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Abstract

A popular current research trend deals with expanding the Monte-Carlo tree search sampling method-
ologies to the environments with uncertainty and incomplete information. Recently a finite population
version of Geiringer theorem with nonhomologous recombination has been adopted to the setting of
Monte-Carlo tree search to cope with randomness and incomplete information by exploiting the entrinsic
similarities within the state space of the problem. The only limitation of the new theorem is that the
similarity relation was assumed to be an equivalence relation on the set of states. In the current paper we
lift this “curtain of limitation” by allowing the similarity relation to be modeled in terms of an arbitrary
set cover of the set of state-action pairs.

1 Introduction

In recent years Monte-Carlo sampling methods, such as Monte Carlo tree search, have achieved tremendous
success in model free reinforcement learning with, perhaps the most celebrated example, being the computer
Go software that has beaten the top human player (see [1], for instance). Unlike the traditional techniques
such as the mini-max method (that, by the way, have not succeeded for “Go”), Monte-Carlo Tree search
(MCT) is based on running simulated self-plays, called “rollouts” until the end of the game when a terminal
state with a known payoff has been encountered. A position in a game is represented by a state-action pair
~s = (s, ~α) where ~α = (α1, α2, . . . , αl(s)) is the collection of actions (or moves) available in a position s. The
goal is to evaluate actions through back-propagation and averaging. Much effort in the current research
is devoted to widening the range of applicability of the method in the environments with randomness and
incomplete information. Recently, a finite population Geiringer Theorem with non-homologous recombination
has been adopted to the setting of Monte-Carlo tree search, based on which efficient parallel algorithms that
exploit the intrinsic similarities within the state-action space to increase exponentially the size of a simulated
sample of rollouts can be developed. The importance of similarity relations when coping with POMDPs is
emphasized by other researchers, see, for instance, [2]. The main idea is that the algorithms sample directly
from a long term probability distribution of repeated recombination applications defined in terms of the
similarities. The only limitation of the new theorem is that the notion of similarity is limited to equivalence
relations partitioning the set of state-action pairs. The current work lifts this “curtain of limitation” by
allowing the similarity relation to be any set cover of the set of state-action pairs. The reader is strongly
encouraged to familiarize themselves with the the first four sections of [3] prior to reading the current sequel
paper, where a much more detailed introduction as well as mathematical support is provided.
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2 Mathematical Framework and Notation

2.1 Set Cover of the State Space

Let S denote the set of states (enormous but finite in the current framework). Formally each state ~s ∈ S
is an ordered pair (s, ~α) where ~α is the set of actions an agent can possibly take when in the state ~s. Let
C denote an arbitrary set cover of S (i.e. C ⊆ P(S) is a collection of subsets of S such that

⋃
O∈C O = S).

Given a set O ∈ C, for any two states ~s1 and ~s2 ∈ O we will say that ~s1 and ~s2 are O-similar states and

write ~s1
O∼ ~s2. Intuitively, the sets O represent certain measure of similarity between the states ~s1 and ~s2.

In practice, of course, if ~s1
O∼ ~s2, the corresponding sets of actions ~α1 and ~α2 must be related in some kind

of fashion: for instance, one may require that there are functions fO,~s1, ~s2 : ~α1 → ~α2 and fO,~s2, ~s1 : ~α2 → ~α1

that provide a natural similarity correspondence among the actions. Needless to say, the choice or design
of such correspondences goes hand in hand with the choice or design of the set cover C. In fact, there is a
variety of ways in which this can be modeled depending on the specific applications. We leave the detailed
investigations for future research.

Unlike the framework in [3], the current setting allows various degrees and types of similarity relations
that are not limited to partitions of S induced by equivalence relations. Consider, for instance, a set covering
induced by a distance function d : S×S → [0, ∞) satisfying the usual axioms of a pseudo-metric: ∀x, y, z ∈ S
we have d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y)+d(y, z). Such a pseudo-metric naturally induces
a neighborhood structure on the set of states S: C = {B(x, ε) |x ∈ S and ε > 0} where B(x, ε) = {y | y ∈
S and d(x, y) < ε} is a clopen ball1. Notice further that C has a number of subcovers such as, for instance,
Cr = {B(x, ε) |x ∈ S and r > ε > 0} where r > 0 and each one of these could be used in specific applications.
As mentioned in the introduction, due to an overwhelming number of states as well as incomplete information
and randomness, some sort of a coarse graining of the set of states is inevitable in applications. As pointed
out in [3], the primary idea of the Geiringer-like theorems for decision making in the environments with
randomness and incomplete information is to exploit the similarity relations on the set of states to estimate
the average action payoffs based on an exponentially larger sample of rollouts than the one simulated at a
relatively little computational expense. The version of the Geiringer-like theorem presented in this paper
greatly expands the variety of the similarity relations that can be used in practice, thereby significantly
widening the range and the flexibility of applications.

Just as in [3], a convenient way to represent a similarity relation C on a set of states S is to assign a
positive integer to each similarity set O ∈ C in a one-to-one fashion. Each element of a set O labeled by an
integer l is then uniquely determined by an additional alphabet symbol. Unlike the case in [3], it is possible
for the same state to be labeled in a number of different ways as long as the corresponding integer labels
differ. An example appears below.

Example 2.1. A state space S consisting of 13 states and a set cover C consisting of 7 sets are pictured
in figure 1. Notice that 1 = {1a, 1b, 1c}, 3 = {3a, 3b, 3c, 3d}, 2 = 1 ∩ 3 = {1a} = {2a} = {3a}, 5 =
{5a, 5b, 5c}, 6 = {6a, 6b, 6c}, 4 = 3 ∩ 6 consists of 2 elements that can be written as pictured on the
Venn diagram on figure 1 and, finally, 7 = {7a, 7b, 7c}. For i 6= j we have i ∩ j = ∅ unless {i, j} =
{1, 3}, {1, 2}, {3, 2}, {3, 6}, {3, 4} or {4, 6}.

We end this section with a couple of simple definitions, the significance of which will become very clear
in section 3.4, when we state the main theorem of the current article.

Definition 2.1. Given a set of state-action pairs S and a set cover C of S, consider the relation v⊆ S2

defined as x v y ⇐⇒ ∃O ∈ C such that x and y ∈ O and notice that v is a symmetric and reflexive
relation. We denote by C the partition induced by the transitive closure of the relation v, we will denote this
equivalence relation (the transitive closure) by '.

Remark 2.1. Apparently,
C = C ⇐⇒ C is a partition of S ⇐⇒v=' .

1Since the set S is finite, the pseudo-metric (i.e. the distance function) can take only finitely many values thereby inducing
the discrete topology on the set S (see, for instance, [4] to learn about basic point-set topology). The induced topological space
is then totally disconnected so that every open ball is also a closed ball, usually abbreviated as “clopen”. In fact, in such a case
it is sufficient to consider only integer-valued pseudo-metrics, yet depending on a specific application it may be sometimes more
convenient to consider real or rational valued pseudo-metrics.
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Figure 1: A set cover of a 13-element set of states consisting of 7 sets.

An example below illustrates definition 2.1

Example 2.2. Continuing with example 2.1, consider the 13-element set of state-action pairs and the set
cover pictured on figure 1. Then the symmetric relation

v= {(x, y) | i ∈ N with 1 ≤ i ≤ 7, x ∈ i ∧ y ∈ i},

the partition C = {1 ∪ 3 ∪ 6, 5, 7} and the equivalence relation ' is the one corresponding to the partition C.

Definition 2.2. Given any set O ∈ C, we will say that the unique equivalence class in C, call it O, that
contains O is the expansion of the similarity set O.

Example 2.3. Continuing with examples 2.1 and 2.2, we have 1 = 2 = 3 = 4 = 6 = 1 ∪ 3 ∪ 6 while 5 = 5
and 7 = 7.

2.2 Rollouts and Recombination Operators

Definition 2.3. Suppose we are given a chance node ~s = (s, ~α) and a sequence {αi}bi=1 of actions in ~α (it
is possible that αi = αj for i 6= j). We may then call ~s a root state, or a state in question, the sequence
{αi}bi=1, the sequence of moves (actions) under evaluation and the set of moves A = {α |α = αi for some i
with 1 ≤ i ≤ b}, the set of actions (or moves) under evaluation.

Definition 2.4. A rollout with respect to the state in question ~s = (s, ~α) and an action α ∈ ~α is a sequence
of states following the action α and ending with a terminal label f ∈ Σ where Σ is an arbitrary set of labels2,
which looks as {(α, s1, s2, . . . , st−1, f)}. For technical reasons which will become obvious later we will also

require that si 6= sj for i 6= j (it is possible and common to have si
O
v sj for various O ∈ C though). We will

say that the total number of states in a rollout (which is k− 1 in the notation of this definition) is the height
of the rollout.

Remark 2.2. Notice that in definition 2.4 we included only the initial move α made at the state in question
(see definition 2.3) which is the move under evaluation (see definition 2.3). The moves between the inter-
mediate states are chosen randomly or with respect to some dynamically updated distributions and are not
evaluated so that there is no reason to consider them.

2Intuitively, each terminal label in the set Σ represents a terminal state that we can assign a numerical value to via a function
φ : Σ → Q. The reason we introduce the set Σ of formal labels as opposed to requiring that each terminal label is a rational
number straight away, is to avoid confusion in the upcoming definitions

3



A single rollout provides rather little information about an action particularly due to the combinatorial
explosion in the branching factor of possible moves of the player and the opponents. Normally a large, yet
comparable with total resource limitations, number of rollouts is thrown to evaluate the actions at various
positions. The challenging question which the current work addresses is how one can take full advantage of
the parallel sequence of rollouts. Since the main idea is motivated by Geiringer theorem which is originated
from population genetics ([5]) and later has also been involved in evolutionary computation theory ([6], [7]
and [8]) we shall exploit the terminology of the evolutionary computation community here.

Definition 2.5. Given a state in question ~s = (s, ~α) and a sequence {αi}bi=1 of moves under evaluation (in
the sense of definition 2.3) then a population P with respect to the state ~s = (s, ~α) and the sequence {αi}bi=1

is a sequence of rollouts P = {rl(i)i }bi=1 where ri = {(αi, si1, si2, . . . , sil(i)−1, fi)}. Just as in definition 2.4 we

will assume that sik 6= sjq whenever i 6= j (which, in accordance with definition 2.4, is as strong as requiring

that sik 6= sjq whenever i 6= j or k 6= q)3 Moreover, we also assume that the terminal labels fi are also all
distinct within the same population, i.e. for i 6= j the terminal labels fi 6= fj

4 In a very special case when

(∃O ∈ C such that sij
O
v sqk) =⇒ (j = k) we will say that the population P is homologous. Loosely speaking,

a homologous population is one where similar states can not appear at different “heights”.

Remark 2.3. Each rollout r
l(i)
i in definition 2.5 is started with the corresponding move αi of the sequence

of moves under evaluation (see definition 2.3). It is clear that if one were to permute the rollouts without
changing the actual sequences of states the corresponding populations should provide identical values for the
corresponding actions under evaluation. In fact, most authors in evolutionary computation theory (see [9], for
instance) do assume that such populations are equivalent and deal with the corresponding equivalence classes
of multisets corresponding to the individuals (these are sequences of rollouts). Nonetheless, when dealing
with finite-population Geiringer-like theorems it is convenient for technical reasons (see also [7] and [8]) to
assume the ordered multiset model i.e. the populations are considered formally distinct when the individuals
are permuted. Incidentally, ordered multiset models are useful for other types of theoretical analysis in [10]
and [11].

Example 2.4. An example of a population of rollouts from the state space S described in example 2.1 with
the set cover pictured in figure 1 appears in figure 2.

The main idea is that the actions taken at similar states should be interchangeable with some proba-
bility depending on the similarity level for a number of reasons such as incomplete information or simply
because they are randomly explored during the simulation stage of the MCT algorithm. In the language
of evolutionary computing, such a swap of moves is called a crossover. Due to randomness or incomplete
information (together with the various similarity relations which can be defined using the expert knowledge
of a specific game being analyzed) in order to obtain the most out of a sample (population in our language)
of the parallel rollouts it is desirable to explore all possible populations obtained by making various swaps of
the corresponding rollouts in similar positions. Computationally this task seems expensive if one were to run
the type of genetic programming described precisely below, yet, it turns out that we can predict exactly what
the limiting outcome of this “mixing procedure” would be.5 We now continue with the rigorous definitions
of crossover. Crossover or recombination operators will be defined in terms of the similarities induced by
the set cover much in the same way as it has been done in [3]. Nonetheless, here we are not limited to a
single equivalence relation on the set of states, and many more recombination operators will be introduced
depending on various similarity sets in C. For this reason it is convenient to introduce the following notion:

Definition 2.6. Given a state ~s ∈ S, we say that the collection of sets ~s(C) = {O |O ∈ C and ~s ∈ O} is the
collection of similarity sets of the state ~s. Given states ~s1 and ~s2 ∈ S and a set O ∈ ~s1(C) ∩ ~s2(C) we say
that (O, ~s1, ~s2) is a recombination-compatible triple.

3The last assumption that all the states in a population are formally distinct (although they may be similar with respect to
various sets in C) will be convenient later to extend the crossover operators from pairs to the entire populations. This assumption
does make sense from the intuitive point of view as well since the exact state in most games involving randomness or incomplete
information is simply unknown.

4This assumption does not reduce any generality since one can choose an arbitrary (possibly a many to one) assignment
function φ : Σ→ Q, yet the complexity of the statements of our main theorems will be mildly alleviated.

5In this paper we will need to “inflate” the population first and then take the limit of a sequence of these limiting procedures
as the inflation factor increases. All of this will be rigorously presented and discussed in subsection 3.4; see also [3].
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Figure 2: A population of 4 rollouts.

Example 2.5. Continuing with example 2.1, for the states 1b and 3a we have 1b(C) = {1} and 3a(C) =
{1, 2, 3} so that (1, 1b, 3a) is a recombination-compatible triple while (2, 1b, 3a) is not.

For every recombination compatible triple we can introduce the following two recombination operators:

Definition 2.7. Given two rollouts

r1 = (α1, ~s1, ~s2, . . . , ~sl(1)−1, f)

and
r2 = (α2, ~t1, ~t2, . . . ,~tl(2)−1, g)

of lengths k(1) and k(2) respectively that share no state in common (i.e., as in definition 2.4, ) there are two
(non-homologous) crossover (or recombination) operators we introduce here. For a recombination-compatible
triple (O, ~u, ~v) define the one-point non-homologous crossover transformation as follows: χO, ~u,~v(r1, r2) =
(r̂1, r̂2) where

r̂1 = (α1, ~s1, ~s2, . . . , ~sk−1, ~tq, ~tq+1, . . . ,~tl(2)−1, g)

and
r̂2 = (α2, ~t1, ~t2, . . . ,~tq−1, ~sk, ~sk+1, . . . , ~sl(1)−1, f)

if [either (~sk = ~u and ~tq = ~v) or vise versa: (~sk = ~v and ~tq = ~u)] and (r̂1, r̂2) = (r1, r2) otherwise.
Likewise, we introduce a single position swap crossover:

νO, ~u,~v(r1, r2) = (r̃1, r̃2) where

r̃1 = (α1, ~s1, ~s2, . . . , ~sk−1, ~tq, ~sk+1, . . . , ~sl(1)−1, f)

while
r̃2 = (α2, ~t1, ~t2, . . . ,~tq−1, ~sk, ~tq+1, . . . ,~tl(2)−1, g)

if [either (~sk = ~u and ~tq = ~v) or vise versa: (~sk = ~v and ~tq = ~u)] and (r̂1, r̂2) = (r1, r2) otherwise.
In addition, a singe swap crossover is defined not only on the pairs of rollouts but also on a single rollout

swapping the positions of the O-similar states ~u and ~v in the analogous manner: If

r = (α, ~s1, . . . , ~sj−1, ~sj , ~sj+1, . . . , ~sk−1, ~sk, ~sk+1, . . . , ~sl−1, f)

and [either (~sk = ~u and ~sq = ~v) or vise versa: (~sk = ~v and ~sq = ~u)] then

νO, ~u,~v(r) = (α, ~s1, . . . , ~sj−1, ~sk, ~sj+1, . . .
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. . . , ~sk−1, ~sj , ~sk+1, . . . , ~sl−1, f

if [either (~sj = ~u and ~sk = ~v) or vise versa: (~sj = ~v and ~tk = ~u)] and, of course, νO, ~u,~v(r) fixes r (i.e.
νO, ~u,~v(r) = r) otherwise.

Remark 2.4. Notice that definition 2.7 makes sense thanks to the assumption that no rollout contains an
identical pair of states in definition 2.4.

Remark 2.5. Intuitively, performing one point crossover means that the corresponding player might have
changed their strategy in a similar situation due to randomness and a single swap crossover corresponds to
the player not knowing the exact state they are in due to incomplete information, for instance.

Just as in case of defining crossover operators for pairs of rollouts, thanks to the assumption that all the
states in a population of rollouts are formally distinct (see definition 2.5), it is easy to extend definition 2.7
to the entire populations of rollouts. In view of remark 2.5, to get the most informative picture out of the
sequence of parallel rollouts one would want to run the genetic programming routine without selection and
mutation and using only the crossover operators specified above for as long as possible and then, in order to
evaluate a certain move α, collect the weighted average of the terminal values (i. e. the values assigned to
the terminal labels via some rational-valued assignment function) of all the rollouts starting with the move
α which ever occurred in the process. We now describe precisely what the process is.

Definition 2.8. Given a population P and a transformation of the form χO, ~u,~v, there exists at most one
pair of distinct rollouts in the population P , namely the pair of rollouts r1 and r2 such that the state ~u appears
in r1 and the state ~v appears in r2. If such a pair exists, then we define the recombination transformation
χO, ~u,~v(P ) = P ′ where P ′ is the population obtained from P by replacing the pair of rollouts (r1, r2) with the
pair χO, ~u,~v(r1, r2) as in definition 2.7. In any other case we do not make any change, i.e. χO, ~u,~v(P ) = P .
The transformation νO, ~u,~v(P ) is defined in an entirely analogous manner with one more amendment: if the
states ~u and ~v appear within the same individual (rollout), call it

r = (α, ~s1, . . . , ~s2, . . . , ~u, . . . , ~v, . . . , ~sl−1, f),

and the state ~u precedes the state ~v, then these states are interchanged obtaining the new rollout

r′ = (α, ~s1, . . . , ~s2, . . . , ~v, . . . , ~u, . . . , ~sl−1, f).

Of course, it could be that the state v precedes the state u instead, in which case the definition would be
analogous: if

r = (α, ~s1, . . . , ~s2, . . . , ~v, . . . , ~u, . . . , ~sl−1, f)

then replace the rollout r with the rollout

r′ = (α, ~s1, . . . , ~s2, . . . , ~u, . . . , ~v, . . . , ~sl−1, f).

Example 2.6. Continuing with example 2.4, applying the crossover transformation χ3, 3d, 3b to the population
we obtain the population on figure 3.

Remark 2.6. It is very important for the main theorem of our paper that each of the crossover transforma-
tions χO, ~u,~v and νO, ~u,~v is a bijection on their common domain, that is the set of all populations of rollouts
at the specified chance node. As a matter of fact, the reader can easily verify by direct computation from
definitions 2.8 and 2.7 that each of the transformations χO, ~u,~v and νO, ~u,~v is an involution on its domain,
i.e. ∀O ∈ C and x, y ∈ O we have χ2

O, ~u,~v = ν2
O, ~u,~v = 1 where 1 is the identity transformation.

3 Geiringer and Geiringer-like Theorems for POMDPs and MCT.

3.1 The Main Idea Of the Current Work

Suppose a certain initial population of rollouts has been simulated during a simulation stage of the MCT.
Although the rollouts have been simulated independently, similar states encountered during the simulations

6



Figure 3: The population obtained after applying the crossover transformation in example 2.6 to the popu-
lation displayed in figure 2.

are likely to repeat in a number of settings. Assume now we were to run a GP (genetic programming) routine
performing swaps
(crossovers/recombinations) of rollouts in accordance with definitions 2.7 and 2.8 without any selection or
mutation. Clearly the swaps correspond to potential populations of rollouts that could have been simulated
just as likely, provided that something different in the environment (and/or opponent’s hand) has taken place.
Intuitively speaking, if we were to run the GP longer and longer time, we would be getting significantly more
enriched information about potential outcomes and hence improve the quality of the payoff estimates. The
central idea behind results such as the main theorem of this article (a special case where the similarity relation
is an equivalence relation (i.e. C is a partition of S) has been established in [3]) is that one can actually
anticipate the long term (or limiting) frequency of occurrence of various rollouts provided such a genetic
programming routine has ran. This type of predictions is what the Geiringer-like theorems are about. In
[7] a rather general simple and powerful theorem (named “finite population Geiringer theorem”) has been
established in the setting of Markov chains (populations being the states of the Markov chain: more on this
in the next section) which tells us that under certain conditions that are satisfied by most recombination
operators, the stationary distribution of this Markov chain is uniform. Furthermore, a methodology has been
developed to derive what we call “Geiringer-like” theorems that address the limiting frequency of occurrence
of various schemata (in our case subsets of rollouts: more on this in the upcoming subsection 3.4). Based
on such a theorem it is not hard to invent efficient parallel dynamic algorithms that estimate the expected
action payoff values based on the sample obtained after the entire “infinite time” run of the GP routine
described above. It may be worthwhile to mention that “homologous recombination” (translating into the
setting of MCT this would mean that the similarity classes may occur only at the same heights of the
corresponding rollouts) versions of a Geiringer-like theorem have been obtained previously in the setting of
genetic programming using the methodology appearing in [7] (see [8]). A version of Geiringer-like theorem
with non-homologous recombination remained an open question and it has been established recently in [3]
in a very similar setting as in the current article. While the Geiringer-like theorem in [3] is already rather
interesting and powerful, it is limited to the case when the notion of similarity is measured via an equivalence
relation, which does not allow any degree of similarity: any two states are either similar or not, but there is
no way to judge how similar they are and every state (with the corresponding actions) of the same similarity
class is evaluated indistinguishably. In the current article, we point out that this limitation can be easily
alleviated to allow practically any notion of similarity among the states (i.e. an arbitrary set cover of the set
of states) and, at the same time, the statement and the proof of the corresponding Geiringer like theorem are
somewhat simplified. In the next section we will establish a generalization of the finite population Geiringer
theorem for POMDPs in [3] that will allow us to derive the corresponding generalization of the Geiringer-like
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theorem of [3].

3.2 Specializing the Finite Population Geiringer Theorem to the setting of
Monte Carlo Sampling for POMDPs

Definition 3.1. Let n = {1, 2, . . . , n} denote the set of first n natural numbers. Consider any probability
distribution µ on the set of all finite sequences of crossover transformations F =

⋃∞
n=1 Fn ∪ {1} where

Fn = ({χO, ~u,~v |O ∈ C and ~u, ~v ∈ O}∪

∪{νO, ~u,~v |O ∈ C and ~u, ~v ∈ O})n

which assigns a positive probability to the singleton sequences6 and to the identity element 1. (i.e. to every

element of the subset F1 ∪ {1}. Given a sequence of transformations ~Θ = {ΘOj , ~uj , ~vj}nj=1 where each Θ is
either χ or ν (i.e. ∀ j either ΘOj , ~uj , ~vj = χOj , ~uj , ~vj or ΘOj , ~uj , ~vj = νOj , ~uj , ~vj ), consider the transformation

Θ̃ = ΘOn, ~un, ~vn ◦ΘOn−1, ~un−1, ~vn−1
◦ . . . ◦ΘO2, ~u2, ~v2 ◦ΘO1, ~u1, ~v1

on the set of all populations starting at the specified chance node obtained by composing all the transformations
in the sequence ~Θ. The identity element 1 stands for the identity map on the set of all possible populations
of rollouts. Now define the Markov transition Matrix Mµ on the set of all populations of rollouts (see
definition 2.5) as follows: given populations X and Y of the same size k, the probability of obtaining the
population Y from the population X after performing a single crossover stage, pX→Y = µ(SX→Y ) where

SX→Y = {Γ |Γ ∈ F and T (Γ)(X) = Y }

where

T (Γ) =

{
Θ̃ if Γ = ~Θ

The identity map if Γ = 1.

Remark 3.1. Evidently the map T : F → PP introduced at the end of definition 3.1 can be regarded as
a random variable on the set F described at the beginning of definition 3.1 where P denotes the set of all
populations of rollouts containing k individuals so that PP is the set of all endomorphisms (functions with
the same domain and codomain) on P and the probability measure µT on PP is the “pushforward” measure
induced by T , i.e. µT (S) = µ(T−1(S)).7 To alleviate the complexity of verbal (or written) presentation we
will usually abuse the language and use the set F in place of PP so that a transformation F ∈ PP is identified
with the entire set T−1(F ) ∈ F . For example,

if we write µ({F |F ∈ F and F (X) = Y })

we mean µ({Γ |Γ ∈ F and T (Γ)(X) = Y }).

It may be worth pointing out that the set T−1 is not necessarily a singleton, i.e. the map T is usually not
one-to-one (for instance, given any O ∈ C and any ~u, ~v ∈ O the sequence of the form ~Θ = (χO, ~u,~v, χO, ~u,~v)

or of the form ~Θ = (νO, ~u,~v, νO, ~u,~v) both induce identity transformation on the set of populations of rollouts.
Indeed, χO, ~u,~v ◦ χO, ~u,~v = νO, ~u,~v ◦ νO, ~u,~v = 1 since performing a swap at identical positions twice brings
back the original population of rollouts.)

Remark 3.2. Notice that any concatenation of sequences in F (which is what corresponds to the composition
of the corresponding functions) stays in F . In other words, the family of maps induced by F is closed under
composition.

6This technical assumption may be altered in various manner as long as the induced Markov chain remains irreducible.
7The sigma algebra on PP is the one generated by T with respect to the sigma-algebra that is originally chosen on F , however

in practical applications the sets involved are finite and so all the sigma-algebras can be safely assumed to be power sets.

8



Figure 4: The population R ∼ Q ∼ P .

Of course, running the Markov process induced by the transition matrix in definition 3.1 infinitely long
is impossible, but fortunately one does not have to do it. The central idea of the current paper is that the
limiting outcome as time goes to infinity can be predicted exactly using the Geiringer-like theory and the
desired evaluations of moves can be well-estimated at rather little computational cost in most cases. As
pointed out in remark 3.1 above, each of the transformations ΘO, ~u,~v is an involution and, in particular, is
bijective. Therefore, every composition of these transformations is a bijection as well. We deduce, thereby,
that the family F consists of bijections only (see remark 3.1). The finite population Geiringer theorem (see
[7]) now applies and tells us the following:

Definition 3.2. Given populations P and Q of rollouts at a specified state in question as in definition 2.5,
we say that P ∼ Q if there is a transformation F ∈ F such that Q = F (P ).

Example 3.1. The populations P and Q and R displayed in figures 2, 3 and 4 respectively are equivalent in
the sense of definition 3.2 since Q = χ3, 3d, 3b(P ), R = ν5, 5a, 5b ◦ χ5, 5a, 5b ◦ χ4, 4a, 4b(Q)

Theorem 3.1 (Geiringer Theorem for POMDPs). The relation ∼ introduced in definition 3.2 is an equiva-
lence relation. Given a population P of rollouts at a specified state in question, the restriction of the Markov
transition matrix introduced in definition 3.1 to the equivalence class [P ] of the population P under ∼ is a
well-defined Markov transition matrix which induces an irreducible and aperiodic Markov chain on [P ] and
the unique stationary distribution of this Markov chain is the uniform distribution on [P ].8

Knowing that the limiting frequency of occurrence of a any two given populations Q1 and Q2 ∈ [P ] is
the same, it is sometimes possible to compute the limiting frequency of occurrence of any specific rollout and
even certain subsets of rollouts using the machinery developed in [7], [8] and enhanced further in [3].

To state and derive these “Geiringer-like” results we need to introduce the appropriate notions of schemata
(see, for instance, [12] and [13]) here.

3.3 Schemata for MCT Algorithm

Definition 3.3. Given a state (s, ~α) in question (see definition 2.3), a rollout Holland-Poli schema is a
sequence consisting of entries from the set~α∪ C ∪ {#} ∪Σ of the form h = {xi}ki=1 for some k ∈ N such that
for k > 1 we have x1 ∈ ~α, xi ∈ C when 1 < i < k represents a similarity class of states, and xk ∈ {#}∪Σ could

8In fact, thanks to the application of the classical contraction mapping principle9 analyzed in section 6 of [3]) the stationary
distribution is uniform in a rather strong sense as discussed in theorem 23 and example 24 of [3].
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represent either a terminal label if it is a member of the set of terminal labels Σ, or any substring defining a
valid rollout if it is a # sign.10 For k = 1 there is a unique schema of the form #. Every schema uniquely

determines a set of rollouts Rh =



{(x1, ~s2, ~s3, . . . , ~sk−1, xk)

|~si ∈ xi for 2 < i < k − 1} if k > 1 and xk ∈ Σ

{(x1, ~s2, ~s3, . . . , ~sk−1,

~tk, ~tk+1, . . . , f)

|~si ∈ xi for 2 < i < k − 1, ~tj ∈ S} if k > 1 and xk = #

the entire set of all possible rollouts if k = 1 or,

equivalently, h = #.

which fit the

schema in the sense mentioned above. We will often abuse the language and use the same word schema to
mean either the schema h as a formal sequence as above or schema as a set Rh of rollouts which fit the
schema. For example, if h and h∗ is a schema, we will write h ∩ h∗ as a shorthand notation for Rh ∩ Rh∗
where ∩ denotes the usual intersection of sets. Just as in definition 2.4, we will say that k − 1, the number
of states in the schema h, is the height of the schema h.

Example 3.2. Continuing with example 2.1, consider the rollout Holland-Poli schema h = (β, 6, 3, 1, 4, #).
Then the 3rd rollout in the population pictured in figure 4 starting with the action β fits the schema h while
the rollout r = (β, 6c, 3a, 1c, 3a) does not since 3a = 1a = 2a /∈ 4 (see figure 1).

The notion of schema is useful for stating and proving Geiringer-like results largely thanks to the following
notion of partial order.

Definition 3.4. Given schemata h and g we will write h > g either if h = # and g 6= # or
h = (x1, x2, x3, . . . , xk−1, #) while
g = (x1, x2, x3, . . . , xk−1, yk, yk+1, . . . , yl−1, yl) where yl could be either of the allowable values: a # or a
terminal label f ∈ Σ. However, if yl = # then we require that l > k.

An obvious fact following immediately from definitions 3.3 and 3.4 is the following.

Proposition 3.2. Suppose we are given schemata h and g. Then h ≥ g =⇒ Sh ⊇ Sg.

Remark 3.3. It may be worth pointing out that the converse of proposition 3.2 is false. Continuing with
examples 2.1 and 3.2, consider, for instance, schemata
h = (β, 6, 3, 1, 4, #) and g = (β, 6, 3, 1, 6, #). Evidently Sg ⊃ Sh yet the schemata h and g are incom-
parable in the sense of definition 3.4. Fortunately, it is only proposition 3.2 (and not the converse) that’s
involved in deriving Geiringer-like theorems from theorem 3.1.

3.4 The Statement of Geiringer-like Theorems for the POMDPs

In evolutionary computation Geiringer-like results address the limiting frequency of occurrence of a set of
individuals fitting a certain schema (see [6], [7] and [8]). In this work our theory rests on the finite population
model based on stationary distribution of the Markov chain of all populations potentially encountered in
the process (see theorem 3.1). The “limiting frequency of occurrence” (rigorous definition appear in [3], [7]
and [8]; an informal description is provided prior to the statement of the theorem in the current article)
of a certain subset of individuals determined by a Holland-Poli schema h among all the populations in the
equivalence class [P ] as time increases (i.e. as t → ∞), where P is the initial population of rollouts, will be
expressed solely in terms of the initial population P and schema h. These quantities are defined below.

Definition 3.5. For any action under evaluation α, let α ↓ (P ) = {O |O ∈ C and at least one of the rollouts
in the population P fits the Holland-Poli schema (α, O, #)}. Likewise, for an equivalence class O ∈ C define
a set valued function on the populations of size b, as O ↓ (P ) = {T | ∃ states ~s ∈ O, ~t ∈ T and a rollout r
in the population P such that r = (. . . , ~s, ~t, . . .) } ∪ {f | f ∈ Σ and ∃ a state ~s ∈ O and a rollout r in the

10This notion of a schema is somewhat of a mixture between Holland’s and Poli’s notions.
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population P such that r = (. . . , ~s, f) }. In words, O ↓ (P ) is the collection of all equivalence classes in C
together with the terminal labels which appear after the states from the equivalence class O in at least one of
the rollouts from the population P .

As usual, we illustrate definition 3.5 with an example.

Example 3.3. Continuing with examples 2.1 and 2.4, from figure 2 we see that the states following the
action α are of types 1 and 3 and both of these similarity classes belong to the equivalence class 1 ∪ 3 ∪ 6 so
that, according to definition 3.5, α ↓ (P ) = {1 ∪ 3 ∪ 6}. The only state following the action β is of type 6
and the expansion of 6 is, again, 1∪ 3∪ 6, so that β ↓ (P ) = {1∪ 3∪ 6}. The only state following the action
γ is of type 5 and so γ ↓ (P ) = {5} = {5}. Various states from every equivalence class in C follow states of
types 1, 3 and 6: for instance, 1c follows 3d and 5a follows 3c in the second rollout, while 7a follows 1a in
the first rollout. No terminal label follows the equivalence class {1∪3∪6}. It follows then that 1∪3∪6 ↓= C.
The only similarity class following states from the equivalence class 5 = 5 is 7. Terminal labels f2 and f4

follow states 5a in the second rollout and 5c in the 4th rollout. It follows than that 5 ↓ (P ) = {f2, 7, f4}.
Analogously, 7 ↓ (P ) = {f1, f3, 5}.

Definition 3.6. Given a population P and equivalence classes O ∈ C and T ∈ O ↓ (P ) let Order(O ↓ T , P ) =

= |{((O, a), (T , b)) | the segment ((O, a), (T , b))

appears in one of the rollouts in the population P}|.

Loosely speaking, Order(O ↓ T , P ) is the total number of times the equivalence class T follows the equiv-
alence class O within the population of rollouts P .

Let
Order(O ↓ P ) =

∑
T∈O↓P

Order(O ↓ T , P ) + |Σ ∩ (O ↓ T , (P ))|

denote the total number of states and terminal labels that follow the states from the equivalence class O in
the population P .

Likewise, given a population of rollouts P , an action α under evaluation and an equivalence class T ∈
α ↓ (P ), let

Order(α ↓ T , P ) = |{(α, (T , b)) | the segment (α, (T , b))

appears in one of the rollouts in the population P}|.

Alternatively, Order(α ↓ T , P ) is the number of rollouts in the population P fitting the rollout Holland schema
(α, T , #).

Order(α ↓ (P )) =
∑

T∈O↓P

Order(O ↓ T , P )

denotes the total number of states that follow the action under evaluation α in the population P .

Example 3.4. Continuing with example 3.3, for the population P pictured in figure 2 and the set cover C
displayed via a Venn diagram on figure 1, recall that α ↓ (P ) = β ↓ (P ) = {1 ∪ 3 ∪ 6} and notice that the
total number of states from the only equivalence class 1∪ 3∪ 6 ∈ α ↓ that follows the action α is 2: the state
1a = 2a = 3a in the first rollout and the state 1c following the state 3d in the second rollout; while the total
number of states in the only equivalence class 1∪3∪6 ∈ α ↓ that follows the action β is 1: the state 6c in the 3rd

rollout. Thus Order(α ↓ 1∪3∪6, P ) = Order(α ↓ (P )) = 2 and Order(β ↓ 1∪3∪6, P ) = Order(β ↓ (P )) = 1.
Likewise, Order(γ ↓ 5, P ) = Order(γ ↓ (P )) = 1. States from the equivalence class 1 ∪ 3 ∪ 6 follow their
own kind 4 times in the population P : 1a = 2a = 3a follows 1b in the first rollout, 1c follows 3d and
4b = 3c = 6b follows 1c in the second rollout, while 4a = 3b = 6a follows 6c in the third rollout so that
Order(1 ∪ 3 ∪ 6 ↓ 1 ∪ 3 ∪ 6, P ) = 4. The only state in the equivalence class 5 that follows a state from the
equivalence class 1 ∪ 3 ∪ 6 is 5a in the second rollout, following the state 4b = 3c = 6b ∈ 1 ∪ 3 ∪ 6 so that
Order(1 ∪ 3 ∪ 6 ↓ 5, P ) = 1. There are 2 states from the equivalence class 7, namely 7a and 7b, that follow
the states from the equivalence class 1 ∪ 3 ∪ 6, namely 1a = 2a = 3a and 4a = 3b = 6a respectively, in the
first and the third rollouts of the population P so that Order(1∪3∪6 ↓ 7, P ) = 2. No terminal label follows a
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state from the equivalence class 1∪ 3∪ 6 and we deduce that Order(1∪ 3∪ 6 ↓ (P )) = 4 + 1 + 2 = 7. Recalling
that 5 ↓ (P ) = {f2, 7, f4} and observing that the only state in the equivalence class 7 that follows a state
from the equivalence class 5, namely the state 5b, is 7c, while |Σ ∩ {f2, 7, f4}| = |{f2, f4}| = 2 we deduce
that Order(5 ↓ 7, P ) = 1 and Order(5 ↓ (P )) = 1 + 2 = 3. Likewise, the reader may compute the remaining
numbers Order(7 ↓ 5, P ) = 1 and Order(7 ↓ (P )) = 1 + 2 = 3.

Observe that applying any recombination transformation of the form χO,~s,~t or νO,~s,~t to a population
P of rollouts neither removes any states from the population nor adds any new ones, and hence another
important invariance property of the equivalent populations that opens the door for a lovely application of
Markov inequality in the proof of the main theorem of the current article (see [3]) that follows from the same
considerations is stated below.

Remark 3.4. Given any population Q ∈ [P ], the total number of states in the population Q is the same as
that in the population P . Apparently, as we already mentioned, the the total number of states in a population
is the sum of the heights of all rollouts in that population (see definition 2.4 and 2.5). It follows then, that the
sum of the heights of all rollouts within a population is an invariant quantity under the equivalence relation
in definition 3.2. In other words, if Q ∼ P then the sum of the heights of the rollouts in the population Q is
the same as the sum of the heights of the rollouts in the population P .

There is yet one more important notion, namely that of the “limiting frequency of occurrence” of a
schema as one runs the genetic programming routine with recombination only we need to introduce to state
the Geiringer-like results of the current paper. A rigorous definition in the most general framework appears
in [3], [7] and [8]. The description below is sufficient to understand the statement of finite population
Geiringer-like theorems.

Informal Description of the Limiting Frequency of Occurrence: Given a schema h and a population P
of size m, suppose we run the Markov process {Xn}∞n=0 on the populations in the equivalence class [P ]
of the initial population of rollouts P as in definition 3.1.11 As discussed previously, this corresponds to
“running the genetic programming routine forever” and each recombination models the changes in player’s
strategies due to incomplete information, randomness personality etc. Up to time t a total of m · t individuals
(counting repetitions) have been encountered. Among these a certain number, say h(t), fit the schema h in

the sense of definition 3.3. We now let Φ(P, h, t) = h(t)
m·t to be the proportion of these individuals fitting the

schema h out of the total number of individuals encountered up to time t. Although it may be possible to
derive the formulas for limt→∞Φ(P, h, t) in the most general case when the initial population of rollouts P
is non-homologous12 (in other words when the states representing the same equivalence class may appear
at various “heights” in the same population of rollouts: see definition 2.5), the formulas obtained in this
manner would definitely be significantly more cumbersome and would not be as well suited for algorithm
development13 as the limiting result with respect to “inflating” the initial population P in the sense described
below. Remarkably, the formula for the limiting result in the general non-homologous initial population case
coincides with the one for the homologous populations.

Definition 3.7. Given a population P = {rl(i)i }bi=1 of rollouts in the sense of definition 2.5, where

ri = {(αi, ~si1, ~si2, . . . , ~sil(i)−1, fi)}

and a positive integer m, we first increase the size of the set of states S by a factor of m: formally, we update
the set of states as follows:

S := S ×m = {(~s, i) |~s ∈ S, i ∈ N and 1 ≤ i ≤ m}.

Likewise, we also increase the terminal set of labels Σ by a factor of m so that

Σ := Σ×m = {(f, i) | f ∈ Σ, i ∈ N and 1 ≤ i ≤ m}.
11In fact, such Markov chains don’t even have to be time homogenous: (see theorem 23 and example 24 of [3] for a detailed

exposition.
12such exact formulas have been derived for the case of homologous recombination in the setting of GP: see [8]
13This is an open question, yet it’s practical importance is highly unclear

12



Certainly, the set cover C of the original set S is naturally updated into the corresponding set cover of the
updated set of states as

C := {O |O := {(~s, i) |~s ∈ O, i ∈ N and 1 ≤ i ≤ m}}

Now we let
Pm = {rl(i)i, k }1≤i≤b and 1≤k≤m

where
r
l(i)
i, k = {(αi, (~si1, k), (~si2, k), . . . , (~sil(i)−1, k), (fi, k))}.

We will say that the population Pm is an inflation of the population P by a factor of m.

Essentially, a population Pm consists of m formally distinct copies of each rollout in the population P .
Intuitively speaking, the stochastic information captured in the sample of rollouts comprising the population
Pm (such as the frequency of obtaining a state in a similarity set O after a state in a similarity set T ) is the
same as the one contained within the population P emphasized by the factor of m. In fact, the following
rather important obvious facts make some of this intuition precise:

Proposition 3.3. Given a population P of rollouts and a positive integer m consider the inflation of the
population P by a factor of m, Pm as in definition 3.7. Then the following are true:

α ↓ (Pm) = α ↓ (P ), O ↓ (Pm) = O ↓ (P )

while
Order(O ↓ T , Pm) = m ·Order(O ↓ T , P ),

Numb(α, Pm) = m ·Numb(α, P )

and
Order(O ↓, Pm) = m ·Order(O ↓, P ) (1)

For any population of rollouts Q let Total(Q) denote the total number of states in the population Q which
is, of course, the same thing as the sum of the heights of all rollouts in the population Q. Then, clearly,
Total(Pm) = m · Total(P ). In the special case when P is a homologous population, ∀m ∈ N so is the
population Pm.

Remark 3.5. We will use the same Holland-Poli schema h = (α,O1, O2, . . . , Ok−1, f) to model the corre-
sponding sets of rollouts of the set of states S as of the set S inflated by a factor of m. Of course, Sh = Smh
where Smh is the set of states inflated by a factor of m just as in proposition 3.3 above. Furthermore, it is im-
portant to point out that in the statement of the theorem below we use the sets O from the initial (non-inflated,
or, alternatively, inflated by a factor of 1) population to express the limiting frequency of occurrence.

We are finally ready to state the main result of the current paper.

Theorem 3.4 (The Geiringer-Like Theorem for MCT). Repeat verbatim the assumptions of theorem 3.114.
Let

h = (α, O1, O2, . . . , Ok−1, xk)

where xk ∈ {#} ∪ Σ be a given Holland-Poli schema. For m ∈ N consider the random variable Φ(Pm, h, t)
described in the paragraph just above (alternatively, a rigorous definition in the most general framework
appears in [3], [7] and [8]) with respect to the Markov process Xm

n where m indicates that the initial population
of rollouts is the inflated population Pm as in definition 3.7. Then

lim
m→∞

lim
t→∞

Φ(Pm, h, t) =
Numb(α, P )

b
·
k−1∏
q=1

|Oq|
|Oq|
×

Order(α ↓ O1, P )

Order(α ↓, P )
·
k−1∏
q=1

Order(Oq−1 ↓ Oq, P )

Order(Oq−1 ↓, P )
· LF(P, h) (2)

14This theorem holds based on the same argument under the assumption of a more general theorem 23 of [3]
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where

LF(P, h) =


1 if xk = #

0 if xk = f ∈ Σ and f /∈ Ok−1 ↓ (P )

Fraction if xk = f ∈ Σ and f ∈ Ok−1 ↓Σ (P )

where

Fraction =
1

Order(Ok−1 ↓, P )

(we write “LF” as short for “Last Factor”). Furthermore, in the special case when the initial population
P is homologous (see definition 2.5), one does not need to take the limit as m → ∞ in the sense that
limt→∞Φ(Pm, h, t) is a constant independent of m and its value is given by the right hand side of equation 2.

Remark 3.6. Notice a simplification in the statement of theorem 3.4 here: unlike the case in [3], thanks
to the assumption that the state space S contains no states that are not present in the initial population P ,
the denominators of the multiples in the right hand side of equation 2 are never 0. As mentioned before,
this assumption does not reduce the generality since one can always shrink or enlarge the set of states S and
modify the collection C of similarity sets according to the population of rollouts under consideration.

Example 3.5. Continuing with examples 2.1, 2.4 and 3.4, consider the Holland-Poli rollout schema
h = (β, 4, 7, 5, f2). Since the population P consists of exactly 4 rollouts, b = 4 and, since the action β occurs
only once in the population P , Numb(β, P ) = 1. Then, according to theorem 3.4, we have

lim
m→∞

lim
t→∞

Φ(Pm, h, t) =
1

4
· |4|
|1 ∪ 3 ∪ 6|

· |7|
|7|
|5|
|5|
×

×Order(β ↓ (1 ∪ 3 ∪ 6), P )

Order(β ↓ (P ))
· Order((1 ∪ 3 ∪ 6) ↓ 7, P )

Order((1 ∪ 3 ∪ 6) ↓ (P ))
×

×Order(7 ↓ 5, P )

Order(7 ↓ (P ))
· 1

Order(5 ↓ (P ))
=

after plugging in values from example 3.4
=

=
1

4
· 2

7
· 1 · 1 · 1 · 2

7
· 1

3
· 1

3
=

1

441
.

3.5 Deriving Theorem 3.4 for the MCT algorithm

The crucial step in establishing theorem 3.4 has been the observation that recombination operators can be
defined over arbitrary set cover of the set of state-action pairs in a bijective manner so that the general finite
population Geiringer theorem in [7] (it is also presented and extended for non-homogenous time Markov
processes in [3]) applies. This result is stated in theorem 3.1 of the current article. We now know that the
stationary distribution of the Markov chain over the set of all populations started with an initial population
Pm that’s obtained by inflating a given population P by a factor of m, call it [Pm]F (see subsection 3.2
for the detailed description of the family of recombination transformations F and the associated Markov
chain), is the uniform distribution over [Pm]. At the same time, we may consider the family of recombination
transformations F defined with respect to the set cover C in place of C (the details of how this is done are
presented in subsection 3.2). Since C is a partition of the set of states, we can now apply theorem 40 of [3]
(the particular case of theorem 3.4) to deduce the following. Let [Pm]F denote the set of all populations that
can be obtained from the population Pm after applying the transformations from the family F . Then, if

h̄ = (α, O1, O2, . . . , Ok−1, xk) (3)

is a given Holland-Poli rollout schema, we have

lim
m→∞

lim
t→∞

Φ(Pm, h̄, t) =
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=
Numb(α, P )

b
·
k−1∏
q=1

Order(Oq−1 ↓ Oq, P )

Order(Oq−1 ↓, P )
· LF(P, h) (4)

where

LF(P, h) =


1 if xk = #

0 if xk = f ∈ Σ and f /∈ Ok−1 ↓ (P )

Fraction if xk = f ∈ Σ and f ∈ Ok−1 ↓Σ (P )

and

Fraction =
1

Order(Ok−1 ↓, P )

Although there is a formal difference between the sets of populations [Pm]F and [Pm]F mainly due to distinct
labeling policies, if we extend the notion of a Holland-Poli rollout schema in a natural way to the set of all
possible rollouts from the populations in [Pm]F so that a rollout r fits the schema h̄ introduced in equation 3
if and only if it fits at least one schema of the form

h = (α, T1, T2, . . . , Tk−1, xk)

where Ti = Oi whenever 1 ≤ i ≤ k−1 (In other wards, the set of rollouts defined by the schema h̄ in equation 3
is the union of the sets of rollouts represented by the schemata the extension of the similarity classes of
which are precisely the corresponding equivalence classes appearing in h̄), then we claim that ∀m ∈ N, the
fraction of occurrence of the schema h̄ in the set of populations [Pm]F is the same as it is in the populations
[Pm]F (of course, since the corresponding unique stationary distributions of the two Markov chains are
uniform, it follows that ∀m ∈ N limt→∞ΦF (Pm, h̄, t) = limt→∞ ΦF (Pm, h̄, t)). To see the assertion in the

previous sentence, consider the functions φ1 : [Pm]F → PEquivSchemata
m and φ2 : [Pm]F → P

EquivSchemata

m

where the sets PEquivSchemata
m and P

EquivSchemata

m are obtained from the corresponding sets of populations in
[Pm]F and in [Pm]F respectively by replacing every label of the form (O1, O2, . . . , Ol(~u) ~u) (where, of course,

Oi ∈ {O |O ∈ C and ~u ∈ O}) with the corresponding label O1 (notice that whenever 1 ≤ i ≤ l(~u), we have

Oi = O1 since
⋂l(~u)
i=1 Oi ⊇ {~u} 6= ∅ so that all of the sets Oi are within the same equivalence class of the

transitive closure of the symmetric and reflexive relation induced by the set cover C). The functions φ1 and

φ2 are, essentially, the “projections” onto the sets PEquivSchemata
m and P

EquivSchemata

m : given a population
Q ∈ [Pm]F (or Q ∈ [Pm]F ), simply replace the labels of every rollout with the unique equivalence class label

as described in the preceding sentence, thereby obtaining an element of PEquivSchemata
m (or P

EquivSchemata

m ).
Notice that if we are given an initial population P of rollouts, the states can be labeled either according to
the similarity relation C or C on the set of states. While these populations are formally distinct (in terms of
labeling only: one of them is considered to be an initial population in the set [Pm]F while the other one is
the corresponding initial population in the set [Pm]F ), let’s call them P and P , the corresponding images of
these populations under the maps φ1 and φ2 are obviously identical. In fact, a lot more is true:

Lemma 3.5. ∀m ∈ N we have
PEquivSchemata
m = P

EquivSchemata

m

.

Proof. Since there are more possibilities for recombination when using the family of transformations F rather
than the family of transformations F that only allows immediate swaps of sub-rollouts at the states that are
subsets of a particular similarity set O ⊆ O, it is clear that

PEquivSchemata
m ⊆ PEquivSchemata

m .

The reverse inclusion follows from the definition of the transitive closure of a symmetric and reflexive relation.
In fact, as mentioned in the sentence preceding the statement of lemma 3.5,

PEquivSchemata
m ∩ PEquivSchemata

m ⊇ {φ1(Pm) = φ2(Pm)} 6= ∅.
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Since every population U ∈ [Pm]F is obtained via a finite number of applications of the transformations of
the form ΘO, ~u,~v ∈ F (see definition 3.1), by the principle of induction, it is sufficient to show that if we are

given a population Q ∈ [Pm]F with φ1(Q) = φ2(Q), then ∀ transformation of the form ΘO, ~u,~v ∈ F , ∃ a finite

sequence {ΘOj , ~uj , ~vj}kj=1 of crossover transformations in F such that φ2

(
ΘO, ~u,~v(Q)

)
=

φ1

(
ΘOk, ~uk, ~vk ◦ΘOk−1, ~uk−1, ~vk−1

◦ . . . ◦ΘO1, ~u1, ~v1(Q)
)
. (5)

Since ~u ' ~v (see definition 2.1 and remark 2.1), ∃ a sequence of similarity classes O1, O2, . . . , Ol−1, Ol ∈ O
with O1 = O and a corresponding sequence of states ~u = ~u1, ~u2, . . . , ~ul = ~v with ~u1 ∈ O1, and, whenever
1 < i ≤ l, ~ui ∈ Oi−1 ∩ Oi (evidently, in this case, ∀ i with 1 ≤ i ≤ l, we have Oi = O1 = O). Observing
that the function φ1 (as well as φ2, of course), is invariant under the applications of the single swap crossover
transformations (recall definitions 2.7 and 2.8) we deduce that φ1(Q) = φ1(Q1) where

Q1 = νOl−1, ~ul, ~ul−1
◦ νO3, ~u4, ~u3

◦ . . . ◦ νO2, ~u3, ~u2
(Q).

At the same time, the corresponding states ~u and ~v in the population Q1 are O1 similar (recall the beginning of

section 2) so that φ1 (Θ(O1, ~u, ~v)) (Q1) = φ2

(
ΘO, ~u,~v(Q)

)
thereby producing a desired sequence of crossover

transformations for the equality in 5 to hold and finishing the argument.

Evidently, the number of rollouts fitting the schema h̄ in a population Q ∈ [Pm]F is the same as that
in the population φ1(Q) ∈ PEquivSchemata

m (in fact, this is precisely the way to count them, according to
the way φ1 is defined). Likewise, of course, the same holds for the population Q ∈ [Pm]F : the number
of rollouts fitting the schema h̄ in the population Q is the same as the corresponding number in φ2(Q) ∈
P

EquivSchemata

m = PEquivSchemata
m according to lemma 3.5. Evidently, the total number of states fitting a

given similarity class O ∈ C (as well as these fitting its expansion, O) remains invariant after an application
of any of the possible recombination transformations. Since the functions φ1 and φ2 are both invariant
under the applications of the single-swap crossover transformations of the form νO, ~u, ~u, and, of course, every

permutation is a composition of transpositions, for every population H ∈ PEquivSchemata
m = P

EquivSchemata

m the
size of the pre-image φ−1

1 (H) =
∏
O∈C (m · |O|)! while φ−1

2 (H) =
∏
O∈C

(
m · |O|

)
!, it follows, in particular,

that ∃ k depending only on the inflation factor m, such that ∀H ∈ PEquivSchemata
m = P

EquivSchemata

m we have
φ−1

1 (H) = k · φ−1
2 (H). It is now apparent that the fraction of occurrence of rollouts fitting the schema h̄ out

of the total number of rollouts in [Pm], is the same as that out of the total number of rollouts in [Pm] and

is that out of PEquivSchemata
m = P

EquivSchemata

m . Thus, we have now shown the following intermediate fact:

Lemma 3.6. ∀m ∈ N we have

lim
t→∞

ΦF (Pm, h̄, t) = lim
t→∞

ΦF (Pm, h̄, t)

so that, in particular, the equality in 4 holds.

The remaining part of the argument proceeds in a very similar manner as the proof of theorem 40 in [3].15

Due to space limitations we provide only an outline of the argument reminding the cornerstones and the
mathematical tools developed in [7] and largely enhanced in [3]. The first important step is the following fact
(lemma 48 of [3]) that allows us to derive Geiringer-like results in terms of the fraction of populations where
a rollout fitting a given schema h occurs in a specified position (say, the first individual) in the population
out of the total number of populations in [Pm]F .

Lemma 3.7. Given a subset S ⊆ Ω of rollouts and an initial population of rollouts, P , under the assumptions
of theorem 3.4, it is true that

lim
t→∞

Φ(S, Pm, t) =
|V(Pm, S)|
|[Pm]F |

where the set V(Pm, S) is the set of populations in [Pm]F the first rollout of which, call it r1 ∈ S.

15Certainly, lemma 3.6 can be established by nearly repeating the derivation of theorem 40 in [3], yet the argument presented
in the current paper is shorter.
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In view of lemma 3.7, our goal is to estimate the ratio of the form |V(Pm, h)|
|[Pm]F | and, afterwards, to compute

the limit as m→∞. We accomplish this task step by step: combining lemmas 3.6 and 3.7 we deduce that

lim
m→∞

|V(Pm, h̄)|
|[Pm]F |

=

=
Numb(α, P )

b
·
k−1∏
q=1

Order(Oq−1 ↓ Oq, P )

Order(Oq−1 ↓, P )
· LF(P, h).

Certainly we can write
h̄ = h0 ⊇ h1 ⊇ . . . ⊇ hk−1 = h

where
hi = (α, O1, O2, . . . , Oi−1, Oi, Oi+1, Oi+2, . . . , Ok−1, xk)

is the Holland-Poli schema with respect to the set cover C ∪ C. Now we can write

|V(Pm, h)|
|[Pm]F |

=
|V(Pm, hk−1)|
|V(Pm, hk−2)|

· |V(Pm, hk−2)|
|V(Pm, hk−3)|

· . . . · |V(Pm, h0)|
|[Pm]F |

as a “telescoping” product so that

lim
m→∞

|V(Pm, h)|
|[Pm]F |

=

=

(
k−2∏
i=1

lim
m→∞

|V(Pm, hk−i)|
|V(Pm, hk−i+1)|

)
· lim
m→∞

|V(Pm, h̄)|
|[Pm]F |

=

=

(
k−2∏
i=1

lim
m→∞

|V(Pm, hk−i)|
|V(Pm, hk−i+1)|

)
×

×Numb(α, P )

b
·
k−1∏
q=1

Order(Oq−1 ↓ Oq, P )

Order(Oq−1 ↓, P )
· LF(P, h). (6)

and, thanks to equation 6, all that remains to establish theorem 3.4 at this point is to show that ∀ i ∈
{1, 2, . . . , k − 1} we have

lim
m→∞

|V(Pm, hi)|
|V(Pm, hi−1)|

=
|Oi|
|Oi−1|

. (7)

The main tools involved in deriving equation 7, just as in establishing theorem 40 in [3], are the Markov
inequality and the lumping quotients of Markov chains technique in the same way as in [3]. The lumping
quotient method modified for specific applications such as in the current paper, is described in details in
subsection 5.3 of [3]. Rather than estimating the ratio

Rmi =
|V(Pm, hi)|
|V(Pm, hi−1)|

(8)

directly, it is more convenient to estimate the closely related ratio

R̃mi =
V(Pm, hi)

V(Pm, hi−1 \ hi)
. (9)

Indeed, an elementary algebraic manipulation shows that

Rmi =
1

1 + 1

R̃m
i

. (10)

The way to estimate the ratio in equation 9, is to construct a Markov chain (possibly non-irreducible) having
a symmetric Markov transition matrix, so that the uniform probability distribution is one of its stationary
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distributions, call it πim on V(Pm, hi−1) and to express the ratio R̃mi in equation 9 in terms of the ratio of
the corresponding probabilities under the uniform probability distribution πim:

R̃mi =
πim(V(Pm, hi))

πim(V(Pm, hi−1 \ hi))
.

We then make use of lemma 55 in subsection 5.3 of [3] to estimate the ratio R̃mi in terms of the ratios of the
corresponding generalized transition probabilities between the subsets

(1− δ)λ1

(1− δ)κ2 + δ
≤ R̃mi =

πim (V(Pm, hi))

πim (V(Pm, hi−1 \ hi))
≤

(1− δ)κ1 + δ

(1− δ)λ2
(11)

where λ1, λ2, κ1 and κ2 are the corresponding bounds on the appropriate generalized transition probabilities
(see subsection 5.3 of [3] for details), while 0 < δ � 1 is an arbitrary given small constant and the inequality
11 holds ∀m > Mδ. For the sake of completeness, lemma 55 of [3] is stated below.

Lemma 3.8. Let {px→y}x, y∈X denote a Markov transition matrix over a finite state space X . Suppose π is
a stationary distribution of this Markov chain (i.e. a fixed point of the associated Markov transition matrix)
Suppose A and B ⊆ X is a complementary pair of subsets (i.e. A∩B = ∅ and A∪B = X ). Suppose further
that U ⊆ X is such that

π(U ∩A)

π(A)
< δ < 1 and

π(U ∩B)

π(B)
< δ < 1.

Assume now that we find constants λ1, λ2, κ1 and κ2 such that ∀ b ∈ U c ∩ B we have λ1 ≤ pb→A ≤ κ1 and
∀ a ∈ U c ∩ A we have λ2 ≤ pa→B ≤ κ2. (given a state x ∈ X and a subset Y ∈ X , px→y =

∑
y∈Y px→y).

Then we have
(1− δ)λ1

(1− δ)κ2 + δ
≤ π(A)

π(B)
≤ (1− δ)κ1 + δ

(1− δ)λ2

Since the argument proceeds along exactly the same steps and ideas as the proof of theorem 40 presented
in section 5 of [3], we provide only a very rough and brief outline within a few sentences. The Markov chain
on the state space V(Pm, hi−1) is constructed as follows: given a population Q ∈ V(Pm, hi−1), the first
rollout of P fits the schema hi−1 (so that, in particular, the ith state of this rollout, call it ~s ∈ Oi). Let
Mobile(Q, i−1) denote the set of all states in Oi that do not appear within the first rollout in the population
Q. Now select a state ~t ∈ Oi uniformly at random and apply the one point crossover transformation χOi,~s,~t

to the population Q, thereby obtaining a new population χOi,~s,~t
(Q) ∈ V(Pm, hi−1) that is different from Q if

and only if ~s ∈ Mobile(Q, i−1). Due to the fact that recombination is non-homologous (i.e. it may take place
at distinct hight of various rollouts) the height of the first rollout may be arbitrarily large and, at first glance,
it seems that the set Mobile(Q, i − 1) may vary in size greatly from population to population, nonetheless,
we make a crucial observation that as the inflation factor m → ∞, the sizes of each of the similarity sets
O ∈ C and O ∈ C increase linearly by the factor of m in size, while the average height of the first rollout in
a population stays constant and is the same as the average height of the population P (this is due to the
fact that all recombination transformations preserve the total number of states within the population, and in
particular, the average height of the population, and, at the same time, inflating a population by any factor
m ∈ N also preserves the average height). A lovely application of the classical Markov inequality now shows
that as the inflation factor m→∞, the probability that the first rollout contains a fixed (δ-size) fraction of
states from any given similarity set O ∈ C (and, even more so, O ∈ C) goes to 0 (all of the technical details
are entirely analogous to the ones presented in section 5 of [3]). Now let A = V(Pm, hi), B = V(Pm, hi−1\hi)
and, for a given δ > 0 select M ∈ N large enough so that ∀m > M

πim

(
V(Pm, hi) ∩ U δ·const(i)m

)
πim(V(Pm, hi−1))

< δ (12)
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and

πim

(
V(Pm, hi−1 \ hi) ∩ U δ·const(i)m

)
πim(V(Pm, hi−1))

< δ (13)

where U
δ·const(i)
m denotes the set of all populations in [Pm]F with the property that the height of the first

rollout in such populations is at least M = E(H1)
(const(i)·δ)2 and H1 denotes the random variable measuring the

height of the first rollout in a population selected from the set [Pm]F uniformly at random, while const(i) > 0
depends only on the schema h and the initial population P of rollouts.16 It is easy to see from the construction
of this auxiliary Markov chain, that the transition matrix {pQ→R}Q and R∈V(Pm, hi−1) is symmetric so that
the uniform probability distribution πim is a stationary distribution of this Markov chain, and, furthermore,

∀ population Q ∈ V(Pm, hi−1 \ hi) \ Uδ·const(i)m we have

λ1 =
|Oi| − δ
|Oi|

=

=
m · |Oi| −m · δ

m · |Oi|
≤ m · |Oi| −Mobile(Q, i− 1)

m · |Oi|
=

pQ→V(Pm, hi) ≤
m · |Oi|
m · |Oi|

=
|Oi|
|Oi|

= κ1 (14)

and, likewise, ∀ population Q ∈ V(Pm, hi) \ Uδ·const(i)m we have

λ2 =
|Oi| − |Oi| − δ

|Oi|
=

=
m · (|Oi| − |Oi|)−m · δ

m · |Oi|
=
m · (|Oi \Oi|)−m · δ

m · |Oi|
≤

≤ m · (|Oi| − |Oi|)−Mobile(Q, i− 1)

m · |Oi|
= pQ→V(Pm, hi) ≤

≤ m · (|Oi| − |Oi|)
m · |Oi|

=
|Oi| − |Oi|
|Oi|

= κ2 (15)

so that lemma 3.8 immediately yields the bounds

|Oi|−δ
|Oi|

(1− δ)

(1− δ) |Oi|−|Oi|
|Oi|

+ δ
≤ πim (V(Pm, hi))

πim (V(Pm, hi−1 \ hi))
≤

(1− δ) |Oi|
|Oi|

+ δ

(1− δ) |Oi|−|Oi|−δ
|Oi|

(16)

Given any δ > 0, the “sandwich” bounds in the inequality 16 hold for all sufficiently large m depending on
the δ so that taking the limit of both sides as δ → 0 finally tells us that

lim
m→∞

|V(Pm, hi)|
|V(Pm, hi−1 \ hi)|

=

= lim
m→∞

πim (V(Pm, hi))

πim (V(Pm, hi−1 \ hi))
=

|Oi|
|Oi| − |Oi|

(17)

and equation 7 follows from equation 17 via equation 10 thereby finishing the proof of theorem 3.4.

16We invite the reader to study section 5 of [3] to understand how the constants const(i) > 0 are selected and why the
inequalities 12 and 13 hold.
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4 Conclusions

In the current paper we have significantly generalized a novel version of a finite population Geiringer-like
theorem with non-homologous recombination established in [3] by allowing similarity relations on the set of
state-action pairs to be modeled in terms of arbitrary set covers of the state-action space (not necessarily
partitions induced by equivalence relations). This raises questions regarding further potential applications of
Geiringer-like theorems for decision making to the design, of novel algorithms for pay-off-based clustering.
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