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ABSTRACT

Bounded-rate multi-mode systems (BMS) are hybrid sys-
tems that can switch freely among a finite set of modes, and
whose dynamics is specified by a finite number of real-valued
variables with mode-dependent rates that can vary within
given bounded sets. The schedulability problem for BMS
is defined as an infinite-round game between two players—
the scheduler and the environment—where in each round the
scheduler proposes a time and a mode while the environment
chooses an allowable rate for that mode, and the state of the
system changes linearly in the direction of the rate vector.
The goal of the scheduler is to keep the state of the system
within a pre-specified safe set using a non-Zeno schedule,
while the goal of the environment is the opposite. Green
scheduling under uncertainty is a paradigmatic example of
BMS where a winning strategy of the scheduler corresponds
to a robust energy-optimal policy. We present an algorithm
to decide whether the scheduler has a winning strategy from
an arbitrary starting state, and give an algorithm to com-
pute such a winning strategy, if it exists. We show that the
schedulability problem for BMS is co-NP complete in gen-
eral, but for two variables it is in PTIME. We also study
the discrete schedulability problem where the environment
has only finitely many choices of rate vectors in each mode
and the scheduler can make decisions only at multiples of a
given clock period, and show it to be EXPTIME-complete.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]:
Scheduling; B.5.2 [Design Aids]: Verification, Optimiza-
tion; D.4.7 [Organization and Design|: Real-time sys-
tems and embedded systems

General Terms
Theory, Verification

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords

Multi-Mode Systems, Hybrid Automata, Game Theory, Green
Scheduling, Cyber-Physical Systems

1. INTRODUCTION

There is a growing trend towards multi-mode composi-
tional design frameworks [8] [13][9] for the synthesis of cyber-
physical systems where the desired system is built by com-
posing various modes, subsystems, or motion primitives—
with well-understood performance characteristics—so as to
satisfy certain higher level control objectives. A notable ex-
ample of such an approach is green scheduling proposed by
Nghiem et al. [IT], 12] where the goal is to compose different
modes of heating, ventilation, and air-conditioning (HVAC)
installations in a building so as to keep the temperature
surrounding each installation in a given comfort zone while
keeping the peak energy consumption under a given bud-
get. Under the assumption that the state of the system
grows linearly in each mode, Nghiem et al. gave a polyno-
mial algorithm to decide the green schedulability problem.
Alur, Trivedi, and Wojtczak [I] studied general constant-
rate multi-mode systems and showed, among others, that
the result of Nghiem et al. holds for arbitrary multi-mode
systems with constant rate dynamics as long as the scheduler
can switch freely among the finite set of modes.

In this paper we present bounded-rate multi-mode systems
that generalize constant-rate multi-mode systems by allow-
ing non-constant mode-dependent rates that are given as
bounded polytopes. Our motivations to study bounded-rate
multi-mode schedulability are twofold. First, it allows one to
model a conservative approximation of green schedulability
problem in presence of more complex inter-mode dynamics.
Second motivation is theoretical and it stems from the de-
sire to characterize decidable problems in context of design
and analysis of cyber-physical systems. In particular, we
view a bounded-rate multi-mode system as a two-player ex-
tension of constant-rate multi-mode system, and show the
decidability of schedulability game for such systems.

Before discussing bounded-rate multi-mode system (BMS)
in any further detail, let us review the definition, relevant
results, and limitations of constant-rate multi-mode system
(CMS). A CMS is specified as a finite set of variables whose
dynamics in a finite set of modes is given as mode-dependent
constant rate vector. The schedulability problem for a CMS
and a bounded convex safety set of states is to decide whether
there exists an infinite sequence (schedule) of modes and
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Figure 1: Multi-mode systems with uncertain rates

time durations such that choosing modes for corresponding
time durations in that sequence keeps the system within the
safety set forever. Moreover such schedule is also required
to be physically implementable, i.e. the sum of time dura-
tions must diverge (the standard non-Zeno requirement [6]).
Alur et al. [I] showed that, for the starting states in the inte-
rior of the safety set, the necessary and sufficient condition
for safe schedulability is the existence of an assignment of
dwell times to modes such that the sum of rate vectors of
various modes scaled by corresponding dwell time is zero.
Intuitively, if it is possible using the modes to loop back to
the starting state, i.e. to go to some state other than the
starting state and then to return to the starting state, then
the same schedule can be scaled appropriately and repeated
forever to form a periodic schedule that keeps the system
inside the interior of any convex safety set while ensuring
time divergence. On the other hand, if no such assignment
exists then Farkas’ lemma implies the existence of a vector
such that choosing any mode the system makes a positive
progress in the direction of that vector, and hence for any
non-Zeno schedule the system will leave any bounded safety
set in a finite amount of time. Also, due to constant-rate
dynamics such condition can be modeled as a linear program
feasibility problem, yielding a polynomial-time algorithm.

EXAMPLE 1. Consider the 2-dimensional CMS shown in
Figure [ (left) with two modes m1 and mo with rates of the
variables as 71 = (0,1) in mode m1 and 7> = (0,—1) in
mode ma. It is easy to see that the system is schedulable
for any starting state (xo,yo) in the interior of any bounded
convex set S as 71+72 = (0,0). The safe schedule consists of
the periodic schedule (ma,t), (ma,t) for a carefully selected
t € Rso such that (zo,yo) + ™1t stays inside S.

However, the schedules constructed in this manner are not
robust as an arbitrarily small change in the rate can make
the schedule unsafe as shown in the following example.

ExXAMPLE 2. Consider a multi-mode system where some
environment related fluctuations [0] cause the rate vectors in
modes m1 and ma to differ from those in Example[d by an
arbitrarily smalle > 0 as shown in Figure[dl (middle). Here,
my can have rate-vectors from {(0+46,1) : —e<d<e}, while
rate-vectors of ma are from {(04d,—1) : —e<é<e}. First
we show that the periodic schedule (ma,t), (ma2,t) proposed
in Example[d is not safe for any t. Consider the case when
the rate vector in modes mi1 and ma are fized to (g,1) and
(e, —1). Starting from the state (zo,yo) and following the
periodic schedule (m1,t), (ma,t) for k steps the state of the
system will be (xo + kte,yo) after k steps. Hence it is easy
to see that for any bounded safety set the state of the system
will leave the safety set after finitely many steps. In fact, for
this choice of rate vectors mo mon-Zeno safe schedule exists
at all, since by choosing any mode for a positive time the
system makes a positive progress along the X axis.

We formalize modeling of such multi-mode system under un-

certainty as bounded-rate multi-mode systems (BMS). BMSs
can also approximate [3] the effect of more complex non-
linear, and even time-varying, mode dynamics over a bounded
safety set. Formally, a BMS is specified as a finite set of vari-
ables whose dynamics in a finite set of modes is given as a
mode-dependent bounded convex polytopes of rate vectors.
We present the schedulability problem on BMS as an infinite-
round zero-sum game between two players, the scheduler and
the environment; at each round scheduler chooses a mode
and a time duration, the environment chooses a rate vector
from the allowable set of rates for that mode, and the state
of the system is evolved accordingly. The recipe for select-
ing their choices, or mowes, is formalized in the form of a
strategy that is a function of the history of the game so far
to a move of the player. A strategy is called positional if it
a function only of the current state. We say that the sched-
uler wins the schedulability game, or has a winning strategy,
from a given starting state if there is a scheduler strategy
such that irrespective of the strategies of the environment
the state of the system stays within the safety set and time
does not converge to any real number. Similarly, we say that
the environment has a winning strategy if she has a strat-
egy such that for any strategy of the scheduler the system
leaves the safety set in a finite amount of time, or the time
converges to some real number. One of the central results
of this paper is that the schedulability games on BMS are
determined, i.e. for each starting state exactly one of the
player has a winning strategy. Note that the determinacy
of these games could be proved using more general results
on determinacy, e.g. [I0], however our proof is direct and
shows the existence of positional winning strategies.

We distinguish between two kind of strategies of scheduler—
the static strategies, where scheduler can not observe the
decisions of the environment, and the dynamic strategies,
where scheduler can observe the decisions of the environ-
ment so far before choosing a mode and a time. Static
strategies correspond precisely to schedules, and we often
use these two terms interchangeably. A key challenge in the
schedulability analysis of BMS is that static strategies are
not sufficient as is clear from the following example.

ExAMPLE 3. Consider the BMS of Figure[dl (right) where
the rates in mode mi1 and ma lie in {(0,1+6) : 0<d <e}
and {(0,—(1+496)) : 0 <6 < e}, respectively. We hint that
there is no static winning strategqy of scheduler in this BMS
(the formal conditions on where the static winning strat-
egy exists will be analyzed later in the paper). Let us as-
sume, for example, that o = (ma,t1), (ma,t2),... is a static
non-Zeno winning strategy of the scheduler. Moreover con-
sider two strategies m and 7' of the environment that dif-
fer only in mode m1 where they propose rates (1,0) and
(1+4¢,0) respectively. Let o and o' be the sequences of system
states and player’s choices—what we subsequently refer to as
runs—as the game progresses from a starting state (zo,yo)
where the environment uses strateqy m and ', respectively,
against scheduler’s strategy o. Let Ti(i) and T2(i) be the
time spent in mode m1 and ma, resp., till the i-th round
in runs o and o', while Ty and Ts be total time spent in
mode m1 and ma, resp. The state of the system in the runs
o and @' after i rounds will be (zo,yo + T1(7) — T=(3)) and
(xo,yo + T1(2) — T2(2) + T1(é)e). Hence the distance T (i)e
between states reached after i-rounds in runs o and o' tends
to The ast tends to co. It is easy to see that if o is a winning
strategy then Ti=00; since if T1 <oco and To=o00 then the sys-



tem will move in the direction of rates of mode ma, while if
both Th and Tz are finite then the strategy is mot non-Zeno.
Hence system will eventually leave any bounded safety set,
contradicting our assumption on o being a winning strategy.

The techniques used for schedulability analysis and sched-
ule construction for CMS cannot be generalized to BMS since
in a BMS, the scheduler may not have a strategy to loop
back to the starting state. In fact, in general scheduler does
not have a strategy to revisit any state as is clear from Fig-
ure[I] (right)—here the environment can always choose a rate
vector in both mode m1 and m2 to avoid any previously vis-
ited state. However, from our results on BMS it follows that
if the scheduler has a winning strategy then he has a strat-
egy to restrict the future states of the system to a ball of
arbitrary diameter centered around the starting state.

In order to solve schedulability game for BMS we exploit
the following observation: the scheduler has a winning strat-
egy, from all the starting states in the interior of the safety
set S, if and only if there is a polytope P C S, such that
for every vertex v of P there is a mode m(7) and time ¢(7)
such that choosing mode m(7) for time ¢(v) from the ver-
tex U, the line T + 7t(7) stays within polytope P for all
allowable rates ¥ of m(v). In other words, for any vertex
of P there is a mode and a time duration such that if the
system evolves with any rate vector of that mode for such
amount of time, the system stays in P. For a BMS H we
call such a polytope H-closed. The H-closed polytope is
similar to controlled invariant set in control theory litera-
ture (see [2] for a comprehensive review). We show how
such a polytope can be constructed for a BMS based on its
characteristics. We also analyze the complexity of such a
construction. The existence of an H-closed polytope imme-
diately provides a non-Zeno safe dynamic strategy for the
scheduler for any starting state in P: find the convex coef-
ficient (A1, A2, ..., Ax) of the current state T with respect to
the finite set of vertices (Z1,Z2,...,Zk) of P and choose the
mode m(T;) for time t(T;)\; that maximizes ¢(T;)A;. Then,
for some choice 7 of the environment for m(Z;) the system
will progress to T'=Z+t(T;)\:;7. One can repeat this dy-
namic strategy from the next state T’ as the current state.
We prove that such strategy is both non-Zeno and safe.

An extreme-rate CMS of a BMS H is obtained by preserv-
ing the set of modes, and for each mode assigning a rate
which is a vertex of the available rate-set of that mode. The
main result of the paper is that an #-closed polytope exists
for a BMS H iff all extreme-rate CMSs of H are schedula-
ble. The “only if” direction of the above characterization is
immediate as if some extreme-rate CMS is not schedulable
then the environment can fix those rate vectors and win the
schedulability game in the BMS. We show the “if” direction
by explicitly constructing the H-closed polytope.

EXAMPLE 4. Consider the BMS H from Figure[dl (right)
with ¢ = 0.5. The safety set is given as a shaded area
in Figure [Q (left) and To = (—1,—0.5) is the initial state.
Observe that all extreme-rate combinations are schedulable
and hence we show a winning strategy. An H-closed poly-
tope for this BMS is the line-segment between the points
(0,2.5) and (0,—2.5) (we explain the construction of such
polytope in Section[d). After translating this line-segment to
xo and scaling it to fit inside the safety set, we will get the
line-segment connecting T1 = (—1,1) to T2 = (—1,-2), as
shown in Figure[Q (left). At vertices T1 and T2 modes ma

(-2,2) (—1,—0.5)

mi, &
(=1,1)

(1,-1) (m27%) (m2,1)

(=2,-2) 22 (1,-2) (~L—=3) (-L-DELO) . (=1,-3)

Figure 2: #-closed polytope and dynamic strategy

and my, respectively, can be used for 1 time unit. A win-
ning strategy of scheduler is to keep the system’s state along
the line segment. Our strategy observes the current state T
and finds the mode to choose by computing convez coeffi-
cient A€[0,1] s.t. T=AT1+(1—A)T2. For instance, at state
:EO:%:EH—%EQ the scheduler can choose any of the modes for

% time units. Assume that it chooses mi1. Based on en-

vironment’s choice the state of system after % time units
will be in the set {—1,0.5+6 : 0 <6 <0.5}. The sched-
uler observes this new state after % time-unit, and chooses
mode and time accordingly. For example, if the environment
chooses (0,1.25) and so the next state is T = (—1,0.75) =

%i’l—&—%iz, scheduler can choose mode ma for % time units.

1
In Figure [@ (right) we show first two rounds of the game.
Since, for any point on our line segment scheduler can choose
a mode for at least 0.5 time unit and stay on the line seg-

ment, such strategy is both safe and non-Zeno.

We also extend the above result to decide the winner
starting from arbitrary states, i.e. including those states
that lie on the boundary of the safety set. Here we show
that the existence of a safe scheduler implies the existence
of a safe scheduler which only allows to move from lower-
dimensional faces to higher-dimensional ones and not the
other way around; this allows us to use an algorithm which
traverses the face lattice of the safety set and analyses each
face one by one. We also prove co-NP completeness of the
schedulability problem, showing the hardness by giving a re-
duction from 3-SAT to the non-schedulability problem. On
a positive note, we show that if the number of variables is
two, then the schedulability game can be decided in polyno-
mial time. This is because in such a case we can prove that
there is only polynomially many candidates for falsifiers we
need to consider, and hence we can check each of them one
by one. Finally, we study a discrete version of schedulabil-
ity games where scheduler can choose time delays only at
multiples of a given clock period, while the environment can
choose rate vectors from a finite set. We show that discrete
schedulability games on BMS are EXPTIME-complete, and
that the maximal clock period for which scheduler has a win-
ning strategy can be computed in exponential time. If the
system is a CMS, we get a PSPACE algorithm, improving
the result of [I] where only an approximation of the maximal
clock period for CMS was studied.

We refer to [12] [11] and [I] for a review of related work on
CMS and green scheduling. Heymann et al. [6] considered
scheduling problem on BMS where rate-vectors are given as
upper and lower rate matrices and the safety set as the en-
tire non-negative orthant. They showed that the scheduler
wins if he wins in the CMS of the lower rate matrix, and
wins only if he wins in the CMS of the upper rate matrix.
We study more general BMS and safety sets, and character-
ize necessary and sufficient condition for schedulability. To



complete the picture, we remark that games on hybrid au-
tomata [B] 4], that corresponds to BMS with local invariants
and guards, have undecidable schedulability problem.

2. PROBLEM DEFINITION

Points and Vectors. Let R be the set of real numbers.
We represent the states in our system as points in R™ that
is equipped with the standard Euclidean norm | - ||. We
denote points in this state space by T, ¥, vectors by 7, ¥, and
the i-th coordinate of point Z and vector 7 by T(z) and 7(4),
respectively. We write 0 for a vector with all its coordinates
equal to 0; its dimension is often clear from the context. The
distance ||, J|| between points T and 7 is defined as || — 7|
For two vectors #1, 72 € R™, we write U1 - U2 to denote their
dot product defined as >_;, 71 (%) - U2(i).

Boundedness and Interior. We denote a closed ball of

radius d € Rx¢ centered at T as Bq(T)={yeR" : ||T,7|| < d}.

We say that a set S C R" is bounded if there exists d € Rx>g
such that for all Z,7 € S we have ||Z,7|| < d. The interior
of a set S, int(S), is the set of all points T € S for which
there exists d > 0 s.t. B4(T) C S.

Convexity. A point T is a convexr combination of a finite
set of points X = {T1,Ta, ..., Tk} if there are A1, A2, ..., A\ €
[0, 1] such that Zle Ai=1landZ = Zle Ai-Ti. The convez
hull of X is then the set of all points that are convex com-
binations of points in X. We say that S C R" is convez iff
for all Z,7 € S and all A € [0,1] we have AT+ (1 - A\)g € S
and moreover, S is a convex polytope if it is bounded and
there exists k € N, a matrix A of size k X n and a vector
b € R* such that T € S iff AT < b. We write rows(M) for
the number of rows in a matrix M, here rows(A) = k.

A point T is a vertex of a convex polytope P if it is not a
convex combination of two distinct (other than T) points in
P. For a convex polytope P we write vert(P) for the finite
set of points that correspond to the vertices of P. Each
point in P can be written as a convex combination of the
points in vert(P), or in other words, P is the convezr hull of
vert(P). From standard properties of polytopes, it follows
that for every convex polytope P and every vertex ¢ of P,
there exists a vector ¥ such that ¥-¢ = d and -Z > d for all
T € P\ {¢} for some d. We call such a vector ¥ a supporting
hyperplane of the polytope P at ¢.

2.1 Multi-Mode Systems

A multi-mode system is a hybrid system equipped with
finitely many modes and finitely many real-valued variables.
A configuration is described by values of the variables, which
change, as the time elapses, at the rates determined by the
modes being used. The choice of rates is nondeterministic,
which introduces a notion of adversarial behavior. Formally,

DEFINITION 1 (MULTI-MODE SYSTEMS). A multi-mode
system is a tuple H = (M,n,R) where: M 1is the finite
nonempty set of modes, n is the number of continuous vari-
ables, and R : M — 28" is the rate-set function that, for
each mode m € M, gives a set of vectors.

We often write ¥ € m for ¥ € R(m) when R is clear
from the context. A finite run of a multi-mode system H
is a finite sequence of states, timed moves and rate vector
choices ¢ = (To, (m1,t1),71,T1,..., (Mk, tk), Tk, Tk) s.t. for
all 1 < i <k we have 7; € R(m;) and T;=Ti—1 + ¢; - 7. For
such a run ¢ we say that xo is the starting state, while Ty, is

its last state. An infinite run is defined in a similar manner.
We write Runs and FRuns for the set of infinite and finite
runs of H, while Runs(T) and FRuns(T) for the set of infinite
and finite runs starting from Z.

An infinite run (To, (m1,t1), 71, T1, (M2, t2), 72, .. .) is Zeno
if Y272, ti < oo. Given a set S C R" of safe states, we say
that a run (To, (m1, t1), 71, T1, (M2, t2), 72, . ..) is S-safe if for
all ¢ > 0 we have that T; € S and T; +t - ;41 € S for all
t € [0,ti41], assuming to = 0. Notice that if S is a convex
set and T; € S for all 4 > 0, then for all # > 0 and for all
t € [0,ti+1] we have that T; + ¢ - 741 € S. The concept
of S-safety for finite runs is defined in a similar manner.
Sometimes we simply call a run safe when the safety set and
the starting state is clear from the context.

We formally give the semantics of a multi-mode system H
as a turn-based two-player game between the players, sched-
uler and environment, who choose their moves to construct
a run of the system. The system starts in a given starting
state Tp € R™ and at each turn scheduler chooses a timed
move, a pair (m,t) € M X Rso consisting of a mode and
a time duration, and the environment chooses a rate vec-
tor ¥ € R(m) and as a result the system changes its state
from Zo to the state T1 = To 4+ ¢ - ¥ in ¢ time units following
the linear trajectory according to the rate vector 7. From
the next state T; the scheduler again chooses a timed move
and the environment an allowable rate vector, and the game
continues forever in this fashion. The focus of this paper is
on safe-schedulability game, where the goal of the scheduler
is to keep the states of the system within a given safety set
S, while ensuring that the time diverges (non-Zenoness re-
quirement). The goal of the environment is the opposite,
i.e. to visit a state out of the safety set or make the time
converge to some finite number.

Given a bounded and convex safety set S, we define (safe)
schedulability objective W5, as the set of S-safe and non-
Zeno runs of ‘H. In a schedulability game the winning ob-
jective of the scheduler is to make sure that the constructed
run of a system belongs to )/VssafC7 while the goal of the envi-
ronment is the opposite. The choice selection mechanism of
the players is typically defined as strategies. A strategy o of
scheduler is function o:FRuns— M xR>¢ that gives a timed
move for every history of the game. A strategy m of the en-
vironment is a function 7 : FRuns x (M X R>g) — R™ that
chooses an allowable rate for a given history of the game and
choice of the scheduler. We say that a strategy is positional
if it suggests the same action for all runs with common last
state. We write X and II for the set of strategies of the
scheduler and the environment, respectively.

Given a starting state To and a strategy pair (o, 7) € X xII
we define the unique run Run(To, o, w) starting from To as

Run(Zo, 0, m) = (To, (M1,t1),71,T1, (M2, t2),72, .. .)

where for all i>1, (ms,t;) = o((To, (M1, 1), 71, T1y. .., Ti-1))
and 7; = W((Tm (T)’Ll7 t1)7fl7fl7 e, Ti—1, My, t1>) and z; =
i—1 +t; - 7;. The scheduler wins the game if there is 0 € &
such that for all 7 € II we get Run(Fo,0,7) € WE,. Such
a strategy o is winning. Similarly, the environment wins
the game if there is m € II such that for all o € ¥ we have
Run(Zo,0,7) € Wsase. Again, 7 is called winning in this
case. If a winning strategy for scheduler exists, we say that
‘H is schedulable for S and To (or simply schedulable if S and
To are clear from the context). The following is the main
algorithmic problem studied in this paper.



DEFINITION 2 (SCHEDULABILITY). Given a multi-mode
system H, a safety set S, and a starting state To € S, the
(safe) schedulability problem is to decide whether there ex-
ists a winning strategy of the scheduler.

2.2 Bounded-Rate Multi-M ode Systems

To algorithmically decide schedulability problem, we need
to restrict the range of R and the domain of safety set S in
a schedulability game on a multi-mode system. The most
general model that we consider is the bounded-rate multi-
mode systems (BMS) that are multi-mode systems (M, n, R)
such that R(m) is a convex polytope for every m € M. We
also assume that the safety set S is specified as a convex
polytope. In our proofs we often refer to another variant of
multi-mode systems in which there are only a fixed number
of different rates in each mode (i.e. R(m) is finite for all m €
M). We call such a multi-mode system multi-rate multi-
mode systems (MMS). Finally, a special form of MMS are
constant-rate multi-mode systems (CMS) [I] in which R(m)
is a singleton for all m € M. We sometimes use R(m) to
refer to the unique element of the set R(m) in a CMS. The
concepts for the schedulability games for BMS and MMS are
already defined for multi-mode systems. Similar concepts
also hold for CMS but note that the environment has no
real choice in this case. For this reason, we can refer to a
schedulability game on CMS as a one-player game.

The prime [I] practical motivation for studying CMS was
to generalize results on green scheduling problem by Nghiem
et al. [I2]. We argue that BMS are a suitable abstraction to
study green scheduling problem when various rates of tem-
perature change are either uncertain or follow a complex and
time-varying dynamics, as shown in the following example.

EXAMPLE 5 (GREEN SCHEDULING). Consider a build-
ing with two rooms A and B. HVAC units in each zone can
be in one of the two modes 0 (OFF) and 1 (ON). We write
the mode of the combined system as m; ; to represent the fact
that rooms A and B are in mode i € {0,1} and j € {0, 1},
respectively. The rate of temperature change and the energy
usage for each room is given below.

Zones ON | OFF
A (temp. change rate/ usage) -2/2 | 2/1
B (temp. change/ usage) -2/2 | 2/1

Following [1] we assume that the energy cost is equal to en-
ergy usage if peak energy usage at any given point in time
is less than or equal to 3 units, otherwise energy cost is 10
times of that standard rate. It follows that to minimize en-
ergy cost the peak usage, if possible, must not be higher than
3 units at any given time. We can model the system as a
CMS with modes mo,0, mo,1, and mi,, because these are
the only ones that have peak usage at most 3. The vari-
ables of the CMS are the temperature of the rooms, while the
safety set is the constraint that temperature of both zones
should be between 65°F to 75°F. The existence of a win-
ning strategy in CMS implies the existence of a switching
schedule with energy peak demand less than or equal to 4
units. In Figure [ (a) we show a graphical representation
of such CMS with three modes mo,0,mo,1 and mi,0 and two
variables (corresponding to the two azes). The rate of the
variables in mode mo,o s (2,2), in mode mo,1 1s (2, —2), and
in mode mi,0 is (—2,2).

Now assume that the rate of temperature change in a mode
is not constant and can vary within a given margin € > 0.

0,0 ) 0,0

0,1 0,1

(a) Constant-Rate  (b) Bounded-Rate (¢) Multi-Rate

Figure 3: Restricted Multi-mode Systems

Schedulability problem for such system can best be modeled
as a BMS as shown in Figure [3 (b) where the polytope of
possible rate vectors is shown as a shaded region. In Fig-
ure [ (¢) we show a MMS where variables can only change
with the extreme rates of the BMS in Figure[3 (b).

We say that a CMS H = (M,n, R) is an instance of a
multi-mode system H = (M,n,R) if for every m € M we
have that R(m) € R(m). For example, the CMS shown
in Figure Bl(a) is an instance of BMS in Figure B (b). We
denote the set of instances of a multi-mode system H by
[H]. Notice that for a BMS # the set [#H] of its instances
is uncountably infinite, while for a MMS H the set [H] is
finite whose size is exponential in the size of H. We say
that a MMS (M, n,R') is the eztreme-rate MMS of a BMS
(M,n,R) if R'(m) = vert(R(m)). The MMS in Figure [Bl(c)
is the extreme-rate MMS for the BMS in Figure Bl(b) We
write Ezt(#H) for the extreme-rate MMS of the BMS .

Notice that for every starting state and winning objective
at most one player can have a winning strategy. We say
that a game is not determined if no player has a winning
strategy for some starting state. In the next section we
give an algorithm to decide the winner in a schedulability
game for an arbitrary starting state. Since for every starting
state we can decide the winner, it gives a direct proof of
determinacy of schedulability games on BMS. Moreover, it
follows from our results that whenever a player has a winning
strategy, he has a positional such strategy. These two results
together yield the first key results of this paper.

THEOREM 1 (DETERMINACY). Schedulability games on
BMS with convex safety polytopes are positionally determined.

In Section [] we analyze the complexity of deciding the
winner in a schedulability game. Using a reduction from
SAT problem to non-schedulability for a MMS, we prove
the following main contribution of the paper.

THEOREM 2. Schedulability problems for BMS and MMS
are co-NP complete.

On a positive note, we also show that schedulability games
can be solved in polynomial time for BMS and MMS with
two variables.

3. SOLVING SCHEDULABILITY GAMES

In this section we discuss the decidability of the schedu-
lability problem for BMS. We first present a solution for the
case when the starting state is in the interior of a safety set,
and generalize it to arbitrary starting states in Section [3.2

3.1 Starting Statein thelnterior of Safety Set

Alur et al. [I] presented a polynomial-time algorithm to
decide if the scheduler has a winning strategy in a schedu-
lability game on a CMS for an arbitrary starting state. In



particular, for starting states in the interior of the safety set,
they characterized a necessary and sufficient condition.

THEOREM 3 ([I). The scheduler has a winning strat-
egy in a CMS (M, n, R), with convex safety set S and starting

state To in the interior of S, iff there is t € RL}%‘ satisfying:

| M| | M|

ZR(i)(j)-E(i) =0for1<j<mand » #i)=1. (1)

i=1

We call a CMS safe if it satisfies (I)) and we call H un-
safe otherwise. The intuition behind Theorem [Blis that the
scheduler has a winning strategy if and only if it is possi-
ble to return to the starting state in strictly positive time
units. From the results of [I] it also follows that whenever a
winning strategy exists, there is a strategy which does not
look at a history or even the current state, but only uses a
bounded counter of size £ < |M|—1 and after after a history
of length k£ makes a decision only based on the number k
modulo ¢. Such strategies are called periodic.

It is natural to ask whether the approach of [I] can be
generalized to BMS. Unfortunately, Example [B] shows that
in a BMS although a winning strategy may exist, it may not
be possible to return to the initial state, or indeed visit any
state twice. Another natural question to ask is whether a
suitable generalization of periodic strategies suffice for BMS.
Static strategies are BMS analog of periodic strategies that
behave in the same manner irrespective of the choices of the
environment, i.e. for a static strategy o we have that o(p) =
o(p') for all runs p = (To, (m1,t1),71,T1, .. ., (Mk, tk), Tk, Tk)
and P/ = <§07 (mhtl): ﬁvfllv B (m]wtk?): 7_'2)7§;c> Static
strategies are often desirable in the settings where scheduler
can not observe the state of the system. However, as we
show in Appendix [A]l except for the degenerate cases when
the BMS contains a subset of modes which induce a safe
CMS, scheduler can never win a game on BMS using static
strategies. We saw an example of this phenomenon in the
Introductory section as Figure [I(c).

This negative observations imply that to solve the schedu-
lability games for BMS one needs to take a different ap-
proach. In the rest of this section, we define the notion of
H-closed polytope and show that if such a polytope exists,
then for any convex set S we can construct a winning dy-
namic strategy which takes its decisions only based on the
last state. We also extend the notion of safety of a CMS to
BMS. We say that a BMS H is safe if all instances of its
extreme-rate MMS Ext(H) are safe i.e. all H € [Ext(H)]
satisfy (). Finally, we connect (Lemmas [0 and [6]) the exis-
tence of H-closed polytope with the safety of the BMS.

Dynamic Scheduling Algorithm. For a BMS H we
call a convex polytope P H-closed, if for every vertex of P
there exists a mode m such that all the rate vectors of m
keep the system in P, i.e. for all ¢ € vert(P) there exists
m € M and 7 € Rso such that for all ¥ € R(m) we have
that ¢+ -t € P for all t € [0, 7]. An example of a H-closed
polytope is given in the Example [l

Assume that for any v > 0 and To we are able to com-
pute a H-closed polytope which is fully contained in B+ (Zo)
and contains To. If this is the case, we can use Algorithm [II
to compute a dynamic scheduling strategy. The idea of the
algorithm is to build a H-closed polytope which contains
the initial state and is fully contained within S, and then
construct the strategy based on the modes safe at the ver-

Algorithm 1: Dynamic scheduling algorithm

Input: BMMS H, starting state To
Output: non-Terminating Scheduling Algorithm

1 v := the shortest distance of Tp from borders of S;
2 P := H-closed polytope s.t. P C B (To) and To € P;
3 foreach ¢ € vert(P) do
4 foreach mode m € M do
5 foreach extreme rate vector ¥ € m do
6 | tr=max{t : ¢+ 7 -t € P}
7 Om = Milje,y, tr;
8 My = argmax, cas om; Ae = 6m,; Mz = ms;
9 while true do
10 Store current state as T;
11 Find (Az > 0)zcvert(p)y Where T = evert(P) Az - G
12 Find ¢, = arg maxXec en(p) Az * Ag;
13 Schedule mode mz, for Az, - Az, ;

tices of the polytope. The correctness of the algorithm is
established by the following proposition.

PROPOSITION 4. If there exists an H-closed polytope and
it can be effectively computed then Algorithm [1 implements
a winning dynamic strategy for the scheduler.

PROOF. Assume that there exists an H-closed polytope
and we have an algorithm to compute it. Observe that the
strategy is non-Zeno, because Az, - Az, on line[T3]is bounded
from below by m - MiNgeyer(p) Az for any point of P,
and Az are positive by their construction and the definition
of the H-closed polytope. Next, we need to show that under
the computed strategy we never leave the convex polytope
P. For a state T which is of the form ZEGVert(P) Az - G, the
successor state will be ' = (3 c en(p) Ae T) + Az, - Az, - T
where 7 is the rate picked by the environment. We can
rewrite T’ as (3o en(p)\ qz.) Ao C) +Ae. - (G +7 Az, ). Since
€« +7- Az, € P, we get that T’ is a convex combination of
points in P and hence lies in P. [

Constructing H-Closed Polytope. We will next show
how to implement line 2] of Algorithm [II We give necessary
and sufficient conditions for existence of H-closed polytopes
in the following two lemmas. The first lemma shows that an
H-closed polytope exists if and only if for any hyperplane
(given by its normal vector ¥) there exists a mode m such
that all its rates stay at one side of the hyperplane.

LEMMA 5. For a BMS H, a state To and vy > 0, there is a
H-closed polytope P C B~(To) with To € P if and only if for
every U there is a mode m such that U -7 > 0 for all ¥ € m.

PROOF. Let us fix a BMS H = (M, n,R). The proof is in
two parts. For =, assume that the system is schedulable but
there exists a vector ¥ such that for all modes m € M there
is a rate 7, € m where ¥ -7y < 0. It implies that if the
adversary fixes the rates 7, whenever the scheduler chooses
m, then the system moves in the direction of vector —% (i.e.
for all d a state T will be reached such that ¥-Z < d), and
hence for any bounded safety set and non-Zeno strategy sys-
tem will leave the safety set. This contradicts with existence
of H-closed polytope implying winning scheduler strategy.

To prove the other direction, let R={71,...,7~} be the
set of rates occurring in modes of the extreme-rate MMS of



(a) (b)

(c) (d)

Figure 4: Constructing closed convex polytope

H, ie. R={R'(m): (M,n,R") € [Ext(H)],m € M}. We
claim the following to be the H-closed polytope:

i=1

where D =~/ Zf\;l ||7;]|- Notice that P is a convex polytope
since it is a convex hull of points ZTo+D - Zf\le 7i - pi where
pi € {0,1}. Also, due to our choice of D, P C B+(To), and
To € P. For the sake of contradiction we assume that for
every ¥ there is a mode m such that all rates 7 of m satisfy
-7 > 0, but at least one corner ¢ of P does not satisfy the
defining condition of H-closed polytope, i.e. for all modes 4
there is a rate vector 7; satisfying

c+t-r; g Pforallt>0 (3)

Let us fix such corner €. By the supporting hyperplane the-
orem there is a vector ¥ such that, for some d:

v-c = d (4)
v-T > d, forallT e P\ {c} (5)
i.e. ¥ is supporting P on €. Let us fix some mode m such
that for all rates 7 of m we have ¥ -7 > 0. Notice that this
exists by the assumption. Let 7; be a rate of m satisfying ().

By the definition of P the point ¢, a corner of P, is of
the form To + D - Zj\;l 7j - p; for some p; € [0,1] where
1 <j < N and 7; € R. We necessarily have p; = 1, because
if pp = 1—6 for some 6 > 0, then ¢+ D -¢-7; € P for
any £ < § and that will contradict with ([B]). Notice that for
all k£ € [0,1] the points 5, = To + D - Z;V:1 p;? - 7, where
p;-“ =p; it j # i and pf = k otherwise, are all in P. Also
notice that point 7, = ¢ and for each k € [0, 1] we have that
Y =Yo+ D k-7 In particular, c =9, =y, + D - 7. It
follows that ¢ — D -7; =g, € P. W.l.o.g. we assume 7; # 0.
Hence, from (B) we get ¢ (¢ — D - 7;) > d. By rearranging
we get ¥-¢— D - U -7 > d, and because U -¢ = d, we get
D -¥-7; <0 which contradicts that v-7; > 0. O

Figures[l (b)-(c) show how to construct H-closed polytope
from (2) for the BMS in Figure @l (a), while Figure @ (d)
shows that for every corner of the constructed polytope there
is a mode that keeps the system inside the polytope.

The following lemma finally gives an algorithmically check-
able characterization of existence of H-closed polytope.

LEMMA 6. Let H = (M,n,R) be a BMS. We have that
for every U there is a mode m such that v -7 > 0 for all
7€ m if and only if H is safe.

PROOF. In one direction, let us assume that (M,n, R) €
[Exzt(H)] is not safe, and let @ = {R(m) | m € M}. Then

Algorithm 2: Schedulability Problem for Interior Start-
ing States.

Input: BMS H, T € R" and v > 0
Output: H-closed polytope P contained in B, (%) s.t.
T € P, No if there is no H-closed polytope.
foreach CMS H = (M, n, R) of [Ext(H)] do
Check if there is a satisfying assignment for:

N =

—

ZmeM R(m) tm = 0
Zmelvf tm = 1 (6)
tm 0 for all m € M.

Vv

if no satisfying assignment exists then return NO
R := {71, 7%, ...,Pn} be the set of rate vectors of
[Ezt(H)];

return the polytope given as convex hull of the points
T+ W SN piTs where p; € {0,1};
i=1 2

w

'

0 is not a convex combination of points in @, and so by
supporting hyperplane theorem applied to 0 and the convex
hull of @ there is ¥ and d > 0 such that ¢ - R(m) > d for
all m € M. Since R(m) € R(m), this direction of the proof
is finished. In the other direction, let ¢ be such that there
is 7 € R(m) for all m € M such that ¢+ < 0. Then by
convexity of R(m) there is 7, € vert(R(m)) with the same
properties, and we can create a CMS (M, n, R) € [Ext(H)]
by putting R(m) = 7. This CMS is not safe, because for
any strategy, for a sufficiently large time bound a point T
will be reached such that (—¥) - T is arbitrarily large, and
hence any convex polytope will be left eventually. [

Combining Proposition ] with Lemmas [B] and [6] we get the
following main result.

THEOREM 7. For every BMS H and the starting state in
the interior of a convex and bounded safety set we have that
scheduler has a winning strategy if and only if H is safe.

Theorem [ allows us to devise Algorithm 2land at the same
time give its correctness. The reader may have noticed that
Theorem [7] bears a striking resemblance to Theorem [3 for
CMS, since the former boils down to checking safety of ex-
ponentially many CMS instances. Note, however, that the
proof here is much more delicate. While in the case of CMS
satisfiability of (1) gives immediately a periodic winning
strategy, for BMS this is not the case: even when every in-
stance in [Ext(H)] is safe, we cannot immediately see which
modes should be used by the winning strategy; this requires
the introduction of H-closed polytopes.

3.2 General Case



Algorithm 3: Schedulability Problem For Arbitrary
Starting State

Input: BMS #, a safety set S given by inequalities

AZ < g, and a starting state To.

Output: Yes, if the scheduler wins, No otherwise.

Compute the sequence Z = (I1, I2, ..., I;);

SCHEDULABLE = (), UNSCHEDULABLE = {J;

foreach I in 7 do
if I' C I and I' € UNSCHEDULABLE then

| UNSCHEDULABLE := UNSCHEDULABLE U {/};
if I3m € M with only internal rates then

| SCHEDULABLE := SCHEDULABLE U {(, L)};
else

Construct Hy;

10 if H1 is safe and Pr is Hi-closed polytope then
11 | SCHEDULABLE := SCHEDULABLE U {([, Pr)} ;
12 else UNSCHEDULABLE:=UNSCHEDULABLEU{ };
13 if 31 € SCHEDULABLE and To = S|; then return Yes;
14 else return No;

© 0N O s W N

In this section we present Algorithm[Blthat analyses schedu-

lability of arbitrary starting states in S. Notice that a start-
ing state on the boundary of the safety polytope may lie
on various faces (planes, edges etc.) of different dimensions.
The scheduler may have a winning strategy using modes that
let the system stay on some lower dimension face, or there
may exists a winning strategy where scheduler first reaches a
face of higher dimension where it may have a winning strat-
egy. Before we describe steps of our algorithm, we need to
formalize a notion of (open) faces of a convex polytope, a
concept critical in Algorithm [3

Let Az < b be the linear constraints specifying a con-
vex polytope S. We specify a face of S by a set I C
{1,...,rows(A)}. We write T | S|;, and we say that T
satisfies S|r, if and only if Ay jz(1) + - An jz(n) = b; for
all j € I, and A1 ;2(1) + - Anjz(n) < b; for all j & I,
i.e. exactly the inequalities indexed by numbers from I are
satisfied tightly. Note that every point of S satisfies S|; for
exactly one I. Although there are potentially uncountably
many states in every face of S the following Lemma implies
that it is sufficient to analyze only one state in every face.

LEMMA 8. For a BMS, a convex polytope S, and for all
faces I of S, either none or all states satisfying S|r are
schedulable. Moreover, if I'CI and no point satisfying S|y
is schedulable, then no point satisfying S|r is schedulable.

Let Z = (I1,12,...) be the sequence of all faces such that
S|z, is satisfied by some state, ordered such that if I; C Ij,
then i < j. We call a mode m wunusable for I if there is
T = S| and 7 € R(m) such that T+ 7- 5 € S for all 6 > 0.
The rate 7 satisfying this condition is called external. A
rate 7 is called internal if for any T such that T = S|; there
is 0 > 0 and j such that [; C I and T +7-¢ = S|, for
all 0 < € < §. For a BMS H and face I we define a BMS
Hr = (M',n,R") where M’ contains all modes of M which
are not unusable for I, and R'(m) is the set of non-internal
rates of R(m).

THEOREM 9. For every BMS H, a convex polytope safety
set S, and a starting state To € S, Algorithm [3 decides

schedulability problem for H. Moreover, one can construct
a dynamic winning strategy using the set SCHEDULABLE.

PROOF. (Sketch.) Let (I1,[s,...) be all sets such that
S|1i is satisfied by some state, ordered such that if I; C I;,
then ¢ < j. Algorithm [J analyzes the sets I;, determining
whether the points satisfying S|;, are schedulable (in which
case we call I; schedulable), or not. Let us assume that I
is the first element of the sequence (I1, I5 . ..) which has not
been analyzed yet. If there is I’ such that I’ C I and I’ is
already marked as not schedulable, then by Lemma [§ one
can immediately mark I as non-schedulable. If all modes
are unusable, then no point T such that S|; is schedulable.
Notice that if there exists an internal rate to face I; then it
must necessarily be the case that I; is schedulable. If there
is a mode m which only has internal rates, there is a winning
strategy o for the scheduler which starts by picking m and
a sufficiently small time interval ¢. This will make sure that
after one step a point is reached which is already known to
be schedulable and scheduler has a winning strategy.

If none of the previous cases match, the algorithm creates
a BMS H; and applies Theorem [f]to the system Hj. If there
is a Hr-closed polyhedron P, we know that I is schedula-
ble and give a winning scheduler’s strategy oz for any point
T |= S|r as follows. Let d > 0 be a number such that for
any § = I; where j > ¢ we have ||Z,7|| > d, i.e. d is cho-
sen so that all points of S contained in Bq(y) satisfy S|
for I’ C I (this follows from the properties of the sequence
Ii,I2,... and because S is a convex polytope). The strat-
egy oz works as follows. If all points in the history satisfy
S|r, oz mimics oy, z,q4. Otherwise, once a point § = S|r is
reached, the strategy oz starts mimicking oy. Note that the
strategy oy is indeed defined by our choice of d and poly-
topes stored in SCHEDULABLE set. Although the strategy we
obtain in this way may potentially be non-positional, it is a
mere technicality to turn it into a positional one.

If Hr is not schedulable for any set and any point, then
it is easy to see that for no point satisfying S|; there is a
schedulable strategy. Indeed, for any strategy o, as long
as o picks the modes from M’, the environment can play a
counter-strategy showing that #r is not schedulable. When
any mode from m € M \ M’ is used by o, we have that m is
unusable and so the environment can pick a rate witnessing
m’s unusability: this will ensure reaching a point outside S.
Hence, we can mark I as unschedulable. [

4. COMPLEXITY

In this section we analyze complexity of the schedulability
problem for BMS. We begin by showing that in general it
is co-NP-complete, however it can be solved in polynomial
time if the system has only two variables.

41 General Case

PROPOSITION 10. The schedulability problem for BMS and
convex polytope safety sets is in co-NP.

PROOF (SKETCH). We show that when the answer to the
problem of schedulability of a point T is No, there is a falsifier
that consists of two components:

— aset IC{1,...,rows(A)} s.t. T S| for I' D I, and

— arate combination (7 )meas such that there is a set of
modes External C M where every 7, for m € External



Figure 5: An example from proof of Proposition [I1]

is external for I; and the rates 7, for m & External are
neither external, nor internal, and there is a vector ¥
such that ¥ - 7, > 0 for all m ¢ External.

Let us first show that the existence of this falsifier implies
that the answer to the problem is No. Indeed, as long as a
strategy of a scheduler keeps using modes m ¢ External, the
environment can pick the rates 7,, and a point outside of S
will be reached under any non-Zeno strategy, because S is
bounded. If the strategy of a scheduler picks any mode m €
External, the environment can win immediately by picking
the external rate 7, and getting outside of S.

On the other hand, let us suppose that the answer to the
problem is No, and let I’ be such that T &= S|p. Then
consider any minimal non-schedulable I C I'. We put to
External all modes which are unusable, and for every such
mode, we pick a rate that witnesses it. Further, there is not
any mode with only internal modes and the BMS H; must
be non-schedulable (otherwise I would be schedulable, or
would not be minimal non-schedulable). By Proposition [0
there is an unsafe instance H = (M’',n,R) € [Ezt(H1)].
Since M’ contains all the modes whose indices are not in
External, we can pick the rate from this unsafe instance and
we are finished. [

PROPOSITION 11  (CO-NP HARDNESS). The schedulabil-
ity problem for MMS is co-NP hard.

PROOF (SKETCH). The proof for co-NP hardness uses a
reduction from the classical NP-complete problem 3-SAT.
For a SAT instance ¢ we construct a MMS H, such that ¢ is
satisfiable if and only if H4 is not schedulable for any start-
ing state and bounded convex safety set. We only sketch
the construction of Hg here and formally prove the cor-
rectness of the construction in Appendix Consider a
SAT instance ¢ with k clauses and n variables denoted as
Z1,...,Zn. The corresponding MMS H4 = (M, n,R) is such
that its set of modes M = {mu, ..., my} corresponds to the
clauses in ¢, and variables are such that variable ¢ corre-
sponds to variable x; of ¢. For each variable x; we define
vectors p; and 7; such that p;(i) = 1, 7:(4) = —1, and
Pi(7) = 7i(j) = 0 if ¢ # j. The rate-vector function R is de-
fined such that for each mode m; and for each SAT variable
x; we have that p; € R(m;) if z; occurs positively in clause
Jj, and ©; € R(my) if the variable z; occurs negatively in
clause j. The crucial property here is that there is no vector
that can have a positive dot product with both p; and 7;,
which allows us to map unsafe rate combinations to satisfy-
ing valuations and vice versa. Figure Bl shows an example
of the reduction for two different formulas. On the left, we
have a satisfiable formula (z1 V z2 V 23) A (-1 V 222 V —23)
which gives rise to a MMS with two modes: {p1,p2,p3} € ma
and {71,72,73} € ma. The system has unsafe combina-
tion p1,72. In Figure [ (right) an unsatisfiable formula

Algorithm 4: Decide if a two dimension BMS is safe.
Input: BMS H with two variables.
Output: Return Yes, if H is safe and No otherwise.
1 Set R to the set of extreme rate vectors of H;
2 foreach 7, € R do

3 Set 4 to be a perpendicular vectors to 7 ;
4 foreach 7 € {4, —u} do
5 if for each m € M there is7 € m s.t. -7 >0

or there is p > 0 s.t. ¥ = pr, then return No;
6 return Yes

(1 Var Vi) A(mx1 V -z Voz) A(zr Ve Vas) is re-
duced to a MMS with three modes: {p1} € m1, {fi1} € mo,
and {p1, P2, ps} € ms. All combinations are safe. []

The proof of the following easy corollary is postponed to
Appendix B3]

COROLLARY 12 (CcO-NP HARDNESS RESULT FOR BMS).
The schedulability problem for BMS is co-NP hard.

4.2 BMS with two variables

For a special case of BMS which only have two variables,
we show the following result.

THEOREM 13. Schedulability problems for BMS with con-
vex polytope safety sets are in P for systems with 2 variables.

The rest of the section is devoted to the proof of this the-
orem. The following lemma shows that to check whether a
set of rate vectors R = {71, ..., 7x } is unsafe it is sufficient to
check properties of vectors 4 perpendicular to some vector
of R. This observation yields a polynomial time algorithm.

LEMMA 14. Let R be a set of vectors. There is U such
that U -7 > 0 for all ¥ € R if and only if there are @ and
71 € R satisfying @71 = 0 and for all ¥ € R either @-7 > 0
or ¥ =p-7, for somep > 0.

PROOF (SKETCH). To obtain ¥ we keep changing ¥ until
it becomes perpendicular to some vector in R. On the other
hand, ¥ is obtained from « by making a sufficiently small
change to @. A formal proof is given in Appendix[B.4 [

Consider an unsafe set of rate vectors R = {71, 72,73, 74}
shown in Figure [0l (left). All the rate vectors are on the
right side of line y = 0 and vector ¢ has strictly positive dot
product with all of them. As it can be seen in the figure,
all the rate vectors are on right-hand side of the line passing
through 7 and there exists 4 perpendicular to 71 such that
v -7 > 0 for all ¥; € R. Observe that adding a rate vector
75 = —r1 to R makes this set of rate vectors safe, and none

Figure 6: Examples for Lemma [14]



of rate vectors would satisfy the conditions of Lemma [T4l
Figure [0l (right) shows a safe set of rate vectors. As one can
see none of rate vectors has the others on one side of itself.
The following corollary implies that we can use Lemma [T4]
to check the safety of a BMS.

COROLLARY 15. A BMS H with two variables is not safe
if and only if there exists a rate vector 71 in one of the modes
of system and vector U perpendicular to it, such that for all
modes m € H: (i) there exists ¥ € m such that ¥ -7 > 0; or
(1)) T-7=0 and ¥ =p- 7L for some p > 0.

Algorithm [ checks whether all the combinations are safe
in polynomial time; it chooses a rate vector 7| at each step
and tries to find an unsafe combination using the result
of Corollary Note that for any non-zero vector 7, in
two dimensions there are only two vectors which we need to
check. Although there are infinitely many vectors ¢ which
might satisfy conditions of Corollary [I5] the conditions we
are checking are preserved if we multiply ¢ by a positive
scalar.

5. DISCRETE SCHEDULABILITY

In this section we discuss the discrete schedulability prob-
lem, in which a scheduler can only make decisions at integer
multiplies of a specified clock period A and the environment
has finitely many choices of rates. Formally, given a MMS
H, a closed convex polytope S as safety set, an initial state
xo € 5, the discrete schedulability problem is to decide if
there exists a winning strategy of the scheduler where the
time delays are multiples of A.

THEOREM 16. Discrete schedulability problem is EXPTIME-

complete.

Proor. EXPTIME-membership of the problems is shown
via discretization of the state space of H. Since the set S is
given as a bounded polytope, the size of the discretization
can be shown to be at most exponential in the size of H and
A, and since the safety games on a finite graph can be solved
in P, EXPTIME membership follows. The hardness can be
proved by a reduction from the countdown games [7]. For
space constraints we give the proof in Appendix[B:5l O

We turn the discrete schedulability problem to an opti-
mization problem, by asking to find supremum of all A for
which the answer to the discrete schedulability problem is
yes. We prove the following, which also improves a result
of [I] where only an approximation algorithm was given.

THEOREM 17. Given a MMS H, a closed convex polytope
S and an initial state To, there is an exponential time al-
gorithm which outputs the maximal A for which the answer
to the discrete schedulability problem is Yes. For a CMS the
algorithm can be made to run in polynomial space.

PROOF (SKETCH). We exploit the fact that as the clock
period A increases, all the points of the discretization move
continuously towards infinity, except for the initial point.
This further implies that for A to be maximal, there must
be a point of the discretization which lies on the boundary of
S, since otherwise we could increase A by some small num-
ber, while preserving the existence of a safe scheduler. By
using a lower bound on A from Section 3] (obtained as a by-
product of the construction of a dynamic strategy), there are

only exponentially many candidates for such points, which
gives us exponentially many candidates for maximal A to
consider, and we can check each one by Theorem For
the PSPACE bound we don’t enumerate the points, but
guess them nondeterministically in polynomial space, and
utilize [I Theorem 10] instead of Theorem Full details
of the proof are given in Appendix[B.6l O

6. CONCLUSION

We investigated systems that comprise finitely many real-
valued variables whose values evolve linearly based on a rate
vector determined by strategies of the scheduler and the en-
vironment. We studied an important schedulability prob-
lem for these systems, with application to energy scheduling,
that asks whether scheduler can make sure that the values
of the variables never leave a given safety set. We showed
that when the safety set is a closed convex polytope, ex-
istence of non-Zeno winning strategy for scheduler is decid-
able for any arbitrary starting state. We also showed how to
construct such a winning strategy. On complexity side, we
showed that the schedulability problem is co-NP complete
in general, but for the special case where the system has
only two variables, the problem can be decided in polyno-
mial time. Directions for future research include investiga-
tion of schedulability problem with respect to more expres-
sive higher-level control objectives including temporal-logic
based specification and bounded-rate multi-mode systems
with reward functions.
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APPENDIX
A. ABSENCE OF STATIC STRATEGIES

PROPOSITION 18. For a given starting state in the inte-
rior of the safety set S, the scheduler has a static winning
strategy in a BMS H = (M,n,R) iff there is M' C M
such that |[R(m)| = 1 for all m € M’', and the CMS H =
(M',n, R) is safe, where R(m) is the unique rate of R(m).

ProoF. The “if” direction is trivial. To show the “only if”
direction we show that if there is no CMS subsystem of H for
which there is a safe and non-Zeno schedule, then there is
no static winning schedule for schedulability objective. Let
o = (ma,t1), (m2,t2),... be a static scheduler.

Assume there is m € M with two different rates 7, and 7,
such that Zi:m:m t; = co. We then define two strategies
for the environr}nent7 e and 7, which for a mode m always
pick a rate 7, and 7%, respectively. After the first k steps,
the point reached under o is equal to

Tp =Ta + (75 — Ta) - Z t;

i<k:m;=m

Hence, the points T, and T} will be arbitrarily far apart for
large enough k, since the safety set is bounded, one of the
strategies m, and m, must ensure that a point outside is left
eventually.

On the other hand, assume all modes m which have two
different rates satisfy that Zi:mi:m t; is finite. Let M’ be
all such modes, and let dy == ||| - 3>_,., < ti < 0o where 77
is the rate with the maximal Euclidean norm which occurs
in ‘H. Intuitively, d is the upper bound on the change of the
values of variables caused by using the modes of M’. Let da
be the diametre of S, and let p be the Euclidean distance
of the initial point Ty from the boundary of S. We define a
strategy

o'zm',t'- P ,m',t'L,...
ot ), (ot )
where (m], 1), (m5,t2), ... is the sequence (m1,t1), (ma2,t2) ...

from which we omit all the tuples which have a mode from
M’ in the first component. The strategy o’ is safe for S and
further shows that there is a safe CMS subsystem, which is
a contradiction. [

B. OMITTED PROOFS
B.1 Proof of Lemmal8

Let T and g be points satisfying S|;. Assume T is safe with
a strategy o, and let o4 be a strategy for a controller defined
as follows: Let o = (Y, (m1,t1),71,Yy,-..Y,) where 7, =
Y + 7, for some ¥;, be a history, and let (7,t) be a decision
of o on (Ty,m1,t1,71,T1,...Tk), where T, = T+ 7, - d and
t; = t; - d. The strategy o4 chooses (7,t/d) in 7. Intuitively,
o4 mimics the decision of o, but it assumes the starting
point is 7 rather than T, and it scales the time intervals
down by d, hence making sure that only points closer to
y can be reached. For this reason it suffices to take large
enough d to make sure that o4 is safe. For example, we can
put d = (supys g, |77 |1)/(infyris), rcr (7.7 )-

Similar arguments can be made for the second part of the
lemma, i.e. any strategy safe for a point satisfying S|/ can
be scaled to a strategy safe for a point satisfying S|;.



B.2 Proof of Proposition[11l(correctness of con-
struction)

We show that the construction proposed in the proof of
Proposition [[1] in the main body is correct. We show that
there is a satisfying assignment for ¢ iff there exists an unsafe
instance of He.

— Now let us suppose that there is an unsafe combina-
tion {77 € mi, 1 < ¢ < |M|}. Then for every rate 7;
which contains 1 at ¢-th position assign true to the vari-
able z;, and for every rate 7; which contains —1 at i-th
position assign false to the variable x;. Note that no
variable would be assigned both true and false since if
two vectors 7 and 7 are chosen which go to the oppo-
site direction, then every ¢ which satisfies 7.7 > 0 also
satisfies ¥ - " < 0, and vice versa, which means that
the combination is not unsafe. Further, observe that
the assignment is satisfying, because for every clause
¢; we have that if 7; contains 1 at i-th position, then
c; contains the literal z; which is satisfied, and if 7
contains —1 at i-th position, then ¢; contains the lit-
eral —z; which is satisfied. Hence there is at least one
true literal in each clause and thus the formula ¢ is
satisfiable.

— To prove the other direction, assume that there is a
satisfying assignment to ¢, then choose one true literal
from each clause and consider the corresponding rate
vector for each mode. Note that there would be no two
vectors along one axis with different directions since
—x; and x; can not be true at the same time. There-
fore we have k vectors along 1 < d < n axises where
each two vectors are either same or perpendicular. This
set of rate vectors will be unsafe since there exists a U
with strictly positive dot product with all of them: We
build vector ¥ such that each i-th entry of vector ¥ is 1
(resp. —1), if there are some vectors whose i-th entry
is 1 (resp. —1), and zero otherwise. The product of
v with any vector from the combination is equal to 1,
and hence greater than zero. []

B.3 Proof of CorollaryI2

To prove this corollary we show that if there is an unsafe
instance of BMS H then there is an unsafe instance of corre-
sponding extreme-rate MMS Ezt(H). With this observation,
the corollary then follows from Proposition Il Assume m
is a mode in the bounded-rate multi-mode system H with
extreme rate vectors {r7, ..., 7 }. First we show that if there
is a rate vector r € m and a rate vector v such that their dot
product is positive, i.e. v.r > 0, then there exists at least
one extreme rate vector r; which makes angle less than 90
with v, i.e. v.rjy > 0. We can write r = ) A\irj where
>~ Ai = 1. Assume vector v has positive dot product with
r, v.r > 0. Assume for the purpose of contradiction that
Vi v.r] < 0, which is a contradiction because then we have
viry <0 = > v ry <0 —= 0. > \iry =wvr <0. Thus
if there is an unsafe instance of BMS, for each mode we can
choose a extreme rate such that the corresponding extreme-
rate instance is unsafe.

B.4 Proof of Lemmal[l4

If |R| < 1, then the claim is immediate. Assume R con-
tains at least two rates.
Let us start with =. Intuitively, we keep changing ¢’ until

it becomes perpendicular to some vector in R, and then
we show that the vector obtained in this way satisfies the
desired properties. Formally, pick a vector @ such that @ -
7o = 0. Find a maximal « € [0, 1) such that for the vector
U := T+ (1— ) - there is a vector in R perpendicular to
Ua. Such o must exists, since at least for vp = w we have 79
perpendicular. We claim ¥, is our vector @, and we put 7.
any vector of R perpendicular to it. First, observe that there
is no ¥ € R such that @ -7 < 0. If this was the case, then
a-7-F+(1—a)-w-7 < 0 and since T- is positive, we could
have picked o' > « for which ¥,/ -7 = o/ -v-7+(1—a')wW-7 = 0
(for the same 7 as before), contradicting the maximality of
a. Now for any vector ¥ € R such that @-7 = 0, if ¥ # pr, for
any p > 0, then 7= pr’; for some p < 0. But since 7| -7 > 0,
we get 7- 0 = p- (7L - ¥) < 0, which is a contradiction with
properties of .

In the other direction, if there are no ¥ € R such that
i -7 > 0, we can just put U to be an arbitrary element of R.
Otherwise, we show that we can obtain ¥ if we make a small
enough change to @. Fix some 7, where @ -7, = 0. Let
T := Mingzec g.z.7>0 U - ¥ be the minimal positive dot product
of @ with vectors of R, and let k := mingcg 7, - 7 be the
minimal (possibly negative) dot product of ¥ with vectors
of R. Set ¥ = ﬁ+mﬁ_. For every 77 € R, we have U-7 =
-7+ gy L - 7 which is positive, because: (1) if the left
summand is 0, then the right summand is positive because
71 -7 >0, and (ii) if the left summand is positive, then it is
at least 7 and the right summand is at least mfi > =3,
and so the sum is positive.

B.5 Proof of Theorem[16 (the hardness part)
A countdown game is a tuple G = (N, T, n1, B1) where

— N ={ni1,na,...,nq} is a finite set of nodes;

— T C N xNsg x N is a set of transition; and
— (n1,B1) € NxNx is the initial configuration.

From any configuration (n,B) € N x N, first player 1
chooses a number k € N, such that k<B and there exists
some (n,k,n’) € T, and then player 2 chooses a transition
(n,k,n’") € T labeled with that number. Note that there
can be more than one such transition. The new configura-
tion then transitions to (n”’, B—k). Player 1 wins a play of
the game when a configuration (n,0) is reached, and loses
(i.e., player 2 wins) when a configuration (n, B) is reached in
which player 1 is stuck, i.e., for all transitions (n, k,n’) € T,
we have k > B.

For a countdown game (N, T, n1, B1) we define a BMS #H,
a safety set S and an initial state T such that there is a
safe scheduler in ¥a for A = 1 iff player 1 has a winning
strategy in the countdown game. W.l.o.g we assume that
when (n,k,n’) € T, then n # n’, and also we assume that
the initial state is (n1, B1) and there is no node n and k such
that (n,k,n1) € T.

The BMS H has d + 1 variables. The intuition is that the
value of the first variable corresponds to the value of the
counter, while (i 4+ 1)th variable is equal to 1 if the game is
in node n;, and 0 otherwise.

For all n,k € N x N5 such that there is (n,k,n’) € T for
some n', we add a mode (n, k) to H. For all (n;, k,n;) € T,
we add the rate r to the mode (n;, k) such that the first
component of r is —k, the (¢ + 1)th component is —1 and
(j + 1)th component is 1. All other components of r are
zero. We further add modes m; for 3 < ¢ < d + 1 which



contain the unique rate with B in the first component, 1 in
the second component, and —1 in i-th component. All other
components of this rate are zero.

The safety set S is defined so that the only points with
integer values are exactly (i1,...,%4+1), where 0 < i1 < Bi,
and exactly one of i2,...,i4+1 is 1, while the others are 0.
Such safety set can be defined using equations

1 < DB
S e <1
z; >0 for1<i<d+1

Now we claim that the system is schedulable from the point
(B1,1,0,0,...,0) iff player 1 has a winning strategy in the
countdown game. The intuition is that the winning strategy
for player 1 in the countdown game directly gives a strategy
for the scheduler in H such that a point is reached which has
zero in the first component, and zeros everywhere else except
for some i-th component. Then the scheduler uses the mode
m;, which leads back to the initial state and then he can
repeat the same strategy. On the other hand, if player 2 has
a winning strategy in the countdown game, this strategy can
be used to get to a state from which the scheduler has no
chance but to leave the safety set (which corresponds to not
having any choices in the countdown game).

B.6 Proof of Theorem[17

In this section we show how to solve the following problem:
given a MMS H = (M, n,R), a convex polytope S and an
initial state T € S, find the maximal number A,,,. such that
there is a winning strategy for the scheduler which only takes
decisions at times i - Aymqe where ¢ € N. Formally, let ¥a
denote the set of strategies for the scheduler which schedule
in multiples of A. Then we wish to find a supremum, over
all A, such that there is a safe scheduler in Xa.

Let R be the set of all possible rate vectors of H. Note
that since H is a MMS, the set R is finite.

Let discr(A) be the points reachable from T when using a
scheduler from Y a. All such points are equal to T+ re R b7
A -7 for some i € N. This implies that the set discr(A)NS
is finite.

The intuition of our algorithm is the following. FEvery
strategy from Xa can be seen as a function which rather
than observing and choosing time delays observes and chooses
the number of time periods (multiples of A) elapsed. Using
this abstracted view of strategies, every strategy in ¥a cor-
responds to a strategy in ¥’x which differs only in the length
of the time period. It can be shown that there is a correspon-
dence of points reachable under these two strategies. Seeing
the points of discr(A) as a “grid”, the points of discr(A’) are
obtained by stretching (if A’ > A) or squeezing (if A’ < A)
this grid. It follows that for a A to be maximal, there must
be a point in discr(A) which lies on the boundary of S,
since otherwise the grid discr(A) can be stretched to some
discr(A") where A’ > A, preserving the existence of a safe
scheduler. Exploiting this property together with the fact
that we already know a lower bound on A,,qz, we get only
finitely many candidates for maximal A, and we can check
in each of them whether a safe scheduler exists using Theo-
rem Our algorithm is presented as Algorithm

Let us now prove the correctness of the algorithm. Clearly
the algorithm terminates in exponential time since the “fore-
ach” loop is executed only exponentially many times at most,
and each of the respective lines can be executed in expo-

Algorithm 5: algorithm computing Apnaz

Input: schedulable H, safety set S given as Az < b,
point T € S
Output: A,us

1 Let I' be the lower bound on Ajaz;

2 Compute discr(I') NS

3 Apmaz =15

4 foreachy =T+ . pirA -7 € discr(I) N S do

5 maximise A subject to A« (T + 3 . pirA-7) < b if
YA contains a safe scheduler and A > Apqe then

6 | Anmaz = A

7 return Anaz

nential time. Hence, we only need to show that the result
returned by the algorithm is correct.

We first introduce some technical notation to capture the
intuition of correspondence between points of different dis-
cretisations. Define a bijection ga as between discr(A) and
discr(A) that to a point T+ A - Y . pir - 7 where iz € N
assigns the point = + A’ - > rcrbr - 7. Intuitively, this func-
tion pairs the corresponding points on the “grids” given by
discr(A) and discr(A'). Note that ga_as is well defined and
does not depend on the choice of i € N which represent the
point and can be non-unique. Indeed, if

THAD Qe F=T+A Y in T

TER TER

for some 47,4 € N, then Y. piz-F =3 . pir-7 and hence
also T+ A" -3 pin T=T+A - Y pip-T.

The following lemma essentially says that when we en-
large the length of a time period, the set of points on the

corresponding grid that are within S can only get smaller.

LEMMA 19. Let A > A'. Then gasa(discr(A’)NS) 2
diser(A)N S.

ProOF. Follows because S is closed, convex and contains

z. O

The following lemma intuitively says when we can in-
crease the time period while preserving the existence of a
safe scheduler.

LEMMA 20. Let A > A’ be such that
discr(A) NS = gar a(diser(A") N S)

and assume that there is a safe scheduler in X a/. Then there
is a safe scheduler in Xa.

PRrOOF. Using ga’ a, we can define a function ha/ A from
YA to XA to capture our intuition of strategies that differ
only on the length of a time period as follows. Given o € Xa-
and a history

(@0, (M, i1 - Al), Tiy...Tk)
we put
har,a(o)((gar,a(@o), (M, i1 - A), 71, ... gar,a(@r)))
= U(<:C07 (mhil . A/)77‘17 . :Ck>)

Now it is easy to prove by induction that if the set of points
that are reachable under o € ¥ A/ is X, then the set of points
reachable by has a(0) € 3a is equal to gar a(X). O



Now we are ready to proceed with the proof of the cor-
rectness of the algorithm. Let A, be the actual solu-
tion, and let Ammaz be the returned number. We know that
Amaz < Apaz, since the algorithm ensures that there is a
safe scheduler in Eﬁmaz. To prove Aoz > Anaz, it suffices
to show that there is a safe scheduler in X4,,,., and that
Apaz is found for some 7 at line [4] of Algorithm

To show that there is a safe scheduler in Xa,,,., let
X = m gA)Amaz(diSCT‘(A) ﬂS)
A<Amas

We have X = discr(Amaz) N'S. The inclusion 2O follows
by Lemma [I9 the inclusion C follows by the fact that S is
closed and the fact that as A gets arbitrary close to Amaz,
the points § € discr(A) get arbitrary close to ga,Amas (T)-
By Lemma [I9 and because discr(A) NS is finite for all T’ <
A < Amaz, thereis A < Apqq such that ga,a,,.. (diser(A)N
S) = X, and by definition of A,q. there is a safe scheduler
in Xa. Finally by Lemma 20] there must be a safe scheduler
0 € XAman-

Now suppose that A,q is not a solution to any of the lin-
ear programs executed on line[d For each § € discr(I')) NS,
let Ay be the solution to the linear program for y. Let P
be the set of all § € discr(I') N S satisfying gr,a,...(Y) €
discr(Amaz) N'S. Define A = mingep Ay. We have A >
Apaz, since if A = Ayaz then A,q: would be the solution
to the linear program for the point 7 which realises the mini-
mum, and if A < Apeq then groa,,..(Y) & discr(Amaz)NS.
In addition, ga,,q.,a (discr(Amaz)NS) = discr(A)NS which
by Lemma implies that there is a safe scheduler in Xa,
contradicting the maximality of Aqq.
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