) = 7, and m(& U X3) = 6. This difficulty 
leads us to the -=K relationship between sets, which characterizes one situation in 
which m(X) behaves nicely with respect to disjoint union. 

We say that X CK Y if for each j there is some i 5 j such that j + 2 ] X[j] I I 
i+21 Y[i]l. 

LEMMA 3.4. IfXClZ= YflZ=0andX~Ythenm(XUZ)1m(YUZ). 

PROOF. It suffices to show that for each j such that (X U Z)[j] # 0, there is 
someiwith(YUZ)[i]#0suchthatj+2](XUZ)[j]] =i+2](YUZ)[i]]. 
Since X << Y, there exists i I j such that j + 2 1 Xb] ] 5 i + 2 I Y[ i] 1, and, since 
isj, ]Z[j]] d ]Z[,i]] also.Nowj+2l(XUZ)[j]l =j+Z]X[j]l +2]Z[j]] 5 
i+2IY[i]l+2lZ[i]l =i+2I(YUZ)[i]I. 0 

Before proving the stronger version of Property 2.1 for connected blocking sets, 
we first prove a technical lemma. 

LEMMA 3.5. For every set B we canfind a yet B’ that blocks B such that I B’ [j] I 
5 bj(B) for each j, and either B’ = B or I B’ 1 c I B I. 

PROOF. If ] B[j] ( I bj(B) for each j with B[j] # 0, we may take B’ = B, so let 
i be minimal such that ] B[i] 1 > b;(B). Choose a set Y such that Y blocks B[i], 
Y= Y[i],and ] Y] == hi(B). WenowdefineB’= YU(B\B[i]). Forj<i,we have 
I B’[j] ] < ] B[j] I 51 bj(B) and also I B’[i] I = I Yl = hi(B). For j > i we have 
B’ u] = Y[j], so it suffices to prove that, if j > i, then I Y[j] 1 I bj(B). Suppose not 
and let Y’ be a set that blocks B[j] with Y’[j] = Y’ and ] Y’ I = bj(B) < I Y[j] I. 
We first note that Y’ U ( y\ Yb]) blocks B[ i], since, if x E Blj], then x is blocked 
by Y’. On the other hand, if x E B[i]\ B[j], then x is blocked by Y, but as 
b(x) < j, we see that x must be blocked by Y\ Yb]. Next we observe that (Y’ U 
(Y\Y[j]))[i] = Y’ U (Y\Y[j]) since the black pebble number of every vertex in 
Y’ is at least j and j > i. However, these observations contradict ] Y I = hi(B), 
since I Y’[j] 1 < ] Y[j] I implies I Y’ U (Y\Y[j])I < I YI. Cl 

LEMMA 3.6. Szlppose B, W, and Y are vertex subsets of a spreading graph such 
that Y u W blocks B and Y U W is connected. Then there is a set Y’ such that 
Y’~WblocksBwithY’~YandeitherY’=BorIY’I<IBI+IWI. 

PROOF. We may assume that ] Y 1 2 ] B I + 1 W 1, since otherwise we may take 
Y to be Y’. Let Y’ be the B’ of Lemma 3.5, that is, Y’ blocks B, I Y’[j] I 5 bj(B) 
for each j, and either Y’ = B or I Y’ I < I B I + I WI. We must show that Y’ << Y. 
Let h = min( b(x) :x E Y U WI. First suppose that j 5 h. Then j + 2 I Y’ b] 1 5 
j+2]Y’l sj+2l.BI sj+2lYI =j+2]Y[j]l.Nowsupposethatj>h.Note 
that, since B c ( Y u W), we have bj(B) 5 bj( ( Y U W)) for each j, and thus, since 
Y U W is a connected subset of the vertices of a spreading graph, we have j + 
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bj(B)Sh+ (YU W].Thusj+2]Y’[j]( sj+2bj(B)Ij+bj(B)+ IBI Ih+ 
IYuWI+IB~~~+~YI+IWI+IB~S~+~~YI=~+~~Y[~]I. Cl 

We are finally ready to complete the proof of Property 2.1. 

THEOREM 3.7. If (B, W) is a configuration on a spreading graph, then there is 
a vertex set Y such that Y U W blocks B, c(B, W) = Lm( Y)/2J, and either Y = B 
orIYI<IBI+IWI. 

PROOF. Let Y be a vertex subset such that Y U W blocks B, c(B, W) = 
Lm( Y)/2J, ] Y] is minimal, and, moreover, such that among such subsets 
] Y rl B ] is maximal. By Lemma 3.2 we may assume without loss of generality that 
YU Wistight.LetU,,..., Uk be the connected components of Y U W, and for 
eachi= 1, . . . . k let Bi = B n Ui, Wi = W n Ui and Yi = Y n U,. For each i, 
Lemma 3.3 shows that Yi U Wi is a connected set that blocks Bi. Moreover, since 
theUiaredisjoint,wehaveIBI=CIBiI,IW(=CIWiI,andIYI=CIYiI.Thus 
it suffices to show that for each i we either have Yi = Bi or I Yi 1 < ] Bi I + I W; 1. 
Suppose ] Y, ] 2 ] Bi ] + 1 Wi ] and q # B;. By Lemma 3.6 there exists Y/ << Yi 
suchthatYlUWiblocksBiandeitherYI=BiorIYi’l<IBiI+IW;I~IYII.If 
we define Y’ = Y,! U ( Y \Yi), then m( Y’) 5 m(Y) by Lemma 3.4, Y’ U W blocks 
B, and either ] Y’ ] < ] Y ] or ] Y’ rl B ] > ] Y rl B ] contradicting the choice 
OfY. 0 

4. Nice Graphs 
To complete the proof of the lower bound on the black&white pebble number of 
the pyramid graph, we must show that the pyramid graph is a spreading graph. 
One of the deficiencies of the spreading graph definition is that it is not generally 
easy to prove that a given graph is a spreading graph. To make our task easier, we 
introduce the class of nice graphs. The advantage of nice graphs is that, though it 
will still require some effort to prove that every nice graph “spreads,” it is almost 
trivial to verify that pyramids and their generalizations are nice. 

We say that a graph is nice if it has the following properties: 

Property 4.1. If y and z are immediate predecessors of a vertex x, then 
b(y) = b(z). 

Property 4.2. If y and z are distinct immediate predecessors of a vertex x, then 
y is not a predecessor of z. 

Property 4.3. If x1, . . . , xk are vertices such that Xi is not a predecessor of Xj 
whenever i # j, then there exist vertex disjoint paths Lz, . . . , Lk containing no 
predecessors of x1 such that Li is a path from an input to Xi for each i = 2, . . . , k. 

Let us begin by verifying that the pyramid is a nice graph. It obviously satisfies 
4.1 and 4.2, so suppose xl, . . . , xk are vertices such that xi is not a predecessor of 
Xj whenever i # j. Let A4 be the vertical line passing through xl. If xi lies on the left 
(right) of A4, we take Li to be the straight path from an input to x, running parallel 
to the left (right) edge of the pyramid. No Xi can actually lie on M since then x1 
would be a predecessor of Xi, or vice versa. It is easy to see that the paths Lz, . . . , 
Lk have the desired properties and hence that the pyramid is nice. We show an 
example of 4.3 on the pyramid in Figure 4. 

Let us now consider some generalizations of the pyramid. If we think of the 
pyramid as a fragment of a two-dimensional rectilinear lattice, a natural choice for 
a k-dimensional pyramid is the corresponding fragment of a k-dimensional recti- 
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FIG. 4. An example of 
Property 4.3 on the pyra- 
mid. 

linear lattice. Figure 5 shows a three-dimensional pyramid. Again it is easy to see 
that 4.1 and 4.2 are isatisfied. To see that 4.3 is also satisfied, one chooses the paths 
Li to be parallel to the faces of the k-dimensional subpyramid of predecessors of 
xl, and, if this is dolne with a small amount of care, it is easy to verify that they 
will be disjoint. There are several other possible k-dimensional generalizations of 
the pyramid and in all cases they can easily be shown to be nice graphs by similar 
arguments. 

As a final generalization we consider the t-ary pyramid in which each noninput 
vertex has t incoming edges. Figure 6 shows an example of a 3-ary pyramid. For 
any t, the same proof as used for the usual (i.e., binary) pyramid shows that t-ary 
pyramids are nice. 

Before abandoning examples of nice graphs, we turn to trees for a moment. It is 
clear that every tree satisfies 4.2 and 4.3 but most trees do not satisfy 4.1. It is, 
however, well known (and easy to prove) that, if x is a vertex of a tree, then 
b(x) = max(j - 1 + IP(x)[j] ] :P(x)b] # 01. Suppose b(x) = j - 1 + k 
where P(x)[j] = (xl, . . . , xk). It is easy to see that for each i = 1, . . . , k, by 
“pruning” the subtree under Xi we can reduce &xi) to j. Now, by deleting the 
subtrees under the sons of x in P(x)\P(x)[j], we have pruned the subtree under 
x without changing b(x) so that 4.1 is satisfied for this particular vertex x. By 
applying this procedure repeatedly, it is easy to see that every tree has a nice subtree 
whose root has the same black pebble number as the root of the original tree, and 
hence the lower bound for the black&white pebble number of vertices of nice 
graphs implies the same lower bound for vertices of trees. Although this result for 
trees was already known [3], it is nice to be able to place this result within the same 
framework as pyramid graphs. 

We now attack the problem of showing that nice graphs are spreading graphs. 
We begin with an easy lemma. We say that V minimally blocks a vertex x if V 
blocks x but no proper subset of V blocks x. 

LEMMA 4.4. If V minimally blocks a vertex x, then 1 VI 2 b(x) + 1 - 
min(b( v):v E V). 

PROOF. Choose .z in V such that b(z) = min(b( v) : v E V). The proof is by 
induction on the length of the longest path from z to x, which we denote by 
d( z, x). If z = x, the lemma is trivially true since ( V ] I 1, so assume z # x. Since 
V minimally blocks x, there is some path L from an input to x such that V rl L = 
(z). Let x1, . . . , xk lbe the immediate predecessors of x ordered so that x1 is the 
immediate predecessor of x on L, and let V’ be a subset of V that minimally blocks 
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FIG. 5. A three-dimensional pyramid. 

FIG. 6. A 3-ary pyramid. 

xl. Note that z E V’ since there is a path L’ (the subpath of L) from an input to 
x1 with L’ n V = (z). Now since d(z, xl) < d(z, x), by the inductive hypothesis 
we have ] V’ ] 2 b(x, ) + 1 - b(z). Since G is nice, by properties 4.2 and 4.3 it is 
easy to see that ] I’\ V’ ] I k - 1 since as V’ minimally blocks xl, every vertex in 
I” must be a predecessor of XI, and I/ must have at least one vertex on each path 
Li for i = 2, . . . , k. Finally since x can be black pebbled by black pebbling each of 
its immediate predecessors independently and then sliding a pebble onto x, 
and since by property 4.1 we have b(xi) = b(xl ) for each i, clearly b(x) I b(xl ) 
+ k - 1. Combining all this yields ] I’] = 1 I/’ I + ] V\V’ 1 2 b(x,) + 1 - b(z) + 
k - 1 L b(x) + 1 - b(z). Cl 

If V is tight, we define V*j = U ( I/,:x E ( V)[j]). Notice that V*j[j] = V[j], 
since clearly V[j] C ( I’) [j] and for each v in V[j] we have I’, = (v). 

LEMMA 4.5. Zf V is tight and ( V)[j] # 0 then I V*j I 2 bj( ( V)) + j - 
min{b( v):v E V*j). 

PROOF. Since V*j obviously blocks ( I’) [j], if min(b( v): v E V*j 1 I j, then 
I v*jI 2 b,(( VI, so the result clearly holds. Thus we assume that min(b( v): 
v E V*j) < j. Let A = (x E ( V) [j]\ I’: x has an immediate predecessor y with 
b(y) < j). We first note that A U P’*j[j] blocks ( V) [j], since if L is a path from an 
input to a vertex in ( I’) [j], the first vertex of L that is in ( V) and has black pebble 
number at least j must be in A U V[j] = A U V*j[j]. Since every vertex in A U 
V*j[j] clearly has black pebble number at least j, this shows that ] A u V*j[j] I L 
bj( ( I’)). It is also easy to see that V*j\ V*j[j] blocks A since for each x in A, I’, # 
1x1 since x 4 V, and by 4.1 every immediate predecessor (and hence every proper 
predecessor) of x has black pebble number less than j so V, c V*j \ V*j[j]. Let z E 
V*j such that b(z) = min(b(v):v E V*jj, let x E ( V)[j] such that z E V,, let L be 
a path from an input to x such that L n V = (zj, and let y be the first vertex on L 
that is in ( I’) and has black pebble number at least j. Then as observed before y is 
in A U V*j [j], but, since y is on L and y is not z, y cannot be in I’ and hence must 
be in A. Obviously z E VY, so by Lemma 4.4 we have I VY ] L b(y) + 1 - b(z) 2 
j + 1 - b(z). Next we observe that, if v and w are distinct vertices of A, then w is 
not a predecessor of v, since, as we noted before, 4.1 implies that every proper 
predecessor of v has black pebble number less than j. By 4.3 this implies that 
] ( V*j\ V*j[j])\ VY 1 z ] A ] - 1. Combining all this together we have 1 V*j 1 = 
I v*jblI + I vyl + I(~*~\~*~bl)\~yI 2 (bj((v)) - IAl> + u + 1 - b(z)) + 
(IAl-l)=bj((V))+j-b(z). 0 
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LEMMA 4.6. Suppose V is a tight subset of a nice graph, and j = j, r j, I . . . 
rjkwhere(V)[j]#0andfori= I,..., k we have j; = min{b(v): v E V*j+1). 
Then ) V[jJ 1 L bj(( V)) + j - j,. 

PROOF. The proof is by induction on k. For k = 1, this follows immediately 
from Lemma 4.5, so assume k L 2 and that 1 V[j,-,] 1 L bj(( V)) + j - j,-,. 
Obviously it suffices to show that I Vbk]\V/Ljk-,] I 2 jk-, - jk. We assume that 
j, < jk-,, since otherwise this trivially holds. Choose x E ( V) [jk-,I, z E V, such 
that b(z) = jk, and left L be a path from an input to x such that L rl V = (z). If we 
let y be the first vertex on L that is in ( V) and has black pebble number at least 
jk-,, then, as in the preceding proof, it is easy to see that V, C V[jJ\V[j,-,] and that 
z E Vy. Thus I V[jk]‘\V[jk-I] I 2 I V,l L jk-, + 1 -j, by Lemma 4.4. Cl 

We are finally ready to prove that nice graphs are spreading. 

THEOREM 4.7. Ij^G is nice, then G is a spreading graph. 

PROOF. Let V be a connected subset of G. We must prove that, for each j such 
that(V)[j]#0,wehaveIVl ?bj((V))+j-min(b(v):vEV).Bythepreceding 
lemma, since I VI L I V[m] I for all m, it suffices to find a sequence j = j, L . . . I 
j, = min(b(v):v E V) where for i = 1, . . . , k we have ji = min(b(v): v E V*ji-1). In 
fact we show that for any j > min(b( v): v E V) such that ( V) [j] # 0, we have 
j > min(b(v): v E V*j), which clearly implies the existence of the desired 
sequence. Since V is connected, we can find vertices x(l), . . . , x(n) with b(x( 1)) = 
max(b(v):v E ( V)), b(x(n)) = min{b(v):v E V) and P*(x(i)) f~ ( Vtio) n 
P*(x(i + 1)) n ( Vedl.+l)) # 0 for i = 1, . . . , n - 1. Let i be maximal such that 
b(x( i)) L j. Since b(x( 1)) L j > b(x(n)), this is well defined and i < n. Now we have 
j > b(x(i + 1)) = max(b(v):v E P*(x(i + 1)) n ( Vdi+l,)). Also, since P*(x(i)) n 
( V&) n P*(x(i + 1)) n ( Vx(i+l)) # 0, max(b(v):v E P*(x(i + 1)) n (VHi+l,)) L 
min(b(v):v E P*(x(i)) rl (Vdij)). Since ( VHi,) C V*b(x(i)), clearly min(b(v):v E 
P*(x(i)) n ( K&l :- > min(b(v):v E V*b(x(i))], and since b(x(i)) r j, we have 
min(b(v):v E V*b(x(i))l r min(b(v):v E V*j). Combining all this yields j > 
min(b(v):v E V*j], as desired. 0 
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