ACM, 2013. This is the author version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in
GPGPU 6, available at dl.acm.org.

Fast Dynamic Memory Allocator for Massively Parallel
Architectures

Dominik Wodniok
Graduate School
Computational Engineering
TU Darmstadt

Nicolas Weber
TU Darmstadt

Sven Widmer
Graduate School
Computational Engineering
TU Darmstadt

Michael Goesele
Graduate School
Computational Engineering
TU Darmstadt

ABSTRACT

Dynamic memory allocation in massively parallel systems
often suffers from drastic performance decreases due to the
required global synchronization. This is especially true when
many allocation or deallocation requests occur in parallel.
We propose a method to alleviate this problem by making
use of the SIMD parallelism found in most current mas-
sively parallel hardware. More specifically, we propose a
hybrid dynamic memory allocator operating at the SIMD
parallel warp level. Using additional constraints that can be
fulfilled for a large class of practically relevant algorithms
and hardware systems, we are able to significantly speed-up
the dynamic allocation. We present and evaluate a proto-
typical implementation for modern CUDA-enabled graphics
cards, achieving an overall speedup of up to several orders
of magnitude.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.3 [Programming Languages]: —Language Con-
structs and Features—dynamic storage management; D.4.2
[Operating Systems]: Storage Management—Allocation
/ deallocation strategies

Keywords

parallel computing, dynamic memory allocation, GPGPU

1. INTRODUCTION

Dynamic memory allocation is one of the most basic fea-
tures programmers use today. It enables memory allocation
at runtime and is especially useful, if the amount of memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GPGPU-6, March 16, 2013, Houston, TX, USA.

Copyright 2013 ACM 978-1-4503-2017-7/13/03 ...$15.00.

needed is not known ahead of time. Modern operating sys-
tems provide therefore easy to use interfaces to allocate and
free memory arbitrarily. Unfortunately, these approaches
do not generalize directly with good performance on mas-
sively parallel architectures such as current graphics pro-
cessing units (GPUs) or even many-core systems. The key
problem is hereby that bookkeeping during naive allocation
and deallocation requires a form of global synchronization.
This is a severe performance bottleneck when systems be-
come more and more parallel.

This effect can, e.g., be observed in practice when us-
ing the C functions malloc(size_t) and free(voidx*) that
were recently included into NVIDIA’s CUDA framework [11]
to allocate memory dynamically at runtime. Several ap-
proaches have therefore been developed to build a dynamic
memory allocator capable of working in a massively parallel
environment, where traditional approaches do not work, in-
cluding XMalloc [5] and ScatterAlloc [12]. Although these
implementations show better results than the built-in CUDA
allocator, their application still results in a noticeable slow-
down.

Our key observation is that massively parallel architec-
tures typically operate in a SIMD fashion where a single in-
struction is physically executed in parallel. In CUDA, this
corresponds to the concept of a warp. Memory allocation
and deallocation should take this into account and will ide-
ally yield a significant speedup when operating in this gran-
ularity. We additionally propose multiple constraints and
assumptions which are fulfilled in many practically relevant
algorithms and hardware systems that yield a different and
much faster implementation. In particular, we assume that
a systemwide default memory allocator is available. Further,
we expect the application to free memory not arbitrarily but
free all memory at certain points during the execution.

These assumptions fulfill the SIMD parallel programming
scheme and can be applied to various algorithms, in par-
ticular algorithms with an unpredictable transient or out-
put data size such as Monte Carlo-based simulation tech-
niques, graph layout algorithms, or adaptive FEM simula-
tions. All these algorithms can be implemented without
dynamic memory allocation by interrupting the GPU com-
putations at critical points and allocating additional needed
memory. The introduced global synchronization can be at

mgoesele
Text Box
ACM, 2013. This is the author version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in GPGPU 6, available at dl.acm.org.

least partially reduced if not eliminated by use of dynamic
memory allocation.
Our contributions are as follows:

1. an improved memory allocator for massively parallel
architectures with a wide SIMD width such as Nvidia’s
CUDA and Intel’s Xeon Phi. It drastically increases
performance and works for a wide variety of applica-
tions.

2. a comparison of the proposed allocator with the stan-
dard CUDA malloc and ScatterAlloc.

The remainder of this paper is organized as follows: We
first discuss related work on dynamic memory allocation for
CPU and massively parallel architectures in Section 2. We
then introduce the concepts behind our fast GPU memory
allocator (Section 3) and describe a prototypical implemen-
tation (Section 4). Next we discuss the limitations of our
approach and evaluate our results (Section 5). Finally we
conclude and give an outlook on future work (Section 6).

2. RELATED WORK

Dynamic memory allocation is nowadays an ubiquitous
operation. Therefore most programming languages provide
some mechanism to allocate memory at runtime. The com-
plexity of such operations is transparent for most program-
mers. They are in most cases not aware of the implications
the operations have on the overall runtime of an applica-
tion. This is specially the case for multi-processors and in
particular multi-core CPU systems.

Many different memory allocators and algorithms for mem-
ory management where proposed over time. An introduc-
tion and basic overview is given by Knuth [8] and Tanen-
baum [13]. Wilson et al. [14] have evaluated and compared
the most common algorithms regarding the overall memory
consumption.

Over the past years a lot of dynamic memory allocators
for multi-processor and multi-core systems were proposed.
Gloger [3] extended the well known and widely used dlmalloc
[9] to support multi-thread environments. Hoard by Berger
et al. [1] uses per processor heaps in addition to a global
heap to increase scalability. Dice and Garthwaite [2] as well
as Michael [10] introduced memory allocators based on lock-
free data structures.

Modern parallel architectures have a wide variety of active
hardware threads. They range from multi-core systems with
up to 16 cores over many-core systems to massively parallel
architectures such as GPUs which can execute thousands of
threads concurrently. With the increasing number of threads
running concurrently the sychronization overhead increases
and becomes a severe bottleneck. As a result the scalability
and in particular the SIMD scalability decreases.

In this work we, will focus on dynamic memory allocation
for massivly parallel architectures with a wide SIMD width
such as GPUs or Intel’s Xeon Phi. Our main goal is hereby
to increase the SIMD scalability.

2.1 Dynamic memory allocation on CPU

With the introduction of multi-processor and multi-core
systems the classic memory allocation algorithm became a
severe bottelneck. To increase the scalability of an allocator
on a multi-processor system Héggander and Lundberg [4]
proposed two optimizations. A parallel heap and memory

pools for commonly used object types were implemented to
gain a significant speedup. For every processor a heap area is
created. A thread can allocate memory using this area of the
processor it is executed on. If the heap area is occupied by
a different thread one can try to lock a heap area of another
processor. A similar approach, the Hoard allocator, was
proposed by Berger et al. [1]. They augment a global heap
with a per-processor heap that every thread may access.
Hoard caches a limited number of superblocks (a chunk of
memory) per thread. To keep fragmentation at a minimum
unused superblocks can be migrated into the global heap
and used by other processors.

Most dynamic memory allocators rely on atomic opera-
tions or even require mutual exclusion locks to handle their
critical section and keep shared data structures consistent.
This can have a significant performance impact and reduced
scalability with increasing number of cores per processor.
To reduce mutual exclusion locks lock-free data structures
which build on the atomic Compare-and-Swap (CAS) or the
Load-Linked and Store-Conditional (LL/SC) operation are
supported by almost all current CPU architectures. In this
context Michael [10] presents a completely lock-free memory
allocator.

Hudson et al. [6] presented McRT-malloc, a scalable non-
blocking transaction-aware memory allocator that is tightly
integrated with a software transactional memory system. It
avoids expensive CAS operations by accessing only thread-
local data and increases scalability even further.

2.2 Dynamic memory allocation on massively
parallel architectures

Publications dealing with dynamic memory allocation for
GPGPU applications are scarce. Huang et al. [5] introduce
the problems that have to be faced when building a memory
allocator for massively parallel architectures, identifying the
need to synchronize access to header data as the main is-
sue. This synchronization serializes execution and therefore
decreases the performance gain from parallel architectures.

XMalloc uses a similar approach as the Hoard allocator
[1] by introducing superblocks and using the atomic CAS
operation from Michael [10] to reduce synchronization over-
head. To parallelize memory allocation, all threads are di-
vided in smaller groups. Each group maintains their own
superblocks. This allows groups to work independently from
each other and to only access the global memory manage-
ment when allocating a new superblock. Each superblock
can be divided into several smaller blocks and distributed
among the threads in the group.

ScatterAlloc by Steinberger et al. [12] expands XMalloc
[5] by introducing a new approach to further reduce simul-
taneous access from different threads to the same memory
region. Their implementation does not search linearly for a
free memory slot, but instead scatters the memory access.
This reduces the concurrent access to the same memory re-
gion and speeds up the allocation process.

In contrast to XMalloc and ScatterAlloc we introduce a
voting algorithm to determine a single worker thread, reduc-
ing the amount of concurrent access to the critical section
and increasing SIMD scalability. We propose assumptions
that minimize the algorithmic complexity and suggest an
allocation principle based on superblocks that increases the
overall performance.

3. DESIGN

Various modern many-core architectures (e.g., GPUs or
accelerator cards) are executing a group of threads in a
SIMD style fashion, each thread corresponding to a SIMD
lane. All those threads must execute the same instruction
to minimize divergence and achieve the best performance.
A dynamic memory allocator for those systems must scale
when thousands of threads allocate different chunks of mem-
ory at the same time. In the following, we call a group of
SIMD lanes of one streaming processor core a warp, simi-
lar to the CUDA terminology. An important consequence
of the SIMD nature is that threads in a warp are implicitly
synchronized.

Allocation algorithms such as Hoard [1] are optimized for
multi-threading environments. They do not scale with in-
creasing numbers of warps. Allocators proposed for many-
core architectures (e.g. XMalloc [5]) are too general since
they are based on the assumption that all threads are inde-
pendent and not executed in SIMD style.

The main design goal for our allocator was to increase
the SIMD scalability for small, frequent memory allocations
and therefore endeavor to reduce the branch divergence. To
achieve this, we rely on the following three assumptions.

1. A system wide default memory allocator exists and
works fast, as long as there are only few simultaneous
requests.

2. There is no need to free single chunks of memory dur-
ing the execution. It is sufficient that the complete
allocated memory of a group of threads can be freed
at a certain point during the execution.

3. Most memory requests are smaller than some thresh-
old.

ScatterAlloc [12] and XMalloc [5] are using superblocks,
a chunk of memory that is allocated for a group of threads.
They divide this superblock into several smaller memory
chunks that are only accessed by this group. This reduces
the number of global memory allocation requests and there
is no need for global synchronization when manipulating a
superblock. In our approach one superblock is shared by
all threads in a warp. To reduce the simultaneous memory
requests a voting is performed that determines a so called
worker thread. This thread does all the work for his group.
Thereby we can reduce the invocations up to SIMD width
times.

Our second assumption makes it obsolete to have any
header data for the superblock except for one pointer reg-
ister, which points to the next unoccupied chunk inside the
superblock. With this simplification, the time needed to al-
locate memory inside a superblock is reduced significantly.
We further reduce the synchronization and memory over-
head introduced by a general free(void*) method.

The last assumption ensures that the default allocator is
used as little as possible. To guarantee not only good per-
formance in allocating memory but also efficient cache use,
we aggregate all memory requests inside a warp.

3.1 Data Layout

Similar to the parallel heap used by Hoard [1] as well
as Higgander and Lundberg [4] we create a heap per warp
accessible for all threads in the corresponding warp. The so

WarpHeader |-) SuperBlock_List _|—> SuperBlock_List
List* t Previous* Previous*

SB_Counter

SuperBlock* — SB_Counter

TotalCount

ActiveCount

ListElements ListElements

A\ 4
SuperBlock SuperBlock SuperBlock
SB_Allocated SB_Allocated SB_Allocated
Blocks Blocks Blocks

Figure 1: Overview of the data layout and orga-
nization of the three data structures used by our
allocator.

called WarpHeader organizes all memory requests inside
a group of SIMD lanes. Figure 1 shows the data layout
and how the objects are organized. Each header contains a
pointer to the current SuperBlock and a pointer to a list
(SuperBlock List) that stores all pointers to superblocks
that have been allocated using the default memory allocator.
The size of the list is fixed. If it is full, it is replaced by a
new empty list and the old list is registered in the new list,
so that the reference is not lost. SB_Counter denotes the
number of allocated elements in the list. Besides its memory
allocation region, a superblock also stores the amount of
allocated memory in SB_Allocated.

Two additional variables are stored inside the warpheader
for later use. The TotalCount describes the number of
threads inside a warp which use dynamic memory allocation.
The second ActiveCount, contains the number of threads
that have not finished execution.

3.2 Initialization

To initialize the dynamic memory allocator, every thread
that needs the ability to request memory dynamically, has
to obtain a warpheader. At first all threads inside a warp
have to determine how many threads in a warp require the
warpheader. This can be realized by a voting function. After
that a worker thread has to be declared by using the position
of the most significant set bit of the voting mask as the ID of
the thread. The worker thread allocates the warpheader us-
ing the default memory allocator and distributes the pointer
to the other threads. This worker thread also allocates the
current superblock and registers it in the list. The algorithm
is illustrated in Figure 2.

3.3 Allocation

The allocation process is divided into two phases (see Fig-
ure 3). In the first phase, the required memory amount of

Vote & determine
worker thread

[Warp initialization —»f

Is worker
thread?

Wait for worker
thread to finish

yes
\ 4 A 4

Distribute
WarpHeader to
other threads

Allocate new
WarpHeader

A

Y

| Return WarpHeader |
AN /

Figure 2: Warp execution flow for initialization of
the dynamic memory allocator.

each requesting thread is mapped to the next multiple of a
minimum allocation block size. The default minimum allo-
cation block size is 16 bytes, but it can be adjusted to fit the
application needs. Memory can only be allocated in blocks,
therefore allocating 17 bytes would result in a 32 byte al-
location. This guarantees correct alignment inside memory
for better cache reads and writes.

In the second phase, it is checked if the total requested
memory size of all requesting threads is smaller than the
maximum superblock size. If this is the case, the threads
try to allocate memory in the associated superblock. All
threads that have not been able to allocate memory in the
superblock again perform a voting to decide on a worker
thread, which allocates a new superblock and registers it in
the superblock list. The remaining threads allocate memory
in the new superblock.

If the total requested memory size exceeds the maximum
superblock size the whole request is served using the de-
fault allocator. The returned pointer is registered in the
superblock list, so that the developer does not need to know
whether the request was handled by a superblock or the de-
fault allocator.

As mentioned before, there is no need for any header data
in a superblock except for a pointer register, which points
to the last used block. To enable coalesced memory access,
all requests are mapped to a contiguous memory region. All
active threads calculate the sum of requested memory for
all other threads up to their own thread ID. This can be
done by prefix sum or a simple iteration. The sum is used
as an offset to calculate the thread’s own block position in
the superblock. The active thread with the highest ID has
all information needed to update the allocation status infor-
mation of the superblock.

3.4 Garbage Collection

The proposed memory allocator keeps track of allocated
memory using a list. To free these allocations we use three
strategies:

1. Clean all dynamically allocated memory: A func-

/Allocation request Vote & determine
\ worker thread
Allocate memory in
Block
LR Use system
allocator
Request .
& yes »{ Return pointer |

successful?

N

no
v

Is worker
thread?

Vote & determine |
worker thread

I

yesn

Allocate memory in

SuperBlock

Wait for worker
thread to finish

Allocate new
SuperBlock

T

Figure 3: Warp execution flow for a memory alloca-
tion request.

tion traverses all lists and frees all stored memory point-
ers. After this, a new empty superblock will be allo-
cated.

2. Shutdown dynamic memory allocation: All allo-
cated memory including the warpheader is deallocated.
This strategy is meant to be invoked at the end of the
kernel, so that all memory is freed correctly and no
memory leaks occur. After this function has been ex-
ecuted, it is no longer possible to allocate memory.

3. Make allocated memory available to other ker-
nels after kernel termination: In contrast to clean
up the complete warpheader at the end of kernel exe-
cution a pointer to the warpheader is returned. This
allows us to use allocated memory over several kernel
calls but it is still required to eventually invoke the
previous strategy.

In each strategy the calling threads atomically decrement
ActiveCount. The thread that reduces the count to zero
executes the respective strategy. For the first strategy it ad-
ditionally resets ActiveCount to TotalCount. This fol-
lows from the assumption that all threads with a warpheader
keep the ability to dynamically allocate memory.

3.5 Constraints and Limitations

Our proposed allocator design implies a few constraints
which we summarize here. These constraints must be ful-
filled to guarantee fast and correct operation.

e All constraints of the default allocator are inherited
and are still applicable.

e Threads that have requested a WarpHeader eventually
must call one of the clean up functions. Otherwise the
memory will not be freed as described in Section 3.4.

e The used hardware must provide a voting function for
an efficient implementation.

4. IMPLEMENTATION

We used Nvidia’s CUDA Version 5.0 [11] to implement our
proposed allocator (Fast Dynamic GPU Memory Allocator
— FDGMalloc). The design is kept very generic. This
allows the system to be used with most current many-core
architectures (e.g., Intel Xeon Phi [7]) if the architecture
supports a warp voting function (see Section 3).

4.1 Allocator on GPU using CUDA

As Figures 4 and 5 illustrate, the CUDA toolkit built-
in memory allocation function (CUDAMalloc) is fast for
large and few simultaneous allocation requests. Therefore, it
is used for the allocation of new superblocks. The bottleneck
for CUDAMalloc (as well as for most other allocators) is
the SIMD scalability. We reduce the amount of concurrent
requests and therefore increase the scalability.

To determine a worker thread we use the CUDA voting
function __ballot, which essentially returns the lane mask for
all participating threads when called with a predicate not
equal to zero. The corresponding bit of non-participating
threads is automatically set to zero. Afterwards we us bfind
to find the most significant set bit and declare the corre-
sponding thread as the worker thread.

To create a warpheader all threads in a warp use the

CUDA voting function __ballot to determine how many threads

in a warp require the warpheader. The worker thread allo-
cates the warpheader using CUDAMalloc and distributes
the pointer to the other threads.

The distribution of the pointer to the warpheader as well
as later the pointer to a chunk of memory can be realized in
two different ways. For compute capability 2.0 shared mem-
ory is used to distribute the pointer to the other threads.
If compute capability 3.0 or higher is available, the pointer
exchange between threads within a warp is realized using
the function __shfl, removing the need for shared memory.
Performance analysis has shown, that there is no difference
in execution time by using shared memory or the __shfl func-
tion.

As described in Section 3.3, all allocation requests that are
smaller then a certain threshold are served by a superblock
without any atomic operations involved. In this case we re-
duce the number of global memory allocation requests and
there is no need for global synchronization or thread serial-
ization.

4.2 Usage

Listing 1 shows a simple example of how to use the al-
locator. All threads request a warpheader, allocate some
memory, and free all memory at the end of the kernel. The
example demonstrates usage of the tidyUp() function, which
implements the first strategy for garbage collection. Each
thread allocates some memory every time the loop is exe-
cuted. memory is freed at the end of every loop cycle. Af-
ter the execution of the warp the warpheader and all other
header data is freed.

To prevent memory leaks, the function end() has to be
executed at the end of the kernel. Otherwise at least one
list, one superblock, and the warpheader per warp will not
be freed. The example in Listing 2 shows a misusage of
our allocator. Not all threads that allocate memory have

void __global__ kermnel(void) {
Warpx warp = Warp:: start () ;

while (condition) {
void* ptr = warp—>alloc (size);

/* ... some code ... x/

warp—>tidyUp () ;

warp—>end () ;

Listing 1: Simple usage example with first strategy
for garbage collection (Section 3.4).

void __global__ kermnel(void) {
Warpx warp = 0;

if (threadldx.x % 5 = 0)
warp = Warp:: start () ;

/% ... some code ... %/
void* ptr = warp—>alloc (size);
/* ... some code ... x/

if (threadldx.x = 5)
warp—>end () ;

Listing 2: Example of a misusage: not all threads
request a warpheader but try to allocate memory.

also requested the warpheader. Further not all threads that
requested the warpheader also exectue the end() function.
As a consequence, the warpheader will not be freed.

5. EVALUATION

All experiments were performed on a PC running Win-
dows 7 64-bit version and the latest Nvidia driver (version
306.97). The system is equipped with an Intel Core i7 920,
12 gigabytes of RAM, an Nvidia Geforce GTX 480 (primary
device), and a GTX 680 with 2 gigabytes of RAM (headless
device). All tests were performed on the Geforce GTX 680.

5.1 Different allocation sizes

First, we compare the proposed allocator with the default
CUDA allocator (CUDAMalloc) and ScatterAlloc [12].

In the following test scenario X threads are created which
allocate N times S bytes of memory. At the end all memory
is freed. For FDGMalloc this is done by invoking the end()
method. In the case of CUDAMalloc and ScatterAlloc it has
to be done by hand. We measure the runtime performance
by allocating memory chunks of different sizes. Therefore
the parameters for the test scenario have been set to X =
{64}, N = {16} and S = {16,32,64,...,8160,8176,8192}.
The size of a superblock is 32 kilobytes and the minimum
allocation block size is 16 bytes. The list of a warpheader
contains 126 entries to manage superblocks before allocating
a larger list. To analyze the impact of FDGMalloc’s alloca-

FDGMalloc w/ SuperBlocks
FDGMalloc w/o SuperBlocks
Nvidia Cuda Malloc
ScatterAlloc

Time (ms)

M g SR
0.5k 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5k 6k 6.5k 7k 7.5k 8k
Size (B)

Figure 4: Performance Comparison of our proposed
FDGMalloc, CUDAMalloc[11] and ScatterAlloc[12].

tion strategy and the usage of superblocks we implemented
two different versions. One uses superblocks, the other one
gathers all requests and allocates memory directly using the
CUDA memory allocator.

Figure 4 shows the time needed to allocate S bytes. While
CUDAMalloc and ScatterAlloc have to synchronize to serve
the alloc request for each thread in a warp, we use the
implicit synchronization between the threads. The chosen
thread performs the request just by a simple atomic oper-
ation and propagates the pointer to the other participating
threads. The graph shows that our allocator requires always
the same amount of time to allocate a chunk of memory. Al-
location time increases linearly because the operation needs
more superblocks with growing memory consumption.

5.2 Varying thread count

In the second evaluation test case we vary the number of
threads allocating a memory chunk. Because of the different
amount of time needed to allocate different sizes of memory
chunks the count and size of the allocations has been varied.
In the end the mean of all results for one thread count has
been calculated. The limited GPU Memory does not allow
us to perform all tests with all combinations.

The values used for the tests have been X = { 1, 2,4, ...,
16384, 32768, 65536}, N = { 16, 32, 64, 128, 256, 512} and S
= { 16, 32, 64, 128, 256, 512}. Figure 5 shows the results of
this comparison as absolute (left figure) and relative (right
figure, relative to FDGMalloc) values.

Since we allocate the first superblock during the initial
phase our proposed FDGMalloc with superblocks is nearly
ten times faster at the beginning than any other measured
allocator. The speedup between both FDGMalloc (blue and
light blue lines in Figure 5) is in the range of 10 to 300
depending on the number of threads requesting memory si-
multaneously. Here, one can clearly see the benefit of su-
perblocks.

Comparing the default CUDA allocator (green line) with
FDGMalloc without superblocks the gained speedup is re-
lated to the used voting function and reduction of concurrent
memory requests. With a small number of threads (one to
three) simultaneously requesting memory CUDAMalloc is
faster. With more concurrent allocations the synchroniza-
tion becomes a severe bottleneck.

250

X6 —— |
16x16B
128x16B

Time (ms)

T ! L L L L L L L L L L L L
32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Blocks (1024 Threads / Blocks)

Figure 6: The chart shows a comparison of different
allocation counts over the number of blocks using
FDGMalloc with superblocks.

5.3 Scalability

For the scalability evaluation of FDGMalloc with super-
blocks we used 1 to 512 blocks with 1024 threads each,
which allocate 1, 16 and 128 times 16 bytes of memory
(X =1024 % [1,512], N = {1,16,128}, S = 16). Our results
shown in Figure 6 clearly indicate the linear scaling of our
allocator depending on the number of active threads. The
bigger gradient in the range from 1 to 16 blocks is prop-
erly caused by hardware constrains. The GTX 680 has 8
multiprocessors which can handle up to 2 blocks with 1024
threads at once. With more blocks scheduled, the multi-
processors are able to hide the waiting time of a block by
executing another block in the meantime.

6. CONCLUSION

We presented a dynamic memory allocator for many-core
architectures with a wide SIMD width. Frequent and con-
current requests are reduced and handled efficiently by a vot-
ing function in combination with a fast allocation inside a su-
perblock. The performance evaluations have shown that our
proposed allocator is able to speed up dynamic memory al-
location several orders of magnitude although it relies on the
CUDA allocator. All in all we increase the SIMD scalability
significantly for frequent dynamic memory allocations. The
implementation shows that concurrent dynamic memory al-
locations in massively parallel architectures do not need to
be slow. However, the assumption of the allocator do not
allow it to be an all-round solution. It is still necessary
to improve dynamic memory allocation schemes that allow
memory to be arbitrarily freed during the execution. Our
implementation is based on CUDA but could be extended to
any of the other hardware architectures supporting a voting
function. In the future we would like to evaluate the perfor-
mance using Intel’s Intel SPMD Program Compiler (ISPC)
using AVX vector units and Xeon Phi.

7. ACKNOWLEDGMENTS

The work of S. Widmer and D. Wodniok is supported by
the ’Excellence Initiative’ of the German Federal and State
Governments and the Graduate School of Computational
Engineering at Technische Universitdt Darmstadt.

10000
10000 -

1000 [
1000

100 |
100

Time (ms)
Factor slower

FDGMalloc w/ SuperBlocks FDGMalloc w/ SuperBlocks
FDGMalloc w/o SuperBlocks FDGMalloc w/o SuperBlocks
Nvidia Cuda Malloc Nvidia Cuda Malloc

S‘catterﬁl\oc -

ScatterAlloc
T T T

01 I I I I I I I I I
1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Threads Threads

Figure 5: The figures show the performance comparison under varying thread count. On the left side with
absolute values in milliseconds and the slowdown relative to FDGMalloc on the right.

8. REFERENCES

[1] E. D. Berger, K. S. McKinley, R. D. Blumofe, and
P. R. Wilson. Hoard: a scalable memory allocator for
multithreaded applications. SIGPLAN Not., 2000.

[2] D. Dice and A. Garthwaite. Mostly lock-free malloc.
In Proc. ISMM, 2002.

[3] W. Gloger. Dynamic memory allocator
implementations in linux system libraries.
http://www.dent .med.uni-muenchen.de/ wmglo/
malloc-slides.html, 1998.

[4] D. Haggander and L. Lundberg. Optimizing dynamic
memory management in a multithreaded application
executing on a multiprocessor. In Proc. ICPP, 1998.

[5] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and
W.-m. Hwu. Xmalloc: A scalable lock-free dynamic
memory allocator for many-core machines. In Proc.
IEEE ICCIT, 2010.

[6] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and
B. C. Hertzberg. Mcrt-malloc: a scalable transactional
memory allocator. In Proc. ISMM, 2006.

[7] INTEL. Intel SPMD Program Compiler.
http://ispc.github.com/, 2012.

[8] D. E. Knuth. The art of computer programming:
fundamental algorithms. 3rd edition, 1997.

[9] D. Lea. A Memory Allocator.
http://gee.cs.oswego.edu/d1l/html/malloc.html,
1996.

[10] M. M. Michael. Scalable lock-free dynamic memory
allocation. In Proc. SIGPLAN PLDI, 2004.

[11] NVIDIA. CUDA Compute Unified Device
Architecture. http:
//www.nvidia.com/object/cuda_home_new.html,
2012.

[12] M. Steinberger, M. Kenzel, B. Kainz, and
D. Schmalstieg. Scatteralloc: Massively parallel
dynamic memory allocation for the GPU. In Proc.
InPar, 2012.

[13] A. S. Tanenbaum. Modern Operating Systems. 3rd
edition, 2007.

[14] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic storage allocation: A survey and
critical review. In Proc. IWMM, 1995.

http://www.dent.med.uni-muenchen.de/~wmglo/malloc-slides.html
http://www.dent.med.uni-muenchen.de/~wmglo/malloc-slides.html
http://ispc.github.com/
http://gee.cs.oswego.edu/dl/html/malloc.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

	Introduction
	Related Work
	Dynamic memory allocation on CPU
	Dynamic memory allocation on massively parallel architectures

	Design
	Data Layout
	Initialization
	Allocation
	Garbage Collection
	Constraints and Limitations

	Implementation
	Allocator on GPU using CUDA
	Usage

	Evaluation
	Different allocation sizes
	Varying thread count
	Scalability

	Conclusion
	Acknowledgments
	References

