arXiv:1204.3436v1 [cs.NE] 16 Apr 2012

Explaining Adaptation in Genetic Algorithms
With Uniform Crossover: The Hyperclimbing Hypothesis

Keki M. Burjorjee KEKIB@QCS.BRANDEIS.EDU

Abstract

The hyperclimbing hypothesis is a hypothetical explanation for adaptation in genetic
algorithms with uniform crossover (UGAs). Hyperclimbing is an intuitive, general-purpose,
non-local search heuristic applicable to discrete product spaces with rugged or stochastic
cost functions. The strength of this heuristic lies in its insusceptibility to local optima
when the cost function is deterministic, and its tolerance for noise when the cost function is
stochastic. Hyperclimbing works by decimating a search space, i.e. by iteratively fixing the
values of small numbers of variables. The hyperclimbing hypothesis holds that UGAs work
by implementing efficient hyperclimbing. Proof of concept for this hypothesis comes from
the use of a novel analytic technique involving the exploitation of algorithmic symmetry.
We have also obtained experimental results that show that a simple tweak inspired by
the hyperclimbing hypothesis dramatically improves the performance of a UGA on large,
random instances of MAX-3SAT and the Sherrington Kirkpatrick Spin Glasses problem.

1. Introduction

Over several decades of use in diverse scientific and engineering fields, evolutionary opti-
mization has acquired a reputation for being a kind of universal acid—a general purpose
approach that routinely procures useful solutions to optimization problems with rugged,
dynamic, and stochastic cost functions over search spaces consisting of strings, vectors,
trees, and instances of other kinds of data structures (Fogel, 2006). Remarkably, the means
by which evolutionary algorithms work is still the subject of much debate. An abiding mys-
tery of the field is the widely observed utility of genetic algorithms with uniform crossover
(Syswerda, 1989; Rudnick et al., 1994; Pelikan, 2008; Huifang and Mo, 2010). The use of
uniform crossover (Ackley, 1987; Syswerda, 1989) in genetic algorithms causes genetic loci
to be unlinked, i.e. recombine freely. It is generally acknowledged that the adaptive capac-
ity of genetic algorithms with this kind of crossover cannot be explained within the rubric of
the building block hypothesis, the reigning explanation for adaptation in genetic algorithms
with strong linkage between loci (Goldberg, 2002). Yet, no alternate, scientifically rigorous
explanation for adaptation in genetic algorithms with uniform crossover (UGAs) has been
proposed. The hyperclimbing hypothesis, presented in this paper, addresses this gap. This
hypothesis holds that UGAs perform adaptation by implicitly and efficiently implementing
a global search heuristic called hyperclimbing.

If the hyperclimbing hypothesis is sound, then the UGA is in good company. Hyper-
climbing belongs to a class of heuristics that perform global decimation. Global decimation,
it turns out, is the state of the art approach to solving large, hard instances of SAT (Kroc

et al., 2009). Conventional global decimation strategies—e.g. Survey Propagation (Mézard
et al., 2002), Belief Propagation, Warning Propagation (Braunstein et al., 2002)—use mes-
sage passing algorithms to obtain statistical information about the space being searched.
This information is then used to fix the values of one, or a small number, of search space
attributes, effectively reducing the size of the search space. The decimation strategy is then
recursively applied to the smaller search space. And so on. Survey Propagation, perhaps the
best known global decimation strategy, has been used along with Walksat (Selman et al.,
1993) to solve instances of SAT with upwards of a million variables. The hyperclimbing
hypothesis holds that in practice, UGAs also perform adaptation by decimating the search
spaces to which they are applied. Unlike conventional decimation strategies, however, a
UGA obtains statistical information about the search space implicitly, by means other than
message passing.

The rest of this paper is organized as follows: Section 2 provides an informal description
of the hyperclimbing heuristic. A more formal description appears in Section A of the online
appendix. Section 3, presents proof of concept, i.e. it describes a stochastic fitness function!
on which a UGA behaves as described in the hyperclimbing hypothesis. Exploiting certain
symmetries inherent within uniform crossover and a containing class of fitness functions, we
argue that the adaptive capacity of a UGA scales extraordinarily well as the size of the search
space increases. We follow up with experimental tests that validate this conclusion. One
way for the hyperclimbing hypothesis to gain credibility is by inspiring modifications to the
genetic algorithm that improve performance. Section 4 presents the results of experiments
that show that a simple tweak called clamping, inspired by the hyperclimbing hypothesis,
dramatically improves the performance of a genetic algorithm on large, randomly generated
instances of MAX-3SAT, and the Sherrington Kirkpatric Spin Glasses problem. While not
conclusive, this validation does lend considerable support to the hyperclimbing hypothesis?.
We conclude in Section 5 with a brief discussion of the generalizability of the hyperclimbing
hypothesis and its ramifications for Evolutionary Computation and Evolutionary Biology.

2. The Hyperclimbing Heuristic

For a sketch of the workings of a hyperclimbing heuristic, consider a search space S = {0,1}¢,
and a (possibly stochastic) fitness function that maps points in S to real values. Let us
define the order of a schema partition Mitchell (1996) to simply be the order of the schemata
that comprise the partition. Clearly then, schema partitions of lower order are coarser
than schema partitions of higher order. The effect of a schema partition is defined to be
the variance of the expected fitness of the constituent schemata under sampling from the
uniform distribution over each schema. So for example, the effect of the schema partition
oot ok = {0 % %0 %, 0% k1 x5k, Lkx0 % %, 1 x1 %%} is

1 1
ZZ (% *j * *) F(******))2

=0 j=0

qk\»—k

1. A fitness function is nothing but a cost function with a small twist: the goal is, not to minimize fitness,
but to maximize it.

2. Then again, no scientific theory can be conclusively validated. The best one can hope for is pursuasive
forms of validation (Popper, 2007b,a).

where the operator F' gives the expected fitness of a schema under sampling from the uniform
distribution. A hyperclimbing heuristic starts by sampling from the uniform distribution
over the entire search space. It subsequently identifies a coarse schema partition with a
non-zero effect, and limits future sampling to a schema in this partition with above average
expected fitness. In other words the hyperclimbing heuristic fixes the defining bits Mitchell
(1996) of this schema in the population. This schema constitutes a new (smaller) search
space to which the hyperclimbing heuristic is recursively applied. Crucially, the act of fixing
defining bits in a population has the potential to “generate” a detectable non-zero effect in a
schema partition that previously had a negligible effect. For example, the schema partition
xF#£ %%+ # can have a negligible effect, while the schema partition 1# %0 # has a detectable
non-zero effect. A more formal description of the hyperclimbing heuristic can be found in
Appendix A.

At each step in its progression, hyperclimbing is sensitive, not to the fitness value of any
individual point, but to the sampling means of relatively coarse schemata. This heuristic
is, therefore, natively able to tackle optimization problems with stochastic cost functions.
Considering the intuitive simplicity of hyperclimbing, this heuristic has almost certainly
been toyed with by other researchers in the general field of discrete optimization. In all
likelihood it was set aside each time because of the seemingly high cost of implementation
for all but the smallest of search spaces or the coarsest of schema partitions. Given a search
space comprised by ¢ binary variables, there are (ﬁ) schema partitions of order o. For any
fixed value of o, (ﬁ) € Q(¢°) (Cormen et al., 1990). The exciting finding presented in this
paper is that UGAs can implement hyperclimbing cheaply for large values of ¢, and values
of o that are small, but greater than one.

3. Proof of Concept

We introduce a parameterized stochastic fitness function, called a staircase function, and
provide experimental evidence that a UGA can perform hyperclimbing on a particular
parameterization of this function. Then, using symmetry arguments, we conclude that
the running time and the number of fitness queries required to achieve equivalent results
scale surprisingly well with changes to key parameters. An experimental test validates this
conclusion.

Definition 1 A staircase function descriptor is a 6-tuple (h,0,0,¢, L, V) where h, o and ¢
are positive integers such that ho < £, § is a positive real number, and L and V are matrices
with h rows and o columns such that the values of V' are binary digits, and the elements of
L are distinct integers in [{].

For any positive integer ¢, let [¢] denote the set {1,...,¢}, and let B, denote the set of
binary strings of length ¢. Given any k-tuple, z, of integers in [¢], and any binary string
g € By, let Z,(g) denote the string by, ..., by such that for any i € [k], b; = g,,. For any
m x n matrix M, and any i € [m], let M;. denote the n-tuple that is the i*" row of M. Let
N(a,b) denote the normal distribution with mean a and variance b. Then the function, f,
described by the staircase function descriptor (h, 0,4, ¢, L, V') is the stochastic function over
the set of binary strings of length ¢ given by Algorithm 1. The parameters h, o, d, and ¢ are
called the height, order, increment and span, respectively, of f. For any i € [h], we define

Algorithm 1:
A staircase function with descriptor (h,0,9d,0,¢, L, V)

Input: g is a chromosome of length ¢

x < some value drawn from the distribution N (0, 1)
for i <1 to h do
if =1,.(9) = Vi1...Vj, then
| x4z +90
else
x—x—(6/(2°-1))
break
end

end
return z

step i of f to be the schema {g € By|=1, (9) = Vi1 ... Vio}, and define stage i of f to be the
schema {g S SBA(ELL(Q) =Vi1... Vlo) VANPIRAN (ELi: (g) =Vi1... V;‘o)}.

A step of the staircase function is said to have been climbed when future sampling of
the search space is largely limited to that step. Just as it is hard to climb higher steps of
a physical staircase without climbing lower steps first, it is computationally expensive to
identify higher steps of a staircase function without identifying lower steps first (Theorem
1, Appendix C). In this regard, it is possible that staircase functions capture a feature that
is widespread within the fitness functions resulting from the representational choices of GA
users. The difficulty of climbing step i € [h] given stage i — 1, however, is non-increasing
with respect to i (Corollary 1, Appendix C). Readers seeking to ways to visualize staircase
functions are refered to Appendix B.

3.1 UGA Specification

The pseudocode for the UGA used in this paper is given in Algorithm 2. The free parameters
of the UGA are N (the size of the population), p,, (the per bit mutation probability), and
EVALUATE-FITNESS (the fitness function). Once these parameters are fixed, the UGA is
fully specified. The specification of a fitness function implicitly determines the length of
the chromosomes, ¢. Two points deserve further elaboration:

1. The function SUS-SELECTION takes a population of size N, and a corresponding set
of fitness values as inputs. It returns a set of N parents drawn by fitness proportion-
ate stochastic universal sampling (SUS). Instead of selecting N parents by spinning
a roulette wheel with one pointer N times, stochastic universal sampling selects N
parents by spinning a roulette wheel with N equally spaced pointers just once. Select-
ing parents this way has been shown to reduce sampling error (Baker, 1985; Mitchell,
1996).

2. When selection is fitness proportionate, an increase in the average fitness of the pop-
ulation causes a decrease in selection pressure. The UGA in Algorithm 2 combats

this effect by using sigma scaling (Mitchell, 1996, p 167) to adjust the fitness values
returned by EVALUATE-FITNESS. These adjusted fitness values, not the raw ones, are
used when selecting parents. Let fét) denote the raw fitness of some chromosome x
in some generation ¢, and let f() and () denote the mean and standard deviation of
the raw fitness values in generation t respectively. Then the adjusted fitness of x in
generation ¢ is given by hg(ct) where, if o) = 0 then h;(vt) = 1, otherwise,

£ — @

®) — mi
hy’ = min(0,1 + 0])

The use of sigma scaling also entails that negative fitness values are handled appro-
priately.

3.2 Performance of a UGA on a class of Staircase Functions

Let f be a staircase function with descriptor (h,0,0,¢, L, V'), we say that f is basic if { = ho,
Lij = o(i—1)+7, (i.e. if L is the matrix of integers from 1 to ho laid out row-wise), and V' is
a matrix of ones. If f is known to be basic, then the last three elements of the descriptor of
f are fully determinable from the first three, and its descriptor can be shortened to (h, o,).
Given some staircase function f with descriptor (h, 0,9, ¢, L, V'), we define the basic form of
f to be the (basic) staircase function with descriptor (h,o0,0).

Let ¢* be the basic staircase function with descriptor (h = 50,0 = 4,5 = 0.3), and
let U denote the UGA defined in section 3.1 with a population size of 500, and a per bit
mutation probability of 0.003 (i.e, p,, = 0.003). Figure la shows that U is capable of
robust adaptation when applied to ¢* (We denote the resulting algorithm by U?"). Figure
1c shows that under the action of U, the first four steps of ¢* go to fixation® in ascending
order. When a step gets fixed, future sampling will largely be confined to that step—in
effect, the hyperplane associated with the step has been climbed. Note that the UGA does
not need to “fully” climb a step before it begins climbing the subsequent step (Figure 1c).

3.3 Symmetry Analysis and Experimental Confirmation

Formal models of SGAs with finite populations and non-trivial fitness functions (Nix and
Vose, 1992), are notoriously unwieldy (Holland, 2000), which is why most theoretical anal-
yses of SGAs assume an infinite population (Liepins and Vose, 1992; Stephens and Wael-
broeck, 1999; Wright et al., 2003; Burjorjee, 2007). Unfortunately, since the running time
and the number of fitness evaluations required by such models is always infinite, their use
precludes the identification of computational efficiencies of the SGA. In the present case, we
circumvent the difficulty of formally analyzing finite population SGAs by exploiting some
simple symmetries introduced through our definition of staircase functions, and through our
use of a crossover operator with no positional bias. The absence of positional bias in uni-
form crossover was highlighted by Eshelman et al. (1989). Essentially, permuting the bits

3. The terms ‘fixation’ and ‘fixing’ are used loosely here. Clearly, as long as the mutation rate is non-zero,
no locus can ever be said to go to fixation in the strict sense of the word.

Algorithm 2: Pseudocode for the UGA used. The population size is an even num-
ber, denoted N, the length of the chromosomes is ¢, and for any chromosomal bit, the
probability that the bit will be flipped during mutation (the per bit mutation proba-
bility) is p,,. The population is represented internally as an N by ¢ array of bits, with
each row representing a single chromosome. GENERATE-UX-MASKS(z,y) creates an
x by y array of bits drawn from the uniform distribution over {0,1}. GENERATE-
MuT-MASKS(z, y, z) returns an x by y array of bits such that any given bit is 1 with
probability z.

pop < INITIALIZE-POPULATION(N /)

while some termination condition is unreached do
fitnessValues < EVALUATE-FITNESS(pop)
adjustedF'itVals < SIGMA-SCALE(fitnessV alues)
parents < SUS-SELECTION (pop, adjusted F'itV als)
crossMasks < GENERATE-UX-MASKS(N/2, ¢)
for i < 1 to N/2 do

for j« 1 to/f do

if crossMasks]i, j] = 0 then

newPopli, j] < parentsli, j|

newPopli + N/2, j| + parents[i + N /2, j]
else

newPopli, j] < parents[i + N /2, j]
newPopli + N/2, j| « parents]i, j]

end

end

end
mutMasks < GENERATE-MUT-MASKS(N, ¢, pp,)
for i < 1 to N do
for j < 1 to{ do
| newPopli, j] < XOR(newPopli, j|, mutMasksli, j])
end
end
pop < newPop
end

of all strings in each generation using some permutation 7w before crossover, and permuting
the bits back using 7! after crossover has no effect on the dynamics of a UGA. Another
way to elucidate this symmetry is by noting that any homologous crossover operator can
be modeled as a string of binary random variables. Only in the case of uniform crossover,
however, are these random variables all independent and identically distributed.

It is easily seen that loci that are not part of any step of a staircase function are
immaterial during fitness evaluation. The absence of positional bias in uniform crossover
entails that such loci can also be ignored during recombination. Effectively, then, these loci
can be “spliced out” without affecting the expected average fitness of the population in any
generation. This, and other observations of this type lead to the conclusion below.

Average Fitness of Population Average Fitness of Population

9 9
8 8
7 7
6 6
@5 ?5
Q Q
s 5
i 4 i 4
3 3
2 2
1 1
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Generations Generations
(a) (b)
1 1
0.5 f 0.5f
0 0
1 1
g o5 A g o5 A
g o g o
o o
1< 2
[T w

1 1
0.5 *f-_——_ 0.5 J/P)-_h‘—

0

1 1
0.5 *__/{I/]/H/I/P-—'— 0.5 W

0

0 50 100 150 200 250 0 50 100 150 200 250
Generations Generations
(c) (d)

Figure 1: (a) The mean, across 20 trials, of the average fitness of the population of U? i
in each of 5000 generations.The error bars show five standard errors above and
below the mean every 200 generations. (c) Going from the top plot to the bottom
plot, the mean frequencies, across 20 trials, of the first four steps of the staircase
function U?" in each of the first 250 generations. The error bars show three
standard errors above and below the mean every 12 generations. (b,d) Same as
the plots on the left, but for U?

Let W be some UGA. For any staircase function f, and any x € [0, 1], let pga/f) (x)

denote the probability that the frequency of stage i of f in generation t of W7/ is z. Let f*
be the basic form of f. Then, by appreciating the symmetries between the UGAs W/" and
W one can conclude the following:

Conclusion 1 For any generation t, any i € [h], and any x € [0,1], pg/)vf l)(x) =
t
Pl se o) (@)

This conclusion straightforwardly entails that to raise the average fitness of a population
to some attainable value,

1. The expected number of generations required is constant with respect to the span of
a staircase function

2. The running time required scales linearly with the span of a staircase function

3. The running time and the number of generations are unaffected by the last two ele-
ments of the descriptor of a staircase function

Let f be some staircase function with basic form ¢* (defined in Section 3.2). Then,
given the above, the application of U to f should, discounting deviations due to sampling,
produce results identical to those shown in Figures 1a and 1c. We validated this “corollary”
by applying U to the staircase function ¢ with descriptor (h = 50,0 = 4,5 = 0.3,¢ =
20000, L, V') where L and V were randomly generated. The results are shown in Figures 1b
and 1d. Note that gross changes to the matrices L and V', and an increase in the span of the
staircase function by two orders of magnitude did not produce any statistically significant
changes. It is hard to think of another algorithm with better scaling properties on this
non-trivial class of fitness functions.

4. Validation

Let us pause to consider a curious aspect of the behavior of U?". Figure 1 shows that the
growth rate of the average fitness of the population of U?" decreases as evolution proceeds,
and the average fitness of the population plateaus at a level that falls significantly short
of the maximum expected average population fitness of 15. As discussed in the previous
section, the difficulty of climbing step ¢ given stage ¢ — 1 is non-increasing with respect to
1. So, given that U successfully identifies the first step of ¢*, why does it fail to identify all
remaining steps? To understand why, consider some binary string that belongs to the i
stage of ¢*. Since the mutation rate of U is 0.003, the probability that this binary string
will still belong to stage i after mutation is 0.997%. This entails that as i increases, U?" is
less able to “hold” a population within stage 7. In light of this observation, one can infer
that as ¢ increases the sensitivity of U to the conditional fitness signal of step ¢ given stage
i — 1 will decrease. This loss in sensitivity explains the decrease in the growth rate of the
average fitness of U?". We call the “wastage” of fitness queries described here mutational
drag.

To curb mutational drag in UGAs, we conceived of a very simple tweak called clamping.
This tweak relies on parameters flagFreqThreshold € [0.5,1], unflagFreqThreshold €
[0.5, flagFreqThreshold|, and the positive integer waitingPeriod. If the one-frequency
or the zero-frequency of some locus (i.e. the frequency of the bit 1 or the frequency
of the bit 0, respectively, at that locus) at the beginning of some generation is greater
than flagFreqThreshold, then the locus is flagged. Once flagged, a locus remains

16 200
14 180
12 160
S 140
10 o 120
B
2 s £ 100
i £
6 5 80
60
4
40
2 20
0 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Generations Generation

(a) (b)

Figure 2: (Top) The mean (across 20 trials) of the average fitness of the UGA U, on the
staircase function ¢*. Errorbars show five standard errors above and below the
mean every 200 generations. (Bottom) The mean (across 20 trials) of the number
of loci left unmutated by the clamping mechanism. Errorbars show three standard
errors above and below the mean every 200 generations

flagged as long as the one-frequency or the zero-frequency of the locus is greater than
unflagFreqThreshold at the beginning of each subsequent generation. If a flagged locus
in some generation ¢ has remained constantly flagged for the last waitingPeriod genera-
tions, then the locus is considered to have passed our fixation test, and is not mutated in
generation t. This tweak is called clamping because it is expected that in the absence of
mutation, a locus that has passed our fixation test will quickly go to strict fixation, i.e. the
one-frequency, or the zero-frequency of the locus will get “clamped” at one for the remainder
of the run.

Let U, denote a UGA that uses the clamping mechanism described above and is identical
to the UGA U in every other way. The clamping mechanism used by U, is parameterized as
follows: flagFreqThreshold = 0.99, unflagFreqThreshold = 0.9, waitingPeriod=200.
The performance of U? T is displayed in figure 2a. Figure 2b shows the number of loci that
the clamping mechanism left unmutated in each generation. These two figures show that
the clamping mechanism effectively allowed U, to climb all the stages of ¢*.

If the hyperclimbing hypothesis is accurate, then mutational drag is likely to be an
issue when UGAs are applied to other problems, especially large instances that require the
use of long chromosomes. In such cases, the use of clamping should improve performance.
We now present the results of experiments where the use of clamping clearly improves the
performance of a UGA on large instances of MAX-3SAT and the Sherrington Kirkpatrik
Spin Glasses problem.

4.1 Validation on MAX-3SAT

MAX-ESAT (Hoos and Stiitzle, 2004) is one of the most extensively studied combinatorial
optimization problems. An instance of this problem consists of n boolean variables, and m
clauses. The literals of the instance are the n variables and their negations. Each clause is a
disjunction of k of the total possible 2n literals. Given some MAX-kSAT instance, the value
of a particular setting of the n variables is simply the number of the m clauses that evaluate
to true. In a uniform random MAX-ESAT problem, the clauses are generated by picking
each literal at random (with replacement) from amongst the 2n literals. Generated clauses
containing multiple copies of a variable, and ones containing a variable and its negation,
are discarded and replaced.

Let @ denote the UGA defined in section 3.1 with a population size of 200 (N = 200)
and a per bit mutation probability of 0.01 (i.e., p,, = 0.01). We applied @ to a randomly
generated instance of the Uniform Random 3SAT problem, denoted sat, with 1000 binary
variables and 4000 clauses. Variable assignments were straightforwardly encoded, with each
bit in a chromosome representing the value of a single variable. The fitness of a chromosome
was simply the number of clauses satisfied under the variable assignment represented. Figure
3a shows the average fitness of the population of Q** over 7000 generations. Note that the
growth in the maximum and average fitness of the population tapered off by generation
1000.

The UGA @ was applied to sat once again; this time, however, the clamping mech-
anism described above was activated in generation 2000. The resulting UGA is de-
noted Q3%. The clamping parameters used were as follows: flagFreqThreshold = 0.99,
unflagFreqthreshold = 0.8, waitingPeriod = 200. The average fitness of the popula-
tion of Q3% over 7000 generations is shown in Figure 3b, and the number of loci that the
clamping mechanism left unmutated in each generation is shown in Figure 3c. Once again,
the growth in the maximum and average fitness of the population tapered off by generation
1000. However, the maximum and average fitness began to grow once again starting at
generation 2200. This growth coincides with the commencement of the clamping of loci
(compare Figures 3b and 3c¢).

4.2 Validation on an SK Spin Glasses System

A Sherrington Kirkpatrick Spin Glasses system is a set of coupling constants J;;, with
1 <i < j </ Given a configuration of “spins” (o1,...,0y), where each spin is a value in
{+1, —1}, the “energy” of the system is given by

E(O’) = — Z JijUin

1<i<j<1

. The goal is to find a spin configuration that minimizes energy. By defining the fitness
of some spin configuration o to be —E(c) we remain true to the conventional goal in
genetic algorithmics of maximizing fitness. The coupling constants in J can either be drawn
from the set {—1,0,41}, or from the gaussian distribution A (0,1). Following Pelikan et
al. (2008), we used coupling constants drawn from N'(0,1). Each chromosome in the
evolving population straightforwardly represented a spin configuration, with the bits 1 and

10

0 denoting the spins 4+1 and —1 respectively?. The UGAs @Q and Q. (described in the
previous subsection) were applied to a randomly generated Sherrington Kirkpatrik spin
glasses system over 1000 spins, denoted spin. The results obtain (Figures 3d, 3e, and 3f)
were similar to the results described in the previous subsection.

It should be said that clamping by itself does not cause decimation. It merely enforces
strict decimation once a high degree of decimation has already occurred along some di-
mension. In other words, clamping can be viewed as a decimation “lock-in” mechanism as
opposed to a decimation enforcing mechanism. Thus, the occurrence of clamping shown in
Figure 3 entails the occurrence of decimation. The effectiveness of clamping demonstrated
above lends considerable support to the hyperclimbing hypothesis. More support of this
kind can be found in the work of Huifang and Mo (2010) where the use of clamping improved
the performance of a UGA on a completely different problem (optimizing the weights of a
quantum neural network). A fair portion of the scientific usefulness of these experiments is
attributable to the utter simplicity of clamping. Reasoning within the rubric of the hyper-
cling hypothesis, it not difficult to think of adjustments to the UGA that are more effective,
but also more complex. From an engineering standpoint the additional complexity would
indeed be warranted. From a scientific perspective, however, the additional complexity is a
liability because it might introduce suspicion that the adjustments work for reasons other
than the one offered here.

5. Conclusion

Simple genetic algorithms with uniform crossover (UGAs) perform adaptation by implicitly
exploiting one or more features common to the fitness distributions arising in practice. Two
key questions are i) What type of features? and ii) How are these features exploited by
the UGA (i.e. what heuristic does the UGA implicitly implement)? The hyperclimbing
hypothesis is the first scientific theory to venture answers to these questions. In doing so it
challenges two commonly held views about the conditions necessary for a genetic algorithm
to be effective: First, that the fitness distribution must have a building block structure
(Goldberg, 2002; Watson, 2006). Second, that a genetic algorithm will be ineffective un-
less it makes use of a “linkage learning” mechanism (Goldberg, 2002). Support for the
hyperclimbing hypothesis was presented in the proof of concept and validation sections of
this article. Additional support for this hypothesis can be found in i) the weakness of
the assumptions undergirding this hypothesis (compared to the building block hypothesis,
the hyperclimbing hypothesis rests on weaker assumptions about the distribution of fitness
over the search space; see Burjorjee 2009), ii) the computational efficiencies of the UGA
rigorously identified in an earlier work (Burjorjee, 2009, Chapter 3), and iii) the utility of
clamping reported by Huifang and Mo (2010).

If the hyperclimbing heuristic is sound, then the idea of a landscape (Wright, 1932;
Kauffman, 1993) is not very useful for intuiting the behavior of UGAs. Far more useful
is the notion of a hyperscape. Landscapes and hyperscapes are both just ways of concep-
tualizing fitness functions geometrically. Whereas landscapes draw one’s attention to the

4. Given an n X £ matrix P representing a population of n spin configurations, each of size ¢, the energies
of the spin configurations can be expressed compactly as —PJT PT where .J is an £ x £ upper triangular
matrix containing the coupling constants of the SK system.

11

4000

3950
3900
3850
3800 -
3750 -
3700 -

3650

Satisfied clauses

3600

3550

0 2000 4000 6000
Generations

(a) Performance of the UGA

25

15

Fitness

[N

0.5

0
0 2000 4000 6000 8000
Generations

(d) Performance of the UGA
Qspin

4000 — 900
=
3950 ¥ - 800
3900 . 700
9 3850 5 600
2} o
T 3800 g 500
o 8
£ 3750 2 400
2 c
& 3700 - 2 300
3650 | . 200
3600 . 100
3550 0 - - .
0 2000 4000 6000 0 2000 4000 6000
Generations Generation

(b) Performance of the UGA (c) Unmutated Lociin UGA Q5%

sat
c

1000
900
800
= 700
(5]
o
S 600
& 40-'-’
2 é 500
- S 400
300
200
100
0 0
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Generations Generation
(e) Performance of the UGA (f) Unmutated Loci in UGA
spin spin
c c

Figure 3: (a,b) The performance, over 10 trials, of the UGAs @ and the UGA Q. on a
randomly generated instance of the Uniform Random 3SAT problem with 1000
variables and 4000 clauses. The mean (across trials) of the average fitness of the
population is shown in black. The mean of the best-of-population fitness is shown
in blue. Errorbars show five standard errors above and below the mean every
400 generations. (¢) The mean number of loci left unmutated by the clamping
mechanism used by).. Errorbars show three standard errors above and below the
mean every 400 generations. The vertical dotted line marks generation 2200 in all
three plots. (d,e,f) Same as above, but but for a randomly generated Sherrington
Kirkpatrick Spin Glasses System over 1000 spins (see main text for details)

interplay between the fitness function and the neighborhood structure of individual points,
hyperscapes are about the statistical fitness properties of individual hyperplanes, and the
“spatial” relationships between hyperplanes—Ilower order hyperplanes can contain higher
order hyperplanes, hyperplanes can intersect each other, and disjoint hyperplanes belonging

12

to the same hyperplane partition can be regarded as parallel. The use of hyperscapes for
intuiting GA dynamics originated with Holland (1975) and was popularized by Goldberg
(1989).

Useful as it may be as an explanation for adaptation in UGAs, the ultimate value of
the hyperclimbing hypothesis may lie in its generalizability. In a previous work (Burjorjee,
2009), the notion of a unit of inheritance—i.e. a gene—was used to generalize this hypoth-
esis to account for adaptation in simple genetic algorithms with strong linkage between
chromosomal loci. It may be possible for the hyperclimbing hypothesis to be generalized
further to account for adaptation in other kinds of evolutionary algorithms, In general, such
algorithms may perform adaptation by efficiently identifying and progressively fixing above
average “aspects”—units of selection in evolutionary biology speak—of the chromosomes
under evolution. The precise nature of the unit of selection in each case would need to be
determined.

If the hyperclimbing hypothesis and its generalizations are sound we would finally have a
unified explanation for adaptation in evolutionary algorithms. Fundamental advances in the
invention, application, and further analysis of these algorithms can be expected to follow.
The field of global optimization would be an immediate beneficiary. In turn, a range of fields,
including machine learning, drug discovery, and operations research stand to benefit. Take
machine learning for instance. Machine learning problems that can be tackled today are,
in large part, ones that are reducible in practice to convex optimization problems (Bennett
and Parrado-Hernandez, 2006). The identification of an intuitive, efficiently implementable,
general purpose meta-heuristic for optimization over rugged, dynamic, and stochastic cost
functions promises to significantly extend the reach of this field.

Finally, we briefly touch on the interdisciplinary contribution that the hyperclimbing
hypothesis makes to a longstanding debate about the units of selection in biological popu-
lations (Okasha, 2006; Dawkins, 1999a,b). The material presented in the proof of concept
section of this paper, and especially the material in Chapter 3 of an earlier work (Burjorjee,
2009) suggest that the most basic unit of selection is, not the individual gene as is com-
monly thought, but a small set of genes. Chapter 3 of the earlier work (Burjorjee, 2009)
demonstrates conclusively that as a unit of selection, the latter is not always reducible to
instances of the former. In other words, it gives the lie to the common refrain in Population
Genetics that multi-gene interactions can be ignored when studying adaptation in biological
populations because “additive effects are the basis for selection” (Wagner, 2002).

References

D.H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers,
1987.

James E. Baker. Adaptive selection methods for genetic algorithms. In John J. Grefenstette,
editor, Proceedings of the First International Conference on Genetic Algorithms and Their
Applications. Lawrence Erlbaum Associates, Publishers, 1985.

Kristin P. Bennett and Emilio Parrado-Herndndez. The interplay of optimization and ma-
chine learning research. Journal of Machine Learning Research, 7:1265-1281, 2006.

13

Alfredo Braunstein, Marc Mzard, and Riccardo Zecchina. Survey propagation: an algorithm
for satisfiability. CoRR, c¢s.CC/0212002, 2002. URL http://dblp.uni-trier.de/db/
journals/corr/corr0212.html#cs-CC-0212002.

Keki Burjorjee. Sufficient conditions for coarse-graining evolutionary dynamics. In Foun-
dations of Genetic Algorithms 9 (FOGA 1X), 2007.

Keki M. Burjorjee. Generative Fization: A Unifed Explanation for the Adaptive Capacity
of Simple Recombinative Genetic Algorithms. PhD thesis, Brandeis University, 2009.

T. H. Cormen, C. H. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill,
1990.

Richard Dawkins. The Extended Phenotype. Oxford University Press, 1999a.
Richard Dawkins. The Selfish Gene. Oxford University Press, 1999b.

L.J. Eshelman, R.A. Caruana, and J.D. Schaffer. Biases in the crossover landscape. Pro-
ceedings of the third international conference on Genetic algorithms table of contents,
pages 10-19, 1989.

D. B. Fogel. FEwvolutionary Computation : Towards a New Philosophy of Machine Intelli-
gence. IEEE press, 2006.

David E. Goldberg. Genetic Algorithms in Search, Optimization € Machine Learning.
Addison-Wesley, Reading, MA, 1989.

David E. Goldberg. The Design Of Innovation. Kluwer Academic Publishers, 2002.

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. MIT Press, 1975.

John H. Holland. Building blocks, cohort genetic algorithms, and hyperplane-defined func-
tions. Ewvolutionary Computation, 8(4):373-391, 2000.

Holger H. Hoos and Thomas Stiitzle. Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, 2004.

Li Huifang and Li Mo. A new method of image compression based on quantum neural net-
work. In International Conference of Information Science and Management Engineering,
pages pb67 — 570, 2010.

S.A. Kauffman. The Origins of Order: Self-Organization and Selection in Fvolution. Bio-
physical Soc, 1993.

L. Kroc, A. Sabharwal, and B. Selman. Message-passing and local heuristics as decima-
tion strategies for satisfiability. In Proceedings of the 2009 ACM symposium on Applied
Computing, pages 1408-1414. ACM, 2009.

J. T. Langton, A. A. Prinz, and T. J. Hickey. Combining pixelization and dimensional
stacking. In Advances in Visual Computing, pages II: 617-626, 2006. URL http://dx.
doi.org/10.1007/11919629_62.

14

http://dblp.uni-trier.de/db/journals/corr/corr0212.html#cs-CC-0212002
http://dblp.uni-trier.de/db/journals/corr/corr0212.html#cs-CC-0212002
http://dx.doi.org/10.1007/11919629_62
http://dx.doi.org/10.1007/11919629_62

Gunar E. Liepins and Michael D. Vose. Characterizing crossover in genetic algorithms.
Ann. Math. Artif. Intell., 5(1):27-34, 1992.

M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random
satisfiability problems. Science, 297(5582):812-815, 2002.

Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press, Cambridge, MA,
1996.

A.E. Nix and M.D. Vose. Modeling genetic algorithms with Markov chains. Annals of
Mathematics and Artificial Intelligence, 5(1):79-88, 1992.

S. Okasha. FEwvolution and the Levels of Selection. Oxford University Press, USA, 2006.

Martin Pelikan. Finding ground states of sherrington-kirkpatrick spin glasses with hier-
archical boa and genetic algorithms. In GECCO 2008: Proceedings of the 10th annual
conference on Genetic and Evolutionary Computation Conference, 2008.

Karl Popper. Conjectures and Refutations. Routledge, 2007a.
Karl Popper. The Logic Of Scientific Discovery. Routledge, 2007b.

EM Rudnick, JG Holm, DG Saab, and JH Patel. Application of simple genetic algorithms
to sequential circuit test generation. Proceedings of the Furopean Design and Test Con-
ference, pages 40-45, 1994.

B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability testing. Cliques,
coloring, and satisfiability: Second DIMACS implementation challenge, 26:521-532, 1993.

Chris Stephens and Henri Waelbroeck. Schemata evolution and building blocks. Evolution-
ary Computation, 7(2):109-124, 1999.

G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Schaffer, editor, Proceeding
of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, 1989.

G. Wagner. To epistasis—and beyond! FEwvolution, 56(4):852-855, 2002.

Richard A. Watson. Compositional Evolution: The Impact of Sex, Symbiosis and Modularity
on the Gradualist Framework of Fvolution. The MIT Press, 2006.

Alden H. Wright, Michael D. Vose, and Jonathan E. Rowe. Implicit parallelism. In GECCO,
2003.

Sewall Wright. The roles of mutation, inbreeding, crossbreeding and selection in evolution.
In Proceedings of the Sizth Annual Congress of Genetics, 1932.

15

Appendix A. The Hyperclimbing Heuristic: Formal Description

Introducing new terminology and notation where necessary, we present a formal description
of the hyperclimbing heuristic. For any positive integer ¢, let [¢] denote the set {1,...,¢},
and let B, denote the set of all binary strings of length ¢. For any binary string g, let g;
denote the i*" bit of g. We define the schema partition model set of £, denoted SPMy, to
be the power set of [(], and define the schema model set of ¢, denoted SMy, to be the set
{h:D — {0,1}|D € SPMy}. Let S; and SP; be the set of all schemata and schema partitions
Mitchell (1996), respectively, of the set By. Given some schema v C By, let m(y) denote the
set {i € [{]|Vz,y € v,z; = y;}. We define a schema modeling function SMF, : Sy — SM
as follows: for any v € Sy, SMF,; maps to the function h : 7(y) — {0,1} such that for
any g € v and any i € 7(v), h(i) = g;. We define a schema partition modeling function
SPMF, : SP; — SPMy as follows: for any I' € SP;, SPMF,(I") = 7(y), where v € I". As
m() = w(§) for all ¢,£ € T', the schema partition modeling function is well defined. It is
easily seen that SPF, and SPMF, are both bijective. For any schema model h € SMy, we
denote SMF; ' (h) by [h],. Likewise, for any schema partition model S € SPM, we denote
SPMFZI(S) by [S]¢. Going in the forward direction, for any schema v € Sy, we denote
SMF () by (7). Likewise, for any schema partition I' € SPy, we denote SPMF,(T") by (T').
We drop the £ when going in this direction, because its value in each case is ascertainable
from the operand. For any schema partition I'; and any schema ~ € I, the order of I, and
the order of v is |(I')].

For any two schema partitions 'y, I's € SIPy, we say that I'y and 'y are orthogonal if the
models of I'; and T'y are disjoint (i.e., (I'1) N (T'g) = 0). Let I'y and I'y be orthogonal schema
partitions in SPy, and let v; € 'y and 72 € I's be two schemata. Then the concatenation
I'1T"y denotes the schema partition [(I'1) U (I'2)]l¢, and the concatenation ;72 denotes the
schema [h : (I'1) U (I'2) — {0,1}]¢ such that for any i € (I'1), h(i) = (y1)(¢), and for any
i € (I'9), h(i) = (72)(7). Since (I'1) and (I'y) are disjoint, y172 is well defined. Let I'; and
Iy be orthogonal schema partitions, and let 7; € I'; be some schema. Then ~v.I's denotes
the set {v¢ € I'1I'2|¢ € T'a}.

Given some (possibly stochastic) fitness function f over the set B,, and some schema
v € Sy, we define the fitness of v, denoted Fy(f), to be a random variable that gives the
fitness value of a binary string drawn from the uniform distribution over «. For any schema
partition I' € SPy, we define the effect of I', denoted Effect|[I], to be the variance® of the
expected fitness values of the schemata of I'. In other words,

2
Effect[l] = 27101 Y | B[] - 2710 N B[R]

Let T'1,T'y € SP; be schema partitions such that (I'1) C (I'2). It is easily seen that
Effect[['1] < Effect[I's]. With equality if and only if F%f) = F%f) for all schemata, v €Ty
and 9 € I's such that v C ;. This condition is unlikely to arise in practice; therefore,
for all practical purposes, the effect of a given schema partition decreases as the partition
becomes coarser. The schema partition [[{] [, has the maximum effect. Let I' and ¥ be two

5. We use variance because it is a well known measure of dispersion. Other measures of dispersion may
well be substituted here without affecting the discussion

16

orthogonal schema partitions, and let v € I' be some schema . We define the conditional
effect of ¥ given v, denoted Effect[¥]], as follows:

2

_ o= (¥ () —|(® (f)
Effect[¥|y] = 211" Y~ [E[F)))] — 27 (W1 " B[F)]
Ppew £evr

A hyperclimbing heuristic works by evaluating the fitness of samples drawn initially
from the uniform distribution over the search space. It finds a coarse schema partition
I" with a non-zero effect, and limits future sampling to some schema ~ of this partition
whose average sampling fitness is greater then the mean of the average sampling fitness
values of the schemata in I'. By limiting future sampling in this way, the heuristic raises
the expected fitness of all future samples. The heuristic limits future sampling to some
schema by fixing the defining bits Mitchell (1996) of that schema in all future samples. The
unfixed loci constitute a new (smaller) search space to which the hyperclimbing heuristic
is then recursively applied. Crucially, coarse schema partitions orthogonal to I'" that have
undetectable unconditional effects, may have detectable effects when conditioned by ~.

Appendix B. Visualizing Staircase Functions

The stages of a staircase function can be visualized as a progression of nested hyperplanes®,
with hyperplanes of higher order and higher expected fitness nested within hyperplanes of
lower order and lower expected fitness. By choosing an appropriate scheme for mapping a
high-dimensional hypercube onto a two dimensional plot, it becomes possible to visualize
this progression of hyperplanes in two dimensions (Appendix B).

Definition 2 A refractal addressing system is a tuple (m,n,X,Y), where m and n are
positive integers, and X and Y are matrices with m rows and n columns such that the
elements in X and Y are distinct positive integers from the set [2mn], such that for any
ke 2mn], k isin X <=k isnot in'Y (i.e. the elements of [2mn] are evenly split between
X andY).

The refractal addressing system (m, 0, X,Y') determines how the set Bo,,,, gets mapped
onto a 2™" x 2™ grid of pixels. For any bitstring g € By, the zy-address (a tuple of two
values, each between 1 and 2™") of the pixel representing ¢ is given by Algorithm 3.
Example: Let (h=4,0=2,0=3,{=16,L,V) be the descriptor of a staircase function
f, such that

_ o O =
— O = O

Let A = (m = 4,n = 2,X,Y) be a refractal addressing system such that X;. = L.,
Y. = Lo., Xo. = Ls., and Yo, = Ly.. A refractal plot” of f is shown in Figure 4a.

6. A hyperplane is a geometrical representation of a schema (Goldberg, 1989, p 53).
7. The term “refractal plot” describes the images that result when dimensional stacking is combined with
pizelation Langton et al. (2006).

17

Algorithm 3: The algorithm for determining the (x, y)-address of a chromosome
under the refractal addressing system (m,n, X,Y). The function BIN-TO-INT returns
the integer value of a binary string.

Input: g is a chromosome of length 2mn

granularity < 2m" /2"

z+1

y+—1

for i <~ 1 to m do
x < x + granularity * BIN-TO-INT (Ex,.(g))
y < y + granularity * BIN-To-INT (Zy,,(9))
granularity < granularity /2"

end

return z,y

This image was generated by querying f with every bitstring in B4, and plotting the
resulting fitness value of each chromosome as a greyscale pixel at the chromosome’s refractal
address under the addressing system A. The fitness values returned by f have been scaled
to use the full range of possible greyscale shades®. Lighter shades signify greater fitness.
The four stages of f can easily be discerned.

Suppose we generate another refractal plot of f using the same addressing system A,
but a different random number generator seed; because f is stochastic, the greyscale value
of any pixel in the resulting plot will then most likely differ from that of its homolog in the
plot shown in Figure 4a. Nevertheless, our ability to discern the stages of f would not be
affected. In the same vein, note that when specifying A, we have not specified the values
of the last two rows of X and Y’; given the definition of f it is easily seen that these values
are immaterial to the discernment of its “staircase structure”.

On the other hand, the values of the first two rows of X and Y are highly relevant to the
discernment of this structure. Figure 4b shows a refractal plot of f that was obtained using
a refractal addressing system A" = (m = 4,n = 2, X', Y’) such that Xj. = L;., Y] = Lo,
X% = Ls., and Y3, = Ly.. Nothing remotely resembling a staircase is visible in this plot.

The lesson here is that the discernment of the fitness staircase inherent within a staircase
function depends critically on how one ‘looks’ at this function. In determining the ‘right’
way to look at f we have used information about the descriptor of f, specifically the values
of h,o0, and L. This information will not be available to an algorithm which only has query
access to f.

Even if one knows the right way to look at a staircase function, the discernment of the
fitness staircase inherent within this function can still be made difficult by a low value of the
increment parameter. Figure 5 lets us visualize the decrease in the salience of the fitness
staircase of f that accompanies a decrease in the increment parameter of this staircase
function. In general, a decrease in the increment results in a decrease in the ‘contrast’

8. We used the Matlab function imagesc()

18

256 256

192 192 [eeetanas
128

64 64 (et

64 128 192 256 64 128 192 256

(a) (b)

Figure 4: A refractal plot of the staircase function f under the refractal addressing systems
A (left) and A’ (right).

256 256 g
192 192
128

128

64 64

64 128 192 256 64 128 192 256

Figure 5: Refractal plots under A of two staircase functions, which differ from f only in
their increments—1 (left plot) and 0.3 (right plot) as opposed to 3.

between the stages of that function, and an increase the amount of computation required
to discern these stages.

19

Appendix C. Analysis of Staircase Functions

Let £ be some positive integer. Given some (possibly stochastic) fitness function f over the
set By, and some schema v C B, we define the fitness signal of v, denoted S(v), to be
E[Fy)] — E[Fg?] Let 71 C By and 2 C B, be schemata in two orthogonal schema
partitions. We define the conditional fitness signal of ~1 given ~y2, denoted S(v1|72),
to be the difference between the fitness signal of 172 and the fitness signal of ~s, i.e.
S(v1]72) = S(7172) — S(72). Given some staircase function f we denote the i*" step of f
by |f]; and denote the i'" stage of f by [f];.

Let f be a staircase function with descriptor (h,o0,d,¢,L, V). For any integer i € [h],
the fitness signal of | f]; is one measure of the difficulty of “directly” identifying step i (i.e.,
the difficulty of determining step ¢ without first determining any of the preceding steps
1,...,2—1). Likewise, for any integers 4,j in [h] such that ¢ > j, the conditional fitness
signal of step 7 given stage j is one measure of the difficulty of “directly” identifying step
i given stage j (i.e. the difficulty of determining | f|; given [f]; without first determining
any of the intermediate steps | f|j4+1,..., [fli-1-

For any i € [h], by Theorem 1 (see below), the unconditional fitness signal of step i is

d
90(i—1)

This value decreases exponentially with ¢ and o. It is reasonable, therefore, to suspect that
the direct identification of step ¢ of f quickly becomes infeasible with increases in ¢ and
o. Consider, however, that by Corollary 1, for any i € {2,...,h}, the conditional fitness
signal of step i given stage (i — 1) is d, a constant with respect to i. Therefore, if some
algorithm can identify the first step of f, one should be able to use it to indirectly identify
all remaining steps in time and fitness queries that scale linearly with the height of f.

Lemma 1 For any staircase function f with descriptor (h,o,6,¢,L,V), and any integer
i € [h], the fitness signal of stage i is id.

PRrROOF: Let = be the expected fitness of B, under uniform sampling. We first prove the
following claim:

Claim 1 The fitness signal of stage i is i6 — x

The proof of the claim follows by induction on i. The base case, when i = h is easily seen
to be true from the definition of a staircase function. For any k € {2,...,h}, we assume
that the hypothesis holds for i = k, and prove that it holds for i = k — 1. For any j € [h],
let I'; € SPy denote the schema partition containing step 7. The fitness signal of stage £ — 1
is given by

) T2 IS EEND ST(a PRET)
Y el \{Lf]x}

k6 —x 2°-—1 1)
=5 T <(5(/€—1)—20—1—x>

20

where the first term of the right hand side of the above expression follows from the in-
ductive hypothesis, and the second term follows from the definition of a staircase function.
Manipulation of this expression yields

kS + (20— 1)6(k — 1) — & — 200
20

which, upon further manipulation, yields (kK — 1)0 — z.

This completes the proof of the claim. To prove the lemma, we must prove that z is
zero. By claim 1, the fitness signal of the first stage is § —z. By the definition of a staircase
function then,

. 0—x n 20 -1 B 1)
-2 20 20 — 1
Which reduces to

T
20

€Tr =
Clearly, x is zero. [

Corollary 1 For anyi € {2,...,h}, the conditional fitness signal of step i given stage i —1
s 6
PROOF The conditional fitness signal of step ¢ given stage ¢ — 1 is given by

S | TfTi-1)

= S([f1e) = S([fli-1)

= (i6 — (i — 1)9)
=50

Theorem 1 For any staircase function f with descriptor (h,o0,0,0,¢,L, V), and any integer
i € [h], the fitness signal of step i is 6/2°01),

PRrROOF: For any j € [h], let A; € SP; denote of the partition containing stage j, and let
I'; € SP; denote of the partition containing step j. We first prove the following claim

Claim 2 For any i € [h],
> S =-is
ge AN{[f1:}

The proof of the claim follows by induction on i. The proof for the base case (i = 1) is as
follows:

> s@=-@-0(50g) =0

e MN\{[f11}

21

For any k € [h — 1] we assume that the hypothesis holds for i = k, and prove that it holds
fori=k+1.

> S

€€ Apr i \{[Flr41}

= > S+), > Sy

YET k1 \{Lf)k+1} Ee M \{[f1x} YETk+1

= > S(TFR)+ Y > SEy)

Y€1 \{[f1k+1} Y Eelky1 €€ MN\{[Sk}

=@-Ds(fw+2| > 5©
E€ANTf1x}
where the first and last equalities follow from the definition of a staircase function. Using
Lemma 1 and the inductive hypothesis, the right hand side of this expression can be seen
to equal

2°—-1 k(S—L — 2°k§
20 -1

which, upon manipulation, yields —d(k + 1).
For a proof of the theorem, observe that step 1 and stage 1 are the same schema. So,
by Lemma 1, S(|f]1) = d. Thus, the theorem holds for i = 1. For any i € {2,...,h},

S = [ST+ Y Sl
(29) EeNi 1 \{[fli=1}

= o (S Y s
gehia\{[fli-1}

where the last equality follows from the definition of a staircase function. Using Lemma 1
and Claim 2, the right hand side of this equality can be seen to equal

i0 — (i—1)8
(20)i—1
)
~ 90(i—1) D

22

	1 Introduction
	2 The Hyperclimbing Heuristic
	3 Proof of Concept
	3.1 UGA Specification
	3.2 Performance of a UGA on a class of Staircase Functions
	3.3 Symmetry Analysis and Experimental Confirmation

	4 Validation
	4.1 Validation on MAX-3SAT
	4.2 Validation on an SK Spin Glasses System

	5 Conclusion
	A The Hyperclimbing Heuristic: Formal Description
	B Visualizing Staircase Functions
	C Analysis of Staircase Functions

