
UC Davis
UC Davis Previously Published Works

Title
A Proxy View of Quality of Domain Name Service, Poisoning Attacks and Survival Strategies

Permalink
https://escholarship.org/uc/item/2314z6xp

Journal
ACM Transactions on Internet Technology, 12(3)

ISSN
1533-5399

Authors
Yuan, Lihua
Chen, Chao-Chih
Mohapatra, Prasant
et al.

Publication Date
2013-05-01

DOI
10.1145/2461321.2461324
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2314z6xp
https://escholarship.org/uc/item/2314z6xp#author
https://escholarship.org
http://www.cdlib.org/


�

�

�

�

�

�

�

�

9

A Proxy View of Quality of Domain Name Service, Poisoning Attacks
and Survival Strategies
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The Domain Name System (DNS) provides a critical service for the Internet – mapping of user-friendly
domain names to their respective IP addresses. Yet, there is no standard set of metrics quantifying the
Quality of Domain Name Service (QoDNS), let alone a thorough evaluation of it. This article attempts to fill
this gap from the perspective of a DNS proxy/cache, which is the bridge between clients and authoritative
servers. We present an analytical model of DNS proxy operations that offers insights into the design trade-
offs of DNS infrastructure and the selection of critical DNS parameters.

Due to the critical role DNS proxies play in QoDNS, they are the focus of attacks including cache poisoning
attack. We extend the analytical model to study DNS cache poisoning attacks and their impact on QoDNS
metrics. This analytical study prompts us to present Domain Name Cross-Referencing (DoX), a peer-to-peer
systems for DNS proxies to cooperatively defend cache poisoning attacks. Based on QoDNS, we compare
DoX with the cryptography-based DNS Security Extension (DNSSEC) to understand their relative merits.
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1. INTRODUCTION

The Domain Name System (DNS) is one of the most critical components in the
Internet infrastructure. Almost all applications, for example, HTTP, email and FTP,
rely on DNS to resolve human-friendly domain names to the corresponding machine-
friendly IP address prior to establishing connections. DNS is also tasked to distribute
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Fig. 1. DNS architecture.

information about mail exchange, serve as public-key infrastructure, and provide
dynamic load distribution. Therefore, the notion of quality of Domain Name Service
(QoDNS) is important to a large range of users and applications on the Internet.
However, there is currently no standard set of metrics quantifying QoDNS, let alone
a thorough evaluation of it.

In this article, we define a comprehensive set of QoDNS metrics, which includes
accuracy, availability, latency and overhead (Section 2). Accuracy and availability refer
to the ability to supply up to date and correct DNS records to the client so that it
can connect to and only to the desired site. The latency incurred by DNS lookup can
contribute a signification portion of the overall latency observed by applications in
some cases [Hughes and Touch 1999]. The messaging overhead of DNS lookups at
proxy and higher level authoritative servers might affect the scalability of DNS servers
and impact Internet infrastructure substantially.

Analyzing and studying QoDNS is however a challenging task because of the com-
plex architecture of DNS. As illustrated in Figure 1, DNS is a distributed database
served by a large number of authoritative servers. These servers are organized in a
hierarchical fashion like an inverted tree. Each server provides the records of its own
domain and referral information to servers at next lower level, which holds informa-
tion of the subdomain. Such a hierarchical organization enables any client to start
from the root servers, whose location is fixed and known to everyone, and iteratively
follow the referral to find the corresponding record of any domain name. For scalability
and performance reasons, DNS uses proxies (also called caching-only name servers) to
relay queries and responses between clients and servers. DNS proxies cache replicas
of records so that subsequent queries for the same record can be answered locally. The
hierarchical organization of DNS also make it possible for proxies to improve lookup
performance by starting an iterative lookup from the best-matching record (BMR) in-
stead of the root server. Being the bridge between clients and servers, proxies and their
caches are key components in determining the QoDNS. To this end, this article propose
a proxy-centric view of DNS.

The fundamental blocks in DNS, DNS records, are typically small in size and the
expiration of Time-To-Live (TTL) timer is the primary mechanism flushing records.
Second, DNS proxies must explicitly consider the hierarchy of domain names, the
delegation between a domain and its subdomains, and the best-matching algorithm
proxies used to search its cache. In Section 3, we propose a hierarchical model of
DNS cache, which captures the essential operation of DNS proxies. Using this model,
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administrators can study the impact of various parameters (such as TTL) on QoDNS,
determine quantitatively the trade-offs associated with the parameters. One can also
use our model to study schemes such as dynamic DNS. Such QoDNS-aware study
enables administrators to make informed decisions to deploy or tune the DNS to
achieve better performance.

In addition to the system administrators, various attacks can affect QoDNS in many
ways as well. Among them, DNS cache poisoning1 attack [Bellovin 1995], billed as “the
Achilles’ heel of the Internet” by some [Evers 2005], has raised the greatest concern
because of its significant impact on accuracy. DNS cache poisoning refers to the cases
where the cache of a proxy server is injected with incorrect records. Consequently,
clients get incorrect, and probably malicious, replies that will lead connection attempts
to the false IP addresses. This is often used as a foothold for escalating to more harm-
ful sub-attacks, for example, Man-In-The-Middle attacks [Green 2005] or large-scale
phishing attacks known as pharming [Netcraft, Ltd. 2005]. Cache poisoning attack to
DNS is very different from such attacks to Web cache because poison can, as witnessed
in the incident of March 2005 [Haugsness 2005], propagate through its hierarchical
structure and affects far more records than those original poisoned. In Section 5, we
extend our model to characterize poisoning attacks to DNS cache. Our extended model
offers a sound explanation to the poison propagation mechanism and a tool to analyze
the impact of poison attack on QoDNS.

There are several proposed defense mechanisms to protect DNS from cache poison-
ing attacks. In addition to piecemeal patches for specific vulnerabilities, past work
focused on applying cryptography techniques to authenticate DNS records. Among
them, DNS Security Extensions (DNSSEC) [Arends et al. 2005], which is based on the
public-key infrastructure (PKI), has attracted most efforts. Although DNSSEC was
proposed 15 years ago, its current deployment is very limited [Liu 2007]. We believe
the following factors have contributed to the stalemate of DNSSEC. First, an effective
DNSSEC implementation requires a global cooperation to form the chain of trust, and
past experience have shown that deployment requiring global cooperation at different
level is difficult. Second, the success of DNSSEC requires modifications to the DNS
servers at every level, the availability of security-aware resolver for every operating
system, and complex key management. Considering the fact that many DNS servers
are currently running with known vulnerabilities, one probably cannot expect the
complete deployment of DNSSEC in a short period of time.

In Section 6, we propose a proxy-centric solution to DNS cache poisoning called do-
main name cross-referencing (DoX). Our main observation is that DNS records are
expected to be consistent at different proxies (except for a few cases that we will dis-
cuss in Section 6). However, cache poisoning is a local attack which affects individual
proxies. It is difficult for attackers to compromise several DNS proxies simultaneously
with the same false data. Therefore, DoX propose to groups peers together to compare
their DNS results and detect inconsistencies as a waring sign of poisoning attacks. In
Section 7, we compare DNSSEC and DoX based on QoDNS to assist administrators in
choosing an ideal solution.

The contributions of this article are the following.

— We define a set of metrics to comprehensively evaluate and compare QoDNS
(Section 2).

— We present an analytical model of DNS proxies for quantitative evaluation
of QoDNS (Section 3). Our model can be used to study the trade-offs of key

1Also referred to as name spoofing, hijacking, or cache pollution.
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Table I. Summary of Symbols

Symb. Description Symb. Description

n A DNS node∗ T(n) TTL value of n
ni ith child of n Ai(n) i-level ancestor of n
ni,j jth child of ni H Height of the DNS tree†

s(n) State of n X(n) Query arrival process of n
h(n) Level of n Y(n) Query miss process of n
W(n) Weight of n M(n) Modification process of n
Bi(n) A query to n is best-matched to Ai(n)

∗DNS node in the context of this paper denotes domains in the
DNS system.
†Height of the delegation tree. Note that we assumed a simplified
model where no delegation across TLDs occurs.

configuration parameters like TTL or the impact of the new scheme like Dynamic
DNS (Section 4).

— We extend our model to study cache poisoning attack (Section 5) and propose DoX, a
peer-to-peer solution that requires no modification to the current DNS architecture
(Section 6). We further compare DNSSEC and DoX in terms of QoDNS (Section 7)
so that administrators can decide which solution might be most appropriate in their
specific situations.

2. QODNS METRICS

Table I presents a summary of symbols used in the following part of this article.
This section presents a formal definition of QoDNS based on these key user-

observable aspects: accuracy, availability, latency and overhead.

2.1. Accuracy of DNS Resolutions

A DNS client may receive inaccurate mappings for two main reasons: obsolete and poi-
soned (or tampered) records. DNS uses a “weak consistency” model wherein a cached
resource record is not flushed from the proxy cache until the TTL expires, even if its
master copy at the authoritative service is updated in the mean time. As a result,
clients may receive obsolete (and incorrect) records. Since DNS records are typically
small, storage limitation is normally not an issue (unlike web caches). Consequently,
TTLs are generally fairly large and capacity-triggered eviction of the records are rare.
This situation tends to aggravate the problem of obsolete records when such problem
arises, leading to failed communication attempts.

As we will see in Section 5, poison records could be injected into DNS cache by
exploiting software or protocol vulnerabilities. The poisoned records could use a large
TTL to increase its lifetime. Furthermore, queries from lower levels of the hierarchy
will propagate them further.

While both poison records and obsolete records are inaccurate, we must differentiate
them since their causes and consequence are quite different. In particular, poison
records are more dangerous since they can be exploited for further, more serious
attacks.

2.2. Availability of DNS

DNS is a mission-critical system and it is important to ensure the availability of its
data to any querying client, even under failures or malicious attacks. The distributed
nature of DNS coupled with caching by numerous local proxies help make DNS service
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quite robust. For example, the data replication provided by DNS proxies helped the
DNS infrastructure survive the massive scale Distributed Denial-of-Service (DoS)
attack in October 2002 [Naraine 2002]. However, caching can also negatively affect
the availability. In particular, if the desired record is uncached, and the BMR in
cache is obsolete, we have a referral failure and the DNS resolution cannot continue
unless the DNS client is configured with other DNS proxies that can return accurate
information.

It is important to note that if a record (that provides the name to IP mapping to the
client) is obsolete, it will cause an application failure when the client attempts to use
the IP address. This situation is covered by the accuracy aspect (see Section 2.1), and
is not an availability issue for the DNS. In both cases, the TTL expiry and subsequent
retrieval of updated record from AS (authoritative sever) will fix the problem without
any administrative intervention.

Although overall availability of the DNS service (defined as the fraction of time the
service remains responsive) is a crucial parameter, we only concentrate on the obso-
lete referral aspect of it in this article. The reason for this choice is that traditional
availability enhancement techniques (e.g., hardware redundancy, hot swap, data repli-
cation, etc.) are well studied in the literature.

2.3. DNS Lookup Latency and Overhead

A DNS lookup precedes almost every connection attempt. Consequently, the latency
incurred by DNS lookup will affect the overall user-experienced latency. Early mea-
surement results show that DNS lookup latency forms a significant part of Web latency
[Hughes and Touch 1999]. There are two components to overall latency.

(1) Network Latency. This comes into play primarily on misses from proxy or the DNS
server hierarchy. The client-to-proxy query/response latency is usually on a local
LAN and thus not significant. The iterative queries through the DNS hierarchy
could add substantial latency.

(2) Processing Latency. This includes all aspects of local processing at a server. This
latency is typically small but could become significant in special cases, for example,
when using public key cryptography (e.g., DNSSEC) or as a result of substantial
imbalance in load distribution. We ignore processing latency in our model.

Closely related to latency is the notion of overhead, which too can be described in
terms of network and processing components. In particular, the network overhead
refers to the network traffic resulting from a given scheme. The WAN traffic is of
primary interest here and results from cache misses at various levels of the DNS hier-
archy. The computational overhead can be measured using some suitable CPU related
metric (e.g., instructions/sec, cycles/sec, etc.). As with latency, computational overhead
is likely to be relevant only in specific circumstances.

2.4. Definition of QoDNS

Based on the previous discussion, we define QoDNS as a quintuplet < AO,AP, VO,
LN ,OM > where the following holds.

AO is the probability that the service provides an obsolete resource record.
AP is the probability that the service provides a poison resource record. If the proxy

and its ancestors are not under malicious attack, this metric is always zero.
VO is the overall unavailability of DNS service under the assumption of perfect node

level availability (i.e., excluding the impact of node failures).
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Fig. 2. State transition diagram.

LN is the overall query-response latency for DNS service. Except in cases where com-
putation latency may be substantial. This metric is dominated by the number of
round-trip communications over the Internet.

OM is the network overhead of DNS service, measured as average number of packets
send and received per query. We make the simplified assumption that queries and
responses can fit into one packet of the same size.

3. ANALYSIS OF STANDARD DNS

This section presents an analytical model for DNS proxies and their caches under
normal operation.

3.1. Modeling of a Single Record

Figure 2 presents a simple state machine for various states of a record. Initially, the
record is in uncached state indicated as U. The arrival of a query causes the record
to be cached (indicate by state C). The caching holds for the TTL duration and then
reverts to U state. If the authoritative server (AS) of the record updates it while the
record is in cached state, the cached copy becomes obsolete (O). These three states is
enough to describe a single record if the proxy is operating normally.

3.2. Recursive Model for Query Arrivals

A name lookup through a proxy server essentially consists of two steps: best-matching
and referral-following. We model the best-matching algorithm as queries climbing up
the DNS tree. When a query on node n results in a cache miss, the proxy needs to
obtain the NS record of n from the parent, A1(n), to contact the AS. This is considered
as an induced query. An induced query to A1(n), if it results again in a cache miss,
induces a query to its own parent, A2(n). This process iterates until a hit to a cached
ancestor node, that is, the BMR, happens. If the BMR is current, the referral-following
algorithm climbs back down level-by-level by querying the servers listed in the NS
records, until it reaches n. Records of nodes on the path from the BMR to n will be
cached during this process.

DNS queries typically arrive for leaf nodes and queries to non-leaf nodes are dom-
inated by induced queries. While query arrival characteristics for leaf nodes are easy
to measure at proxy servers, query characteristics for non-leaf nodes depend on the
child nodes, their TTL values, and their query characteristics. Therefore, we propose
a recursive model to derive the query arrival characteristics of non-leaf nodes in the
DNS hierarchy based on information readily available, that is, TTL values and arrival
characteristics for leaf nodes.

Figure 3 shows how a query to node n results in a cache miss if n is not cached. This
will cause proxies to hold the new cached information for TTL and the next miss hap-
pens for the first query arriving after the TTL expires. Therefore, the characteristics
of the cache miss process, Y(n), can be determined if the query arrival process, X(n),
and the TTL value is known. A cache miss at a node leads to an induced query at its
parent node. For a non-leaf node n, X(n) is the superposition of the cache miss process
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Fig. 3. Bottom-up recursion model.

Fig. 4. Relationship between arrival and miss process.

of all its child nodes. Following such a model, we can recursively determine the query
arrival process of every non-leaf node from bottom-up.

Let N denote the maximum number of inter-arrival times that can fit with the period
T. Let Xj denote the sum of j inter-arrival time of X (Xj = ∑j

i=1 Xi). As depicted in
Figure 4, the inter-miss time Y is given by:

fY(y) =
∞∑

j=1

P{N = j}fXj(y) . (1)

By definition, P{N < j} = P{Xj > T}. Therefore, P{N = j} = P{Xj+1 > T} − P{Xj > T}.
Thus, for a given value of T, P{N = j} can be computed recursively up to a certain
limit, and then approximated analytically via Gaussian distribution. Furthermore, the
Laplace transform of fY(y), which is denoted as φY(s), can be determined as in Eq. (2).
From here, estimating the first few moments of Y is straightforward though tedious.

φY(s) =
∞∑

j=1

P{N = j} [φX(s)]j . (2)

Let XR denote the remaining time before the next arrival after TTL expiration (i.e.,
the residual time). Then Y = T + XR. fY(y) can be expressed as fY(y) = fXR(y − T),
which is the TTL-shifted version of fXR . If the arrival process is Poisson, both X and
XR have the same exponential distribution and determining the distribution of Y is
straightforward.

For a nonleaf node n, the arrival process is not known directly. Assume a nonleaf
node n with K children, and denote ni the ith child of n (1 ≤ i ≤ K). Let X(ni) denote
the time to next query to n given that the last query came from its ith child. Let Y(ni)
be the miss process from the ith child and YR(ni) be the corresponding residual time.
Clearly, X(ni) is the minimum of inter-query time of child i and the residual times (YR)
of all other nodes, that is,

P{X(ni) > y} = P{Y(ni) > y}
K∏

j=1
j �=i

P{YR(nj) > y} . (3)
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Based on Eq. (3), and considering that there are K children, the collective arrival pro-
cess to the parent node n, X(n), has the following inter-arrival time distribution:

P{X(n) > y} =
K∑

i=1

P{Y(ni) > y} · λi

λ

K∏

j=1
j �=i

P{YR(nj) > y},

where λi = 1
E[ Y(ni)]

and λ = ∑K
i=1 λi. To express this in transform space, products

turn into convolutions,

1 − φX(n)(s) = (1 − φYk(s)) ⊗
K⊗

j=1
n�=k

1 − φYR(nj)(s)

s
. (4)

3.3. Computational Issues and Estimation

The calculations proposed previously are cumbersome since they require actual distri-
butions instead of just the moments. Furthermore, operating in the transform space
is ruled out because of the required convolutions. Finally, it is not possible to do re-
cursion over multiple levels unless X(A1(n)) has the same form as X(n). Although one
could evaluate all equations numerically, a symbolic computation is more efficient and
insightful.

If X is a Poisson process with average rate of λ, then XR is the residual time with
the same distribution as X because of the memoryless property of Poisson process. The
density function of Y is the TTL-shifted version of fX , as in Eq. (5) in which u() is the
step function.

fY(y) = fX(y − T) = u(y − T) λe−λ (y−T) . (5)

Note that this query miss process at one node has the same characteristics as the
output of an M/D/1/1 queue. If the parent node has a large number of child nodes, the
collective arrival process can be estimated by a Poisson process with a mean equals to
the sum of all arrivals (Eq. (6)). This is based on the similar observation as Jackson’s
Theorem [Bertsekas and Gallager 1992].

λX(n) =
K∑

i=1

1

T(ni) + 1
λX(ni)

. (6)

3.4. Stationary State Properties

In the earlier parts of this section, we presented a method to derive the query arrival
process (X(n)) of any node n in the DNS hierarchy given the query arrival processes
of leaf nodes. Coupled with additional knowledge about the TTL value T(n) and the
modification process2 M(n), one can find the stationary state property of node n, i.e.,
the probability of a node being observed to be cached, obsolete, or uncached.

We study the stationary state distribution of a node based on the observation on any
given store-and-flush cycle, as depicted in Figure 5. The expected length of a store-and-
flush cycle is T + E[ XR], where XR is the remaining time of the arrival of next query
when the TTL expires. The probabilities of finding node n in states U, C, or O can be
derived rather easily by assuming that the modification process M, and consequently

2Modification process is a probabilistic distribution on how often the records are modified.
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Fig. 5. Stationary state properties.

the residual time of the modification MR, is independent of the query arrival process
(details omitted due to space limitation). The results are:

P{s(n) = U} = E[ XR]
T + E[ XR]

, (7)

P{s(n) = C} = E[ MR] · P{MR ≤ T}
T + E[ XR]

, (8)

P{s(n) = O}=1 − P{s(n) = U} − P{s(n) = C} . (9)

The main difficulty in these equations is the estimation of XR, which is not the nor-
mal residual life, and can be quite difficult to compute. For Poisson arrivals, XR, of
course, has the same distribution as the inter-arrival time, and the equations can be
evaluated easily.

3.5. Evaluation of QoDNS Metrics

If a proxy server is not under attack, AP is always zero. Therefore, we defer the discus-
sion on AP to Section 5.

Before we proceed to determine the QoDNS metrics, it is important to note that
all of the QoDNS metrics are closely related to the state of the best-matching record.
A query to n will be best-matched to its i-th level higher ancestor if itself and all
its ancestors before Ai(n) are uncached. Therefore, we define Bi(n) as the event that
a query to node n is best matched to its i-level higher ancestor. The probability of
observing such event is:

P{Bi(n)} = P{s(Ai(n)) �= U} ·
i−1∏

j=0

P{s(Aj(n)) = U} . (10)

The overall probability of lookup results can be determined by a weighted-average of
the previous equations among all leaf nodes. We define the weight of a leaf node W(n)
as the ratio of queries coming to this node:

W(n) = λX(n)∑
i∈leaf nodes λX(i)

. (11)

3.5.1. Accuracy. If a queried node is present in cache but is obsolete, an obsolete record
will be served to client. Therefore, the AO metric can be determined as the weighted
average of the probability of leaf nodes’ record being obsolete:

AO =
∑

n∈leaf

W(n) · P{s(n) = O} . (12)

3.5.2. Unavailability. If the best-matching record (BMR) is obsolete, the proxy will not
be able to follow the delegation to retrieve the queried node, resulting in a lookup fail-
ure. Hence, VO can be evaluated as the weighted average of the probability of hitting
an obsolete BMR:

VO =
∑

n∈leaf

W(n) ·
h∑

i=1

P{s(Ai(n)) = O | Bi(n)} . (13)
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Fig. 6. Validation of stationary state properties. Line plots are derived from analysis; point plots with range
are simulation results.

3.5.3. Overhead. If the BMR contains a current record, the overhead incurred by the
query is proportional to the number of external lookups generated. However, if the
BMR is obsolete, the query to the remote server will timeout and the proxy server
will retransmit for Ret times. The actual number retransmits depends on the imple-
mentation. We assume Ret = 3, which is the default of BIND. Equation 14 presents
the average overhead incurred by queries to n. The weighted average of OM(n) is the
average per-query overhead observed by the proxy:

OM(n) =
h∑

i=1

Ret · P{s(Ai(n)) = O | Bi(n)} ,

+
h∑

i=1

i · P{s(Ai(n)) = C | Bi(n)} , (14)

OM =
∑

n∈leaf

W(n) · OM(n) . (15)

3.5.4. Latency. The latency incurred by successful lookups (lookup failures have been
accounted in VO) is proportional to the number of external servers the proxy needs to
contact to fulfill the query. Therefore,

LN =
∑

n∈leaf

W(n) · i · RTT · P{s(Ai(n)) = C | Bi(n)} . (16)

3.6. Validation of Analytical Results

In this section, we validate our analytic results obtained previously against simula-
tions that faithfully mimic DNS lookup mechanisms.

One might note that the stationary state probabilities in Eqs. (7)–(9) are funda-
mental to our analysis. It is important to see how these probabilities compare against
simulations, which emulate the actual DNS tree behavior with random query arrivals
following a Poisson process. Figure 6 shows that the analysis (line plot) and simu-
lation results (point plot with ranges) agree well in all cases. The x-axis plots the
query arrival rate and y-axis shows the probabilities of three events: cached, uncached,
and obsolete. The midpoints and ranges shown are for 100 simulation runs in each
case.
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Fig. 7. Validation of QoDNS metrics. Line plots are derived from analysis; point plots with range are simu-
lation results.

Fig. 8. Validation on gamma distribution. Line plots are derived from analysis; point plots with range are
simulation results.

Figure 7 compares the QoDNS metrics obtained from the analytical models and sim-
ulations as a function of arrival rate. The continuous lines are generated by the ana-
lytical models and the points show the average values from the simulations. Figure 7
verifies that the estimated QoDNS values using Eqs. (10)–(16) (assuming steady-state)
provide good estimate for the values observed from the actual simulations.

These results are based on Poisson arrival process. In reality, the arrival process may
not be quite Poisson, but the analysis of this case becomes quite challenging. On the
other hand, the superposition of a large number of non-Poisson processes should ap-
proach Poisson. This calls for a robustness check of the analytic results based on Pois-
son assumptions. Figure 8 plots analytical results based on Poisson arrivals against
simulation results with non-Poisson arrivals as a function of arrival rate. We chose
the simulation inter-arrival time as gamma distributed with shape parameter (α) of
0.909. Since errors are likely to be larger when coefficient of variation (CVAR) exceeds
1, we chose α < 1 (CVAR =1/

√
α for gamma distribution). Figure 8 shows that the

agreement remains very good except when λ (arrival rate) becomes large. This is to
be expected – if the number of superimposed processes is held constant, an increase
in arrival rates of individual processes will move the superimposed process away from
the Poisson process.

4. STUDY ON STANDARD DNS

We construct the DNS hierarchy based on the following structures: D(H, N), a de-
terministic DNS tree of H-level with every nonleaf node has exactly N children;
R(H, A, B), a random H-level tree with the nonleaf nodes have i children, where i is
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Fig. 9. Distribution of TTL settings on the Internet.

Fig. 10. Impact of TTL settings. TTL is normalized.

uniformly distributed between A and B. Queries arrive at the DNS proxy following a
Poisson process with rate λ. The popularity of the leaf nodes follows one of the following
models: E(λ), all leaf nodes are equally popular and queries arrivals are independent,
identically distributed among all leaf nodes. This is the most straightforward case.
Another model is Z(γ , λ): the popularity of leaf nodes follows a Zipf distribution with
parameter γ . A recent survey by Jung et al. [2002] shows that, similar to Web objects,
domain name objects also follows Zipf distribution.

Due to space limitation, the following discussions is based on D(3, 20) with equal
popularity, and queries arrives with Poisson parameter λQ. Our results are similarly
applicable to other cases.

4.1. Impact of TTL

The TTL values of records present one important design option for domain administra-
tors. To understand the realistic TTL settings of the Internet, we collected 2.7 million
unique FQDN based on the directory listing at dmoz.org [DMOZ]. For each unique
node (including leaf node, www.intel.com. and nonleaf node, for example, intel.com.
and com.), we found its authoritative servers and queried them directly for its TTL
value. From Figure 9, several easy-to-remember numbers, for example, one, two hours
or days, dominate the choice of TTL values. This suggests that administrators may not
have attempted to optimize the TTL settings for their operational conditions.
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Fig. 11. Impact of DDNS. TTL is normalized.

In Figure 10, we vary the TTL value of all nodes in the DNS tree and study the im-
pact on various QoDNS metrics. When there are no modifications, increasing the TTL
value reduces lookup overhead and does not cause any failures. However, with moder-
ate modifications (λm = 0.01), a large TTL will increase DNS failures significantly. A
lookup failure caused by obsolete referrals (OR) can cause more overhead than a cache
miss. When the modifications are frequent (λm = 0.1), the additional overhead caused
by lookup failures could outweigh the reduced overhead by larger TTL value. There-
fore, an administrator should choose the TTL carefully based on the tradeoff between
overhead and lookup failures.

4.2. Is Dynamic DNS Bad?

Dynamic DNS (DDNS) [Vixie et al. 1997] is a server-side mechanism to alias a dynamic
IP address to a static host name. In order to cope with the large modification rate, the
server has to set a significantly smaller TTL value (in the order of minutes) so that
proxies will not cache the records too long and replied obsolete records to clients. This
lead to a natural question on whether the increasing deployment of DDNS will cause
significant amount of overhead to the proxies and the servers.

In Figure 11(a), we vary the TTL values of leaf nodes while keeping the TTL value
of non-leaf nodes constant. This imitates the behavior of deploying DDNS for end-host
IP address but name server themselves are stable. One can notice that if the TTL
value of leaf nodes (TL) are unduly large, it can significantly increase the amount of
obsolete records served to clients. Therefore, the administrators have to set a smaller
TL in order to ensure accuracy (AO). When TL are comparable with the TTL value of
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none-leave nodes (TNL), the overhead grows with the reduced TL. However, when TL is
much smaller than TNL, further reducing TL does not increase overhead significantly.

Figure 11(b) looks at message overhead for nodes at different layers. The message
overhead for layer 3 nodes increases significantly if a smaller TL is used. It confirms
that administrators do need to plan their server/bandwidth capacity when deploying
DDNS. However, going upwards in the hierarchy, the impact of a smaller TL dimin-
ishes. The effect of deploying DDNS is local and has a limited global impact.

5. CACHE POISONING AND ITS MODELING

While QoDNS can be affected by unintentional events such as latency, specific and
target attacks such as DNS cache poisoning can also affect QoDNS. In this section, we
will introduce a model of DNS cache poisoning to understand its behavior. We will then
propose a solution in Section 6 to combact DNS cache poisoning and show how QoDNS
can be improved by avoiding cache poisoning.

5.1. DNS Cache Poisoning

DNS cache poisoning is often used as a foothold for escalating to more harmful sub-
attacks. The attacker can redirect the querier to an IP address which (1) is nonexistent,
thus causing Denial-of-Service (DOS) to the querier, (2) is a malicious site that drops
Malware/Spyware [Haugsness 2005; Symantec Corporation 2004], or (3) is a mas-
querade server for man-in-the-middle (MITM) attacks [Green 2005], which includes
large scale phishing attacks known as pharming [Netcraft, Ltd. 2005] and hijacking
of emails or SSL sessions. All these attacks were observed in the Mar 2005 incident
[Haugsness 2005].

In this section, we first analyze the mechanisms that lead the poison into a cache.
Based on these analysis, we extend the model presented Section 3 to consider cache
poisoning attacks.

5.2. Analysis of Poisoning Attacks

5.2.1. Poisoning Individual Records. Vulnerabilities in DNS make it possible to inject poi-
soned records without compromising the entire system. One could attach malicious
records as additional information to a legitimate reply and some server implementa-
tions will cache the additional records [Microsoft 2005; Schuba 1993] without neces-
sary checks. DNS is UDP-based and the transaction ID (and sometimes source port
number) is the sole form of authentication for a DNS reply. Unfortunately, for many
implementations, guessing the right transaction ID is possible [Stewart 2003]. The
probability of guessing the right transaction ID could be much higher due to weak-
nesses in the random number generators, use of multiple queries and the consequent
birthday paradox [Stewart 2003].

5.2.2. Poison Inheritance. Once a poison is injected, it can spread within the cache or to
its clients through normal query and response mechanism. In Figure 12, we model the
DNS name space as an inverted tree and queries as “hits” to the leaf nodes. Upon re-
ceiving a query hit, the DNS server searches its cache for the closest match record and
starts a recursive lookup from there. A poisoned closest match can misdirect the query
to a malicious name server that returns poisoned response, causing poison to propa-
gate in the cache. In Figure 12, a query for gb.gov.au is best matched to .au, which is
poisoned. The subsequent recursive queries cause gov.au and gb.gov.au to inherit the
poisoned (P) status of .au. The same scenario was observed on March 2005 [Haugsness
2005] when the .com entry was poisoned and subsequently many subdomains under
.com.
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Fig. 12. Cache evolution of poison inheritance.

Fig. 13. State transition diagram with poison.

5.2.3. Poisoning the Entire Cache. The DNS server, resolver and client programs are
also subject to common issues like buffer overrun and vulnerabilities of the operating
system. These include buffer overrun vulnerabilities of early versions 4 and 8 of BIND
(Berkely Internet Name Demon) and malwares that modify the host file of a browser or
a end-host. In such cases, one must assume the entire cache is poisoned. Additionally,
these poisons are persistent since they cannot be flushed out by the TTL mechanism.
This article does not attempt to address this type of vulnerabilities are not specific to
DNS and are beyond the scope of this article.

5.3. Model of Single Record Under Poisoing Attack

Figure 13 introduce an erroneous (E) state to model the state when a record is com-
promised during cache poisoning attacks. Since cache poisoning attacks do not need to
compromised proxy servers, an erroneous records can be flushed when its TTL expires.
However, the malicious attacker can set TTL to the largest possible value (e.g., 7 days).
We believe such long duration of erroneous records is unacceptable for mission-critical
systems like DNS, and assumes poisons are permanent (i.e., dotted arc does not exist
in the state machine).
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5.4. Modeling of Poison Propagation

Assume A1(n), the parent node of n, is poisoned at a random time. Denote ∇(A1(n), n)

the time taken for the poison to propagate from A1(n) to n. The time of the next query
miss of n, which will be resolved by A1(n), is the time when n gets poisoned. Therefore

∇(A1(n), n) = YR(n) , (17)

in which YR(n) is the residual time of Y(n).
If the poison is injected at j-level higher parents Aj(n), the time it takes for the

poison to reach n is simply the sum of propagation time at each level (Eq. (18)). Note
that A0(n) = n by definition. The distribution of this time ∇(Aj(n), n) can be found as
the convolution shown in Eq. (19),

∇(Aj(n), n) =
j−1∑

i=0

∇(Ai+1(n), Ai(n)) . (18)

f∇(Aj(n),n)(t) =
j−1⊗

i=0

f∇(Ai+1(n),Ai(n))(t) . (19)

Once a leaf node is poisoned, it will serve poison records to clients. With the poison
propagating to more leaf nodes over time, the probability of serving poison records
(AP) increases (Eq. (20), F is the cumulative distribution function correspond to f ).
After a sufficiently long period, all queries to the sub-tree rooted at the poison nodes
will receive poison responses.

AP(t) =
∑

n∈leaf

W(n) × F∇(Aj(n),n)(t) . (20)

6. DOMAIN NAME CROSS-REFERENCING (DOX)

If a DNS lookup is affected by a poisoned cache, the response must be different from
what dictated by the authoritative server. Naturally, one could verify a record with
its authoritative server, assuming the record about the authoritative server is correct.
However, verifying every record with the authoritative server is not a viable approach
since it renders caching ineffective and hence the DNS unscalable. In this section, we
propose a domain name cross-referencing (DoX) system in which peers collaboratively
monitor their DNS lookup results. We design a DoX peer to intercept communication
between a DNS query and its response. DoX peers perform consistency checks with
each other and consult the authoritative server only if suspicious records are noticed.

In this section, we first discuss the other few scenarios that might cause inconsisten-
cies among DNS records at peers (Section 6.1) and how we can handle them. Then we
introduce two methods of constructing a P2P network for DoX to facilitate large-scale
consistency check (Section 6.2). In Section 6.3, we introduce a new concept of verifi-
cation cache (vCache) aiming to reduce the overhead of peer verification. Section 6.4
presents the actual DoX algorithm for detecting cache poisoning.

6.1. DNS Inconsistencies

Although DNS records should be consistent with entries dictated by the authorita-
tive servers, there are reasons other than cache poisoning that lead to inconsistencies
among clients.
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6.1.1. Stale Cache. DNS cache uses a TTL-based weak consistency mechanism that
could store and return stale records. This can be resolved if peers ignore the cache
and reload the record from authoritative servers. As a side effect, DoX also detects
inconsistencies caused by modifications and resolves them.

6.1.2. Load Distribution. DNS servers commonly use round robin load distribution
which rotates the order of the records mapped to the same domain name. Conse-
quently, for a domain name that has three addresses A1, A2, A3 mapped to it, one
peer could receive A2, A3, A1 while the other could receive A3, A1, A2. DoX uses set
comparison for consistency check to handle the permuted records.

6.1.3. Multiple Views. Some modern DNS servers, for example, BIND 9.2, can provide
multiple views of the zone data. DNS servers using multiple views can return differ-
ent records based on the IP address of clients. This is often used to separate internal
clients from external ones, offering the latter a limited, probably modified, view into
the internal networks. Consequently, two peers receiving different views will not be
able to resolve the inconsistency by querying the authoritative server. DoX avoids rais-
ing false alarms in this case by verifying a record update instead of a record itself. If
the view assignment is static, the older version of the record can serve as an indicator
to whether the two peers are under the same view.

6.1.4. Dynamic Mapping. Some content distribution networks (CDNs) use DNS-based
redirection for performance improvement and load balancing. Clients could be as-
signed to servers that are closer or less-loaded, based on the current status. DoX intro-
duces the concept of verification channels to avoid checking names served by CDNs.

6.2. DoX Network as Verification Channel

The entire DNS name space is enormously large. Each DNS server is interested in
resolving only a very small subset of the name space. If two peers both want to ensure
the accuracy of a particular record, the consistency check between them is mutually
beneficial. Otherwise, the consistency check is helpful to only one peer and presents
only overhead to the other. In addition, if two peers share common queries, it will be
more likely they can verify for each other based on local cache. To reduce the overhead
and latency of verifications, we propose to construct a verification channel to a group
of peers that share common interests. A verification channel could be defined in one of
the following ways.

Topic Channel. Topic channels use a similar concept as mailing lists or IRC channels
by defining suitable topics in a certain channel. A topic refers to a set of the DNS
names, the correctness of which peers wish to collectively guard. It can be all sub-
domains under a certain domain, for example, intel.com or all domain names listed
under a yahoo directory, for example, the “Government/Military/” directory.

Community Channel. A community channel exploits the likelihood that peers from
the same community will have more common interests, or at a bare minimum, are
willing to bear the overhead for each other. A typical community is “everybody in the
company”.

A verification channel is described by a tracker file and is coordinated by a tracker,
which is a daemon program that tracks participating peers and announces them to
each other. A peer joins a channel by opening the tracker file and connecting to the
tracker for bootstrapping. Every peer in a channel are assigned k peers randomly so
that the peers form a k-connected network. We leave it to the tracker administra-
tor to setup the actual definition of a channel, and what channels to exclude (e.g.,
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if it is served by CDN),3 and peers choose the suitable channel based on their own
interest.

Using the k-connected network, the peer-perceived network can be managed by up-
perbounding k; then, regardless of the overall network size, each node is connected to
a bounded number of peers. The k peers can also be randomly permuted to minimize
the chance of consistently forming the P2P network with malicious peers.

6.3. Verification Cache (vCache)

If a record has been verified earlier and remains unchanged, it is unnecessary to be
verified again, even though it might have expired from the local cache and therefore
was obtained through DNS lookup again. For this reason, we augment every peer with
a separate verification cache (vCache) to store previously verified results. A vCache is
similar to a normal DNS cache but stores records for an unlimited amount of time. It
flushes the old records only if the memory limit is reached.

A natural consequence of using vCache is that a peer will only verify a record with
the DoX network if (1) the record does not exist in the vCache or (2) the peer observes
a record update in which the version stored in vCache (Rv) is different from the ver-
sion obtained through standard DNS lookup (Rd). We denote the older version of the
record as Ro, the newer version as Rn and the transition as Ro → Rn. The first case is
considered as a special case where Ro = None.

6.4. DoX Consistency Check Algorithm

Algorithm 1: DoXCheck(Q).

1 if Rd = Rv then
2 return OK;
3 else
4 Ro ← Rv, Rn ← Rd;
5 Send Ro → Rn to k peers;
6 Wait for first m results;
7 if #Disagree = 0 then
8 return OK;

9 else
10 Ra ← Authoritative Server Lookup (Q) if Ra �= Rn then
11 Poison Detected;
12 else if Ra = Rn and #Agree > threshold then
13 return OK;

14 else
15 return WARNING;

Algorithm 1 describes the DoX checking algorithm. The version stored in vCache
(Rv) was verified earlier and the current version obtained through DNS lookup (Rd)
might be a newer version. If Rv �= Rd, the peer constructs a verification request in
the form of < Q, Ro → Rn >. The purpose of including Ro in the verification request
is to help determine if the verifying and requesting peers are receiving different

3With the prevalence of CDN, excluding sites served by CDN might be impractical. In this case, adminis-
trators can set up CDN based on likelihood of peers being directed to the same servers. This will increase
peers’ chance of successfully verifying their records.
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views, which we elaborate shortly. A verification request is sent to n remote peers
simultaneously but the requester only wait for the first m (m < n) responses to guard
against peer failures and reduce latency. If the local record is poisoned, there will be
“Disagrees” as long as at least one peer is not. (The remote peers decide if they agree
based on the algorithm we will describe shortly.) In this case, the local peer will use an
“iteration-only” lookup to obtain an authoritative copy (Ra) directly from the authorita-
tive server. In the case of local poisoning, Ra will not be consistent with Rn. If Ra = Rn
and a sufficient number of peers “Agree” with the verification request, we consider
the verification a success since there might be malicious peers. Otherwise, we raise a
warning.

A peer will perform consistency check upon receiving a verification request in the
form of < Q, Ro → Rn >. It replies to the requesting peer with a verification response
in the form of <Decision, Info> where the decision can be one of “Agree”, “Disagree” or
“DiffView” and Info contains additional information about this check.

The verifying peer first checks Rn with its local vCache version (Rv). If they are
consistent, the verifying peer can “Agree” without further checks since it must have
verified this earlier. Otherwise, the verifying peer request an authoritative copy (Ra)
from the authoritative server and perform the following checks.

If Rv = Ro, the two peers had consistent history record.

— Ra = Rn (Agree): The verifying peer observes the same update from the author-
itative server. The reason it did not observe this update earlier is likely a stale
record in its local DNS cache. Therefore, this verification request actually helps
the verifying peer to update the stale record faster than its TTL expiration.
A verifying peer forwards a record update to other peers for preemptive update and
verification if it agrees with the requesting peer. Consequently, a record update is
made known to every peer in a DoX network after the first peer notices the update.
This can significantly reduce obsolete records and failures caused by them. To
avoid global synchronization, a peer set the TTL to be a random value between 1
and the original TTL.

— Ra �= Rn (Disagree): The verifying peer does not observe the same update. In par-
ticular, if Ra = Ro, the verifying peer does not observe a change at all. The request-
ing peer is most likely poisoned.

If Rv �= Ro, the two peers did not have consistent history record. If Ra = Rn (Agree),
the authoritative server is probably merging the two peers into the same view. Even if
Ra �= Rn (DiffView), it is possible that they are assigned different views by the author-
itative server and the verifying peer.

If Ro = None or Rv = None, either the requesting or the verifying peer does not have
this record in its vCache. The verifying peer agrees if Ra = Rn and disagrees otherwise.
This case can be avoided using a safe startup phase to initialize vCache.

7. STUDY ON CACHE POISONING AND SOLUTIONS

To study the performance of DoX, we implemented an event-based simulator for the
DNS infrastructure and the proposed DoX scheme. The name space is based on the
2.7 million names listed on dmoz.org [DMOZ]. We queried the authoritative server of
individual names to find TTL values and found that several popular ones, for example,
1 hour, 2 hours, 1 day, and 2 days, dominate. Queries arrive with a Poisson arrival
process of rate λq to leaf nodes and the popularity of names follows a Zipf-distribution.
Every node in the namespace has equal opportunity to be modified by their respective
administrators. Collectively, modifications follow a Poisson arrival of rate λm. The root
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Fig. 14. Evolution of a standard DNS cache. The diurnal pattern arises from TTL expiration.

node is excluded from being modified or poisoned since every DNS server has a root
hint file and record about the root servers has not changed for many years.

7.1. Evolution of A Standard DNS Cache Under Attack

Figure 14 presents the evolution of a standard DNS cache under various conditions.
Ideally, one hopes more records are cached correctly so that queries can be answered
locally. Arrivals of queries cause records to be cached but the TTL expiration mecha-
nism also flushes records. Since all records have a TTL expiration, a certain arrival
rate will only keep a certain number of records in the DNS cache. This is observed
in Figure 14 before t = 5000. Starting from t = 5000, modifications to DNS records
are introduced. Consequently, certain cached records become obsolete and affects the
accuracy.

Poison is injected at time 10000 for .com, at 12500 for .net and at 15000 for
.org respectively. Poisons do not start to propagate or cause poisoned records being
returned for a small period. This is because a typical application does not query .com
directly. Instead, they query for leaf nodes like www.cnn.com and if www.cnn.com or
cnn.com is cached, the recursive lookup will start from the best-match instead of .com.
However, once queries starts to reach the poisoned nodes, it propagate down and
spreads in the cache.

To inflict maximum damage, malicious attackers are likely to set a very large TTL
value for the poisoned record. Although most DNS servers have a maximum allowable
TTL value (default is 7 days for BIND), it is significantly longer than the TTL values of
most DNS records. Consequently, we observe a steady increase of poisoned cache over
time until all names under the .com (or .net or .org) branch is poisoned. Because of
this poison propagation mechanism, the attacker need to succeed only once to affect a
large number of users.

7.2. DoX for Poison Detection and Removal

Figure 15 presents the evolution of DoX-protected DNS cache based on a strict strategy
in which every answer obtained through DNS lookup is checked before it is relayed
to the querier. As long as there is at least one verifying peer that is not poisoned,
the requesting peer will be able to detect the poison and remove it by flushing. In
Figure 15, poison is injected at time 2000 for .com, at 4000 for .net and at 6000 for
.org. In the top figure, the injected poison can stay in the cache for a while until a
query hits it. However, it is detected by DoX and removed immediately if it causes any
poisoned response to be returned. Since DoX stops poison from propagating, we do not
observe poisoned records in the cache or poisoned replies as in Figure 14. In addition,
the percentage of correctly cached records is significantly increased.
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Fig. 15. Poison detection and removal. The diurnal pattern arises from TTL expiration.

7.3. DoX for Improving Cache Consistency

In DoX, a verifying peer will forward a valid record update to other peers in addition
to sending the confirmation to the requesting peer. Consequently, all peers in the DoX
network will update to the current record as soon as one peer notices the update,
independent of the DoX topology. Figure 16(a) shows that the average number of
obsolete records decreases when the size of the DoX network increases. Peers in a
large DoX network will observe negligible amount of obsolete records.

7.4. Comparison of DNSSEC and DoX

DNS Security Extensions (DNSSEC) propose to use public-key cryptography to au-
thenticate resource records in order to prevent cache poisoning attacks. DNSSEC
augments DNS with a few additional RR types so that a zone can be cryptographi-
cally signed by authoritative servers and verified resolvers. A signed zone includes a
RRSIG RR which is the signature signed by the private key of the zone owner. The
DNSKEY RR contains the corresponding public key, which can be used to authenti-
cate the records against the RRSIG. To verify that the DNSKEY itself is not tempered,
the Delegation Signer (DS) RR at the parent node contains the public key to verify the
DNSKEY RR at child nodes. Given that resolvers can retrieve the DNSKEY of the root
node using some out-of-band mechanism, there is an authentication chain starting
from the trusted root node to the RRSet of interest.

7.4.1. Accuracy and Availability. DNSSEC guarantees the authenticity of a record with
at same strength as public-key cryptography used. However, key management remains
a challenging research issue for DNSSEC. The administrators need to keep the private
keys online if they were to regenerate the signatures periodically. They also need to roll
over to new keys periodically to prevent the key being broken. However, the security
issues of DNSSEC are beyond the scope of this article. We assume that DNSSEC can
prevent cache poison perfectly.

Even though DNSSEC guarantees the authenticity of a record, it does not reduce
the number of inaccurate obsolete records. This is because DNSSEC uses the same
TTL-based cache expiration mechanisms as standard DNS and hence does not im-
prove cache consistency. Consequently, DNSSEC have the same probability of serving
obsolete records to clients (AO) or the availability of DNS records.

The DoX network detects a modification (and updates to it) as soon as any one peer
detects it. Denote DoXO(n) the probability for a DoX peer to have node n in obsolete
status. This happens only if (1) it is obsolete in local cache and (2) all other peers have
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Fig. 16. Impact of DoX on QoDNS.

this node in either obsolete or uncached status. Therefore, in a DoX(M, N) network, M
being the voting threshold and N the size of the P2P network, the probability of node
n being obsolete in a proxy cache is

P{sDoX(n) = O} = P{s(n) = O} · (1 − P{s(n) = C})N−1.

One can see that the probability for a cached record in DoX being obsolete is sig-
nificantly lower than standard DNS. When N is large, a DoX network will observe
almost no obsolete records, thus achieving strong cache consistency. Consequently, the
accuracy and availability can be improved. This is confirmed in Figure 16(b). With
the increasing size of DoX network size, the probability of sending obsolete records to
clients or having lookup failures due to obsolete records becomes negligible.

7.4.2. Overhead and Latency. The additional overhead introduced by DNSSEC mainly
comes from zone inflation caused by cryptography signatures and related keys (RRSIG,
DNSKEY and DS RRs). Gudmundsson [2001] suggests that these signatures, depend-
ing on the cryptography algorithm used, range from about 80 octets to 800 octets, with
most signatures below 200 octets. A practical bound for the overhead is that UDP (most
common transport-layer protocol) allows messages with at most 512 octets while the
DNSSEC standard recommends a limit of 4000 octets.

To determine the additional overhead of deploying DNSSEC requires the knowledge
of the size of original DNS data and the cryptography algorithm used. We assume the
original DNS data is 512 octets (upper bound) and RSA/SHA-1 [Eastlake 2001], which
is the only mandatory algorithm defined. We further assume that the keys are 1024-bit
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long. In this case, the RRSIG, DNSKEY, and DS RRs jointly introduces at least about
300 octets overhead. This is about 60% additional overhead than standard DNS.

Zone inflation is however not expected to significantly affect the latency observed by
end clients. This is because the latency is dominated by RTT. Transmission time con-
tributes a negligible part to the total latency even though it increases proportional to
the data size. On the other hand, processing latency of DNSSEC could be significantly
larger than standard DNS.

DoX peers incur additional messaging overhead when verifying with peers for a
record update. For each update observed or notified by other peers, a peer send/receive
a verification request (in the form of < old → new >) to/from M other peers. Note
that this messaging overhead is incurred only if there are modifications. Equation (21)
gives the per-query additional overhead incurred by DoX.

DoXO = 2 × M × λM

λQ
. (21)

Since the verification cache of DoX peers are flushed only if storage limit is reached,
DoX could use all the storage available. However, this does not impose a practical
concern because (1) DoX can gracefully recover from flushed verification cache and (2)
storage does not pose a major constraint for DNS cache as compared to Web cache, in
which object size are significantly larger.

DoX incurs additional latency only for the first peer that notices the record update.
In the worst case, a verifying peer needs to traverse the entire delegation chain (H
levels) to verify a request. The upper bound of additional latency incurred by DoX is:

DoXL = H × RTT
N

· λm

λQ
. (22)

Based on this discussion, we can compare DNSSEC and DoX in terms of QoDNS so
that an informed decision can be made by administrators.

— AP. Both DNSSEC and DoX can reduce the probability of sending out poison
records to zero, but based on different assumptions. DNSSEC assumes safe key
management while DoX assumes the correctness of at least one peer.

— AO and VO. DNSSEC does not improve on these two metrics while DoX can signif-
icantly reduce them.

— OM. DNSSEC will incur at least 60% additional the overhead. For DoX, this de-
pends on the modification process. If the arrival rate of modifications is 1/10 of
that of queries, and with a DoX network using node degree of 3, the overhead is
comparable with DNSSEC. But we expect that the arrival rate of modifications is
significantly lower than that.

— LN . DNSSEC does not increase the latency directly. DoX will not increase the
average latency significantly but might increase the worst case latency.

8. RELATED WORK

Jung et al. [2003] present a mathematical model for TTL-based caching. They model
query arrival with a renewal process and derive cache hit/miss ratios. However, their
model ignores the hierarchical dependencies among objects in DNS cache and implic-
itly assumes the objects stored in the cache are independent of one another. Therefore,
their model is insufficient for understanding many aspects of DNS cache including the
impact of lower level TTL at higher levels, or the propagation of cache poisoning down
the hierarchy.

There are several works on modeling hierarchical caches [Che et al. 2002; Hou et al.
2004]. They consider a layered deployment of Web proxies, each with its own cache.
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Lower-layer proxies, upon a cache miss, will forward the query to higher-layer ones.
Thus, cached objects in lower-layer caches is synchronized with that in high-layer par-
ent. In the case of DNS, the hierarchical dependency is internal, that is, such hierarchy
dependency exists among DNS objects themselves contained in the same cache.

Kolkman [2005] measures the effects of deploying DNSSEC on CPU, memory, and
bandwidth consumption on authoritative servers (as compared to standard DNS).
Curtmola et al. [2005] compared two DNSSEC variants – the IETF version using pub-
lic key cryptography and another using symmetric key. Their approaches are to deploy
the compared schemes on a testbed and compare the performance.

Cao and Liu [1998] study several approaches to achieve strong cache consistency for
the web, including adaptive TTL, polling-every-time, and proactive server invalidation.
A server invalidation scheme can also be used for improving DNS cache consistency;
however, the main difficulty is that the DNS server would have to maintain states for
known clients. Invalidation does not protect against cache poisoning.

Cohen and Kaplan [2001] proposed proactive caching of DNS records in which they
use renewal policies to refresh selected cache entries by issuing unsolicited queries. In
addition, they propose a simultaneous-validation (SV) in which the end-host will use
an expired DNS entry to connect to the web server, but the content will be served only
if the DNS entry is validated by the SV queries. Their focus is on improving cache hit
rate.

Several recent work, including Overlook [Theimer and Jones 2002], DDNS [Cox et al.
2002], CoDNS [Park et al. 2004] and CoDoNS [Ramasubramanian and Sirer 2004],
proposed to use structured overlays to provide DNS lookup services. Exploiting the
scalability and reliability of the underlying overlay network, these new DNS protocols
achieve faster lookups and fewer failures. However, none of these works addresses
the accuracy of DNS lookups. In fact, blindly relying on untrustworthy peers for DNS
lookups could be dangerous.

Poole and Pai [2006] proposed a P2P system that can detect poisoned DNS caches.
However, the proposed system does not provide detail on how to avoid false positives
due to practical DNS implementations poison cache identification (e.g., Multiple view).
Wong and Nikander [2010] proposed a new architecture to secure DNS, basing the ar-
chitecture on the idea of decoupling identity and location; using certificate look-up to
establish authority, and a dns-like service to discover location. Dagon’s presentation
[Dagon 2008] and Alexiou et al.’s [2010] analytical work discussed the danger in DNS
cache poisoning, with Dagon [2008] referring to some recent RFCs to combat the at-
tack, and Alexiou et al. [2010] studied the Kaminsky attack in depth. Suggestion in
all works require implementation change at the server side, in which the client is de-
pendent on the adoption rate of the implementation change. DoX on the other hand
can be implemented on the client side, allowing the clients to improve their security
independent of the servers’ architectural or implementation updates.

9. CONCLUSION

This article proposed to evaluate the quality of Domain Name Service (QoDNS) as a
whole picture instead of improving on one aspect and ignoring the others. We first
presented a comprehensive set of metrics, including accuracy, availability, latency and
overhead, to evaluate QoDNS. DNS proxy is one of the most important component on
improving QoDNS. However, early modeling and analysis on Web proxy is insufficient
for DNS proxy because of the hierarchical naming and delegation structure, and the
consequent best-matching algorithm and referral-following algorithm. We presented
a hierarchical analytical model for DNS proxy, which can assist the understanding of
DNS and can be used to study the tradeoffs among of critical parameters like TTL
or understand the impact of dynamic DNS. Being on the critical path between DNS
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clients and servers, DNS proxies and their caches are often targets of attacks. We ex-
tended our model to analyze the poison propagation in DNS proxy under such attacks.
We went on to propose a novel P2P-based solution for cache poisoning attack, which
requires only cooperation between some DNS proxies and does not require changes
to the current DNS infrastructure. We performed QoDNS-based comparison between
DNSSEC and DoX to understand their relative merits.
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