
Memory-Constrained Task Scheduling on a Network of
Dual Processors

KEN FUCHS

Iowa State Universily, Ames, Iowa

AND

DENNIS KAFURA

Virginia Polytechnic Imtitute, Blacksburg, Virginia

Abstract. One aspect of network design is the extent to which memory is shared among the processing
elements. In this paper <a model with limited sharing (only two processors connected to each memory)
is analyzed and its performance compared with the performance of two other models #at have appeared
in the literature.. One of these is a model of multiple processors sharing a single memory: the other
model considers a multiprocessor configuration in which each processor has its own dedicated memory.
The tasks processed by these networks are described by both time and memory requirements. The
largest-memory-first (LMF) scheduling algorithm is employed and its performance with respect to an
enumerative optimal sclheduling algorithm is bounded. On the basis of this measure we conclude that
memory sharing is only desirable on very small networks and is disadvantageous on networks of larger
size.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems-
modeling techniques; D.4.1 [Operating Systems]: Process Management-scheduling; D.4.2 [Operating
Systems]: Storage Management-distributed memories, main memory
General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Deterministic scheduling, scheduling algorithms, memory manage-
ment, largest-memory-first, shared memory, networks of processors

1. Introduction
An important element in the design of a computer network is the topology defining
the interconnection of processors and memories. In some cases the nature of the
network may limit the types of feasible interconnections. For example, in a
geographically distributed network, there is usually no opportunity for any sharing
of a common memory among separate nodes. On the other hand, a closely coupled
network, oriented toward high-speed performance, may demand high-speed shared
memory for rapid Icommunication and e&y sharing of a universal program and
data space. For those networks in which the topology is not predetermined, the
extent to which memory should be shared is an interesting and important design

Authors’ addresses: K. Fuchs, Computer Science Department, Iowa State University, Ames, IA 500 11;
D. Kafura, Department ‘of Computer Science, Virginia Polytechnic Institute, Blacksburg, VA 2406 1.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-5411/85/0100-0102 $00.75

Journal ofthe Association for Computing Machinery, Vol. 32, No. I, January 1985, pp. 102-129.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2455.2456&domain=pdf&date_stamp=1985-01-01

Memory-Constrained Network Task Scheduling

SCHEDULING

ALGORITHM

TASK SE-I

J

FIG. 1. A general task scheduling model.

problem. In this paper we investigate one aspect of this complex problem, namely,
the impact of shared memory on job scheduling. The conclusion derived from this
research is that memory should be shared only in the simple network with exactly
two processors and should not be shared in any larger network.

The evaluation of scheduling policies for computer networks may be approached
in two basic ways. One approach characterizes the task behavior by simple
stochastic processes and yields such performance measures as mean queue lengths,
mean response times, and steady-state utilizations [2, 131. A second approach,
referred to as deterministic scheduling [1, 51, is used in this paper. It assumes that
an arbitrary collection of tasks is initially present for scheduling. The tasks are
arbitrary in that, although the exact values of the task parameters are known for
this collection of tasks, the task parameter values are not constrained to yield a
predetermined mean or fit a prescribed distribution. The performance metric used
in this analysis is a bound on the time it takes for the network to complete the
processing of the task set. This bound is expressed in relation to the optimal
scheduling policy. Except for special cases the optimal scheduling policy is not
practical because it requires an enumeration of all possible scheduling alternatives.

A generalized deterministic model is shown in Figure 1. The general model
contains an arbitrary collection of known tasks J, a scheduling algorithm A, which
determines the assignment of tasks to processors based on the task parameters and
other system constraints, and a network 2, consisting of processing nodes P and
possible other resources R.

An intermediate state in the execution of the task set is shown in Figure 2a. The
scheduling algorithm, governed by the system constraints, removes tasks from the
task set and assigns them to the input lines of available processors. When a
processor completes a task, the task appears on the processor’s output line.
Collectively these output lines define a system schedule. The final system state is

104 K. FUCHS AND D. KAFURA

I
J

0 Cl
I I

TASK SET

J

I n!(TJ SCHEDULING

ALGORITHM

0
A

0

t4l51

0
+ 1

P I

5L.il

RESOURCES

R

W

FIG. 2. The general model. (a) An intermediate state. (b) The final state.

shown in Figure 21~ in which all the tasks have been completed. Blank spaces on
the output lines of a processor indicate periods when the processor was idle either
because no task was available for processing at that time or because an available
task could not be scheduled on the idle processor without violating a system
constraint.

Within this general framework previous investigations have considered deter-
ministic models with precedence constraints among simple tasks on two or more
processors [6-S], preemptible tasks that are either mutually independent or have

Memory-Constrained Network Task Scheduling

Processor

Processor 3 0
0
0

Processor

(4

1 Memory

‘TJ-IMemor y 1

,Processor

Processor 3-u 8
Memory

0
Processor

:
0

Processor

Processor

3-u

0

::

Memory

Processor

:
0

1 Processor

(4

G-4
FIG. 3. The four memory models. (a) Model of Krause, Shen, and khwetman [14]. (b)
Model of Kafura and Shen [I I]. (c) General composition of (a) and (b). (d) A specific
composition of (a) and (b), the model this paper is most concerned with.

special precedence structures [3, 16, 171, and independent tasks with synchroniza-
tion constraints [9, lo], and two (processor and memory) or more available
resources in a multiprocessor network [4, 11, 12, 141. This paper extends the results
for this last class of models.

Two specific models with memory constraints have been analyzed. The first
model, from Krause, Shen, and Schwetman [141, is pictured in Figure 3a. This
model contains a single memory shared among all the processors in a necessarily
local network. In practice such a system offers the advantage of flexible dynamic
memory (re)allocation, but suffers from a possible memory contention, which can
become severe as the number of processors increases. The second model, from
Kafura and Shen [11, 121, is pictured in Figure 3b. This model assigns a private
memory of a fixed, and possibly different, size to each processor. Although this
configuration eliminates memory contention, it may also lead to low system
utilization. This is because idle memory on one processor cannot be used by other
processors that may be idle due to lack of sufficient memory to process available
tasks with large memory requirements. These two previous models are similar
because in each model we assume that the tasks are not preemptible and that each
processor can execute only one task at a time.

106 K. FUCHS AND D. KAFURA

JCl61=(6,l)

N -
II
"

z JCl4l=(I,x)

FIG. 4. Example of a random schedule. 7’[LMF] = 3a, T[OPT] = 1 + x,
R[LMF] := 3$ as x + 0.

Figure 3c show,s a network model that generalizes the two specific models
described above. In this generalized model each node consists of several processors
sharing a common memory. Extending the results of the earlier models to include
the general netwalrk of multiprocessing stations pictured in Figure 3c would
probably be an overly ambitious undertaking. Therefore, the model presented in
this paper restricts each station to a dual processor configuration. This model is
pictured in Figure 3d. We view this model as interesting in its own right and also
as a necessary analytical bridge between the previous models and the more general
network of multiprocessors.

The results available from the earlier analysis of models with memory constraints
have shown that largest-memory-first (LMF) scheduling policy is the simplest
algorithm with good performance. The LMF strategy schedules tasks in decreasing
order of memory requirement and, among tasks of equal memory requirement, it
uses an arbitrary but fixed selection rule. Other more complicated heuristics either
did worse than LMF or resulted in a performance improvement that was not large
enough to justify the added complexity of the algorithm and the accompanying
analysis. To confirm that some heuristic method, like LMF, was the only scheduling
policy of practical interest, we first constructed several example schedules that
showed that an arbitrary (random) scheduling method could be ineffective. One of
these examples is presented in Figure 4. For this task set, the ratio between the
arbitrary schedule a.nd optimal schedule is 3$. The pattern illustrated in this example

Memory-Constrained Network Task Scheduling 107

can be generalized to show that the bound for an arbitrary schedule is greater than
1 + log(n), where n is the number of dual processors in the network. We also
conjectured that if each memory were considered a separate resource in the sense
of [4], then the bound could be no worse than n + 1. However, bounds in this
range compared unfavorably to the results using LMF in previous models. On the
basis of this experience the LMF algorithm is used throughout this paper.

It is useful to compare the specific bounds on the LMF algorithm established for
the two previous models. In this statement of the results T[LMF] is used to denote
the completion time of the LMF algorithm and T[OPT] the completion time of
the optimal algorithm. These results are:

Result 1 [141

TLMFI < 3 _ 2
TPW n’

where n is the number of processors sharing a common memory.

Result 2 [l l]

TMFI < 2 _ i
TD’-U n’

where n is the number of processors each with a private memory.

The next section describes the details of the model considered in this paper,
including the notation and certain important definitions used throughout this
paper.

2. Definitions

A general, deterministic scheduling model with memory constraints is defined here
in detail. The definitions used in the lemmas and theorems of Section 3 follow the
model definition.

2.1. MODEL DEFINITION. A network consists of a vector N, of n computers,
where each computer Q[i] consists of a vector Pfi], of m processors p[i, j], and a
private memory of size M[z]. The computers are ordered within the vector N by
decreasing memory M[z] such that M[fl L M[i + I] for 1 5 i C n. The processors
p[i, i] are identical; thus the computers are distinct only in M[I). The set of tasks
J to be executed by the network consists of k independent tasks J[r], each with
resource requirement (m[r], t[r]), where m[r] and t[r] represent the memory and
processor time requirements, respectively. (Note: The reader should not confuse
m, the number of processors per computer, with m[r], the memory requirement of
task J[r].) The resource requirements must be specified in integral units of time
and memory. This restriction is mild since arbitrarily small units of time or
memory may be chosen. This restriction has been used in at least one previous
model [4] and the choice of the unit dues not affect the results. The vector L, any
permutation of the k tasks, represents an arbitrary task list of the tasks.

The various components of the task-scheduling model are summarized as follows:

Network: N = (QPI, QPI, . . . , Qbl) n z 2.
Computer: Q[tl = W-KI, f’Kl) lsiln.
Private memory: M[z] = [Integral units of memory] 15iSn;

mz”Jrwi+l] for lIi<n.

108

Processor vector.:

Processor:

Task set:

Task list:

Task:
Memory requirement:

Time requirement:

K. FUCHS AND D. KAFURA

PM = (PP, 11, p[i, 21, . . . , ~16 4)
1 I is n and ml 2.

p[i, j] = [Unique processor label]
llirn and llj=m.

J= IJ[ll, JFI, . . . , J[W
k mutually independent tasks.

L = ~~~;ll~Lj’[‘Pll, . . . 9 JtW) . .
i[k]) = (I, 2, . . . , k].

J[r] = (&rj,‘t[rjj ’ ’ ’ 1 I Y I k.
m[r] = [Integral units of memory]

lrr~k and m[r]>O.
t[r] = [Integral units of time]

1 I r I k and t[r] > 0.

The model works according to the following rule. When p[i, j] is not executing
a task, it instantaneously scans the task list from left to right until it finds an
uninitiated task J[r] such that m[r] I G[i](T), where G[i](T) is the amount of
unused memory in computer Q[l] at time T. J[r] is marked as initiated in L, and
p[i,J executes J[f(for t[r] units of time and then marks J[r] in L as terminated.
If two or more processors find the same task, the processor with the smallest value
h = im + j executes the task and the other processor(s) continues the search through
L. If a processor p[i, j] initiates task J[r] at time T, then G[i](7’) = G i](T) - m[r].
If a processor p[i, j] terminates task J[r] at time T, then G[i](7’) = J [iJ(7’) + m[r].
Note that G[i](T) may “change” up to 2m times, m terminations, and m initiations,
during the instantaneous scan of the task list.

At time T = 0, all tasks are uninitiated, all p[i, j] are idle, G[i](7’) = M[i] for 1
I i I n, and the previous rule is applies. The task set is executed to completion at
time T > 0, when all tasks in L are marked terminated. Let this value of T
be denoted T[L], the time required to execute task set J using task list L on net-
work N.

The optimal schedule OPT is the schedule that has the minimum T[L] over all
possible L. Let T]:OPT] denote the optimal completion time of task set J on
network N, where T[OPT] = min(T[L]) over all L and let R[L] = T[L]/T[OFT]
be the ratio of completion times of schedule L over schedule OPT.

The problem being considered is, “What are the bounds on R[L], with L = LMF
and a varying number of computers n, where the number of processors m within
each computer is 2?”

2.2. TIME SLICE AND TIME SLICE PARTITION DEFINITIONS. Having just com-
pleted a description of the model, we now begin the analysis of this model by
defining several imlportant concepts.

Time slice. A time slice h(T, Q[l], N, L) is the set of tasks executing during the
half open interval I[T, T + 1) on computer Q[i] of network N, using task list L.
Hereafter, h(T, Q[i], N, L) will be designated h[i] where L = LMF, T is specified
and in the range [O, T[L]], and N is known by context. Note: Only the memory
requirements of thle tasks in h[i] are relevant in the use of this definition; also
1 h[i] 1 5 IP[i] I = m.

Last task. Let J: denote the index of the last task to complete on network N
using task list L. If more than one task completes at the end of the schedule, let s
be the index of the one with the greatest memory requirement.

Partition of the time slices. The time slices on Q[I] are divided into B (big task)
slices and D (double task) slices. The D slices are further divided into E (epsilon

Memory-Constrained Network Task Scheduling 109

Time Slices on QCI I]

D Time Slices

E Slices F Slices I r V

FIG. 5. Time slice partition tree.

task) slices and F (fat task) slices. The time slices on Q[k] for 2 s k 5 n are called
U[k] (Universe of Q[k]) slices.

For Lemma 2, V[k] (single task) slices and W[k] (double task) slices form a
partition of the U[k] slices. Figure 5 illustrates, in tree form, the partition of the
time slices.

Formal definition of the time slice partitions. The following definitions are
required for the theoretical analysis which follows in the next section:

B = (h[l]] J[s] 4 h[l] and there exists J[r] E h[l]] m[r] + m[s] > ml]),
D = (h[I]] J[s] 4 h[l] and for all J[r] E h[l], m[r] + m[s] 5 ml]),
E = (h[l]] h[l] E D and there exists J[r] E h[l]] m[r] < m[s]),
F = (h[l]] h[l] E D and for all J[r] E h[l], m[r] 2 m[s]),

U[il = Mil I Jbl 4 hii11 where 2 I i I n,
V[i] = (h[i]] h[i] E U[i] and] h[i]) = 1) where 2 5 i 5 n,
W[i] = (h[i]] h[i] E U[i] and] h[i]) = 2) where 2 s i I n.

For each of the seven sets defined above, the small letter is used to denote the
size of that set (e.g., b =] B]). Figure 6 is an example of the various slices in a
LMF schedule.

3. Results
In this section, various upper bounds on the ratio of the completion times of LMF
and OPT schedules, denoted R[LMF] = T[LMF]/T[OPT], are established. The
network N contains n computers Q[i], each having m = 2 processors p[i, l] and
p[i, 21, and an arbitrary amount of memory M[i]. The two general upper bounds
are given in Theorems 1 and 2. The cases in which these upper bounds are known
to be the least upper bounds are noted and proved through example schedules in
the corollaries of the two theorems. For the other cases, where the least upper
bounds are unknown, an interval that contains the least upper bound is given. The
upper point of the interval is given by one of the theorems and the lower point of
the interval is given by example schedules.

The upper bounds on R[LMF], considered here, are functionally dependent on
the task set J and the network N(m = 2) on which J is scheduled. Specifically, the
bounds are dependent on the number of computers n and the relationship between
the memory requirement of the last task to terminate (m[s]) and the size of the

110

MC13
=20

i,l-

K. FUCHS AND D. KAFURA

18,2
Ii

5 (4,2)
(7,3) ,.

JCs3=(4,6)

-
13

I
(5,2) (4y2)

MC23

r-r

14,2 (13.3)
=I5

(13,3)

w------l UC41 -
l--lwc41 -VI 43w

E (2.4) 1
1

M143
=3

4 (I,81 I

FIG. 6. Example of LMF scheduling and different time slices.

smallest memory in the network (M[n]). Let U&z, m[s], M[n]) be the function
giving the upper bound on R[LMFJ. Therefore, the two theorems show that

3n - 2
if m[s] > hQn],

U&4 WI, M[nl) = 3z
n+l

otherwise.

This section is di.vided into two parts, corresponding to the two conditions in
the above definition of UB. The first part is concerned with results when m[s] >
M[n], and the second when m[s] I M[n].

The examples used in the corollaries produce a particular value of the function:

R[LMF](JJ, J) = TILMFI(N ‘)
W~I(N 4 *

Memory-Constrained Network Task Scheduling 111

The function R[LMF] is evaluated for network N and task set J by constructing
both the LMF schedule and OPT schedule and taking the ratio of the two schedule
lengths, T[LMFJ/T[OPT]. In the cases in which the least upper bound of R[LMF]
is unknown, the example used in the corollary may not be the best; another
example may have a larger value of R[LMF]. If so, the interval containing the least
upper bound should be smaller than the one given in this paper.

3.1. GENERAL BOUND ON R[LMF] WHEN m[s] > M[n]. Before stating and
proving the general bound when m[s] > M[n], we shall prove two lemmas. Lemma
1, is used in the proof of Lemma 2, which itself is used in the proof of Theorem 1.
These lemmas are true whether or not m[s] > M[n].

LEMMA 1. In a LMF schedule, B, E, and F are sets of consecutive time slices
on Q[1] such that all B slices precede all E slices and all E slices precede all F
slices.

PROOF. We first show that all B slices precede all D slices. By definition, each
B slice contains a task J[x] such that m[x] + m[s] > M[I]. Also by definition, the
larger task J[y] on each E slice must have the memory requirement m[y] such
that m[y] + m[s] 5 Ml]. This implies that m[x] > m[y]. That is, each B slice
contains a task whose memory requirement is larger than that of any task in each
D slice. Thus, in any valid LMF schedule all B slices must precede all D slices.

We now show that, within the D slices, all E slices precede all F slices. Suppose,
by contradiction, that an F slice immediately precedes an E slice, both of which
precede the last task J[s]. By definition, the small task on the E slice has a memory
requirement m[r] such that m[r] < m[s]. The smaller task on the E slice cannot be
one of the two tasks executing during the previous F slice, since the memory
requirement of both of those tasks is not less than m[s]. The larger task of the E
slice can be scheduled with J[s], since any task in a D slice can be scheduled with
J[s]. However, the smaller task on the E slice was scheduled in preference to J[s]
even though J[s] has the larger memory requirement. This is a contradiction to
LMF scheduling, thus all E slices precede all F slices.

The time slices in B, E, and F are consecutive since all B slices precede all D
slices, all E slices precede all F slices within the D slices, and B + E + F covers
M[l] up to J[s]. Cl

LEMMA 2. A single small task J[e] is an element of all E time slices, e < t[e] 5
T[OPT], and J[e] is initiated in a B time slice.

PROOF. By Lemma 1, the E slices are consecutive; thus it is possible that J[e]
is an element of all E slices.

The small task in each E slice is initiated in a B slice. Suppose, by contradiction,
a small task J[r] in an E slice is initiated in another E slice h[e]. By the definition
of an E slice, J[s] can be scheduled with the large task of h[e] and m[r] < m[s].
Scheduling J[r] in preference to J[s] is a clear contradiction to LMF scheduling.

Since the small task in each E slice must be initiated in a B slice, there can be
only one such task, J[e]. Thus J[e] is an element of all E slices.

Since J[eJ is an element of all E slices and at least one B slice, then e < t[e].
T[OPT], must be at least as long as any task scheduled; thus t[e] 5 T[OPT]. 0

With Lemma 2 established, we can now prove the following theorem.

THEOREM 1. Given an LMF schedule of the task set J on N, m = 2, satisfying
m[s] > M[n], then R[LMF] < (3n - 2)/n.

112 K. FUCHS AND D. KAFURA

PROOF. Let k be the largest i such that M[ij 2 m[s]. A lower bound on the
optimum schedule can be found by determining a lower bound on a schedule of
tasks J-S on the first k computers where S, a subset of J, is the set of all tasks
whose memory requirement is less than m[s]. (For the purpose of constructing this
bound, tasks of sizes less than m[s] are deleted from the task set.) The large B task
slices clearly use b processor slices; a task larger or equal to m[s] cannot be
scheduled with theye tasks as explained in the definition of a B slice. The remaining
task slices are scheduled as two for every processor slice, giving (e + 2f + u[2] + u[3]
+ . . . + u[k] + t[s])/2 processor slices (ignoring the second task of a W slice).
Adding processor slices, the bound is found to be

k. T[OP’l:] I b +
e + 2f + u[2] + u[3] + . . . + u[k] + t[s]

2 (1)

The following bounds on the LMF schedule are used with the bound on T[OPT]
in inequality (1) to prove the theorem directly:

T[LMF] 5 b + e + f + t[s], T[LMF] I u[2] + t[s],
T[LMF’J I u[3] + t[s], . . . , T[LMF] 5 u[k] + t[s].

Adding and subtracting (e + k.t[s])/2 from the right side of inequality (1) and
multiplying by 2 gives inequality (2):

2k. T[OPT] 2: 2b + 2e + 2f + 2t[s] - e - t[s] + ~(21 + u[3]
+ . . . + u[k] + (k - l)t[s] - (k - I)@]. (2)

Applying the previously mentioned upper bounds on T[LMF] to inequality (2)
results in inequality (3):

2k.T[OPT] ;Z 2T[LMF] - e - t[s] + (k - l)T[LMF] - (k - l)t[s]. (3)

Using the inequality e < t[e] I T[OPT] from Lemma 2 and the fact that t[s] 5
T[OPT], transform inequality (3) into inequality (4):

;!k. T[OF’T] > (k + l)T[LMF’J - (k + l)T[OPT]
(3k + l)T[OPT] > (k + l)T[LMF] (4)

3k+ 1
- > ;k;; = R[LMF].
k+ 1

Combining (3n -- 2)/n 1 max[i = 1, 2, . . . , n - 1]((3i + l)/(i + 1)) 2 (3k + l)/
(k + 1) and inequality (4) proves Theorem 1. (The domain of k is the set of integers
1 through n - 1; this excludes n since a condition of the theorem is m[s] >
M[nl.) 0

The worst case differences between the least upper bound on R[LMF] and
the upper bound of Theorem I, (3n - 2)/n, are indicated by Corollaries l-3 and
Table I. Corollary 1 shows that (3n - 2)/n is the least upper bound on R[LMF],
for networks with 2 to 4 computers. Corollaries 2 and 3 give an interval containing
the least upper bound for networks with 5 to 20 computers. Table I summarizes
the intervals and their relative sizes for networks with 5-376 computers. The task
sets 1 and 2 in the table are those in Corollaries 2 and 3. The remaining task sets
do not appear in the paper because of length considerations.

COROLLARY 1. For the LMF schedules of all task sets J on N, with 2 5 n I 4
and WI = 2, satisfying m[s] > M[n], (3n - 2)/n is the least upper bound on R[LMF].

Memory-Constrained Network Task Scheduling

TABLE I. COMPARISON OF WORST-KNOWN R[LMF]‘s AND (3n - 2)/n

113

Difference and %
difference between

Task Exam-
column 2 and

set Lower bound on least upper de
(3n - 2)/n

num- bound on R[LMF] (worst- Limitations for bound value % dif-
ber known R[LMFj) valid for n of n Difference ference

1 (6n + 1)/(2n + 2) 599 8 l/36 1.010
2 (12n + 13)/(4n + 8) 10,20 16 l/36 0.966
3 (24n + 49)/(8n + 24) 21,43 32 1 l/560 0.669
4 (48n + 145)/(16n + 64) 44,90 64 15/1088 0.464
5 (96n + 385)/(32n + 160) 91, 185 128 711064 0.220
6 (192n + 96 1)/(64n + 384) 186,376 256 1514192 0.120
k (3.2k(n+k-1)/(2k(n+k)) 3.2k-k,3.2’k+“-k-2 - - -

PROOF. An upper bound on R[LMF] is (3n- 2)/n by Theorem 1. This bound
may be approached by the R[LMF]‘s of the three pairs of schedules in Figure 7 by
allowing x to approach infinity.

The sizes of the memories in the three networks are as follows:

Network 1 (n = 4): M[I] = 16, M[2] = 8, M[3] = 4, and M[4] = 1.
Network 2 (n = 3): M[l] = 8, M[2] = 4, and M[3] = 1.
Network3@=2): M[1]=4andM[2]= 1. 0

COROLLARY 2. For the LMF schedules of all task sets J on N, with 5 5 n 5 9
and m = 2, satisfying m[s] > M[n], the least upper bound on R[LMF] lies in the
interval

[
6n + 1 3n - 2 - -
2n+2’ n 1 ’

PROOF. An upper bound on R[LMF] is (3n - 2)/n by Theorem 1. Hence, the
least upper bound on R[LMF] is less than or equal to (3n - 2)/n, the upper bound
of the interval. The pair of schedules in Figure 8 has an R[LMF] that approaches
(6n + 1)/(2n + 2) as x approaches infinity. Therefore, the least upper bound on
R[LMF] is greater than or equal to (6n + 1)/(2n + 2), the lower bound of the
interval.

The sizes of the n memories and k = 7n - 15 tasks used in Figure 8 are
J,f[i] = 2”-i+l for 1 I i < n,
J[l] = (2” - 1, I),
J[3] = (2”-‘, (n + 1)x),
J[5] = (2n-2, (n - 4)x),

M[n] = 1,
J[2] = (2”-‘, (n + 1)x),
J[4] = (2”-‘, 2(n + 1)x),

J[4 + 251 = (2”+‘, (2n - 3)X)
for 1 5 j I n - 3,

J[5 + 2j] = (2”-j-‘, 2(n + 1)x + 1)
for 1 5 j I n - 3,

J[2n] = (2, 2(n + 1)x),
J[2n + ~1 = (2, x)

for 1 zz j 5 5(n - 4),
J[7n - 191 = (2, 11, J[7n - 181 = (2, 11,
J[7n - 171 = (1, 2(n + 1)x), J[7n - 161 = (2, 2(n + 1)x),
J[7n - 151 = (2, (9 - n)x + 1). 0

MI11
=I6

K. FUCHS AND D. KAFURA

L.ARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE ---

J C i3II

(8,2X)

- JCII

(I%11

JC71 (2,4x)
I

JClll (2,4x)
I

Jr11

(15, I)-

11123 (1,4x+I)I I

tJC93 (2,l)

Jt43

(8, 4 x)

JC23

(8, 2x)

JC31

(8,2x)

J C41
(8, 4x)

MC41 [1
I JCl21 (1,4x+1)

=I
n=4

FIG. 7. Example schedules for Corollary 1.

COROLLARY 3. For the LMF schedules of all task sets J on N, with 10 5 n 5
20 and m = 2, satisfying m[s] > M[n], the least upper bound on R[LMF] lies in
the interval

12n + 13 3n - 2
4n+8 ’ n ’

PROOF. An upper bound on R[LMF] is (3n - 2)/n by Theorem 1. Hence, the
least upper bound. on R[LMF] is less than or equal to (3n - 2)/n, the upper bound
of the interval. The pair of schedules in Figure 9 has an R[LMF] that approaches
(12n + 13)/(4n + 8) as x approaches infinity. Therefore, the least upper bound on
R[LMF] is greater than or equal to (12n + 13)/(4n + 8), the lower bound of the
interval.

Memory-Constrained Network Task Scheduling

LARGEST MEMORY FIRST SCHEDULE

115

OPTIMAL SCHEDULE

MCIJ
-8

ML23
=4

ML33
= I

JC33
Jt53 (2,3x) Jt73 (2,3x)

(4,x)

J C63

(2,x)
- JCII-

(7,l)
Jtll

-t7,11

JCIOI
(1,3x+1)

JL83 (2,1)---r

JC23 JC41

(4,x) (4,3x)
JCSI (2, I)-

1

IC23
4 x) Jc3’ 9

(4*x) JC63

(2,x)

JC41
(4,3x) I

JC53 (2,3x)

I JC73 (2,3x)

I

):IJ[
LARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE

y I [JC41 (I, x+1)

FIG. 7. Continued.

The sizes of the n memories and k = 13n - 49 tasks used in Figure 9 are
M[i] = 2n-i+l for 1 I i < n, M[n] = 1,
J[l] = (2” - 1, l), J[2] = (2”~‘, 2(n + 2)x),
J[3] = (2”-‘, 2(n + 2)x), J[4] = (2”~‘, 4(n + 2)x),
J[5] = (2”-2, (n + 2)x), J[6] = (2”-2, 3(n + 2)x),
J[7] = (2n-3, (n - 9)x), J[8] = (2”-2, 4(n + 2)x + l),
J[7 + 2j] = (2+js2, (4n - 3)x)

for 1 sjln-4,
J[8 + 2j] = (2n-j-2, 4(n + 2)x + 1)

for 1 s j I n - 4,
J[2n + j] = (2, x)

for 1 sjs ll(n - 5),
J[13n - 541 = (2, I), J[13n - 531 = (2, l),
J[13n - 521 = (I, 4(n + 2)x), J[13n - 511 = (2, 4(n + 2)x),
J[13n - 501 = (2, 4(n + 2)x), J[13n - 491 = (2, (20 - n)x + 1). Cl

116 K. FUCHS AND D. KAFURA

MC21 JC21

EST MEMORY FIRST SCHEDULE

I

‘JL7n-151 L;;;,;;;]

J C53 JC5n-123

JCII-

J C7n -161

TIMAL S

JC21

CHEDULE

Jt33

JC41

(top-holf)

FIG. 8. Example schedules for Corollary 2.

3.2. GENERAL BOUND ON R[LMF] WHEN m[s] 5 M[n]. Before stating and
proving the general bound when m[s] I M[n], we shall prove Lemma 3, which is
used in the proof of Theorem 2.

LEMMA 3. For every LMF schedule on N, with m = 2, that satisfies m[s] I
Mb1

u + t[s] n.T[OPT]rb+d+T.

The general idea of the proof is to determine this lower bound on the optimum
schedule by producing an upper bound on the number of task slices that can be
scheduled with large tasks of B slices, and assuming the remaining task slices are
scheduled two per processor slice.

Memory-Constrained Network Task Scheduling 117

LARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE

MC3l ApJj

J[2n+63 through JC2n+lOl

M141 JC83 JC91

:
0

0

:
JC7n-241 through JL7n-203

Mtn-23 1 ET

MLn-II JC2n-23 JL2n-II

MCnl 1

(bottom-half)

(b)

FIG. 8. Continued.

JL7n-183’

JC7n -171

I I

PROOF. We show that, in any schedule, the large task in any B slice may only
be scheduled with the small task, J[r], of a B, E, or W[i] slice. Since m[s] I M[n],
the task J[r], which must have m[r] < m[s] by the definition of B slice, may not
be the large task in any slice by LMF scheduling. (The large task in any slice must
be larger than or equal to m[s].) By the definition of F slice, the small task of an F
slice has a memory requirement greater or equal to m[s] and therefore may not be
the task J[r] with m[r] c m[s]. (The single task of the V[r] slice is excluded, because
it is the large task of the V[i] slice, which has already been excluded.)

Following this argument, small B, E, and W[i] task slices may contribute to the
bound on the number of task slices that can be scheduled with large tasks of B
slices.

We show that the upper bound on the number of task slices that can be scheduled
with large tasks of B slices is z + w where z is the number of B slices with a small
task. The proof for the case of e = 0 is trivial. The proof for the case of e > 0
follows.

118 K. FUCHS AND D. KAFURA

LARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE

JCl3n- 513 1 JCl3n-503

c:3:i

r

‘JC73

\

\J C2n+ll
through
JC7n-231

JC51 J Cl3n-491

JC23 Jt33

JCII

1
‘-JCII J C41

JCl3n-52 3
--

MI23
JC53 1 J C61

JC21 JC43 \
J Cl3n-541

and
JLl3-533

I I J

JC83

(top-half)

(4

FIG. 9. Example schedules for Corollary 3.

We need the following two new definitions:

B[l] = (h[11] h[l] E B and there exists J[r] E h[I]] m[r] + m[e] > M[111,
B[2] = {h[l]] /z[l] E B and for all J[r] E h[11, m[r] + m[e] I M[11).

The bound z + w is determined by finding the corresponding bounds for large
tasks of B[l] and B[2] slices, respectively, then adding the two bounds together.

By the definitions of B[l] and B[2] slices and the LMF scheduling principle, all
B[l] slices must precede all B[2] slices.

3.2.1. Boundvfor B[2]. z[2] = b[2], by definition of B[2] slices and the LMF
scheduling principle (z[2] c b[2] implies that J[e] does not exist). The upper bound
on the number of task slices that can be scheduled with large tasks of B[2] slices is
z[2] (the bound cannot be greater than the number of B[2] slices).

Memory-Constrained Network Task Scheduling

LARGEST MEMORY FIRST SCHEDULE

119

OPTIMAL SCHEDULE

MC43 JL91 JLIOI

MI51 JCIII I JL 121 I

Mtn-23

M h-11 JC2n-II JC2nl

MCn3 I
(bottom-half)

V-4

JC2n+ll through JC2n+lll

JC2n+l21 through Jt2n+221,

J tl3n-651 through J Cl3n-55

JCl3n- 5437

J[:l3n-531 t

FIG. 9. Continued.

3.2.2 Bound for B[l]. The small tasks in B[2] slices must have memory
requirements greater than or equal to m[e], since if they are less than m[e], the
LMF scheduling principle is violated. (Note: J[e] can coexist with any large task
in a B[2] slice.) By the definition of B[l] slices, the small tasks in B[2] or E slices
whose memory requirements are known to be greater than or equal to m[e] cannot
be scheduled with the large tasks in B[I] slices. This means only small tasks of
W[i] and B[l] slices can coexist with large tasks of B[I] slices. Assuming that all
small tasks of W[i] and B[l] are scheduled with the large tasks of B[l] slices results
in an upper bound of task slices that can be scheduled with large tasks in B[l]
slices of z[l] + w.

The upper bound on the number of task slices that can be scheduled with large
tasks of B slices is the sum of the upper bound for B[l], z[l] + w, and B[2], z[2],
which is (z[1] + w) + (z[2]) = z + w.

The bound on the optimum schedule is formed as follows. The previously
mentioned z + w small task slices may be scheduled with the b large task slices of

120 K. FUCHS AND D. KAFURA

B slices producing at least b processor slices. The remaining v + 2(e + f) + w +
t[s] task slices may at best be scheduled as two for every processor slice, giving at
least e + f + (v it w + t[s])/2 processor slices.

Thus, the optimum schedule must have at least b + d + (v + w + t[s])/2
processor slices; therefore, with n processors:

u + t[s]
n.T[OI’T]rb+d+2. cl

Using Lemma 13, the next theorem is easily proved; this is the sole purpose of
the lemma.

THEOREM 2. Given an LMF schedule of the task set J on N, m = 2, satisfying
m[s] 4 M[n], then

T[LMF] I -$ T[OPT] .

PROOF. Assume there exists an LMF schedule such that T[LMF] > (3n/(n -t
l))T[OPT].

The inequalities u[2] + t[s] L T[LMF], u[3] + t[s] L T[LMF’J, . . . , u[n] + t[s]
I T[LMF], t[s] zi T[OPT] and the contradiction hypothesis combine as follows
into inequality (5):

u+(n- l)t[s] z (n - l)T[LMF] > (n - 1) --$ TW’U,

u+ (n - I)@ + 1)
n+l

T[OPT] > 3n 5 TW’-U, (5)

u > 2n2 ,:: + ’ T[OPT].

Applying inequality (1) to the inequality of Lemma 3, n. T[OPT] 2 b + d +
(u + t[s])/2, and T[LMF] I b + d + t[s] proves the theorem as follows:

n. T[O:PT] > b + d + (((2n2 - 3n + l)/(n + l))T[OPT] + t[s])
2 3

n2 + n
n+l T[O:PT] > b + d + t[s] -t n+l n2 - 2n T[OPT],

-$ T[O:PT] > T[LMF]. 0

The worst case differences between the least upper bound on R[LMF] and
the upper bound of Theorem 2, 3n/(n + l), are indicated by Corollaries 4-6 and
Table II.

COROLLARY 4. For the LMF schedules of all task sets Jon N, with 1 I n I 5
and m = 2, satisfying m[s] 5 M[n], 3n/(n + 1) is the least upper bound on R[LMF].

PROOF. An upper bound on R[LMF] is 3n/(n + I) by Theorem 2. This bound
may be approached by the R[LMF]s of the three pairs of schedules in Figure IO by
allowing x to approach infinity.

Memory-Constrained Network Task Scheduling 121

TABLE II. COMPARBON OF WORST-KNOWN R[LMF]'s AND 3n/(n + 1)

Difference and % differ-

Task Exam-
ence between column 2

set Limitations for de
and 3n/(n + 1)

num- Lower bound on least upper bound on bound valid for value % dif-
ber R[LMF] (worst-known R[LMF]) n ofn Difference ference

1 (6~ + 5)/(2n + 4) 6, 12 8 l/60 0.625
2 (12~ + 21)/(4n + 12) 13,27 16 2711292 0.740
3 (24~ + 65)/(8n + 32) 28,58 32 5313168 0.533
4 (48n + 177)/(16n + 80) 59,121 64 26126720 0.369
5 (96n + 449)/(32n + 192) 122,248 128 35191552152 0.212
k (3.2k(n-k)-2k+ l)/(2k(n+k+ I)) 2’k+2’-k- 1, - - -

2’k++2’- k - 3

The sizes of the n memories and of the 5n - 3 tasks for the first network are
M[i] = 2n-i+l for i 5 i % n,
J[l] = (2” - 1, l), J[2] = (2”-‘, (n - 2)x),
J[l + 2j] = (2”-j, (n - 2)x)

for 1 I j < n,
J[2 + 2j] = (2”-‘, (n + 1)x + 1)

for 1 I j < n,
J[2n + j] = (1, x) for 1 5 j I 3(n - 2),
J[5n - 51 = (1, (n + 1)x + l), J[5n - 41 = (1, (n + 1)x + I),
J[5n - 31 = (1, (5 - n)x).
(Note: When n = 5, J[5n - 31 should be deleted from the task set.)

The sizes of the memories in the other two networks are M[l] = 4 and M[2] =
2forn=2andM[l]=2forn= 1. 0

COROLLARY 5. For the LMF schedules of all task sets J on N, with 6 I n s 12

and m = 2, satisfying m[s] I M[n], the least upper bound on R[LMF] lies in the
interval

[

6n + 5 3n - -
I 2n+4’n+l ’

PROOF. An upper bound on R[LMF] is 3n/(n + 1) by Theorem 2. Hence, the
least upper bound on R[LMF] is less than or equal to 3n/(n + l), the upper bound
of the interval. The pair of schedules in Figure 11 has an R[LMF] that approaches
(6n + 5)/(2n + 4) as x approaches infinity. Therefore, the least upper bound on
R[LMF] is greater than or equal to (6n + 5)/(2n + 4), the lower bound of the
interval.

The sizes of the n memories and k = 912 - 15 tasks used in Figure 11 are
M[i] = 2?l-i+l for 1 I i 5 n,
J[l] = (2” - 1, l), J[2] = (2”-‘, (n + 2)x),
J[3] = (2”-l, (n + 2)x), J[4] = (2”-‘, 2(n + 2)x),
J[3 + 2j] = (2”+‘, (2n - 3)x)

for 1 5 j 5 n - 2,
J[4 + 2j] = (2”*-‘, 2(n + 2)x + 1)

for 1 5 j 4 n - 2,
J[2n +j] = (1, x) for 1 ~j 5 7(n - 3),
J[9n - 201 = (1, l), J[9n - 191 = (1, l),
J[9n - 181 = (1, 2(n + 2)x), J[9n - 171 = (1, 2(n + 2)x),
J[9n - 161 = (2n-2, (n - 5)x), J[9n - 151 = (1, (12 - n)x + 1). Cl

122

MCI3

Mt23

r

J

-d J[ll-

-,JCll

yJC5n-43 1 -

K. FUCHS AND D. KAFURA

LARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE

JL2n+3(n-211

JC43

?
JC5n-33

M Cnl JC2nl

,JC2n-I I
3<n<5 - -

(a)

FK. IO. Example schedules for Corollary 4.

COROLLARY 6. For the LMF schedules of all task sets J on N, with 13 5 n I
27 and m = 2, satisfying m[s] 5 M[n], the least upper bound on R[LMF] lies in
the interval

[
12n+21 3n 1 4n+12’n+l ’

PROOF. An upper bound on R[LMF] is 3n/(n + 1) by Theorem 2. Hence, the
least upper bound on R[LMF] is less than or equal to 3n/(n + l), the upper bound
of the interval. The pair of schedules in Figure 12 has an R[LMF] that approaches
(12n + 21)/(4n + 12) as x approaches infinity. Therefore, the least upper bound
on R[LMF] is grealter than or equal to (12n + 21)/(4n + 12), the lower bound of
the interval.

Memory-Constrained Network Task Scheduling 123

MCI1
=4

M123
=2

ML13
52

LARGEST MEMORY FIRST SCHEDULE

JC23
(1,x)

JC41
(I,x+l)

-JCll (3,l) JCII (3,l+

JC51
(I,x+l) I

OPTIMAL SCHEDULE

JC21
(1.x)

m .

JC33

(2,x)

LARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE

JCII Jt31

(I,I) (I,21

JC23

(l,I)

I

JC33

(I ,2)

(b)

FIG. 10. Continued.

The sizes of the n memories and k = 17n - 53 tasks used in Figure 12 are
M[i] = 2n-i+l for i zz i I n,
J[l] = (2” - 1, I),
J[3] = (2”-l, 2(n + 3)x),

J[2] = (2”-‘, 2(n + 3)x),

J[5] = (2”-*, 3(n + 3)x),
J[4] = (2”-*, 4(n + 3)x),

J[5 + 2j] = (2n+2, (4n - 3)x)
J[6] = (2n-2, 4(n + 3)x + I),

for 1 rjsn-3,
J[6 + 2j] = (2n-j-2, 4(n + 3)x + 1)

for 1 IjSn-3,
J[2n +j] = (1, x) for 1 lj I: lS(n - 4),
J[17n - 591 = (1, I), J[17n - 581 = (1, l),
J[17n - 571 = (1, 4(n + 3)x),
J[17n - 551 = (2n-*, (n + 3)x),

J[17n - 561 = (1, 4(n + 3)x),
J[17n - 541 = (2n-3, (n - 12)x),

J[17n - 531 = (1, (27 - n)x + 1). Cl

124 K. FUCHS AND D. KAFURA

M Cl3

ML2 .,

L

LARGEST MEMOR’ Y FIRST SCHEDULE OPTIMAL SCHEDUL
--

l

JC31 JC21 JL31

JC2.1

(top-half)

JC41

JCII- .

JC41

I LJC9a”n;201

I
JC9n-191

(4
FIG. 11. Example schedules for Corollary 5.

4. Conclusions und Future Work

This section compares the bounds of the dual processor model, the model of Krause
et al. [141, and the: model of Kafura and Shen [121 for a given level of concurrency.
To avoid lengthy notation, let model I denote the model of Krause et al., model II
the model of Kafura and Shen, and model III the model analyzed in Section 3.

First, we list the established bounds for each of the three models:

I. T[LMF] < (‘3 - 3/m)T[OPT],
II. T[LMF] 5 (12 - l/n)T[OPT],

IIIa. T[LMF] < (3 - 2/n)T[OPT] for m[s] > M[n],
IIIb. T[LMF] 5 (3 - 3/(n + 1)) nOPT] for m[s] 5 M[n].

Recall Figure 3, which illustrates the basic differences between the three models,

Memory-Constrained Network Task Scheduling 125

LARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE

MC33

JC2n+81 through J12n+l431

M C43 JC71 JC81

0

:
Jt9n-341 through J C&-283

J-l

Jt9n-277 through JC9n- 2171

J t2n-21

M Cnl JC2n-II 1 J C2n7 I

(bottom half) J C9n-1711 J t9n-191’

03

FIG. 11. Continued.

Since the ratio of processors to memories is different in each of the three models,
we choose as a common point of comparison the bound of each model for a given
maximum level of concurrency. That is, we determined the bound for each model
where the configuration of each model would allow the same given number of
tasks to be executed concurrently. To obtain a concurrency level of 2c in each of
the models,

(1) the number of processors m in model I must be 2c;
(2) the number of processors and memories n in model II must be 2~;
(3) the number of computers n in model III must be c, since each computer

contains two processors.

Making the above substitutions in the bounds previously listed, we obtain

I. ZJLMF] < (3 - 3/(2c))T[OPT],
II. T[LMF] I (2 - 1/(2c))nOPT],

IIIa. T[LMF] < (3 - 2/c)gOPT],
IIIb. T[LMF] I (3 - 3/(c + 1))77:OPT].

126 K. FUCHS AND D. KAFURA

MCI1

MC23

LARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE

JtlPn- 563

LJC 17n -553 LJC17n -531

JCII-

1

JC21 JC41
LJCl7n -593

and
JCl7n-563

JC23

JC43

JC31

(top-half)

(4

FIG. 12. Example schedules for Corollary 6.

By the above list, the ordering of the bounds on the models from best to worse
is II, IIIb, IIIa, I.

Two important observations should be made about this ordering.
(1) For a concurrency level of 2 (c = I), result IIIa is not applicable and all the

other bounds are the same (= 3/2).
(2) As the size: of the network increases, the bound of II asymptotically ap

proaches 2, whereas the other bounds all approach 3 as a limit. This difference is
apparent even in relatively small networks. For example, at c = 10 the bound of II
is 1.95, whereas the other bounds are 2.73, 2.8, and 2.85, respectively. Thus, for
the simple network with exactly two processors there is no difference in the
performance of the systems with shared and nonshared memory. However, as the
size of the network grows, even a limited amount of shared memory (memory

Memory-Constrained Network Task Scheduling 127

LARGEST MEMORY FIRST SCHEDULE OPTIMAL SCHEDULE

J C2n+ I7 through JC2n+ 153

MC41 JC71
I

JC81

JlI2n+ 163 through JC2n + 3011

MC57 JC91 I Jr103 I
:
0

JC17n-891 through Jrl7n-751-,

MCn-2

JLl7n-741 through JCl7n-601

MCn- II JC2n-31 JC2n -21

MCnl JL2n-II 1 Jf2nl I

(bottom-half 1

, (b)

FIG. 12. Continued.

shared by only two processors) becomes as disadvantageous as memory shared
among all the processors. This result is the primary conclusion of this paper.

Five other observations are also worth noting.
(1) It may be argued that shared memory is important for high-speed com-

munication in a tightly coupled network. The results previously given would then
indicate that the memory should be partitioned with a shared portion for com-
munication and a private portion for each processor. This private memory should
be used for the address space of the tasks to be executed.

(2) The use of private memories eliminates the possibility of maintaining a
single copy of segments shared among independent processes. However, studies of
the MULTICS system have shown that such sharing is only lightly used [151.
Although this may not be true for all systems, it at least shows that, for a large class
of local networks, the use of private rather than shared memory is feasible.

128 K. FUCHS AND D. KAFURA

(3) Particularly for the model that we have analyzed, the decision as to whether
bound IIIa or IIIb is applicable for a given task set cannot be made until the LMF
schedule has been constructed. Since these two bounds are very close for reasonably
sized networks and since both approach the same limit, we do not view the problem
of deciding which1 bound to use as a serious difficulty.

(4) We see no practical reason to extend the analysis to the general model
pictured in Figure 3c in which each multiple node contains an arbitrary number
of processors sharing a common memory. The bound on such a system is worse
than the bounds already known and would not yield additional insights into the
fundamental value of memory sharing. We know that the bound for the more
general system is worse than that of the known systems because we have constructed
examples of a system with two computers each having a multiprocessor level of 7
where R[LMF] :> 3. The possibility exists, however, that an algorithm more
sophisticated than LMF would exhibit improved performance on the more general
network. The difliculty of the proofs for LMF on the Krause model and for our
own model suggests that the analysis of this more complex strategy, using deter-
ministic methods, could well be intractable. Other methods, such as simulation,
might prove more profitable.

(5) We have noted a general similarity in the proof technique used in this paper
and by Krause et al. [141. Generally, both proofs consist of the following steps:

(a) Assume that each task is an integral number of a basic time slice.
(b) Divide the LMF schedule into successive pieces equal in length to the basic

time slice and characterize different groups of slices (e.g., memory bound).
(c) Determine the possible valid sequencing of these groups to each other.
(d) Use the size and ordering of the groups to derive the overall bound,

Within this general pattern, however, we did not find any similarity in the
definition of the types of slices or in the relations between groups of slices. This
lack of similarity also leads us to believe that an analysis of the more general model
is not practical.

The research we have reported in this paper can be extended in two ways. First,
as previously mentioned, other performance analysis techniques, such as simulation
or queuing theory, may be applied to these same models in order to confirm or
contrast the results we have presented in terms of the impact of memory sharing
on network performance. Second, the total amount of memory used in the network
may be an important, although not the sole, design constraint. In this case, the
“memory-sizing problem” explored in [121 for the private memory model may be
extended to a more general network model. However, given the apparent difficulty
of analyzing these more general models, we expect that such an extension might
prove difficult.

REFERENCES

1. COFFMAN, E. G.!, JR Computer and Job/Shop Scheduling Theory Wiley, New York, 1976.
2. COFFMAN, E. G., JR, AND DENNING, P. J. Operating Systems Theory. Prentice-Hall, Englewood

Cliffs, N. J., 1973.
3. COFFMAN, E. G.., JR, AND GRAHAM, R. L. Optimal scheduling for two processor systems, Acta ZnJ:

1(1972), 200-2:13.
4. GAREY, M. R., A.ND GRAHAM, R. L. Bounds on scheduling with limited resources. In Proceedings

of the 4th Symposium on Operating System Principles (Yorktown Heights, N.Y., Oct. 15-17).
ACM, New York, 1973, pp. 104-I 1 I.

5. GONZALES, M. J., JR. Deterministic processor scheduling. Comput. Surv. 9, 3 (Sept. 1977),
173-204.

Memory-Constrained Network Task Scheduling 129

6. GRAHAM, R. L. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. I7,2 (Mar.
1969), 416-429.

7. GRAHAM, R. L. Bounds on multiprocessing anomalies and related packing algorithms. In Pro-
ceedings of the Spring Joint Computer Conference. AFIPS Press, Reston, Va., 1972, pp. 205-2 17.

8. Hu, T. C. Parallel sequencing and assembly line problems. Oper. Res. 9, 6 (196 I), 84 l-848.
9. KAFURA, D. G. Task scheduling with critical section constraints. In Proceedings of the IFZP-77

(Toronto, Ont., Canada, Aug. 8-12). Elsevier-North Holland, New York, 1977, pp. 553-557.
10. KAFURA, D. G. Scheduling tasks with critical sections. In Proceedings ofthe 1977 Annual Confer-

ence of the Association of Computing Machinery (Seattle Wash., Oct. 16-19). ACM, New York, pp.
381-385.

11. KAFURA, D. G., AND SHEN, V. Y. Task scheduling on a multiprocessor system with independent
memories. SIAM J. Comput. 6, 1 (Mar. 1977), pp. 167-187.

12. KAFURA, D. G., AND SHEN, V. Y. An algorithm to design the memory configuration of a computer
network. J. ACM 25, 3 (July 1978), 365-377.

13. KLEINROCK, L. Queueing Systems. Wiley, New York, 1975.
14. KRAUSE, K. L., SHEN, V. Y., AND SCHWETMAN, H. D. Analysis of several task-scheduling algo-

rithms for a mode1 of multiprogramming computer systems. J. ACM 22,4 (Oct. 1975), 522-550.
15. MONTGOMERY, W. A. Measurements of sharing in MULTICS. In Proceedings ofthe 6th Sympo-

sium on Operating System Principles, (West Lafayette, Ind., Nov. 16- 18). ACM, New York, 1977,
pp. 85-90.

16. MUNTZ, R. R., AND COFFMAN, E.G., JR. Optimal preemptive scheduling on two processor
systems. IEEE Trans. Comput. C-18, 11 (Nov. 1969), 200-213.

17. MUNTZ, R. R., AND COFFMAN, E. G., JR. Preemptive scheduling of real-time tasks on multipro-
cessor systems. J. ACM 17,2 (Apr. 1970), 324-338.

RECEIVED NOVEMBER 1978; REVISED JUNE 1984; ACCEPTED JULY 1984

Journal of the Association for Computing Machinery, Vol. 32, No. 1, January 1985.

